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Abstract

In this work we are interested in nonlinear symmetric cone problems (NSCPs), which contain
as special cases nonlinear semidefinite programming, nonlinear second order cone programming
and the classical nonlinear programming problems. We explore the possibility of reformulat-
ing NSCPs as common nonlinear programs (NLPs), with the aid of squared slack variables.
Through this connection, we show how to obtain second order optimality conditions for NSCPs
in an easy manner, thus bypassing a number of difficulties associated to the usual variational
analytical approach. We then discuss several aspects of this connection. In particular, we show
a “sharp” criterion for membership in a symmetric cone that also encodes rank information.
Also, we discuss the possibility of importing convergence results from nonlinear programming to
NSCPs, which we illustrate by discussing a simple augmented Lagrangian method for nonlinear
symmetric cones. We show that, employing the slack variable approach, we can use the results
for NLPs to prove convergence results, thus extending a special case (i.e., the case with strict
complementarity) of an earlier result by Sun, Sun and Zhang for nonlinear semidefinite programs.

Keywords: symmetric cone, optimality conditions, augmented Lagrangian.

1 Introduction

In this paper, we analyze optimality conditions for the following problem:

minimize
x

f(x)

subject to h(x) = 0,
g(x) ∈ K,
x ∈ R

n,

(P1)

where f : Rn → R, h : Rn → R
m and g : Rn → E are twice continuously differentiable functions. We

assume that E is a finite dimensional space equipped with an inner product 〈·, ·〉. Here, K ⊆ E is a
symmetric cone, that is

1. K is self-dual, i.e., K := K∗ = {x | 〈x, y〉 ≥ 0, ∀y ∈ K},
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2. K is full-dimensional, i.e., the interior of K is not empty,

3. K is homogeneous, i.e., for every pair of points x, y in the interior of K, there is a linear
bijection T such that T (x) = y and T (K) = K. In short, the group of automorphism of K acts
transitively on the interior of K.

Then, problem (P1) is called a nonlinear symmetric cone problem (NSCP). One of the advantages
of dealing with NSCPs is that it provides an unified framework for a number of different problems
including classical nonlinear programs (NLPs), nonlinear semidefinite programs (NSDPs), nonlinear
second order cone programs (NSOCPs) and any mixture of those three.

Since K is a symmetric cone, we may assume that E is equipped with a bilinear map ◦ : E×E → E
such that K is the corresponding cone of squares, that is,

K = {y ◦ y | y ∈ E}.

Furthermore, we assume that ◦ possesses the following three properties:

1. y ◦ z = z ◦ y,

2. y ◦ (y2 ◦ z) = y2 ◦ (y ◦ z), where y2 = y ◦ y,

3. 〈y ◦ z, w〉 = 〈y, z ◦ w〉,

for all y, w, z ∈ E . Under these conditions, (E , ◦) is called an Euclidean Jordan algebra. It can be
shown that every symmetric cone arises as the cone of squares of some Euclidean Jordan algebra,
see Theorems III.2.1 and III.3.1 in [12]. We will use ‖·‖ to indicate the norm induced by 〈·, ·〉. We
remark that no previous knowledge on Jordan algebras will be assumed and we will try to be as
self-contained as possible.

While the analysis of first order conditions for (P1) is relatively straightforward, it is challenging
to obtain a workable description of second order conditions for (P1). We recall that for NSOCPs
and NSDPs, in order to obtain the so-called “zero-gap” optimality conditions, it is not enough to
build the Lagrangian and require it to be positive semidefinite/definite over the critical cone. In fact,
an extra term is needed which, in the literature, is known as the sigma-term and is said to model
the curvature of the underlying cone. The term “zero-gap” alludes to the fact that the change from
“necessary” to “sufficient” should involve, apart from minor technicalities, only a change from “≥”
to “>”, as it is the case for classical nonlinear programming (see Theorems 12.5 and 12.6 in [26] or
Section 3.3 in [3]).

Typically, there are two approaches for obtaining “zero-gap” second order conditions. The first
is to compute directly the so-called second order tangent sets of K. This was done, for instance, by
Bonnans and Ramı́rez in [7] for NSOCP. Another approach is to express the cone as

K = {z ∈ E | ϕ(z) ≤ 0},

where ϕ is some convex function. Then, the second order tangent sets can be computed by examining
the second order directional derivatives of ϕ. This is the approach favored by Shapiro in [29] for
NSDPs.

For K, there is a natural candidate for ϕ. Over an Euclidean Jordan algebra, we have a “minimum
eigenvalue function” σmin, for which x ∈ K if and only if σmin(x) ≥ 0, in analogy to the positive
semidefinite cone case. We then take ϕ = −σmin. Unfortunately, as far as we know, it is still an open
problem to give explicit descriptions of higher order directional derivatives for −σmin. In addition,
it seems complicated to describe the second order tangent sets of K directly.
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In fact, the only reference we could find that discussed second order conditions for NSCPs is the
work by Kong, Tunçel and Xiu [24], where they define the strong second order sufficient condition for
a linear symmetric cone program, see Definition 3.3 therein. Here, we bypass all these difficulties by
exploring the Jordan algebraic connection and transforming (P1) into an ordinary nonlinear program
with equality constraints:

minimize
x,y

f(x)

subject to h(x) = 0,
g(x) = y ◦ y,
x ∈ R

n, y ∈ E .

(P2)

We will then use (P2) to derive optimality conditions for (P1). By writing down the second order
conditions for (P2) and eliminating the slack variable y, we can obtain second order conditions
for (P1). This is explained in more detail in Section 6. The drawback of this approach is that
the resulting second order conditions require strict complementarity. How serious this drawback is
depends, of course, on the specific applications one has in mind. Still, we believe the connection
between the two formulations can bring some new insights.

In particular, through this work we found a “sharp” characterization of membership in a sym-
metric cone. Note that since K is self-dual, a necessary and sufficient condition for some λ ∈ E to
belong to K is that 〈z, λ〉 ≥ 0 holds for all z ∈ K, or equivalently, that 〈w ◦ w, λ〉 ≥ 0 for all w ∈ E .
This, however, gives no information on the rank of λ. In contrast, Theorem 3.3 shows that if we
instead require that 〈w ◦w, λ〉 > 0 for all nonzero w in some special subspace of E , this not only
guarantees that λ ∈ K, but also reveals information about its rank. This generalizes Lemma 1 in
[25] for all symmetric cones.

Moreover, our analysis opens up the possibility of importing convergence results from the NLP
world to the NSCP world, instead of proving them from scratch. In Section 7, we illustrate this by
extending a result of Sun, Sun and Zhang [32] on the quadratic augmented Lagrangian method.

The paper is organized as follows. In Section 2, we review basic notions related to Euclidean
Jordan algebras, KKT points and second order conditions. In Section 3, we prove a criterion for
membership in a symmetric cone. In Section 4, we provide sufficient conditions that guarantee
equivalence between KKT points of (P1) and (P2). In Section 5, we discussion the relation between
constraint qualifications of those two problems. In Section 6, we present second order conditions for
(P1). In Section 7, we discuss a simple augmented Lagrangian method. We conclude in Section 8,
with final remarks and a few suggestions for further work.

2 Preliminaries

2.1 Euclidean Jordan algebra

We first review a few aspects of the theory of Euclidean Jordan algebras. More details can be
found in the book by Faraut and Korányi [12] and also in the survey paper by Faybusovich [14].
First of all, any symmetric cone K arises as the cone of squares of some Euclidean Jordan algebra
(E , ◦). Furthermore, we can assume that E has an unit element e satisfying y ◦ e = y, for all y ∈ E .
Reciprocally, given an Euclidean Jordan algebra (E , ◦), it can be shown that the corresponding cone
of squares is a symmetric cone. See Theorems III.2.1 and III.3.1 in [12], for more details.

Given y ∈ E , we denote by Ly the linear operator such that

Ly(w) = y ◦ w,

for all w ∈ E .
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In what follows, we say that c is an idempotent if c ◦ c = c. Morover, c is primitive if it is nonzero
and there is no way of writing c = a+ b, with nonzero idempotents a and b satisfying a ◦ b = 0.

Theorem 2.1 (Spectral Theorem, see Theorem III.1.2 in [12]). Let (E , ◦) be an Euclidean Jordan
algebra and let y ∈ E. Then there are primitive idempotents c1, . . . , cr satisfying

ci ◦ cj = 0 for i 6= j, (2.1)

ci ◦ ci = ci, i = 1, . . . , r, (2.2)

c1 + · · ·+ cr = e, i = 1, . . . , r, (2.3)

and unique real numbers σ1, . . . , σr satisfying

y =

r
∑

i=1

σici. (2.4)

We say that c1, . . . , cr in Theorem 2.1 form a Jordan frame for y, and λ1, . . . , λr are the eigenvalues
of y. We remark that r only depends on the algebra E . Given y ∈ E , we define its trace by

tr(y) = σ1 + · · ·+ σr,

where σ1, . . . , σr are the eigenvalues of y. As in the case of matrices, it turns out that the trace
function is linear. It can also be used to define an inner product compatible with the Jordan
product, and so henceforth we will assume that 〈x, y〉 = tr(x ◦ y). In the case of symmetric matrices,
〈·, ·〉 turns out to be the Frobenius inner product.

For an element y ∈ E , we define the rank of y as the number of nonzero λi’s that appear in (2.4).
Then, the rank of K is defined by

rankK = max{rank y | y ∈ K} = r = tr(e).

