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Weak Stability of /;-minimization Methods in Sparse
Data Reconstruction

YUN-BIN ZHAO? HOUYUAN JIANG ! and ZHI-QUAN LUO?

(1st version December 2015, 2rd version May 2016, Revised April 2017)

Abstract. As one of the most plausible convex optimization methods for sparse data recon-
struction, ¢1-minimization plays a fundamental role in the development of sparse optimization
theory. The stability of this method has been addressed in the literature under various as-
sumptions such as restricted isometry property (RIP), null space property (NSP), and mutual
coherence. In this paper, we propose a unified means to develop the so-called weak stability
theory for ¢i-minimization methods under the condition called weak range space property of
a transposed design matrix, which turns out to be a necessary and sufficient condition for the
standard ¢;-minimization method to be weakly stable in sparse data reconstruction. The re-
construction error bounds established in this paper are measured by the so-called Robinson’s
constant. We also provide a unified weak stability result for standard ¢;-minimization under
several existing compressed-sensing matrix properties. In particular, the weak stability of #;-
minimization under the constant-free range space property of order k of the transposed design
matrix is established for the first time in this paper. Different from the existing analysis, we
utilize the classic Hoffman’s Lemma concerning the error bound of linear systems as well as
the Dudley’s theorem concerning the polytope approximation of the unit f5-ball to show that
f1-minimization is robustly and weakly stable in recovering sparse data from inaccurate mea-
surements.
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1 Introduction

Data might be contaminated by some form of random noise and the measurements of data are
subject to quantization error. Thus a huge effort in sparse data reconstruction is made to ensure
the reconstruction algorithms stable in the sense that reconstruction errors stay under control
when the measurements are slightly inaccurate and when the data is not exactly sparse (see,
e.g., [2, 21, 22, 25]). One of the widely used reconstruction models is the ¢;-minimization

min||z(y : [[Az =yl < e}, (1)

where || - ||, is the £)-norm with p > 1 (p = 1,2,00 will be considered in this paper). In the
above model, A € R™™ (m < n) is a full-row-rank matrix called a design or sensing matrix
which is a collection of known or learned dictionaries, y = AT + u is the acquired measurement
vector for the data T to be reconstructed, and u represents the measurement error with level
|lul[, < e. The size of € is closely tied with the noise power. In this paper, the given data
(A,y,¢) is referred to as the problem data of (1). When ¢ = 0, (1) is reduced to the so-called
standard ¢;-minimization, i.e., min{||z||; : Az = y}. The use of ¢;-norm to promote sparsity
in data processing has actually a long history (see, e.g., [32, 39, 31, 19, 33, 14, 34]), but a
significant development of theory and algorithms for sparse data reconstruction has been made
only recently in the framework of compressed sensing (see, e.g. [16, 10, 9, 17, 8, 21, 22]).

Assume that an unknown vector, denoted by Z, satisfies ||AZ — y||, < e. In traditional
compressed sensing setting, it is generally assumed that problem (1) admits a unique optimal
solution, in which case it is interesting to know how close the unique solution of (1) to z. This
leads to the traditional stability analysis for £;-minimization methods. The major results in this
aspect have been achieved by Donoho, Candes, Romberg, Tao, and others (e.g., [17, 10, 9, 8]).
However, from a mathematical point of view, we still need to understand the general stability
(which is referred to as the weak stability in this paper) of a reconstruction model by taking into
account the settings where the problem might possess multiple optimal solutions or the sensing
matrix A might admit a certain less restrictive property than existing assumptions. Moreover,
the study of weak stability will also provide a novel stability result under existing stability
conditions. Let us first recall the notation of best k-term approximation before we introduce
the weak stability. Let k be an integer number and define

op(@)1 = nf{llz — 2]« |[z]lo <k},

where x € R™ and ||z||o denotes the number of nonzero entries of z € R™. oy (x); is called the
{1-error of best k-term approximation. Let 2* be an optimal solution of (1) with given problem
data (A,y,e). Problem (1) is said to be weakly stable for noise-free reconstruction (e = 0) if for
any feasible vector = of the problem, there is a solution z* of (1) such that

[ — 2| < Cop(a), (2)

where || - || is a norm and C is a constant depending on the problem data (A, y). Problem (1) is
said to be robustly and weakly stable for noisy reconstruction (¢ > 0) if for any feasible vector
x of the problem, there is a solution z* of (1) such that

[l — 2| < Cro(2)1 + Cae, (3)



where Cy and Cy are constants determined by the problem data (A, y,¢).

When the solution z* of (1) is unique (for instance, when ¢ = 0 and when the matrix A
admits the restricted isometry property (RIP) or null space property (NSP), see Definition 2.1),
the weak stability can be reduced to the normal stability if constants C, C; and Cy are often
measured in terms of RIP or NSP constants. Candes and Tao [10, 11] introduced the notion of
the RIP with constant dx, where K is a certain integer number, and they proved in [11] that
if dor + 031 < 1, all k-sparse vectors can be exactly reconstructed via standard ¢;-minimization.
Furthermore, Candes, Romberg and Tao [9] have shown that the stability of problem (1) with
p = 2 can be guaranteed if ds; + 394, < 2. This result was improved to g, < v/2 — 1 in [8],
and was further improved by several researchers (see, e.g., [24, 4, 35, 5, 25, 1]). Finally, Cai and
Zhang [6] has improved this bound to doz, < 1/v/2.

The NSP of order k (see Definition 2.1) is a necessary and sufficient condition for every
k-sparse vector to be exactly reconstructed with standard ¢;-minimization. This NSP property
appeared in [18, 16, 28] and was formally called the null space property by Cohen et al. [15]. The
NSP is strictly weaker than the RIP (see, e.g., [23, 3]). It was shown [15, 38, 22, 25, 3] that the
stable NSP or robust NSP (which is a strengthened version of the NSP of order k) guarantees
the stability of ¢;-minimization. A typical feature of RIP- and NSP-based stability results for
¢1-minimization methods is that the coefficients C,C; and C in (2) and (3) are measured by
the RIP constant, stable NSP constant or the robust NSP constant.

The range space property (RSP) of order k of AT (see Definition 2.1) was introduced in [45].
This property is also a necessary and sufficient condition for recovering every k-sparse vector
with standard ¢1-minimization. So this property is equivalent to the NSP of order k. If the RSP
is only defined locally at a specific vector z*, it is called the individual RSP of AT at x*, which
is a nonuniform recovery condition for a specific vector [45]. A stability analysis at a specific
vector for ¢i-minimization has been carried out in [43], under an assumption equivalent to the
individual RSP. Note that RSP of order k of AT and NSP of order k are constant-free conditions
in the sense that their definitions do not involve any constant, unlike the stable or robust NSP of
order k. Although the stability of ¢;-minimization methods has been extensively studied under
various conditions in the literature, the weak stability of these methods has not been properly
established at present. In this paper, we consider a more relaxed constant-free condition than
RSP of order k of AT. We ask whether the weak stability of ¢;-minimization methods can be
developed under less restrictive constant-free matrix properties than the existing ones.

We note that the optimal solution z* of (1) is not determined by the problem data A only.

*

Clearly, x* is jointly determined by all problem data (A,y,e) of (1). Different measurement
vector y and noise level € together with different choice of the norm in (1) will affect the optimal
solution of (1) as well. In other words, in addition to A, the problem data (y,e) will also
directly or indirectly affect the reconstruction ability and stability of ¢;-minimization methods.
Exploiting adequate problem data will levitate the dependence on the matrix property, and
might yield a weak stability result under less restrictive assumptions than existing conditions.
The purpose of this paper is to establish such weak stability results for ¢;-minimization
methods under a constant-free and mild matrix property. We prove that the so-called weak range
space property of AT (see Definition 2.2) is a desired sufficient condition for many ¢1-minimization
methods to be weakly stable in sparse data reconstruction. We show that this condition is also
necessary for standard ¢;-minimization to be weakly stable for any given measurement vector

y € {Az : ||z|lo < k}. This property is directly tied to and originated naturally from the



fundamental Karush-Kuhn-Tucker (KKK) optimality conditions for linear optimization. It is
well known that the optimality conditions completely characterize the optimal solutions x* of
¢1-minimization through problem data no matter whether the optimal solution of the problem
is unique or not. We will demonstrate that the weak RSP of order k of AT, together with a
classic error bound of linear systems developed by Hoffman [30] and Robinson [37], provides
an efficient way to develop the weak stability theory for ¢;-minimization. Existing RIP, NSP,
mutual coherence conditions and their variants imply the weak RSP of AT, and we show that
each of these existing conditions implies the same reconstruction error bounds in terms of the
so-called Robinson’s constants depending on the problem data. Moreover, the weak stability of
¢1-minimization under the RSP of order k of A” or NSP of order k is immediately obtained for
the first time, as a special case of the general weak stability results established in this paper.