We will also say that the rank of E is r = tr(e).
For the next theorem, we need the following notation. Given y ∈ E and a ∈ R, we write

V (y, a) = {z ∈ E | y ◦ z = az}.

For any V, V ′ ⊆ E , we write V ◦ V ′ = {y ◦ z | y ∈ V, z ∈ V ′}.
Theorem 2.2 (Peirce Decomposition – 1st version, see Proposition IV.1.1 in [12]). Let c ∈ E be an
idempotent. Then E is decomposed as the orthogonal direct sum

E = V (c, 1)
⊕

V

(

c,
1

2

)

⊕

V (c, 0).

In addition, V (c, 1) and V (c, 0) are Euclidean Jordan algebras satisfying V (c, 1) ◦ V (c, 0) = {0}.
Moreover, (V (c, 1) + V (c, 0)) ◦ V (c, 1/2) ⊆ V (c, 1/2) and V (c, 1/2) ◦ V (c, 1/2) ⊆ V (c, 1) + V (c, 0).

The Peirce decomposition has another version, with detailed information on the way that the
algebra is decomposed.

Theorem 2.3 (Peirce Decomposition – 2nd version, see Theorem IV.2.1 in [12]). Let c1, . . . , cr be
a Jordan frame for y ∈ E. Then E is decomposed as the orthogonal sum

E =
⊕

1≤i≤j≤r

Vij ,
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where

Vii = V (ci, 1) = {αci | α ∈ R},

Vij = V

(

ci,
1

2

)

∩ V
(

cj ,
1

2

)

, for i 6= j.

Moreover

(i) the Vii’s are subalgebras of E,
(ii) the following relations hold:

Vij ◦ Vij ⊆ Vii + Vjj ∀i, j, (2.5)

Vij ◦ Vjk ⊆ Vik if i 6= k, (2.6)

Vij ◦ Vkl = {0} if {i, j} ∩ {k, l} = ∅. (2.7)

The algebra (E , ◦) is said to be simple if there is no way to write E = V ⊕W , where V and W
are both nonzero subalgebras of E . We will say that K is simple if it is the cone of squares of a
simple algebra. It turns out that every Euclidean Jordan algebra can be decomposed as a direct sum
of simple Euclidean Jordan algebras, which then induces a decomposition of K in simple symmetric
cones. This means that we can write

E = E1 ⊕ · · · ⊕ Eℓ,
K = K1 ⊕ · · · ⊕ Kℓ,

where the Ei’s are simple Euclidean Jordan algebras of rank ri and Ki is the cone of squares of Ei.
Note that orthogonality expressed by this decomposition is not only with respect to the inner product
〈·, ·〉 but also with respect to the Jordan product ◦. There is a classification of the simple Euclidean
Jordan algebras and, up to isomorphism, they fall in four infinite families and a single exceptional
case.

Due to the decomposition results, some articles only deal with simple Jordan algebras (such as
[31, 13]), while others prove results in full generality (such as [1]). The extension from the simple
case to the general case is usually straightforward but must be done carefully.

We recall the following properties of K. The results follow from various propositions that appear
in [12], such as Proposition III.2.2 and Exercise 3 in Chapter III. See also Equation (10) in [30].

Proposition 2.4. Let y, w ∈ E.
(i) y ∈ K if and only if the eigenvalues of y are nonnegative.

(ii) y ∈ intK if and only if the eigenvalues of y are positive.

(iii) y ∈ intK if and only if 〈y, w ◦ w〉 > 0 for all nonzero w ∈ E.
(iv) Suppose y, w ∈ K. Then, y ◦ w = 0 if and only if 〈y, w〉 = 0.

From item (iv) of Proposition 2.4, we have that if c and c′ are two idempotents belonging to
distinct blocks, we also have c ◦ c′ = 0 in addition to 〈c, c′〉 = 0. Since this holds for all idempotents,
we have Ei ◦ Ej = 0, whenever i 6= j.

Due to Proposition 2.4, if y ∈ K, then the eigenvalues of y are nonnegative, and so we can define
the square root of y as

√
y =

r
∑

i=1

√
σici,

where {c1, . . . , cr} is a Jordan frame for y.
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2.2 Projection on a symmetric cone

Denote by PK the orthogonal projection on K. Given y ∈ E , PK(y) satisfies

PK(y) = argmin
z∈K

‖y − z‖ .

In analogy to the case of a positive semidefinite cone, to project x on K it is enough to zero the
negative eigenvalues of x. We register this well-known fact as a proposition.

Proposition 2.5. Let y ∈ E and consider a Jordan decomposition of y

y =
r
∑

i=1

σici,

where {c1, . . . , cr} is a Jordan frame for y. Then, its projection is given by

PK(y) =

r
∑

i=1

max(σi, 0)ci. (2.8)

Proof. Let z ∈ K. In view of Theorem 2.3, we can write

z =

r
∑

i=1

vii +
∑

1≤i<j≤r

vij ,

where vij ∈ Vij for all i and j. As Vii = {αci | α ∈ R}, we have

z =

r
∑

i=1

αici +
∑

1≤i<j≤r

vij ,

for some constants αi ∈ R. Recall that the subspaces Vij are all orthogonal among themselves and
that K is self-dual. Then, since ci ∈ K and 〈z, ci〉 ≥ 0, we have αi ≥ 0 for all i. Furthermore, we
have

‖y − z‖2 =

r
∑

i=1

(σi − αi)
2 ‖ci‖2 +

∑

1≤i<j≤r

‖vij‖2 .

Therefore, if we wish to minimize ‖y − z‖2, the best we can do is to set each vij to zero and each αi

to max(σi, 0). This shows that (2.8) holds.

In analogy to the symmetric matrices, we will use the following notation:

PK(y) = [y]+ .

The following observation will also be helpful.

Lemma 2.6. Let K be a symmetric cone and v ∈ E. Then,

v − [v]+ = − [−v]+ .

Proof. The Moreau decomposition (see, e.g., Theorem 3.2.5 in [18]) tells us that v − [v]+ = PK◦(v),
where K◦ is the polar cone of K. As K is self-dual, we have K◦ = −K. Therefore, PK◦(v) =
−PK(−v) = − [−v]+.
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2.3 The Karush-Kuhn-Tucker conditions

First, we define the Lagrangian function L : Rn × R
m × E → R associated with problem (P1) as

L(x, µ, λ) := f(x)− 〈h(x), µ〉 − 〈g(x), λ〉.

We say that (x, µ, λ) ∈ R
n ×R

m × E is a Karush-Kuhn-Tucker (KKT) triple of problem (P1) if the
following conditions are satisfied:

∇f(x)− Jh(x)∗µ− Jg(x)∗λ = 0, (P1.1)

λ ∈ K, (P1.2)

g(x) ∈ K, (P1.3)

λ ◦ g(x) = 0, (P1.4)

h(x) = 0, (P1.5)

where ∇f is the gradient of f , Jg is the Jacobian of g and Jg∗ denotes the adjoint of Jg. Usually,
instead of (P1.4), we would have 〈λ, g(x)〉 = 0, but in view of item (iv) of Proposition 2.4, they are
equivalent. Note also that (P1.1) is equivalent to ∇Lx(x, µ, λ) = 0, where ∇Lx denotes the gradient
of L with respect to x.

We also have the following definition.

Definition 2.7. If (x, µ, λ) ∈ R
n × R

m × E is a KKT triple of (P1) such that

rank g(x) + rankλ = r,

then (x, λ) is said to satisfy the strict complementarity condition.

As for the equality constrained NLP problem (P2), we observe that (x, y, µ, λ) ∈ R
n×E×R

m×E
is a KKT quadruple if the conditions below are satisfied:

∇(x,y)L(x, y, µ, λ) = 0,

h(x) = 0,

g(x)− y ◦ y = 0,

where L : Rn × E ×R
m × E → R is the Lagrangian function associated with (P2), which is given by

L(x, y, µ, λ) := f(x)− 〈h(x), µ〉 − 〈g(x)− y ◦ y, λ〉

and ∇(x,y)L denotes the gradient of L with respect to (x, y).
We can then write the KKT conditions for (P2) as

∇f(x)− Jh(x)∗µ− Jg(x)∗λ = 0, (P2.1)

λ ◦ y = 0, (P2.2)

g(x)− y ◦ y = 0, (P2.3)

h(x) = 0. (P2.4)

Writing the conditions for (P1) and (P2), we see that although they are equivalent problems, the
KKT conditions are slightly different. In fact, for (P2), it is not required that λ belongs to K and
this accounts for a great part of the difference between both formulations.
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For (P1), we say that the Mangasarian-Fromovitz constraint qualification (MFCQ) holds at a
point x if Jh(x) is surjective and there exists some d ∈ R

n such that

Jh(x)d = 0,

g(x) + Jg(x)d ∈ intK,
where intK denotes the interior of K. See, for instance, Equation (2.190) in [8]. If x is a local
minimum for (P1), MFCQ ensures the existence of a pair of Lagrange multipliers (µ, λ) and that the
set of multipliers is bounded.

We also can define a nondegeneracy condition as follows.

Definition 2.8. Suppose that x ∈ K is such that

R
m = Im Jh(x),

K = lin TK(g(x)) + Im Jg(x),

where Im Jg(x) denotes the image of the linear map Jg(x), TK(g(x)) denotes the tangent cone of K
at g(x), and lin TK(g(x)) is the lineality space of TK(g(x)), i.e., lin TK(g(x)) = TK(g(x))∩−TK(g(x)).
Then, x is said to be nondegenerate.

This definition is related to the transversality condition introduced by Shapiro in [29], see Defi-
nition 4 therein. Furthermore, Definition 2.8 is a special case of a more general definition of nonde-
generacy discussed in the work by Bonnans and Shapiro, see Section 4.6.1 of [8].

For (P2), we say that the linear independence constraint qualification (LICQ) is satisfied at a
point (x, y) if the gradients of the constraints are linearly independent.

2.4 Second order conditions for (P2)

For (P2), we say that the second order sufficient condition (SOSC-NLP) holds if

〈∇2
(x,y)L(x, y, µ, λ)(v, w), (v, w)〉 > 0,

for every nonzero (v, w) ∈ R
n × E such that Jg(x)v − 2y ◦ w = 0 and Jh(x)v = 0, where ∇2

(x,y)L
denotes the Hessian of L with respect to (x, y). See [3, Section 3.3] or [26, Theorem 12.6]. We can
also present the SOSC-NLP in terms of the Lagrangian of (P1).

Proposition 2.9. Let (x, y, µ, λ) ∈ R
n × E × R

m × E be a KKT quadruple of problem (P2). The
SOSC-NLP holds if

〈∇2
xL(x, µ, λ)v, v〉 + 2〈w ◦ w, λ〉 > 0 (2.9)

for every nonzero (v, w) ∈ R
n × E such that Jg(x)v − 2y ◦ w = 0 and Jh(x)v = 0.

Proof. Note that we have

∇2
(x,y)L(x, y, µ, λ) = ∇2

(x,y)[L(x, µ, λ) + 〈y ◦ y, λ〉].
Therefore,

〈∇2
(x,y)L(x, y, µ, λ)(v, w), (v, w)〉 = 〈∇2

xL(x, µ, λ)v, v〉 + 〈∇2
y〈y ◦ y, λ〉w,w〉.

Due to the fact that the underlying algebra is Euclidean, we have ∇y〈y ◦ y, λ〉 = 2y ◦ λ and
∇2

y〈y ◦ y, λ〉 = 2Lλ, where we recall that Lλ is the linear operator satisfying Lλ(z) = λ ◦ z for
every z. We then conclude that

〈∇2
y〈y ◦ y, λ〉w,w〉 = 〈w, 2Lλ(w)〉 = 2〈w ◦ w, λ〉,

which implies that (2.9) holds.
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Similarly, we have the following second order necessary condition (SONC). Note that we require
the LICQ to hold.

Proposition 2.10. Let (x, y) be a local minimum for (P2) and (x, y, µ, λ) ∈ R
n × E ×R

m × E be a
KKT quadruple such that LICQ holds. Then, the following SONC-NLP holds:

〈∇2
xL(x, µ, λ)v, v〉 + 2〈w ◦ w, λ〉 ≥ 0 (2.10)

for every (v, w) ∈ R
n × E such that Jg(x)v − 2y ◦ w = 0 and Jh(x)v = 0.

Proof. See [26, Theorem 12.5] for the basic format of the second order necessary condition for NLPs.
In order to express the condition in terms of the Lagrangian of (P1), we proceed as in the proof of
Proposition 2.9.

Under the assumption that E is decomposed as E = E1 ⊕ · · · ⊕ Eℓ, the term 2〈w ◦ w, λ〉 can be
written as

ℓ
∑

i=1

2〈wi ◦ wi, λi〉,

which brings Propositions 2.9 and 2.10 closer to the format described, for instance, in Lemma 3.2 of
[16].

Furthermore, we observe that in Propositions 2.9 and 2.10 an extra term appears together with
the Lagrangian of (P1). This term is connected with the so-called sigma-term that appears in second
order optimality conditions for optimization problems over general closed convex cones and plays an
important role in the construction of no-gap optimality conditions. Classical references for second
order optimality conditions for general cones include the works of Kawasaki [22], Cominetti [11],
Bonnans, Cominetti and Shapiro [6], and the book by Bonnans and Shapiro [8]. In particular, we
refer to sections 3.2, 3.3, 5.2 and 5.3 in [6].

3 A criterion for membership in K
We need the following auxiliary result.

Proposition 3.1. Let (E , ◦) be a simple Euclidean Jordan algebra and let ci and cj be two orthogonal
primitive idempotents. Then

V

(

ci,
1

2

)

∩ V
(

cj ,
1

2

)

6= {0}.

Proof. See Corollary IV.2.4 in [12].

Since K is self-dual, we have that λ ∈ K if and only if 〈λ,w ◦ w〉 ≥ 0 for all w ∈ E . Lemma 3.2
refines this criterion for the case where K is simple.

Lemma 3.2. Let (E , ◦) be a simple Euclidean Jordan algebra of rank r and λ ∈ E. The following
statements are equivalent:

(i) λ ∈ K.

(ii) There exists y ∈ E such that y ◦ λ = 0 and

〈w ◦ w, λ〉 > 0, (3.1)

for every w ∈ E satisfying y ◦ w = 0 and w 6= 0.
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Moreover, any y satisfying (ii) is such that

(a) rank y = r − rankλ, i.e., y and λ satisfy strict complementarity,

(b) if σ and σ′ are non-zero eigenvalues of y, then σ + σ′ 6= 0.

Proof. (i)⇒ (ii) If λ ∈ K, we write its spectral decomposition as

λ =

r
∑

i=1

σici,

where we assume that only the first rankλ eigenvalues are positive and the others are zero. If
rankλ = r, we take y = 0. Otherwise, take

y =

r
∑

i=rank λ+1

ci.

Note that y is an idempotent and that λ lies in the relative interior of the cone of squares of the
Jordan algebra V (y, 0). Hence, the condition (3.1) is satisfied.

(ii)⇒ (i), together with (a) and (b) We write

y =

r
∑

i=1

σici =

rank y
∑

i=1

σici,

where {c1, . . . , cr} is a Jordan frame, and we assume that the first rank y eigenvalues of y are nonzero
and the others are zero. Then, following Theorem 2.3, we write

λ =
∑

i≤j

λij =

r
∑

i=1

λii +
∑

i<j

λij ,

where λij ∈ Vij . Using the operation rules in Theorem 2.3, we get

ck ◦ λij =











λij , if i = j = k

0, if {k} ∩ {i, j} = ∅
λij

2 , if i < j, {k} ∩ {i, j} = {k}.

Therefore,

y ◦ λ =

rank y
∑

i=1

σiλii +
∑

1≤i<j≤rank y

(

σi + σj
2

)

λij +
∑

1≤i≤rank y<j

σi
2
λij . (3.2)

By hypothesis, we have y ◦ λ = 0. Since the Vij ’s are mutually orthogonal subspaces, we conclude
that all terms inside the summations in (3.2) must be zero. In particular, we have σiλii = 0, for
every i ≤ rank y. As the σi’s are nonzero for those indexes, we have λii = 0 so that

λ =
∑

rank y<i≤r

λii +
∑

i<j

λij , (3.3)
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We now show that (b) holds. Suppose for the sake of contradiction that σi + σj = 0 for some
i < j ≤ rank y. By Proposition 3.1, there is a nonzero w ∈ V (ci, 1/2) ∩ V (cj , 1/2). Since w ◦ ck = 0
for k 6= i, k 6= j, we have

y ◦ w = (σici ◦ w) + (σjcj ◦ w) =
(

σi + σj
2

)

w = 0.

Moreover, w ◦ w ∈ V (ci, 1) + V (cj , 1), due to (2.5). By (3.3) and the orthogonality among the Vij ,

〈w ◦ w, λ〉 = 0,

since λ has no component in neither V (ci, 1) = Vii nor V (cj , 1) = Vjj . This contradicts (3.1), and
so it must be the case that (b) holds.

Let c = c1+ · · ·+crank y. We will now show that V (c, 0) = V (y, 0). Since E = V (c, 0)⊕V (c, 1/2)⊕
V (c, 1) and y ∈ V (c, 1), we have V (c, 0) ⊆ V (y, 0), since V (c, 0) ◦ V (c, 1) = {0}.

The next step is to prove that V (y, 0) ⊆ V (c, 0). Suppose that y ◦ w = 0 and write w =
∑

i≤j wij

with wij ∈ Vij as in Theorem 2.3. As in (3.2), we have

y ◦ w =

rank y
∑

i=1

σiwii +
∑

1≤i<j≤rank y

(

σi + σj
2

)

wij +
∑

1≤i≤rank y<j

σi
2
wij = 0.

Because σi, σj and σi + σj are all nonzero when i ≤ j ≤ rank , it follows that wij = 0 for i ≤
j ≤ rank y and for i ≤ rank y < j, since wij all lie in mutually orthogonal subspaces. Therefore,
w =

∑

rank y<i≤j wij and Theorem 2.3 implies that c ◦ w = 0, which shows that V (y, 0) ⊆ V (c, 0).
We now know that V (c, 0) = V (y, 0). By Theorem 2.2, V (c, 0) is an Euclidean Jordan algebra

and its rank is r − rank y, since crank y+1 + · · · + cr is the identity in V (c, 0). Then, the condition
(3.1) means that 〈z, λ〉 > 0 for all z in the cone of squares of the algebra V (c, 0). By item (iii) of
Proposition 2.4, this means that λ belongs to the (relative) interior of K′ = {w ◦ w | w ∈ V (c, 0)}.
This shows both that λ ∈ K and that rankλ = rankK′ = r−rank y. These are items (i) and (a).