This paper is organized as follows. In section 2, we give the definitions of several key matrix
properties and recall the Robinson’s constant and Hoffman’s lemma. We also prove that the weak
RSP of order k of AT is a necessary condition for standard ¢;-minimization with measurements
y € {Az : ||z]lo0 < k} to be weakly stable in sparse data reconstruction. In section 3, we
characterize the weak stability of standard ¢;-minimization under the weak RSP. In section 4,
we show the robust weak stability of the ¢1-minimization problem with linearly representable
constraints, i.e., p = 1 and p = oo in (1). In section 5, we prove the robust weak stability of
quadratically constrained ¢;-minimization.

Notation. Unless otherwise stated, the identity matrix of any order will be denoted by [
and a vector of ones will be denoted by e. The nonnegative orthant in R™ will be denoted
by Rl. The set of m x n matrices is denoted by R"™*". The p-norm of a vector is defined as
lzll, = o, \xi|p)1/p, where p > 1. In particular, when p = oo, the p-norm is reduced to
|2]lc = maxi<i<p [x]. The induced matrix norm of A is defined as || A||p—q = max,|, <1 [[Az[4-
For a vector z € R, |z|, (z)* and (z)~ denote the vectors in R™ with components |z|; := |x;],
[(z)T]; := max{x;,0} and [(z)”]; := min{x;,0},% = 1,...,n, respectively. Given a subset
S C {1,...,n} and a vector x € R, we use |S| to denote the cardinality of S, S to denote
the complement of S, i.e., S = {1,...,n}\S, and g to denote the subvector of x by deleting
the components x; with 7 ¢ S. For matrix A, A7 denotes the transpose of A, R(A”) the range
space of AT and N(A) the null space of A. For any vectors z,y € R", z < y means z; < y;
foralli=1,...,n. A vector z is said to be k-sparse if it admits at most k nonzero entries, i.e.,
[zllo < k-

2 Weak RSP of order k of AT and Robinson’s constant

In this section, we provide some notions and facts that will be used throughout the remainder
of the paper. Let us first recall some important matrix properties that have been widely used
in sparse recovery framework.

Definition 2.1. (a) (RIP of order 2k) [10, 8] The matrix A is said to satisfy the restricted
isometry property of order 2k with constant dor € (0,1) if (1—dax) |73 < || Az |13 < (1+02)] 2|3
holds for all k-sparse vector x € R"™.

(b) (NSP of order k) [15, 44, 25] The matrix A is said to satisfy the null space property of
order k if [[ug||1 < |lvgll1 holds for any v € N(A) and any S C {1,...,n} with |S| < k.

(c) (Stable NSP of order k) [15, 44, 25] The matrix A is said to satisfy the stable null space
property of order k with constant p € (0,1) if [Jvg|[1 < p[lvg|ls holds for any v € N(A) and any



S C{1,...,n} with |S| < k.

(d) (Robust NSP of order k) [15, 25] The matrix A is said to satisfy the robust null space
property of order k with constants p € (0,1) and 7 > 0 if |jug||1 < p||vg|l1 + 7||Av|| holds for any
v e R and any S C {1,...,n} with |S| < k.

(e) (RSP of order k of AT) [45] The matrix AT is said to satisfy the range space property
of order k if for any disjoint subsets S1, S2 of {1,...,n} with |Si| + |S2| < k, there is a vector
n € R(AT) satisfying that n; = 1 for i € Sy, n; = —1 fori € S, |n;| <1 fori ¢ S; U Ss.

The notion (e) above arises from the uniqueness analysis for the solution of linear ¢;-
minimization. In fact, for any given z, it is known that Z is the unique solution to the problem
min{||z|[y : Az = A7} if and only if A,,3) (
corresponding to the indices not in supp(z) = {i : &; # 0}) has full column rank and the fol-

the submatrix of A formed by deleting the columns

lowing property holds: there is a vector n € R(AT) such that n; = 1 for 7; > 0, n; = —1 for
Z; < 0, and |n;| < 1 for Z; = 0. The sufficiency of the above statement was shown in [26], and
the necessity of the above statement was first shown in [36]. This fact was also rediscovered
and proved independently in [27, 45, 25, 42]. However, this uniqueness property depends on
the individual vector Z, and thus it is insufficient for the uniform reconstruction of all k-sparse
vectors via £1-minimization. To exactly reconstruct every k-sparse vector with ¢;-minimization,
this individual property is strengthened to the RSP of order k of A” in [45] so that it is indepen-
dent of any individual vector. Given a matrix A € R"™*" it is shown in [45] that every k-sparse
vector € R™ can be exactly reconstructed by the £1-minimization method

min{||z||; : Az =y := A%} (4)

if and only if AT admits the RSP of order k. So the RSP of order k of AT is a necessary and
sufficient condition for the uniform recovery of all k-sparse vectors, and hence it is equivalent
to the NSP of order k. An advantage of the RSP concept is that it can be easily extended to
sparse data reconstruction with more complex structure than (4) (see, e.g., [46, 49]). We now
introduce the weak RSP of order k which is a relaxation of the RSP of order k.

Definition 2.2. (Weak RSP of order k of A7) The matrix AT is said to satisfy the weak
range space property of order k if for any disjoint subsets Sy, S of {1,...,n} with |S1]|+|S2| < k,
there is a vector n € R(AT) satisfying that

n; =1forie Sy, n;=—1for i€ S, |m\§1fori¢5’1USQ. (5)

Different from the RSP of order k, the inequality “|n;| <1 for ¢ ¢ S; U.S2” in Definition 2.2
is not required to hold strictly. The weak RSP of order k of AT is a strengthened optimality
condition for the individual problem (4). In fact, by the KKT optimality condition, Z is an
optimal solution of (4) if and only if there is a vector n € R(AT) satisfying n; = 1 for z; > 0,
n; = —1 for ; < 0, and |n;| < 1 otherwise. Define the specific pair of (S7,S2) with S; = {i :
Z; > 0} and S = {i : &; < 0}. The KKT optimality condition implies that the condition (5)
holds for such a specific pair (S, S2). This can be called the individual weak RSP of AT at Z.
If we expect that every k-sparse vector ¥ is an optimal solution to the ¢;-minimization problem
with measurements y = A%, then condition (5) must hold for any disjoint subsets (S1,S2) with
|S1 U S2| < k in order to cover all possible cases of k-sparse vectors. This naturally yields the
matrix property described in Definition 2.2.



The RIP of order 2k with dor < 1/4/2 implies that every k sparse vector can be exactly
recovered by /;-minimization (e.g., [6]). Thus it implies the RSP of order k of AT which is
equivalent to the NSP of order k. We see that the recovery condition g (k) + pi(k—1) < 1
presented in [41] also implies the NSP of order k (see, e.g., Theorem 5.15 in [25]), where w1 (k)
is the so-called accumulative coherence defined as

m(k):iegl?%n}max j;g|a;~raj|: SC{l,....n}, |S|=k, i¢ S},

where a;,i = 1,...,n are the fs-normalized columns of A. Thus we have the following relation:

RIP of order 2k =
Stable NSP of order k = NSP of order & < RSP of order k of AT =
Robust NSP of order k = weak RSP of order k of AT.
pi(k) +p(k—1) <1=

The weak RSP is the mildest one among the above-mentioned matrix properties. To see how
mild such a condition is, let us first prove that the weak RSP of order k of AT is a necessary
condition for standard ¢;-minimization with any given measurement vector y € {Az : ||z[jo < k}

to be weakly stable in sparse data reconstruction.

Theorem 2.3. Let A be a given m X n (m < n) matric with rank(A) = m. Suppose
that for any given measurement vector y € {Az : ||z|lo < k}, the following holds: For any
x € R™ satisfying Ax =y, there is a solution x* of the problem min{||z||; : Az = y} such that
|z — x*|| < Cop(x)1, where || - || is @ norm and C is a constant dependent on the problem data
(A,y). Then AT must satisfy the weak RSP of order k.