Lemma 3.2 does not apply directly when K is not simple because the complementarity displayed
in item (b) only works “inside the same blocks”. That is essentially the only aspect we need to
account for. As a reminder, we have

E = E1 ⊕ · · · ⊕ Eℓ,
K = K1 ⊕ · · · ⊕ Kℓ,

where the Ei are simple Euclidean Jordan algebras of rank ri and Ki is the cone of squares of Ei.
The rank of E is r = r1 + · · ·+ rℓ.

Theorem 3.3. Let (E , ◦) be an Euclidean Jordan algebra of rank r and λ ∈ E. The following
statements are equivalent:

(i) λ ∈ K.

(ii) There exists y ∈ E such that y ◦ λ = 0 and

〈w ◦ w, λ〉 > 0, (3.4)

for every w ∈ E satisfying y ◦ w = 0 and w 6= 0.
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Moreover, any y satisfying (ii) is such that

(a) rank y = r − rankλ, i.e., y and λ satisfy strict complementarity,

(b) if σ and σ′ are non-zero eigenvalues of y belonging to the same block, then σ + σ′ 6= 0.

Proof. (i)⇒ (ii) Write λ = λ1 + · · ·+λℓ, according to block division in E . Then apply Lemma 3.2

to each λi to obtain yi, and let y = y1 + · · ·+ yℓ.

(ii)⇒ (i) Write λ = λ1 + · · ·+λℓ and y = y1 + · · ·+ yℓ. Then, the inequality (3.4) implies that

for every i,
〈wi ◦ wi, λi〉 > 0, (3.5)

for all nonzero wi with wi ◦ yi = 0. Therefore, Lemma 3.2 applies to each yi, thus concluding the
proof.

Theorem 3.3 extends Lemma 1 in [25] for all symmetric cones. For a product of second order
cones, no similar result is explicitly stated in [16], but it can be derived from the proof of Proposition
3.2 therein.

4 Comparison of KKT points for (P1) and (P2)

Although (P1) and (P2) share the same local minima, their KKT points are not necessarily the
same. However, if (x, µ, λ) is a KKT triple for (P1), it is easy to construct a KKT quadruple for
(P1) according to the next proposition.

Proposition 4.1. Let (x, µ, λ) ∈ R
n ×R

m × E be a KKT triple for (P1), then (x,
√

g(x), µ, λ) is a
KKT quadruple for (P2).

Proof. The quadruple (x,
√

g(x), µ, λ) satisfies (P2.1), (P2.3) and (P2.4). We will now check that
(P2.2) is also satisfied. We can write

λ =

rankλ
∑

i=1

σici,

where {c1, . . . , cr} is a Jordan frame for λ such that σi > 0 for i = 1, . . . , rankλ. By item (iv)
of Proposition 2.4 and (P1.4), we have 〈λ, g(x)〉 = 0, which implies that 〈ci, g(x)〉 = 0 for i =
1, . . . , rankλ. Again, by item (iv) of Proposition 2.4, we obtain that ci ◦ g(x) = 0 for i = 1, . . . , rankλ.

Let c = c1 + · · ·+ crankλ. Using Theorem 2.2, we write

E = V (c, 1)
⊕

V (c, 1/2)
⊕

V (c, 0).

We then have λ ∈ V (c, 1) and g(x) ∈ V (c, 0). Because V (c, 0) is also an Euclidean Jordan algebra,
we have

√

g(x) ∈ V (c, 0). Finally, since V (c, 1) ◦ V (c, 0) = {0}, we readily obtain λ ◦
√

g(x) = 0,
which is (P2.2).

It is not true in general that if (x, y, µ, λ) is a KKT quadruple for (P2), then (x, µ, λ) is a KKT
triple for (P1). Nevertheless, the only obstacle is that λ might fail to belong to K.

Proposition 4.2. Let (x, y, µ, λ) ∈ R
n×E ×R

m×E be a KKT quadruple for (P2) such that λ ∈ K.
Then, (x, µ, λ) is a KKT triple for (P1).
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Proof. Under the current hypothesis, (P1.1), (P1.2), (P1.3) and (P1.5) are satisfied. Due to (P2.3),
we have

0 = 〈y, y ◦ λ〉 = 〈y ◦ y, λ〉 = 〈g(x), λ〉,
where the second equality follows from Property 3 of the E operator. Therefore, by item (iv) of
Proposition 2.4, we obtain g(x) ◦ λ = 0, which is (P1.4).

We then have the following immediate consequence.

Proposition 4.3. Let (x, y, µ, λ) ∈ R
n × E × R

m × E be a KKT quadruple for (P2).

(i) If y and λ satisfy the assumptions of item (ii) of Theorem 3.3, then (x, µ, λ) is a KKT triple
for (P1) satisfying strict complementarity.

(ii) If SOSC-NLP holds at (x, y, µ, λ), then (x, µ, λ) is a KKT triple for (P1) satisfying strict
complementarity.

Proof. (i) By Theorem 3.3, λ ∈ K. Therefore, by Proposition 4.2, (x, µ, λ) is a KKT triple for
(P1). Moreover, due to item (a) of Theorem 3.3, we have rank y+rankλ = r. As g(x) = y ◦ y,
we have rank g(x) + rankλ = r as well.

(ii) If SOSC-NLP holds at (x, y, µ, λ), then taking v = 0 in (2.9) in Proposition 2.9, we obtain that
y and λ satisfy the assumptions of item (ii) of Theorem 3.3. Therefore, the result follows from
the previous item.

Note that Propositions 4.2 and 4.3 extend previous results obtained in Section 3 of [16] for
NSOCPs and in Section 3 of [25] for NSDPs. In comparison, in this work, besides the fact that we
are focused on a more general family of cones, we are also considering equality constraints.

5 Comparison of constraint qualifications

In order to understand the differences between constraint qualifications for (P1) and (P2), we first
have to understand the shape of the tangent cones of K. A description can be found in Section 2.3 in
the work by Kong, Tunçel and Xiu [24]. Apart from that, we can also the use the relations described
by Pataki in Lemma 2.7 of [28]. For the sake of self-containment, we will give an account of the
theory. In what follows, if C ⊆ E , we define C⊥ := {z ∈ E | 〈z, y〉 = 0, ∀y ∈ C}.

Let z ∈ K, where the rank of K is r. We will now proceed to describe the shape of TK(z) and

lin TK(z). First, denote by F(z,K) the minimal face of K which contains z. Denote by F(z,K)∆
the conjugated face of F(z,K), which is defined as K∗ ∩ F(z,K)⊥. Since, K is self-dual, we have

F(z,K)∆ = K ∩ F(z,K)⊥. Now, the discussion in Section 2 and Lemma 2.7 of [28] shows that

F(z,K)∆ = K ∩ {z}⊥,
TK(z) = F(z,K)∆∗

,

lin TK(z) = F(z,K)∆⊥.

Our next task is to describe F(z,K). Let {c1, . . . , cr} be a Jordan frame for z and write the
spectral decomposition of z as

z =

rank z
∑

i=1

σici,
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where σ1, . . . , σrank z are positive. Now, define c = c1 + · · · + crank z. Then, c is an idempotent and
Theorem 2.2 implies that

E = V (c, 1)
⊕

V

(

c,
1

2

)

⊕

V (c, 0).

A result by Faybusovich (Theorem 2 in [13]) implies that F(z,K) is the cone of squares in V (c, 1),
that is,

F(z,K) = {y ◦ y | y ∈ V (c, 1)}.
Then, we can see that F(z,K)∆ is precisely the cone of squares of V (c, 0). We remark this fact as a
proposition.

Proposition 5.1. F(z,K)∆ = {y ◦ y | y ∈ V (c, 0)}.

Proof. We first show that F(z,K)∆ ⊆ {y ◦ y | y ∈ V (c, 0)}. If w ∈ K and 〈w, z〉 = 0, then we must
have 〈ci, w〉 = 0, for every i ∈ {1, . . . , rank z}. Then Lemma 3.2 implies that ci ◦ w = 0 for those
i. This shows that c ◦ w = 0, so that w ∈ V (c, 0). As w ∈ K and V (c, 0) is an Euclidean Jordan
algebra, we have w = y ◦ y for some y ∈ V (c, 0).

Now, let w = y ◦ y with y ∈ V (c, 0). As z ∈ V (c, 1) and w ∈ V (c, 0) we have 〈w, z〉 = 0, so that

w ∈ F(z,K)∆.

If we restrict ourselves to V (c, 0), then F(z,K)∆ is a genuine symmetric cone, since it is a cone

of squares induced by an Euclidean Jordan algebra. In particular, F(z,K)∆ is self-dual in the sense

that F(z,K)∆ = {w ∈ V (c, 0) | 〈w, v〉 ≥ 0, ∀v ∈ F(z,K)∆}. Following the Peirce decomposition, we
conclude that

TK(z) = F(z,K)∆∗ = V (c, 1)
⊕

V

(

c,
1

2

)

⊕

F(z,K)∆, (5.1)

lin TK(z) = F(z,K)∆⊥
= V (c, 1)

⊕

V

(

c,
1

2

)

⊕

{0}, (5.2)

where we recall that lin TK(z) denotes the largest subspace contained in the cone TK(z).
We are now prepared to discuss the difference between constraint qualifications for (P1) and (P2).