Proof. Assume that (S7, S2) is an arbitrary pair of disjoint subsets of {1,...,n} with |Sy|+
|S2| < k. Under the assumption of the theorem, we now prove that there exists a vector n €
R(AT) satisfying (5). Then, by Definition 2.2, AT must admit the weak RSP of order k. Indeed,
let T be a k-sparse vector in R™ such that

{i:/.%'\i>0}=S1, {i:@<0}:5'2. (6)

Consider the problem (4), i.e., min{||z||; : Az = y := Az}. By the assumption, there is an
optimal solution z* to this problem such that ||z — z*|| < Coy (7)1, where C depends on the
problem data (A, y). Since T is k-sparse, the right-hand side of the inequality above is equal to
zero, and hence T = x*. This, together with (6), implies that

{i:x; >0} =51, {i:a] <0} =52, zj =0 foralli ¢ S USs. (7)

Note that z* is an optimal solution to the convex problem (4). z* must satisfy the optimality
condition, i.e., there exists a vector u € R™ such that ATu € 9||z*||1, where d||z*||; is the
subgradient of the ¢1-norm at z*, i.e.,

Iz*|h ={veR": v;=1for zj >0, v; =—1for 7 <0, |v;] <1 otherwise}.

By setting n = ATu € 9||z*||1, we immediately see that n; = 1 for 2} > 0, n; = —1 for 2} < 0,
and |n;| < 1 for x¥ = 0. This, together with (7), implies that the vector n = ATw satisfies (5).
Since Sy and Sy are arbitrary disjoint subsets of {1,...,n} with |S1| + |S2| < k. Thus AT must
satisfy the weak RSP of order k. [



In the next section, we show that the converse of the above result is also valid (see Theorem
3.2 and Corollary 3.3 for details). We will use a classic error bound for linear systems established
by Hoffman [30]. Let us first recall a constant introduced by Robinson [37]. Let P € R™*? and
Q € R™*4 bhe two real matrices. Define a set F' C R™ T2 by

F ={(b,d) : for some z € R? such that Pz < b and Qz = d}.

Let || - |lo and || - ||3 be norms on R? and R™ "2 respectively. Robinson [37] has shown that the
quantity

pa,p(P,Q) = max min{||z||a : Pz <b, Qz=d} (8)

a
[(0,d)]|3<1,(b,d)EF 2€R?

is a finite real number. It has also been shown in [37] that the extreme value above is attained. In
this paper, we use o = 0o, in which case |||/~ is a polyhedral norm in the sense that the closed
unit ball {z : ||z]l« < 1} is a polyhedron. Define the optimal value of the internal minimization
in (8) as

g(b,d) = min{||z]|lo : Pz<0b, Qz=4d}, (b,d) € F.

Then
fa,s(P,Q) = max g(b,d),
(b,d)eBNF
where B = {(b,d) : ||(b, d)||g < 1} is the unit ball in R™*"2. As pointed out in [37], the function
g(b,d) is convex over F' if || - ||o is a polyhedral norm. In this case, o (P, Q) is the maximum
of a convex function over the bounded set BN F.
Let M’ € R™*9 and M” € R*9 be two given matrices. Consider (P, Q) of the form

T
_ | In 0 (N+m)x(m+e) ~_ | M’ gx (m+0)
P_|:_I 0:|€R 7Q_ M// ER 9
where N is a subset of {1,...,m} and Iy is obtained from the m xm identity matrix I by deleting

the rows corresponding to indices not in N. Robinson [37] defined the following constant:

T
/ N In O M
e g (5 AL (E]) e

As shown in [37], the well known Hoffman’s Lemma [30] in terms of constant (9) with («, 5) =
(00, 2) is stated as follows.

Lemma 2.4. (Hoffman) Let M’ € R™*9 and M" € R**? be given matrices and F = {x €
RY: M'z < b, M"x = d}. For any vector x in RY, there is a point x* € F with

[ ]

Iz =22 < omoa (M, M) ||| V307

1

The constant o, 3(M’, M"), defined in (9), is referred to as the Robinson’s constant deter-
mined by (M’, M"). Given the solution set F of a linear system, Hoffman’s error bound claims
that the distance from a point in space to F can be measured in terms of the Robinson’s constant
and the quantity of the linear system being violated at this point.

In the remainder of the paper, we use Lemma 2.4 to develop a weak-stability theory for
f1-minimization problems. The purpose of this study is to estimate the distance between an



unknown vector (which is the target data to reconstruct) and the solution of the /1-minimization
problem. Note that the solution set of a linear optimization problem is a polyhedron which can be
represented as the solution set of a certain linear system by using the KKT optimality condition.
From this observation, a recovery error bound via ¢;-minimization is similar to the Hoffman’s
error bound, although they are not completely the same since sparsity is also involved in sparse
data reconstruction. However, this similarity or connection motivates one to use Hoffman’s error
bound combined with sparsity assumption to form a new analytic method for studying stability
issues in sparse data reconstruction. This is different from the standard analytic methods in
this area.

Our analysis not only provides a new tool to the study of stability issues of £;-minimization,
but also makes it possible to go beyond the standard framework of methods (such as RIP and
NSP based ones) in order to develop stability results under mild conditions or in general settings.
As we have pointed out, most existing conditions can be relaxed to the assumption made in this
paper. Traditional recovery error bounds are often established in terms of RIP constant, stable or
robust stable NSP constant or their variants. Our assumption is a constant-free condition in the
sense that the definition of this condition does not involve any constant that is difficult to certify.
Under the constant-free weak RSP of AT discussed in this paper, we use Robinson’s constant
to express stability coefficients in reconstruction error bounds. The error bound established
under this assumption can apply to a wide range of matrix conditions, leading to a somewhat
unified version of error bounds for sparse data reconstruction (see, e.g., Corollary 3.5). This is
different from a standard analysis, which often requires an assumption-to-assumption analysis
and the resulting error bounds often depends on an assumed individual assumption. Hoffman’s
Lemma and Robinson’s constant provide a new perspective and an efficient way to interpret the

sparse-signal-recovery behavior of £;-minimization methods.

3 Weak stability of /;-minimization in noise-free settings

In this section, we consider the case where the nonadaptive measurements y € R™ are accurate,
ie.,, y = AT, where T € R™ is the sparse data to reconstruct. The situation with inaccurate
measurements will be discussed in later sections. Given a matrix A and the noiseless measure-
ments y, the compressed sensing theory indicates that if A admits some strong property, the
standard ¢;-minimization

min{||z||, : Az =y} (10)

can exactly reconstruct the sparse data Z in the sense that the unique solution z* of (10)
coincides with Z. In many situations, however, the data T is not exactly sparse and it can only
be claimed that T is close to a sparse vector. In these situations, it is important to know whether
the reconstruction is weakly stable. In section 2, we have shown that the weak RSP of order
k of AT is a necessary condition for standard ¢;-minimization with any given measurements
y € {Az : ||z|lo < k} to be weakly stable. In this section, we further show that this condition is
also sufficient for the problem to be weakly stable. Note that the problem (10) can be written
as the linear program

{nir)l{eTt: Ar =y, —x+t>0, x+t>0, t >0}, (11)
x,t



to which the dual problem is given as

max {yTw: ATw—u+v=0, utv<e, (“vU)ZO}' (12)

(w,u,v)

Thus, by the optimality conditions, the solution of (10) can be characterized as follows.

Lemma 3.1. z* is an optimal solution of (10) if and only if there exist vectors t*, u*, v* €

R% and w* € R™ such that (x*,t*,u*,v*,w*) € D, where
D={(z,t,u,v,w): Ar=vy, t<t, —x<t, Alw—u+v=0, utv<e,
y"w=e"t, (u,v0,t) > 0}. (13)
Moreover, any (z,t,u,v,w) € D satisfies that t = |z|.

The first assertion follows directly from the optimality conditions of (11) and (12). The
second assertion is implied from (13) and can be directly seen from (11) as well. In fact, z* is
an optimal solution of (10) if and only if x*, together with t* = |z*|, is an optimal solution of
(11). Note that (13) is of the form

D={z=(z,t,u,v,w): Mz2<b, M"z=d}, (14)

where b = (0,0,¢,0,0,0) and d = (y,0,0) and

I -1 0 0 0
I -1 0 0 0
/ 0 o I I o ) A 0 oooT
M=| 0 o 7 o ol M=[0 0o —1124 (15)
0 0 0 —I 0 0 —' 0 0y
0 -1 0 0 0

In the remainder of the paper, we use ¢, c1, co to denote the following constants:
¢ = [[(AAT) " Al 1 = [(AAT)  Allooss1, e2 = [[(AAT) T Al o (16)

We now prove the main result of this section.

Theorem 3.2. Let A € R™*" (m < n) be a given matriz with rank(A) = m, and let y be
any given vector in R™. If AT satisfies the weak RSP of order k, then, for any x € R™, there is
an optimal solution x* of (10) such that

|z —2%2 <y {20k(z)1 + (1 + )| Az -yl }, (17)

where ¢ is a constant given in (16), and v = ooc2(M', M") is the Robinson’s constant with
(M', M") given as (15). In particular, if x satisfies Ax =y, then there is an optimal solution
x* of (10) such that

[z — 2%[|2 < 2yok(2):1- (18)

Proof. Let x be any given vector in R" and let ¢ = |z|. Let S denote the support set
of the k-largest components of |z|. Let S = Sy U S_, where S, = {i € S : z; > 0} and
S_={ieS:z <0} Wenow construct a vector (u,v,w) such that it is a feasible point to



the problem (12). Since AT has the weak RSP of order k, there exists a vector € R(A”) such
that ATw = 1 for some w € R™ and 7 satisfies that

ni=1forie Sy, ;i=—1forieS_, || <lfori¢S=S5US_,

from which we see that (ATw)g = ng = sign(xg). We construct (u,v) as follows: %; = 1 and v; =
0forie Sy;u; =0and v; =1 for i € S_; w; = (|n;| +1:)/2 and v; = (|n;| — n;)/2 for all i ¢ S.
From this construction, (%,) satisfies that (u,7) > 0, 4+ 9 < e and AT@w = n = u — v. Thus
(u,v,w) is a feasible vector to the problem (12). We now estimate the distance of (z,t,u, v, w)
to the set D given by (13) which can be written as (14). By applying Lemma 2.4 to (14), for
the point (z,t,u,v,w), where t = |z|, there exists a point (x*,t*, u*, v*,w*) € D such that

@t ]
x x* (—z—t)*t
t t* (u+v—e)t
u | — | u* <7 Az —y , (19)
v v* AT -+
w w* |1, et —yTw
L oo

where ()~ denotes the vector ((w)~,(v)7,(t)7), and v = 0ac2(M’, M") is the Robinson’s
constant determined by (M', M") given as (15). By the choice of (u, v, w) and the fact t = |z|,

we have
(:L‘—t)+:(—x—t)+:O, (ﬂ+5—e)+:0, AT@—EH—ﬂ:O, (¥)” =0.

Thus the inequality (19) is reduced to

(@, 6, 5,5, @) — (%, £, 0%, 0", w2 < H[ Az — ] . (20)
1
Denote by h = Ax — y. By the choice of (t,u,v,w), we see that
et —yl'w = el'|z| — (Az — W) Tw = ||z|, — 2T (AT@) + 1w
Substituting this into (20) and noting that
o — 2™z < |[(2,t, w, v, w) = («", 7, u", 0", w) |2,
we obtain
lz = 2*[l2 < v {||Ax =yl + [[lz[l — 2" (AT@) + rTa@|}. (21)
Note that A has full row rank and ||1]|e < 1. From ATw = 5, we see that
@0 = I(AAT) T Anlloo < [[(AAT) T Aflscssoo Il < ¢ (22)

where ¢ is a constant given in (16). Note that

(z5)" (AT ®)s = (x5) ns = (xg)" sign(zs) = ||lzs]1-
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Therefore,
el — 2" (AT0) + hTa| = ||z - (v5)" (ATD)s — (25)" (AT D)5 + h'D)|
[llzlls = llzsll = (z5)" (AT@)5 + hT @]
= |ok(z)h - (fﬂ?)T(AT ~)*+ ht |

< op(z)1 +|(zg) " (ATD)g| + |h @
< 20%(x)1 + |1 IIwHOO
< 20p(2)1 + || Az -y, (23)

where the second inequality follows from the fact
|(z5)" (AT w)5| < Nzl (AT D)5 o = llzslhilinglle < llzglh = o)1,

and the final inequality follows from (22). Substituting (23) into (21) yields the estimate (17),
as desired. In particular, if x is a solution to the underdetermined linear system Az = y, then
(17) is reduced to (18). O

Under the weak RSP of order k of AT, Theorem 3.2 indicates that the standard ¢;-minimization
problem, i.e., problem (1) with € = 0, is weakly stable for any given y € R"(= {Az : x € R"}
since A is underdetermined with full row rank). In particular, it is weakly stable for any given
y € {Az : ||z||o < k} C R™. Theorem 2.3 indicates that if the standard ¢;-minimization problem
is weakly stable for any given y € {Ax : ||z||o < k}, then AT must satisfy the weak RSP of order
k. Merging Theorems 2.3 and 3.2 immediately yields the following statement.

Corollary 3.3. Let A € R™*™(m < n) be a matriz with rank(A) = m. Then the standard
01 -minimization problem min{||x||; : Az = y} is weakly stable in sparse data reconstruction for

any given measurements y € {Ax : ||z|lo < k} if and only if AT satisfies the weak RSP of order
k.

Thus the weak RSP of AT is the mildest condition, which cannot be relaxed without dam-
aging the weak stability of £;-minimization problems.

Remark 3.4. Uniform recovery requires that every k-sparse vector can be reconstructed by
f1-minimization. This means that every k-sparse vector is an optimal solution of #;-minimization.
Then the classic KKT optimality condition naturally yields the matrix property of weak RSP
of AT. Therefore, no matter what (deterministic or random) design matrix A is used, the weak
RSP of order k of AT is a fundamental property required for achieving the uniform recovery
with ¢1-minimization as a decoding method. The existence of a matrix with such a property
follows directly from that of RIP matrices. We recall the following fact: (Candés, Tao, etc.) Let
A be an m x n Gaussian or Bernoulli random matriz. Then there exists a universal constant
C > 0 such that the RIP constant of A/\/m satisfies dor, < & (where 0 < § < 1) with probability
at least 1 — € provided

m > C&? (k(1+1In(n/k)) + In(2e7 1))

This fact was first shown by Candes and Tao [10] and it was improved later to the above
statement by Candes and other researchers. Taking & = 1/4/2, Cai et al. [6] have shown that
the RIP of order 2k with constant do, < 1/4/2 guarantees the uniform recovery of k-parse
vectors via f1-minimization method. Note that the uniform recovery of k-parse vectors via £1-
minimization is equivalent to that AT satisfies the RSP of order k (see [45] for details), and

11



hence A7 satisfies the weak RSP of order k. Combining these facts and taking & = 1/v/2, we
immediately obtain the following statement: Let A be an m x n Gaussian or Bernoulli random
matriz. Then there exists a universal constant C' > 0 such that AT /\/m satisfies the weak RSP
of order k with probability at least 1 — € provided

m > 2C (k(1 + In(n/k)) + In(2¢7 1)) . (24)

By Theorem 3.2, when AT satisfies the weak RSP of order k, the error bound (18) always holds.
Combining Theorem 3.2 and the above statements yields the following fact: Let A be an m x n
(m < n) Gaussian or Bernoulli random matriz with full row rank, and let y be a given vector
in R™. Then there exists a universal constant C' > 0 such that with probability at least 1 — e,
the standard ¢1-minimization problem with matriz A/\/m is weakly stable, provided that (24) is
satisfied.

From Theorem 3.2, we obtain a unified stability result for several existing matrix properties.

Corollary 3.5. Let (A,y) be given, where y € R™ and A € R™*™ (m < n) with rank(A) =
m. Suppose that A admits one of the following properties:

(pl) RIP of order 2k with constant dg, < 1/4/2.

(p2) A is a matriz with ¢a-normalized columns and pi(k) + p1(k — 1) < 1, where pi(k) is the
accumulated mutual coherence.

(p3) The stable NSP of order k with constant 0 < p < 1.

(p4) The robust NSP of order k with constant 0 < p <1 and 7 > 0.
(p5) The NSP of order k.

(p6) The RSP of order k of AT.

Then, for any © € R™, the optimal solution x* of (10) approximates x with error
|z — 2™[|2 < 290k ()1 +v(1 + o)Az =y,

where ¢ is a constant given in (16) and v = 0o 2(M', M") is the Robinson’s constant determined
by (15). In particular, for any x with Az =y, the optimal solution x* of (10) approximates x
with error ||x — x*||a < 2voR(2)1.

The above corollary follows directly from Theorem 3.2, since each of the properties (p1)—(p6)
implies the weak RSP of order k of AT as well as the uniqueness of the optimal solution z* of
(10). Corollary 3.5 is a unified weak stability result in the sense that every matrix property of
(pl)—(p6) implies the same error bound in terms of the Robinson’s constant. The weak stability
result of this type is new and established in this paper for the first time.

4 Robust weak stability of linearly constrained models

In more realistic situations, the measurements y for the unknown sparse data Z € R" are

inaccurate, and thus y = AZ + u, where u denotes the measurement error satisfying ||u|| < e for

12



some norm || - || and noise level £ > 0. Thus we consider the robust weak stability of (1) with a
known level € > 0. In this section, we focus on the following problems:

min{|[zfly = [[Az = ylloo <€}, (25)

min{||z|1 : [|Az -yl < e}, (26)

corresponding to p = oo and p = 1 in (1), respectively. The case p = 2 in (1) will be treated
separately in section 5. Problems (25) and (26) are referred to as the ¢;-minimization with
{x-norm and ¢;-norm constraints, respectively. A common feature of (25) and (26) is that their
constraints can be linearly represented. This structure makes it possible to extend the approach
in section 3 to establish the robust weak stability of (25) and (26).