This discussion is analogous to the one in Section 2.8 of [25]. We remark that a similar discussion for
the special case of nonlinear programming appears in Section 3 of the work by Jongen and Stein [20].
First, we recall that nondegeneracy for (P1) at a point x is the same as saying that the following
condition holds:

w ∈ (lin TK(g(x)))⊥, Jg(x)∗w + Jh(x)∗v = 0 ⇒ w = 0, v = 0. (Nondegeneracy)

On the other hand, LICQ holds for (P2) at a point (x, y) if the following condition holds:

w ◦ y = 0, Jg(x)∗w + Jh(x)∗v = 0 ⇒ w = 0, v = 0. (LICQ)

We need the following auxiliary result.

Proposition 5.2. Let z = y ◦ y. Then (lin TK(z))⊥ ⊆ kerLy, where kerLy is the kernel of Ly. If
y ∈ K, then kerLy ⊆ (lin TK(z))⊥ as well.

Proof. Using (5.2), we have

(lin TK(z))⊥ = {0}
⊕

{0}
⊕

V (c, 0),
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where we assume that z =
∑rank z

i=1 σici with σi > 0 for i ≤ rank z and c = c1 + · · · + crank z. Let
w ∈ V (c, 0). Recall that y and z share a Jordan frame, so we may assume that y ∈ V (c, 1). Since
V (c, 0) ◦ V (c, 1) = {0}, we see that y ◦ w = 0, that is, w ∈ kerLy. This shows that (lin TK(z))⊥ ⊆
kerLy.

Now, suppose that y ∈ K, w ∈ kerLy. Since y is the square root of z that belongs to K, we
may assume that y =

∑

i

√
σici. Then, we decompose w as w =

∑

i≤j wij , as in Theorem 2.3, with
wij ∈ Vij . Then, as in (3.2), we have

y ◦ w =

rank y
∑

i=1

√
σiwii +

∑

1≤i<j≤rank y

(√
σi +

√
σj

2

)

wij +
∑

1≤i≤rank y<j

√
σiwij

2
= 0.

The condition y ◦ w = 0, the fact that the
√
σi are positive, and the orthogonality among the wij

imply that w =
∑

rank y<i≤j wij , so that w ◦ c = 0. Hence w ∈ (lin TK(z))⊥.

Corollary 5.3. If (x, y) ∈ R
n ×K satisfies LICQ for problem (P2), then nondegeneracy is satisfied

at x for (P1). On the other hand, if x satisfies nondegeneracy and if y =
√

g(x), then (x, y) satisfies
LICQ for (P2).

Proof. Follows from combining Proposition 5.2 with (LICQ) and (Nondegeneracy).

6 Second order conditions for (P1)

Using the connection between (P1) and (P2), we can state the following second order conditions.

Proposition 6.1 (A Sufficient Condition via Slack Variables). Let (x, µ, λ) ∈ R
n × R

m × E be a
KKT triple of problem (P1). Suppose that

〈∇2
xL(x, µ, λ)v, v〉+ 2〈w ◦ w, λ〉 > 0, (SOSC-NSCP)

for every nonzero (v, w) ∈ R
n × E such that Jg(x)v − 2

√

g(x) ◦ w = 0 and Jh(x)v = 0. Then, x is
a local minimum for (P1), λ ∈ K, and strict complementarity is satisfied.

Proof. If (x, µ, λ) is a KKT triple for (P1), then (x,
√

g(x), µ, λ) is a KKT quadruple for (P2). Then,
from Proposition 2.9, we conclude that x must be a local minimum. Taking v = 0 in (SOSC-NSCP),
we see that

〈w ◦ w, λ〉 > 0,

for all w such that
√

g(x) ◦ w = 0. Due to Theorem 3.3, we have λ ∈ K and rank
√

g(x)+rankλ = r.

As rank
√

g(x) = rank g(x), we conclude that strict complementarity is satisfied.

Interestingly, the condition in Proposition 6.1 is strong enough to ensure strict complementarity.
And, in fact, when strict complementarity holds and K is either the cone of positive semidefinite
matrices or a product of Lorentz cones, the condition in Proposition 6.1 is equivalent to the second
order sufficient conditions described by Shapiro [29] and Bonnans and Ramı́rez [7]. See [16], [17] and
[25] for more details. We also have the following necessary condition.

Proposition 6.2 (A Necessary Condition via Slack Variables). Let x ∈ R
n be a local minimum of

(P1). Assume that (x, µ, λ) ∈ R
n×R

m×E is a KKT triple for (P1) satisfying nondegeneracy. Then
the following condition holds:

〈∇2
xL(x, µ, λ)v, v〉+ 2〈w ◦ w, λ〉 ≥ 0, (SONC-NSCP)

for every (v, w) ∈ R
n × E such that Jg(x)v − 2

√

g(x) ◦ w = 0 and Jh(x)v = 0.
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Proof. If (x, µ, λ) is a KKT triple for (P1), then (x,
√

g(x), µ, λ) is a KKT quadruple for (P2).
Moreover, if x is a local minimum for (P1), then (x, y) is a local minimum for (P2). As x satisfies
nondegeneracy, LICQ is satisfied at (x, y), so that we are under the hypothesis of Proposition 2.10.

7 A simple augmented Lagrangian method and its conver-

gence

In [27], Noll warns against naively extending algorithms for NLPs to nonlinear conic programming.
One of the reasons is that those extensions often use unrealistic second order conditions which
ignore the extra terms that appear in no-gap SOSCs for nonlinear cones. He then argues that such
conditions are unlikely to hold in practice. He goes on to prove convergence results for an augmented
Lagrangian method for NSDPs based on the no-gap optimality conditions obtained by Shapiro [29].

We have already shown in [25] that if K = Sn+, then Shapiro’s SOSC for (P1) and the classical
SOSC for (P2) are equivalent, under strict complementarity, see Propositions 10, 11, 13 and 14
therein. This suggests that it is viable to design appropriate algorithms for (P1) by studying the
NLP formulation (P2) and importing convergence results from nonlinear programming theory while
avoiding the issues described by Noll. Furthermore, in some cases, we can remove the slack variable
y altogether from the final algorithm. We will illustrate this approach by describing an augmented
Lagrangian method for (P1).

Bertsekas also suggested a similar approach in [2], where he analyzed augmented Lagrangian
methods for inequality constrained NLPs by first reformulating them as equality constrained NLPs
with the aid of squared slack variables. Kleinmichel and Schönefeld described a method for NLPs in
[23] where squared slack variables were used not only to deal with the inequality constraints but in
place of the Lagrange multipliers, as a way to force them to be nonnegative. More recently, Sun, Sun
and Zhang [32] showed how to obtain a convergence rate result for an augmented Lagrangian method
for NSDPs using slack variables, under the hypothesis of strict complementarity1, see Theorem 3
therein. Here we take a closer look at this topic and extend their Theorem 3.

7.1 Augmented Lagrangian method for (P1)

Let ϕ : Rn → R, ψ : Rn → R
m be twice differentiable functions and consider the following NLP:

minimize
x

ϕ(x)

subject to ψ(x) = 0.
(7.1)

Following Section 17.3 in [26], given a multiplier λ ∈ R
m and a penalty parameter ρ ∈ R, define the

augmented Lagrangian Lρ : Rn × R
m → R for (7.1) by

Lρ(x, λ) = ϕ(x) − 〈ψ(x), λ〉 + ρ

2
‖ψ(x)‖2 .

For problem (P2), the augmented Lagrangian is given by

L
Slack
ρ (x, y, µ, λ) = f(x)− 〈h(x), µ〉 + ρ

2
‖h(x)‖2 − 〈g(x) − y ◦ y, λ〉+ ρ

2
‖g(x)− y ◦ y‖2 . (7.2)

1We remark that their main contribution was to show a convergence rate result using the strong second order
sufficient condition, nondegeneracy but without strict complementarity.
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We have the following basic augmented Lagrangian method.

Algorithm 1: Augmented Lagrangian Method for (P2)

1 Choose initial points x1, y1, initial multipliers µ1, λ1 and an initial penalty ρ1.
2 k ← 1.

3 Let (xk+1, yk+1) be a minimizer of LSlack
ρk

(·, ·, µk, λk).

4 µk+1 ← µk − ρkh(xk+1).
5 λk+1 ← λk − ρk(g(xk+1)− yk+1 ◦ yk+1).
6 Choose a new penalty ρk+1 with ρk+1 ≥ ρk.
7 Let k ← k + 1 and return to Step 3.

We will show how to remove the slack variable from the augmented Lagrangian.

Proposition 7.1. The following equation holds:

min
y

L
Slack
ρ (x, y, µ, λ) = f(x)− 〈h(x), µ〉 + ρ

2
‖h(x)‖2 + 1

2ρ

(

−‖λ‖2 +
∥

∥[λ− ρg(x)]+
∥

∥

2
)

. (7.3)

Moreover if (x∗, y∗) is a minimum of LSlack
ρ (·, ·, µ, λ), then y∗ ◦ y∗ =

[

g(x∗)− λ
ρ

]

+
.

Proof. In the partial minimization miny L
Slack
ρ (x, y, µ, λ), we look at the terms that depend on y.

min
y

(

−〈g(x)− y ◦ y, λ〉+ ρ

2
‖g(x)− y ◦ y‖2

)

= min
y

(

−〈g(x)− y ◦ y, λ〉+ ρ

2

∥

∥

∥

∥

g(x)− λ

ρ
− y ◦ y + λ

ρ

∥

∥

∥

∥

2
)

= min
y

(

ρ

2

∥

∥

∥

∥

g(x)− λ

ρ
− y ◦ y

∥

∥

∥

∥

2

− ‖λ‖
2

2ρ

)

= −‖λ‖
2

2ρ
+
ρ

2
min
y

∥

∥

∥

∥

g(x)− λ

ρ
− y ◦ y

∥

∥

∥

∥

2

.