4.1 /i-minimization with /,-norm constraint

We first consider the problem (25), which can be written as

r(nir)l{eTt: —z+t>0, z+t>0, t >0, —ce< Az —y<ee} (27)
x,t

to which the dual problem is given as

( max ){(y —ce)lw—(y+ee)lw : AT(w—-w)=u—v, ut+v<e, (u,v,w,w)> 0}. (28)
u,v,w,w’

Clearly, z* is an optimal solution of (25) if and only if (z*, t*) with t* = |2*| is an optimal solution
of (27). By the optimality condition of a linear program, we can immediately characterize the
solution set of (25) as follows.

Lemma 4.1.  z* is an optimal solution of (25) if and only if there exist vectors t*, u*, v*

in R and w*, w™ in R such that (x*,t*, u*, v*, w*, w™) € D) where

D(m):{(x,t,u,v,w,w’): —x+t>0, x4+t>0, —ce<Ax —y <cee,
AT(w—w')=u—v, u+v<e,

et = (y —ece)lw — (y +ee)w, (29)
(t,u,v,w,w") > 0}.
Moreover, for any (z,t,u,v, w,w’) € D(>), it must hold that t = |z|.
The set D(°) can be written as
D) = {z = (z,t,u,v,w,w) : MWDz <p® M@, = b(Q)}7 (30)
where b2 = 0 and
I -1 0 0 0 0 0
-1 -1 0 0 0 0 0
A 0 0 0 0 0 4 ee
-4 0 0 0 0 o0 9 _Ey
1) _ 0 -1 0 0 0 0 1) _
M 0 0 I I 0 0 » b 2 ’ (31)
0 0 0 0o -1, 0 0
0 0 0 0 0 I, 0
0 0 —-I 0 0 0 0
0 0 —I 0 0

—
w



@_(0 0 —I1I AT —AT
M (0 el 0 0 —(y—cee)l (y+ee)t )° (32)

where I and I, are n- and m-dimensional identity matrices, respectively. We now show that
the robust weak stability of (25) is guaranteed under the weak RSP of order k of A”.

Theorem 4.2. Let the problem data (A,y,e) of (25) be given, where € > 0, y € R™ and
A € R™*" (m < n) with rank(A) = m. Let AT satisfy the weak RSP of order k. Then for any
x € R™, there is an optimal solution x* of (25) such that

lz = 2"l < 1 {ll(Az —y —ee) T[l1 + [(Az — y +ee) " |lL + 20%(2)1 + c1e + e1[| Az — yllo }

where c1 is the constant given in (16) and y1 = 0oo2(MM, M) is the Robinson’s constant
determined by (MM, M®)) given in (31) and (32). In particular, for any x with || Az —y||eo < &,
there is a solution =* of (25) such that

[ = 2*[l2 < 2mi{on(2)1 + cre}.

Proof. For any given x € R™, we consider a vector (¢,u,v,w,w’) satisfying the following
properties: t = |x| and (u, v, w,w') satisfies AT (w —w') = u —v,u+v < e and (u,v,w,w’) >0,
ie., (u,v,w,w’) is a feasible vector to problem (28). Note that the set (29) can be written as
(30). For such a vector (z,t,u,v,w,w’), applying Lemma 2.4 with (M’, M") = (MM, M®)
being given in (31) and (32), there must exist a vector (z*, t*, u*, v*, w*, w™) € D) such that

r (x—t)*" T
[z ] [z ] (—z—t)*"
t t* (Az —y —ee)t
u u* (Ax —y +ce)”
o | | ox sm AT(w —w') —u 4w ’ (33)
w w* (ut+v—e)t
Lw ] L w™ ], elt — (y —ee)Tw + (y + ee) v’
- ) i

where (1/9\)_ is short for the vector ((u)~, (v)~, (#)~, (w)~, (w')7), and v1 =0 2(MM, M®@) is
the Robinson’s constant with (M®), M) being given by (31) and (32). By the nonnegativity

-~

of (u,v,t,w,w’), we see that ()~ = 0. Since ¢t = |z| and (u, v, w,w’) is feasible to problem (28),
we see that

(z—t) =(—z-t)" =0, AT(w—w)—u+v=0, (u+v—e)™ =0.
Thus the system (33) is reduced to

(Az —y —ee)™
(¢, u, v, w,w') — (2, 5w, v* W, w™)|a <7 (Ax —y +ee)”
elt — (y —ee) w+ (y +ee)’w’ |||,

Let ¢ =y — Ax. We see that

et —(y—ee)lw+ (y+ee)lvw = et —yT(w—w')+eel (w+w)
= elaz| — (Az 4+ )T (w — w') + ceT (w + w')

= el|z| — 2T AT (w —w') — ¢F (w — w') + eel (w + w').
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Merging the above two relations leads to

I(z,t,u, v, w,w') — (2, %, u*, v*, w*, w™)||2

<7{l(Az —y —ee) |1 + [|(Az — y +ee) |1

+ T |z| — 2T AT (w — w') — ¢T (w — w') + e’ (w + w') |} (34)
By the weak RSP of order k of AT, we now construct a specific vector (u,v,w,w’) which is
feasible to problem (28). To this goal, let S denote the support set of the k-largest components
of |z|. Let Sy ={i € S:2; >0} and S_ = {i € S : x; < 0}. Clearly, S = S, U S_. Since AT
satisfies the weak RSP of order k, there exists a vector n € R(AT) such that n = AT g for some
g € R™ and 7 satisfies the following conditions:

ni=1forie Sy, py=—1forallie S_, and ;| <1forieS={1,...,n}\S.

Construct (u,v) as follows: u; = landv; = Ofori € Sy; u; = Oandv; = 1fori € S_;
U = (1+n;)/2 and ¥; = (1 —n;)/2 for all i € S. By this construction, we see that u — o = 1.
Moreover, by setting w = (¢)* and @’ = —(g)~, we see that w > 0, @’ > 0, w —w' = g. It is
easy to see that the vector (u, v, w,w’) specified as above satisfies the conditions

it+v<e, AN(w—a')=u-70, (@v,w,a)>0

which indicates that (u,v,w,w’) is a feasible vector to problem (28). Thus it follows from
(34) that for the vector (z,t = |z|,%, v, w, @), there is a point in D), denoted still by
(x*, t*, u*, v*, w*, w™), such that

~ ~ ~ 1%

| (z, t,u, v, w,w') — (z*, t*, u*, v*, w*, w™)||2
<n{ll(Az —y —ee) |l + [[(Az — y +ee)7|x
+ |l || — 2T AT (@ — @) — ¢T (@ — @) + e’ (@ + @)} (35)
By the construction of (u, v, w, w'), we see that [AT (W —w')]s = (U —0)g = ng = sign(zs). Thus
" || — 2T AT(@ — @) — ¢" (W — @) + ee” (@ + @)
= [lzlls — (zs)"[AT(@ - @)]s — (25)T[AT (@ — @)]5 — ¢" (@ — @) +ee” (@ + )|
= [lells = llzslh — (@5)TIAT(@ — @)]5 — 67(@ — &) + e (@ + )|
< op(2)1 + |(z) " [AT(@ — @)]5] + o7 (@ — @')| + ele” (@ + @)
< an(@)1 + [(zg) L I[AT (@ — @)]glleo + 167 gl + €le” ((9) = (9)7)]
< 20k(2)1 + llgll1lllloc + €llgll1, (36)

where the last inequality follows from the fact [|[[AT (@ — @')]g]loc = ||75]lec < 1. Since AT has
full column rank, it follows from ATg = n that g = (AAT)~*An, and hence

lglly = I(AAT) " Anlly < [(AAT) "' Allsosallnlleo < [(AAT) T Al = e (37)
Merging (35), (36) and (37) yields the bound

||(x,t,u,v,w,w') - (x*at*7u>k7v*aw>k7w,*)“2
1 A{Il(Az —y —ee)™[l1 + || (Az — y + ee) [l + 20%(x)1 + |9l (Bl + ) }
< nA{l(Az —y —ee)Tlli + [[(Az —y +ee) ™ |1 + 20k(x)1 + c1]ly — Azlloo + c16},

[ — 272

IN A

as desired. In particular, when z satisfies the constraint of (25), i.e., ||y — Az|| < €, the above
estimate reduces to ||z — 2*||2s < 2y {ok(x)1 + c1e}. O
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4.2 /(i-minimization with /;-norm constraint

We now show the robust weak stability of problem (26). Note that (26) is equivalent to

%nn;{Hle Az —y| <7, elr<e reRT}. (38)

It is evident that z* is an optimal solution of (26) if and only if there is a vector r* such that
(z*,7*) is an optimal solution of (38). We may further write (38) as the linear program

(min){eTt: <t —x<t, t>0, Ar—y<r—Az+y<r elr<e, rEO}. (39)
z,t,r

The dual problem of (39) is given by

max —y’ (v3 — vy) — €vs
s.t AT(vg —vg)+ v —v2 =0, v3+ vy <vse, v1 +v2 < e, (40)
v; >0, 2=1,...,5,

where vy, v2 € R}, v3,v4 € R, and v5 € Ry. By the optimality condition of a linear program,
the solution set of (26) can be characterized as follows.

Lemma 4.3. z* is an optimal solution of (26) if and only if there exist vectors t*, v}, v} €

R%, v3, vf,r* € R and vi € Ry such that (x*,t*, 7%, vf,...,v}) € DO where

DW = {(z,t,r,v1,...,v5): x<t, —x<t, Axv—r<y, —Azx—r<—y,
eTr <e, (r,t) >0, AT(v3 —vq) +v1 — v2 = 0,

41
v3 +vg —vse <0, v1 + v <e, (41)
elt = —yT(vs —vy) —wse, v; >0, i=1,...,5}.
Moreover, for any (z,t,r,v1,...,vs5) € DU it must hold that t = |x|.
In order to apply Lemma 2.4 in the proof of the next theorem, we rewrite D) as
DW = {z = (z,t,r,v1,...,05) : M*2 <b*, M*z = b}, (42)

where b** = 0, b* is a vector consisting of 0, y, —y, e and €, The matrix M* captures all coefficients
of the inequalities in (41), and M™** is the matrix capturing all coefficients of the equalities in
(41). The entries of M* and M** are given by the problem data (A4,y,e). M* and M** are
omitted here. We have the following stability result.

Theorem 4.4. Let the problem data (A,y,e) of (26) be given, where € > 0, y € R™ and
A € R™" (m < n) with rank(A) = m. Let AT satisfy the weak RSP of order k. Then for any
x € R™, there is an optimal solution x* of (26) such that

2 — 2|2 < v2 {20%(x)1 + ([[Az —yl1 — )" +c(e + |ly — Az|1)},

where ¢ is the constant given in (16), and v2 = 0o 2(M*, M*™*) is the Robinson’s constant
determined by (M*, M**) in (42). In particular, for any x with ||Az — y|1 < €, there is an
optimal solution x* of (26) such that

[ = "2 < 292{ok(2)1 + ce}. (43)
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Proof. Let x be any vector in R™, and let (¢,7,v1,...,v5) satisfy the following properties:
t = |z|, r = |Az — y|, and (v1,...,vs) is feasible to (40), i.e.,

AT(U3—U4)—|—'I}1—U2=0, v +ve <e, v3+vg <wse, (v1,...,v5)>0.

For such a vector (x,t,r,v1,...,v5), applying Lemma 2.4 with (M', M") = (M*, M**) where
M* and M** are the matrices in (42), there exists a point (x*,t*,7*, v}, ..., v}) in D defined
by (41) such that

i (x —t)T T
L (—z—1)"
" (Ax —y—r)*
t t* (Az —y+1r)”
T r elr—e)t
v | Q}T <72 AT(’Ug(— v4) +>v1 — vy ) (44)
: : (v1 +v2 — €)+
| us | L vs 1], . (v3 4+ v4 — vse) ™
el't +yT (v3 — vy) + vse
(%)~ 1
where (%)~ is the short for the vector ((¢)~, (r)7, (v1) 7, ..., (vs)7), and y2 = oo 2(M*, M**) is

the Robinson’s constant determined by the matrices (M*, M**) in (42). By the nonnegativity
of (t,r,v1,...,u5), we see that (9*)~ = 0. Since (vy,...,vs) is feasible to (40), we also have

(l‘—t)+ = (—JU—t)+ =0, AT(vg —vg) + v —v2 =0, (v + vy —6)+ =0,
(v34+ vy —wvse)t =0, (Az —y—r)t =(Az—y+7r)” =0.
Thus the inequality (44) is reduced to

1@t o,y us) — @t o) < e[| o, T . (45)
- e’ t+y' (vs —va) +uvse |||
Furthermore, letting ¢ = y — Az, we see that
et +yT(v3—vg) +use = el |z|+ (Az + @) (v3 — vg) + vse
= ez 4+ 2T AT (v3 — v4) + ¢ (v3 — v4) + vse. (46)
Merging (45) and (46) leads to
Iz, t,rv1,. .. 05) — (2, ¢, 7" 0], ..., 05) |2
< 79 {(eTr —e)t + ‘eT\x| + 2T AT (v3 — v4) + ¢T (v3 — v4) + vsel| } - (47)
We now construct a specific vector (01, ...,v5) which is feasible to problem (40). To this goal,

we still let S be the support set of the k-largest components of |z|, and we still decompose S as
S=85,US ,where Sy ={i€S:x;>0)and S_ ={ieS:2;<0}.Let S={1,...,n}\S.
Since AT satisfies the weak RSP of order k, there exists a vector n = ATg for some g € R™
satisfying that n; = 1 fori € Sy, n; = —1 for i € S_, and |n;| < 1 for i € S. Define the vectors
v1 and vg as follows: (v1); = 1 and (v2); = 0 for i € S4; (v1); = 0 and (v2); = 1 fori € S_;
(©1)i = (il + m:)/2 and (v2); = (|| — m:)/2 for all i € S. This construction ensures that
(v1,02) >0, U1 + U3 < e, and V1 — Uy = 7. Moreover, by setting

+

3=19)"1=—(9)7, ta=(9)", 5 =9ll,
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we see that v3 > 0,74 > 0, and

U3+ 0= —(9)" +(9)" =gl < llgllce = vse, T3 = s = —(9)” — (9)" = —g.

Note that AT (v3 —v4) = —ATg = —n = vy — v1. Therefore, the vector (71, ...,05) constructed
as above is feasible to the problem (40). We also note that 7y = sign(zs) and ||7g|lc < 1. Then
it follows from (47) that for the vector (x,t = |z|,7 = |Ax — y|,v1,...,05), there exists a point
in DU denoted still by (z*,t*, 7, v}, ... , V%), such that

|(x,t,r,01,...,05) — (¢, 7", 0], ..., 05) |2

<y [(e"r—e)t + |e|z| + 2T AT (U3 — V) + ¢” (V3 — Ba) + Tsel] -

=y [(e"r—e)t + [l + (xs)T[AT (T3 — 0a)]s + (25) T [AT (U3 — Ta)]g — 979 + Vse]]
=72 [(e"r =) + [llzli = lzslh — (x9)"ng — ¢"g + Vse]

<y [(e"r =) + an(a) + [lzglhllnglleo + !¢T9| + Use]

<2 [(eTr =) + 205 ()1 + |8l llglloo + l9lloce] - (48)

As [[n]lo = 1 and g = (AAT) "1 An, we have ||g|lc < [|[(AAT) 1 A||so—00 = c. We also note that

r = |Az —y| = |¢|, which indicates that e”r = ||Az — y||1 = ||¢||1. Thus it follows from (48) that

H$_aj*||2 S ||($7t77"7517,,,755)—(.’L’*,t*,r*,’UT,...,U;)HQ
< % [(lAz —ylh — )" + 200(2)1 + c(lly — Azl +¢)] .

In particular, when x satisfies the constraint of (26), i.e., |y — Az||1 < ¢, the above estimate is
reduced to (43). The proof is complete. [

Similar to Corollary 3.5, we immediately have the following result.

Corollary 4.5. Let the problem data (A,y,e) be given, where ¢ > 0, y € R™ and A €
R™*™ (m < n) with rank(A) = m. Let ¢ and ¢ be the constants given in (16), and let v, and
~vo be the Robinson’s constants given in Theorems 4.2 and 4.4, respectively. Suppose that the
solutions to (25) and (26) are unique. If A satisfies one of the conditions (p1)—(p6) in Corollary
3.5, then the following statements hold:

(i) For any z satisfying || Az — y||leo < €, the solution x* of (25) approximates x with error

[z —2%l2 < 2y{ok(2)1 + cre}-

(ii) For any x satisfying || Az — y|1 < e, the solution x¥ of (26) approzimates x with error

lz — 27|z < 272 {on(2)1 + ce}.

A difference between Corollary 4.5 and existing results is in that the constants «; and 5 in
Corollary 4.5 are Robinson’s constants instead of RIP or NSP constants. Each of the matrix
properties (pl)—(p6) in Corollary 3.5 implies an identical error bound.