Note that

min
y

∥

∥

∥

∥

g(x)− λ

ρ
− y ◦ y

∥

∥

∥

∥

2

= min
z∈K

∥

∥

∥

∥

g(x)− λ

ρ
− z
∥

∥

∥

∥

2

. (7.4)

Then, (7.4) together with Lemma 2.6 implies that

−‖λ‖
2

2ρ
+
ρ

2
min
y

∥

∥

∥

∥

g(x)− λ

ρ
− y ◦ y

∥

∥

∥

∥

2

= −‖λ‖
2

2ρ
+
ρ

2

∥

∥

∥

∥

PK

(

λ

ρ
− g(x)

)∥

∥

∥

∥

2

= −‖λ‖
2

2ρ
+

1

2ρ

∥

∥[λ− ρg(x)]+
∥

∥

2
.

It follows that

min
y

L
Slack
ρ (x, y, µ, λ) = f(x)− 〈h(x), µ〉 + ρ

2
‖h(x)‖2 + 1

2ρ

(

−‖λ‖2 +
∥

∥[λ− ρg(x)]+
∥

∥

2
)

and hence (7.3) holds.
Finally, note that (7.4) implies that if (x∗, y∗) is a minimum of LSlack

ρ (·, ·, µ, λ), then y∗ ◦ y∗ =
[

g(x∗)− λ
ρ

]

+
.
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Proposition 7.1 suggests the following augmented Lagrangian for (P1):

L
Sym
ρ (x, µ, λ) = f(x)− 〈h(x), µ〉 + ρ

2
‖h(x)‖2 + 1

2ρ

(

−‖λ‖2 +
∥

∥[λ− ρg(x)]+
∥

∥

2
)

. (7.5)

Moreover, due to Lemma 2.6 and Proposition 7.1, we can write the multiplier update in Step 5
of Algorithm 1 as

λk+1 ← [λk − ρkg(xk+1)]+ .

This gives rise to the following augmented Lagrangian method for (P1). Note that the squared
slack variable y is absent.

Algorithm 2: Augmented Lagrangian Method for (P1)

1 Choose an initial point x1, initial multipliers µ1, λ1 and an initial penalty ρ1.
2 k ← 1.

3 Let xk+1 be a minimizer of LSym
ρk

(·, µk, λk).

4 µk+1 ← µk − ρkh(xk+1).
5 λk+1 ← [λk − ρkg(xk+1)]+.

6 Choose a new penalty ρk+1 with ρk+1 ≥ ρk.
7 Let k ← k + 1 and return to Step 3.

Note that Algorithms 1 and 2 are equivalent in the sense that any sequence of iterates (xk, yk, µk, λk)
for Algorithm 1 is such that (xk, µk, λk) is a valid sequence of iterates for Algorithm 2. Conversely,

given a sequence (xk, µk, λk) for Algorithm 2, the sequence (xk,
√

[g(xk)− λ/ρk]+, µk, λk) is valid

for Algorithm 1. However, there could be computational differences between both algorithms. On
the one hand, the subproblem in Algorithm 2 has less variables than the subproblem in Algorithm
1. On the other hand, if f, h, g are twice differentiable, the same is true for L

Slack
ρ (·, ·, µ, ρ), while

L
Sym
ρ (·, µ, ρ) will not necessarily be twice differentiable in general. In this sense, the subproblem in

Algorithm 1 is smoother than the one in Algorithm 2. In the appendix, we describe some preliminary
numerical experiments aimed at exploring the difference between both approaches.

Note also that when K is the cone of positive semidefinite matrices or a product of second order
cones, Algorithm 2 gives exactly the same augmented Lagrangian method with quadratic penalty
discussed extensively in the literature. This is because, due to Proposition 2.5, the projection
[λk − ρkg(xk+1)]+ is just the result of zeroing the negative eigenvalues of λk − ρkg(xk+1).

7.2 Convergence results

Here, we will reinterpret a result of [2]. We will then use it to prove an analogous theorem for (P1).
This extends Theorem 3 in [32] for all nonlinear symmetric cone programs.

Proposition 7.2 (Proposition 2.4 in [2]). Suppose that (x∗, y∗, µ∗, λ∗) ∈ R
n×E ×R

m×E is a KKT
quadruple for (P2) such that

• (2.9) is satisfied,

• LICQ is satisfied.

Moreover, let ρ̂ be such that ∇2
L
Slack
ρ̂ is positive definite2. Then there are positive scalars δ̂, ǫ̂, M̂

such that

2Such a ρ̂ always exists, see the remarks before Proposition 2.4 in [2].
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1. for all (µ, λ, ρ) in the set D̂ := {(µ, λ, ρ) | |µ−µ∗|+ |λ−λ∗| < δ̂ρ, ρ̂ ≤ ρ}, the following problem
has a unique solution:

minimize
x,y

L
Slack
ρ (x, y, µ, λ)

subject to (x, y) ∈ Bǫ̂(x
∗)×Bǫ̂(y

∗),
(7.6)

where Bǫ̂(x
∗) ⊆ R

n and Bǫ̂(y
∗) ⊆ E are the spheres with radius ǫ̂ centered at x∗ and y∗, respec-

tively. Denote such a solution by (x(µ, λ, ρ), y(µ, λ, ρ)). Then, (x(·, ·, ·), y(·, ·, ·)) is continuously
differentiable in the interior of D̂ and satisfies

|(x(µ, λ, ρ), y(µ, λ, ρ)) − (x∗, y∗)| ≤ M̂

ρ
|(µ, λ)− (µ∗, λ∗)|, (7.7)

for all (µ, λ, ρ) ∈ D̂.

2. For all (µ, λ, ρ) ∈ D̂, we have

|(µ̂(µ, λ, ρ), λ̂(µ, λ, ρ)) − (µ∗, λ∗)| ≤ M̂

ρ
|(µ, λ) − (µ∗, λ∗)|, (7.8)

where

µ̂(µ, λ, ρ) = µ− ρh(x(µ, λ, ρ)),
λ̂(µ, λ, ρ) = λ− ρ(g(x(µ, λ, ρ)) − y(µ, λ, ρ)2).

Our goal is to prove the following result.

Proposition 7.3. Suppose that (x∗, µ∗, λ∗) ∈ R
n × R

m × E is a KKT triple for (P1) such that

• (SOSC-NSCP) is satisfied,

• Nondegeneracy (see Definition 2.8) is satisfied.

Then there are positive scalars δ, ǫ,M, ρ such that

1. For all (µ, λ, ρ) in the set D := {(µ, λ, ρ) | |µ−µ∗|+ |λ−λ∗| < δρ, ρ ≤ ρ}, the following problem
has a unique solution:

minimize
x

L
Sym
ρ (x, µ, λ) (7.9)

subject to x ∈ Bǫ(x
∗).

Denote such a solution by x(µ, λ, ρ). Then, x(·, ·, ·) is continuously differentiable in the interior
of D and satisfies

|x(µ, λ, ρ)− x∗| ≤ M

ρ
|(µ, λ) − (µ∗, λ∗)| (7.10)

for all (µ, λ, ρ) ∈ D.

2. For all (µ, λ, ρ) ∈ D, we have

|(µ(µ, λ, ρ), λ(µ, λ, ρ)) − (µ∗, λ∗)| ≤ M

ρ
|(µ, λ) − (µ∗, λ∗)|, (7.11)

where

µ(µ, λ, ρ) = µ− ρh(x(µ, λ, ρ)),
λ(µ, λ, ρ) = [λ− ρg(x(µ, λ, ρ))]+ .
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Note that the argument in Proposition 7.1 shows that (7.9) is equivalent to

minimize
x,y

L
Slack
ρ (x, y, µ, λ) (7.12)

subject to (x, y) ∈ Bǫ(x
∗)× E .

Moreover, if (x̂, ŷ) is an optimal solution for problem (7.12), we have ŷ2 = [g(x̂)− λ/ρ]+. Therefore,
if δ̂ and ǫ̂ provided by Proposition 7.2 were such that

√

[g(x)− λ/ρ]+ stays in the ball Bǫ̂(
√

g(x∗))

for all x ∈ Bǫ̂(x
∗), then it would be very straightforward to prove Proposition 7.3. As this is not

generally the case, in the proof we have to argue that we can adjust δ̂, ǫ̂ appropriately. The proof
is similar to [32], but we need to adjust the proof to make use of the Euclidean Jordan algebra
machinery. Before we proceed, we need a few auxiliary lemmas.

Lemma 7.4. Let E be an Euclidean Jordan algebra with rank r and let ψE denote the function that
maps y to

√

|y|, where |y| =
√

y2. Let E∗ = {y ∈ E | rank y = r}. Then, ψE is continuously
differentiable over E∗.

Proof. Let Q = {x ∈ R
r | xi 6= 0, ∀i} and ϕ : R

r → R
r be the function that maps x ∈ R

r

to (
√

|x1|, . . . ,
√

|xr|). Then, following the discussion in Section 6 of [1], ψE is the spectral map
generated by ϕ. That is, if y ∈ E and its spectral decomposition is given by y =

∑r
i=1 σici, then

ψE(y) =
r
∑

i=1

ϕi(σi)ci,

where ϕi : R → R are the component functions of ϕ. Then, Theorem 53 in [1] shows that ψE

is continuously differentiable over E∗, because ϕ is continuously differentiable over Q. A similar
conclusion also follows from Theorem 3.2 in [31].

Lemma 7.5. Let E be an Euclidean Jordan algebra with rank r, let c be an idempotent and w ∈
V (c, 1/2). Then there are w0 ∈ V (c, 0), w1 ∈ V (c, 1) such that

w2 = w2
0 + w2

1 ,
∥

∥w2
0

∥

∥ =
∥

∥w2
1

∥

∥ .

Proof. According to Theorem 2.2, w2 ∈ V (c, 0) + V (c, 1). As w2 ∈ K, this implies the existence of
w0 ∈ V (c, 0) and w1 ∈ V (c, 1) such that w2 = w2

0 +w2
1. From the proof of Proposition IV.1.1 in [12],

we see that, in fact,
w2

0 = w2 − c ◦ w2, w2
1 = c ◦ w2.

Then, we have

∥

∥w2
0

∥

∥

2
=
∥

∥w2
∥

∥

2 − 2〈w2, c ◦ w2〉+
∥

∥w2
1

∥

∥

2

=
∥

∥w2
∥

∥

2 − 2〈w3, c ◦ w〉+
∥

∥w2
1

∥

∥

2

=
∥

∥w2
∥

∥

2 − 〈w3, w〉 +
∥

∥w2
1

∥

∥

2

=
∥

∥w2
1

∥

∥

2
,

where the second equality follows from the power associativity of the Jordan product and the fact
that the algebra is Euclidean, which implies that 〈w2, c ◦ w2〉 = 〈w3 ◦ w, c〉 = 〈w3, c ◦ w〉. Then, the
third equality follows from w ∈ V (c, 1/2).
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Proof of Proposition 7.3. Note that if (SOSC-NSCP) and nondegeneracy are satisfied at (x∗, µ∗, λ∗),

then (x∗,
√

g(x∗), µ∗, λ∗) satisfies (2.9) and LICQ, due to Corollary 5.3. So let ρ̂, δ̂, ǫ̂, M̂ and D̂ be
as in Proposition 7.2.

First, we consider the spectral decomposition of g(x∗). Without loss of generality, we may
assume that

g(x∗) =

rank g(x∗)
∑

i=1

σici,

where the first rank g(x∗) eigenvalues are positive and the remaining are zero. Then, we let c =
c1 + · · ·+ crank g(x∗) and consider the Euclidean Jordan algebra V (c, 1) together with its associated
symmetric cone F = {w ◦ w | w ∈ V (c, 1)}. We know that V (c, 1) has rank equal to rank g(x∗).
Moreover, by Proposition 2.4, g(x∗) belongs to the relative interior of F . In particular, we may select
ǫ̂1 ∈ (0, ǫ̂) such that ‖z − g(x∗)‖ ≤ ǫ̂1 and z ∈ V (c, 1) implies that z lies in the relative interior of F
as well.

Now, we take the function ψV (c,1) from Lemma 7.4. Note that if v ∈ K , then ψV (c,1)(v) =
√
v.

Since ψV (c,1) is continuously differentiable in V (c, 1)∗, the mean value inequality tells us that for
‖v − g(x∗)‖ ≤ ǫ̂1 and v ∈ V (c, 1) we have

∥

∥

∥

√
v −

√

g(x∗)
∥

∥

∥
≤ R ‖v − g(x∗)‖ , (7.13)

where R is the supremum of
∥

∥JψV (c,1)

∥

∥ over the set V (c, 1)∩Bǫ̂1(g(x
∗)). We then let ǫ̂2 ∈ (0, ǫ1] be

such that
4R2ǫ̂22 + ǫ̂2

√
2r + ǫ̂2

√
r ≤ ǫ̂21. (7.14)

Since g is continuously differentiable, again by the mean value inequality, there is lg such that
for every x ∈ Bǫ̂(x

∗) we have
‖g(x)− g(x∗)‖ ≤ lg ‖x− x∗‖ . (7.15)

We are now ready to construct the neighborhood D. We select ǫ, δ, ρ,M such that the following
conditions are satisfied:

1. ǫ ∈ (0, ǫ̂], δ ∈ (0, δ̂], ρ ≥ ρ̂,M ≥ M̂ .

2. lgǫ+ δ +
∥

∥

∥

λ∗

ρ

∥

∥

∥
≤ ǫ̂2.

3. ǫ, δ are small enough and M,ρ are large enough such that the conclusions of Proposition 7.2
hold for those ǫ, δ,M, ρ and such that the neighborhood Bǫ̂(x

∗)×Bǫ̂(y
∗) in (7.6) can be replaced

by Bǫ(x
∗)×Bǫ̂1(y

∗) without affecting the conclusion of the theorem.

We then have
D = {(µ, λ, ρ) | |µ− µ∗|+ |λ− λ∗| < δρ, ρ ≤ ρ}.
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For all (µ, λ, ρ) ∈ D and x such that ‖x− x∗‖ ≤ ǫ, we have

∥

∥

∥

∥

∥

[

g(x)− λ

ρ

]

+

− g(x∗)
∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

[

g(x)− λ

ρ

]

+

− [g(x∗)]+

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

g(x)− g(x∗)− λ− λ∗
ρ

− λ∗

ρ

∥

∥

∥

∥

≤ ‖g(x)− g(x∗)‖+
∥

∥

∥

∥

λ− λ∗
ρ

∥

∥

∥

∥

+

∥

∥

∥

∥

λ∗

ρ

∥

∥

∥

∥

≤ lg ‖x− x∗‖+ δ +

∥

∥

∥

∥

λ∗

ρ

∥

∥

∥

∥

≤ ǫ̂2,

where the first inequality follows from the fact that the projections are nonexpansive maps and the
fourth inequality follows by the definition of D, (7.15) and the fact that ρ ≤ ρ.

Now we will show that
∥

∥

∥

√

[g(x)− λ/ρ]+ −
√

g(x∗)
∥

∥

∥
≤ ǫ̂1 holds as well, which is our primary

goal. More generally, we will show that if v ∈ K ∩Bǫ̂2(g(x
∗)) then

√
v ∈ Bǫ̂1(

√

g(x∗)).
Thus suppose that v ∈ K is such that v ∈ Bǫ̂2(g(x

∗)). We consider the Peirce decomposition
of
√
v with respect the idempotent c, as in Theorem 2.2. We write

√
v = w1 + w2 + w3, where

w1 ∈ V (c, 1), w2 ∈ V (c, 1/2), w3 ∈ V (c, 0). We then have v = w2
1 +w2

2 +w2
3 + 2w2 ◦ (w1 + w3). Also

by Theorem 2.2, 2w2 ◦ (w1 + w3) ∈ V (c, 1/2) and w2
2 = w2

2,1 + w2
2,0, for some w2,1 ∈ V (c, 1) and

w2,0 ∈ V (c, 0). We group the terms of v − g(x∗) as follows

v − g(x∗) = (w2
1 + w2

2,1 − g(x∗)) + (w2
3 + w2

2,0) + (2w2 ◦ (w1 + w3)), (7.16)

where the terms in parentheses belong, respectively, to the mutually orthogonal subspaces V (c, 1),

V (c, 0) and V (c, 1/2). Therefore, ‖v − g(x∗)‖2 ≤ ǫ̂22 implies that

∥

∥w2
1 + w2

2,1 − g(x∗)
∥

∥

2 ≤ ǫ̂22, (7.17)
∥

∥w2
3

∥

∥

2 ≤ ǫ̂22, (7.18)
∥

∥w2
2,0

∥

∥

2 ≤ ǫ̂22, (7.19)

where the last two inequalities follows from the fact that
∥

∥w2
3 + w2

2,0

∥

∥

2
=
∥

∥w2
3

∥

∥

2
+ 〈w2

3 , w
2
2,0〉 +

∥

∥w2
2,0

∥

∥

2 ≤ ǫ̂22 and that 〈w2
3 , w

2
2,0〉 ≥ 0, since w2

3 , w
2
2,0 ∈ K. From (7.17), (7.19) and Lemma 7.5, we

obtain
∥

∥w2
1 − g(x∗)

∥

∥ ≤
∥

∥w2
1 + w2

2,1 − g(x∗)
∥

∥+
∥

∥w2
2,1

∥

∥ ≤ 2ǫ̂2.

We then use (7.13) to conclude that

∥

∥

∥
w1 −

√

g(x∗)
∥

∥

∥
≤ 2Rǫ̂2, (7.20)

since
√

w2
1 = w1 holds3.

3If we fix v ∈ K, there might be several elements a satisfying a ◦ a = v, but only one of those a belongs to K. With
our definition,

√
v is precisely this a. As

√
v ∈ K, the element w1 appearing in its Pierce decomposition also belongs

to K. To see that, note that if w1 had a negative eigenvalue σ, we would have 〈√v, σd〉 = 〈w1, σd〉 < 0, where d is the

idempotent associated to σ. This shows that
√

w2

1
= w1 indeed.
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Recall that given z ∈ K, we have ‖z‖2 = σ2
1+· · ·+σ2

r , where σi are the eigenvalues of z. Therefore,

‖z‖2 is the 1-norm of the vector u = (σ2
1 , . . . , σ

2
r ), which is majorized by ‖u‖2

√
r =

∥

∥z2
∥

∥

√
r, i.e.,

‖z‖2 ≤
∥

∥z2
∥

∥

√
r. This, together with (7.18), (7.19) and Lemma 7.5 imposes the following inequalities

on the wi:

‖w3‖2 ≤ ǫ̂2
√
r, (7.21)

‖w2‖2 ≤
∥

∥w2
2

∥

∥

√
r =

∥

∥w2
2,0

∥

∥

√
2r ≤ ǫ̂2

√
2r. (7.22)

From
√

g(x∗) ∈ V (c, 1), (7.20), (7.21) and (7.22), we obtain
∥

∥

∥

√
v −

√

g(x∗)
∥

∥

∥

2

=
∥

∥

∥
w1 −

√

g(x∗)
∥

∥

∥

2

+ ‖w2‖2 + ‖w3‖2

≤ 4R2ǫ̂22 + ǫ̂2
√
2r + ǫ̂2

√
r

≤ ǫ̂21,
where the last inequality follows from (7.14). To recap, we have shown that whenever (µ, λ, ρ) ∈ D
and x is such that ‖x− x∗‖ ≤ ǫ, then

√

[

g(x)− λ

ρ

]

+

∈ Bǫ̂1(
√

g(x∗)).