5 Robust weak stability of quadratically constrained models

We now consider the robust weak stability of the quadratically constrained ¢;-minimization

*

v"i=minfflzfl: [|Az -yl <€}, (49)

18



where € > 0, and v* denotes the optimal value of the problem. Let S* denote the set of optimal
solutions of (49), which can be represented as

S*={z eR": [lz1 <7, Az —yl2 <e}.
Let B={z € R™: ||z]|2 < 1} be the unit fs-ball. Then problem (49) can be written as
7 = min{llals : u = (Az—y)/e, u e B, (50)

Since the constraint of (49) is nonlinear, Lemma 2.4 does not apply to this situation directly.
We need to establish several auxiliary results in order to show the robust weak stability of (49).
The main idea is to approximate B with a polytope. We recall that B is the intersection of half
spaces a’ z < 1 tangent to its surface, i.e.,

B = ﬂ {zeR™: o’z <1}, (51)
llall2=1
We also recall the Hausdorff metric of two sets S1, S C R™ :
6M(Sy,Sy) = max{ sup inf |2/ — z||2, sup inf |2’ — zHg} . (52)
2'€8; z€S2 2€8 2'€51

By taking a finite number of half-spaces in (51) to approximate B, Dudley [20] established the
following result. (A more discussion on the polytope approximation of B can be found, for
instance, in [7].)

Lemma 5.1. (Dudley [20]) There exists a constant T such that for every integer number
K > m there is a polytope

P = m {zeR™: (a)Tz < 1}, (53)
lla*ll2=1,1<i<K
achieving
H T

where 67(-,-) is the Hausdorff metric defined by (52).

From the above lemma, we see that Pk can approximate B to any level of accuracy provided
that K is sufficiently large. For Py given by (53), we use Mp, := [a},...,a’ ] to denote the
matrix with a® € R™, i = 1,..., K as its columns. We also use the symbol Col(Mp, ) =
{at,a?,...,a®} to denote the set of columns of Mp, . Thus Pk can be written as

P = {2z €R™: (Mp, )Tz < e},

where e is the vector of ones in R¥. Let {Px}x~>m be any sequence of the polytopes given as
(53) and satisfying (54). Consider the sequence of polytopes {P;}jsm, where

Pr= () Px. (55)

m<K<J

Thus P; is still a polytope formed by a finite number of half space (a’)Tz < 1 where ||a’|s = 1.
We still use M75J to denote the matrix with these vectors a'’s as columns, so

Pr={zeR™: (M5 )Tz <e}.
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We still use Col(MﬁJ) to denote the collection of column vectors of M .
In what follows, for a given compact convex set T' C R", we denote the projection of z into
T by nr(z) := argmin{||z — w||2: w € T}. We first prove the following lemma.

Lemma 5.2. Let {Pk}x>m be any sequence of the polytopes defined by (53) and satisfying
(54). For any J > m, let Py be given as (55). Then for any point z € R™ with ||z||2 = 1, there
exists a column vector a* of M~J, ie., ab € Col(Mﬁj), such that

2T

e < ) — =
HZ a H2 =\ J2/m-1)

Proof. Let z be any given point on the unit sphere, i.e., ||z||2 = 1. Since B C 73J, where J > m,
the straight line passing through z and the center of B crosses a point, denoted by 2/, on the
surface of polytope P;. Clearly, z = 2/||2||, i.e., z is the projection of 2’ onto B. Note that
B C Py C Py for any J > m. By the definition of Hausdorff metric and Lemma 5.1, we obtain

T

H D H
l2=="ll < 8"(B, Py) < 6B, Py) < ey

(56)

Since 7’ is on the surface of Py, there is a vector a®® € Col(MﬁJ) such that (a®)T2’ = 1. Note

that [|2' — z[l2 = |2/ — mﬂz = [|Z]2 — 1, |la®|l2 = ||z]|]2 = 1 and (a®)T2" = 1. We immediately
have
. . 20 T/ 1
Caol = 2(1— (@) =201 - O Fy _pq o 1
||Z a ”2 ( (CL ) Z) ( ||ZI”2 ) ( HZ/H2
22" — 2l _ _2(r/J0"7Y) 27

12— zla+1 = (r/JYm=Dy 11 74 J2/m-1)’
where the inequality follows from (56). O
Recall that S* is the set of optimal solutions of (49). We now prove the next lemma.

Lemma 5.3. Let {Pk}x>m and 73J be given as Lemma 5.2. Let Sﬁ, be the set
Sp, ={z €R": ||lz|1 <", u=(Az —y)/e, u € P}, (57)

where v* is the optimal value of (49). Then §M(S*, Sp,) =0 as J— .

Proof. Note that B C Py C Py for every J > m. By the definition of Hausdorff metric and
Lemma 5.1, we see that

H > H T
d (BaPJ)§5 (B’,PJ)SW’ J >m. (58)

Note that S,,;J, given by (57), can be rewritten as
Sp, ={z eR": |z|1 <", (Mp,)" (Az —y) < ee},

where v* is the optimal value of (49). Clearly, S* C Sﬁ] due to the fact B C P;. We now prove
that 6”(5*,573J) — 0 as J — oo. Since S* is a subset of Sﬁ], by the definition of Hausdorff
metric, we see that

5H(S*,S73J): sup inf [[w—z[]2 = sup |w—7g«(w)]2, (59)
weESH z€8* we 73]
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where mg+(w) € S* is the projection of w into S*. The projection operator mg«(w) is continuous
in w and S73J is compact convex set for any P;. Thus for every polytope Py, the superimum in
(59) can be attained, i.e., there exists a point, denoted by w% € Sﬁ,v such that

J

5M(S", 55) = Hw;gJ - ws*(w*@)H2. (60)

We also note that S* C SﬁJH C 575] for any J > m, which implies that 5H(S*,S75J+l

5”(5*,575J). Thus {6H(S*,S75J)} J>m IS a non-increasing nonnegative sequence. There must

) <

exist a number § > 0 such that
Jm 675", 5p,) =0 2

We now further prove that § = 0. Note that w% € SﬁJ for any J > m. Thus
J

Hw%J <~ (MﬁJ)T(Aw%J —y) <ce for any J > m. (61)

The inequality (61) implies that the sequence {w*ﬁ }s>m is bounded and satisfies that
J

1

sup (ai)T(Aw*ﬁJ —y)| <e forany J > m.
aiECOI(MﬁJ)

Note that for any m < J' < J, we have Col(Mﬁj/) C Col(Mﬁ]). Thus the inequality above
implies that for any fixed integer number .J' > m,

sup (ai)T(Aw%J —y)| <e forany J > J.
al eCol(MﬁJ/ )

Note that the sequence {w;‘3 } s>y is bounded. Pasting through to a subsequence if necessary,
I
we may assume that w% — w* with ||w*|]; <~*. Thus it follows from the above inequality that
J

sup (ai)T(Aw* —y) <e¢, (62)
aiGCOI(MﬁJI)

which holds for any given J' > m. We now prove that (62) implies that ||Aw* — y|l2 < e. We
show this by contradiction. Assume that ||Aw* —yl|2 > €, which by the definition of the f>-norm
implies that

max al (Aw* —y) = ||[Aw* — gyl > e.
llall2=1

The maximum above attains at a* = (Aw* — y)/||Aw* — y||2. By continuity, there exists a
neighborhood of a*, namely, U = a* 4+ 6* B, where §* > 0 is a small number, such that any point
weUN{zeR™:|z|2 =1} satisfies that

1
w! (Aw* —y) > 5 (lAw”™ —yll2 +¢). (63)

Note that P; achieves (58). Let J' be an integer number such that < 0*. Applying

___2r
(J/)Z/(m—l)_;'_T

Lemma 5.2 to Py, we conclude that for the vector a*, there is a vector a’ € Col(MﬁJ/) such

that
i * 27 *
o =a”ll> < \/(J’)2/(m—1) e
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which, together with the fact ||a’||s = 1, implies that a’* € U N {z € R™ : |z||2 = 1}. Thus it
follows from (63) that

(@) (Aw* —y) > 5 ([Aw” =yl +¢) > e.

This contradicts (62). Thus w* must satisfy that ||Aw* — y|j2 < . This together with the fact
|lw*|l1 < ~* implies that w* € S*. As a result, mg«(w*) = w*. It follows from (60) and the
continuity of mg«(-) that

— lim 6M(S*. S= ) = Ii e (wE Yo = lw = mex (wH)||o =
5= lim (5", 55)) = lm g — 75 (w3 )2 = lu* — 75 ()2 = 0,
as desired. O

We will also make use of the following property of a projection operator.