Thus, letting x(µ, λ, ρ) be a minimizer of (7.9) and ŷ =
√

[g(x(µ, λ, ρ)) − λ/ρ]+, we have x(µ, λ, ρ) ∈
Bǫ(x

∗), and ŷ ∈ Bǫ̂1(
√

g(x∗)). Now, we note that (x(µ, λ, ρ), ŷ) is a minimizer of (7.6) with y∗ =
√

g(x∗) and Bǫ(x
∗) × Bǫ̂1(y

∗) in place of Bǫ̂(x
∗) × Bǫ̂(y

∗). In fact, let (x, y) be the minimizer of
(7.6). By Proposition 7.1, we have

L
Slack
ρ (x(µ, λ, ρ), ŷ, µ, λ) = L

Sym
ρ (x(µ, λ, ρ), µ, λ)

≤ L
Sym
ρ (x, µ, λ)

= min
y

L
Slack
ρ (x, y, µ, λ)

≤ L
Slack
ρ (x, y, µ, λ)

As (x(µ, λ, ρ), ŷ) is feasible to (7.6), we conclude that (x(µ, λ, ρ), ŷ) is indeed a minimizer of (7.6)
with Bǫ(x

∗) × Bǫ̂1(y
∗) in place of Bǫ̂(x

∗) × Bǫ̂(y
∗). Furthermore, since the minimizer of (7.6) is

unique, it follows that x(µ, λ, ρ) is the unique minimizer of (7.9). Due to Proposition 7.2 and the
choice of ǫ, δ,M, ρ (see items 1 to 3 above), x(·, ·, ·) must be differentiable in the interior of D. Since
(7.7) holds, then (7.10) holds as well. This concludes item 1.

Item 2 also follows from the fact that

λ̂(µ, λ, ρ) = λ− ρ(g(x(µ, λ, ρ)) − ŷ2)

= λ− ρ
(

g(x(µ, λ, ρ)) −
[

g(x(µ, λ, ρ)) − λ

ρ

]

+

)

= [ρg(x(µ, λ, ρ)) − λ]+ − (ρg(x(µ, λ, ρ)) − λ)
= [λ− ρg(x(µ, λ, ρ))]+
= λ(µ, λ, ρ),

where the second to last equality follows from Lemma 2.6. Hence the estimate in (7.8) also implies
the estimate in (7.11).
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8 Concluding remarks

In this paper we presented a discussion on optimality conditions for nonlinear symmetric cone pro-
grams through slack variables. By doing so, we obtain an ordinary nonlinear programming problem,
which is more straightforward to analyze. This connection gives some interesting insights, such as
Theorem 3.3, and makes it possible to analyze algorithms for (P1) as we did in Section 7.

However, one slightly upsetting part of the usage of slack variables is the fact that when the
second order sufficient conditions (SOSCs) are written down, we get that strict complementarity is
automatically satisfied. In particular, if we have a KKT tuple that does not satisfy strict comple-
mentarity and we wish to check whether it is a local minimum, there is no way to apply the theory
described in this paper. Of course, it is indeed possible to derive SOSCs without assuming strict
complementarity, as it was done in [7, 29]. However, at this point we do not know how to explain
why this difference arises. An interesting research topic would be to find out whether (P1) admits
another reformulation as a nonlinear programming problem without this deficiency.

Appendix

As we discussed in Section 7.1, Algorithms 1 and 2 are equivalent in terms of generated sequences,
but there should be some differences from the computational point of view. To illustrate this,
we implemented both algorithms in MATLAB R2016b, under Ubuntu 16.04, with core i7 3.9GHz
and 16GB of RAM. The numerical experiments here are simple, so the subproblems were solved
simply with the default fminunc function, that uses a quasi-Newton method. Noting that the
sequences generated by both algorithms are the same only if the subproblems are solved exactly,
we set up the optimization tolerance for the subproblems as 10−8. We also considered some ideas
from the augmented Lagrangian solver ALGENCAN (see Chapter 12 in [5]), so the initial penalty
parameter is dependent of the problem, and its update is done by using an analysis of the infeasibility
measure. Moreover, the termination criteria consist in satisfying KKT conditions approximately,
with precision 10−4.

We compare the algorithms with three problems, which are special cases of NSCP: nonlinear
programming problem (NLP) number 1 from Hock and Schittkowski’s list [19] (and originally by
Betts [4]), nonlinear second-order cone programming problem (NSOCP) by Kanzow, Ferenczi and
Fukushima [21], and nonlinear semidefinite programming problem (NSDP) by Noll [27] (see Sec-
tion 12 therein). The results are described in Table 1, with “inner iterations” as the total number of
iterations for solving the subproblems. All problems were successfully solved, using both algorithms.
Also, for each problem, the sequences of iterates {xk} generated by the algorithms were the same.
However, the number of inner iterations and the total times were clearly different. As expected, the
slack variables approach tends to require more time, because of the increase of the dimension of the
problem.

Whether there exist some cases where Algorithm 1 performs better is still a matter of further
investigation. In particular, the projection operator used only in Algorithm 2 is computationally
expensive for the NSDP case, so depending on the optimization instance, the slack approach may
be advantageous. We note that Burer and Monteiro have proposed a very successful variant of
Algorithm 1 for linear SDPs [9, 10], where they exploit the existence of optimal solutions with low
rank. In [25], for the NSDP case, we also presented a numerical comparison between an augmented
Lagrangian method for the formulation (P1) and for (P2). And, indeed, for some small problems,
the formulation (P2) had faster running times. However, we used the software PENLAB [15], which
uses a different kind of augmented Lagrangian that is not covered by the discussion in Section 7.
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Table 1: Comparison of Algorithms 1 (with slack) and 2 (without slack).

Problems Methods
Outer Inner

Time (s)
iterations (k) iterations

NLP
Algorithm 1 1 50 0.017317
Algorithm 2 1 51 0.014929

NSOCP
Algorithm 1 5 76 0.069946
Algorithm 2 5 18 0.018908

NSDP
Algorithm 1 5 230 0.210977
Algorithm 2 5 10 0.036631

Acknowledgments

We thank the referees for their helpful and insightful comments, which helped to improve the paper.
In particular, the appendix was included due to a suggestion by one of the referees. We would also
like to express our gratitude to Prof. Andreas Fischer for bringing the reference [23] to our attention.
This work was supported by Grant-in-Aid for Young Scientists (B) (26730012), for Scientific Research
(C) (26330029) and for Scientific Research (B) (15H02968) from Japan Society for the Promotion of
Science.

References

[1] M. Baes. Convexity and differentiability properties of spectral functions and spectral mappings
on Euclidean Jordan algebras. Linear Algebra and its Applications, 422(2):664–700, 2007.

[2] D. P. Bertsekas. Constrained Optimization and Lagrange Multipliers Methods. Academic Press,
New York, 1982.

[3] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd edition, 1999.

[4] J. T. Betts. An accelerated multiplier method for nonlinear programming. Journal of Opti-
mization Theory and Applications, 21(2):137–174, 1977.

[5] E. G. Birgin and J. M. Mart́ınez. Practical augmented Lagrangian methods for constrained
optimization. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2014.

[6] J. F. Bonnans, R. Cominetti, and A. Shapiro. Second order optimality conditions based on
parabolic second order tangent sets. SIAM Journal on Optimization, 9(2):466–492, 1999.

[7] J. F. Bonnans and H. Ramı́rez C. Perturbation analysis of second-order cone programming
problems. Mathematical Programming, 104:205–227, 2005.

[8] J. F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization Problems. Springer-Verlag,
New York, 2000.

[9] S. Burer and R. D. Monteiro. A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Mathematical Programming, 95(2):329–357, 2003.

[10] S. Burer and R. D. Monteiro. Local minima and convergence in low-rank semidefinite program-
ming. Mathematical Programming, 103(3):427–444, 2005.

25



[11] R. Cominetti. Metric regularity, tangent sets, and second-order optimality conditions. Applied
Mathematics and Optimization, 21(1):265–287, 1990.
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[15] J. Fiala, M. Kočvara, and M. Stingl. PENLAB: A matlab solver for nonlinear semidefinite
optimization. ArXiv e-prints, November 2013. arXiv:1311.5240.

[16] E. H. Fukuda and M. Fukushima. The use of squared slack variables in nonlinear second-order
cone programming. Journal of Optimization Theory and Applications, 170(2):394–418, 2016.

[17] E. H. Fukuda and M. Fukushima. A note on the squared slack variables technique for nonlinear
optimization. Journal of the Operations Research Society of Japan, 60(3):262–270, 2017.
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