Lemma 5.4. Let S’ and S” be compact convex sets in R™. Then for any x € R",
s () — s ()3 < %(S", ") (o — mgr(@)l]a + 1 — mgn()]a).
Proof. By the property of projection operators, we have
(z —7g(x)T (v — 7g(x)) <0 for all v € S, (64)

(z — mgn(2))T (u — wgn(x)) <0 for all u € S”. (65)

We project mgn(x) € S” into S’ to get the point v = 7g/ (mg#(x)) € S” and we project wg: (z) € S’
into S” to get the point u = mgr (rg(x)) € S”. By the definition of Hausdorff metric, we have

10— mgn(z)]l2 < 675", 8"), |[a — 7 (@)l|2 < 67(S", 8"). (66)
Substituting v into (64) and w into (65) yields
(x — 75 (2))" (0~ ms:(2)) <0, (z —7wgn(2))" (@ —7sn(2)) <0,

which implies the first inequality below

Irsr(z) —wsn(@)|3 = (rg(x) =z + 2 —7gn(2))" (75 (2) — T30 (7))
= —(z—7g (@) (mer (x) — wgn(2)) + (& — won (@) (w1 (x) — w9 (2))
< —(@— 7y (@) (0 —7gr(2)) + (& — won (@) (7w (x) — 1)
< |z — 7o (@)ll2llmsr () = D2 + |2 — wgr (z) 2] 7sr () — @]
< MY, 8" (|lx — wsi (@) 2 + Iz — mgn (2)]l2),

where the final inequality follows from (66). O

For each K > 2m, by Lemma 5.1, there is a polytope Px of the form (53) achieving (54),
and Pk can be represented as Px = {z € R™ : (Mp,. )Tz < e}. We now add the following 2m
half spaces

(igi)Tz <1l,i=1,....m

to Pk, where g; (i = 1,...,m) denotes the i-th column vector of the m x m identity matrix. Let
K denote the cardinality of the set Col(Mp, ) U {%p; : i =1,...,m}. This yields the polytope

Pr :=PxN{zecR™: ol2<1, —ol2<1,i=1,...,m}, (67)
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Therefore,
COI(Mpf() = COI(MPK) U {:l:Qi e=1,... ,m} (68)

and K = |Col(Mp_)|. Clearly, K < K < K + 2m which together with K > 2m implies that
1< I?/K < 2. Let 7 be the constant in Lemma 5.1 and let 7/ = 41/ (m=1) 1, By the definition of
Hausdorff metric and Lemma 5.1, we see that the polytope Pp constructed as (67) satisfies

~\ 2/(m-1) ,
H N H T _ T E T

We use the set Py defined as (67), which achieves (69), to construct the sequence of polytopes
{Ps} as follows:
Pr= (] P& (70)
m<K<J

Let Sz denote the set (57) with P being given by (70). Then Lemma 5.3 remains valid for
the sequence of polytopes given by (70). So §%(S*, S75J) —0as J— oo.

Thus in the remainder of the paper, let ¢ > 0 be any fixed small number. From the above
discussion, there exists an integer number Jy > 2m such that

oM(S*, 85 ) <€ (71)

Py =

We consider the fixed polytope 75JO constructed as above. This polytope is an approximation of

B and achieves (71). We use N to denote the number of columns of Mz, and use eg to denote
0

the vector of ones in RY to distinguish it from e, the vector of ones in R™. Replacing B in (50)
by Py, leads to the following approximation of (49):

Vp,, = min{llzfly: u=(Av —y)/e,u € P} =min{flz]y: (Mp, )T(Az —y) <eceg), (72)

where ’y% is the optimal value of the above problem. Let
Jo

* _ n . * — D
573]0 = {J? e R": Hle < ’773J07 u = (A.Q?—y)/f, U 6,PJO}

be the set of optimal solutions of (72), and let Sp, be the set defined by (57) with P, replaced
~ O ~
by Pj,. Clearly, S* C Sﬁj . Note that 'y% < v* due to the fact B C Pj;,. We immediately see
0 Jo
that S5 C S5  The problem (72) can be written as
7)]0 Jo

: T, . B _ T _ ~
1&15)1{6 t: x<t, —x<t, t>0, (MPJO> (Az —y) <ceegl,

to which the dual problem is given as

T T
max —[EeﬁﬂMﬁ%) y|" v (73)

s.t. ATMﬁJng +v1 —vy =0, v1 +v2 <e, (v1,v2,v3)>0.

The following lemma immediately follows from the optimality condition of the above linear
program.
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Lemma 5.5. z* € R" is an optimal solution of (72) if and only if there exist vectors
t*,v7,v5 € R} and vi € Rf such that (x*,t*,v],v5,v3) € D@ where

D(Q) — {(JJ,t,’Ul”UQ,’Ug) . X S t, — X S t, (MﬁJO)T(A.T — y) S 56]’\},
ATMﬁJng +v;—v2 =0, vi +vy < e, (74)

T
elt = — |eeg + (MﬁJO)Ty} vs, (t,v1,v2,v3) > 0}.

Moreover, for any (x,t,vi,v2,v3) € D@ it must hold that t = ||

To apply Lemma 2.4, we write (74) in the form
D® = {z = (z,t,v1,v9,v3) : MTz<bt, MTtz=pt"), (75)

where b7+ = 0 and

I -1 0 0 0 0
I -I 0 0 0 0
(MﬁJO YA 0 0 0 0 (MﬁJO)Ty +eeg
M+ _ 0 0 I I 0 ’ b+ — (& , (76)
0 -I 0 0 0 0
0 0 —I 0 0 0
0 0 0 —I 0 0
0 0 0 0 —Ig 0
. ( 0 0 I -1  ATMj ) -
i 0
- T T Tar- ’
0 e 0 O g€y +y MPJ0

where I and Ig are the n x n and Nx N identity matrices, respectively. We now prove the
main result in this section.

Theorem 5.6. Let the problem data (A,y,e) of (49) be given, where € > 0, y € R™ and
A € R™" (m < n) with rank(A) = m. Let & be any prescribed small number and let the polytope
75J0 be constructed as (70) and achieve (71). Suppose that AT satisfies the weak RSP of order
k. Then for any x € R", there is an optimal solution x* of (49) such that

=27l < 295 { N (1Az — gl — &) + 200001 + 12 + 2| Az — ylla | +2¢,  (78)

where ¢1 and co are constants gwen in (16), v3 = 0o 2(M ™, MTT) is the Robinson’s constant
determined by (M™*, M*T) given in (76) and (77). Moreover, for any x with ||[Az — yl|2 < e,
there is an optimal solution z* of (49) such that

2 — 2|2 < dyson(2)1 + 293(ct + c2)e + 2¢".

Proof. Let x be any vector in R™ and let ¢ = |z|. We still denote by S the support set of
the k-largest entries of |z|. Let Sy = {i € S : 2; > 0} and S_ = {i € S : ; < 0}. Then
S =S, US_. Since AT satisfies the weak RSP of order k, there exists a vector n = AT g for some
g € R™ satisfying that n; = 1 fori € Sy, n; = —1fori € S_, and |n;| < 1 for i € S, where
S ={1,...,n}\S. For the given problem data (4,y,¢), as shown between (67) and (71), there
exists an integer number Jy > 2m such that the polytope P Jo» given as (70), can approximate
B and achieve the bound (71). We now construct a feasible solution (v1,v2,v3) to problem
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(73). Set (v1); = 1 and (v2); = O for alli € Si, (v1); = 0 and (v2); = 1 foralli € S_, and
(©1)i = (Imi] +m:)/2 and (V2); = (|ns| — n;)/2 for all i € S. This choice of 71 and vy ensures that
(v1,v2) >0, 11 + 03 < e and v; — U2 = 1. We now construct the vector v3. By the construction

of Pj,, we see that
{£oi: i=1,...,m} C Col(M5 ).
Jo

It is not difficult to show that there exists a vector vs € Rf satisfying Mﬁjoig = —g and
|oslli = |lglli- In fact, without loss of generality, we assume that {—g; : @ = 1,...,m} are
arranged as the first m columns and {g; : i =1,...,m} are arranged as the second m columns
in Mﬁjo' For every i = 1,...,m, if g; > 0, then we set (v3); = g;; otherwise, if g; < 0, then we
set (U3)m+i = —gi- All remaining entries of v3 € RY are set to be zero. By this choice of 13, we
see that v3 > 0, M73J0 v3 = —g and

193l = llgll = 1(AAT) " Anll < [[(AAT) " Aol < e, (79)

where ¢; is the constant given in (16).

Let D@ be given as in Lemma 5.5. D) can be written as (75). For the vector (z,t,v1, v2, v3),
applying Lemma 2.4 with (M', M") = (M, M*t) where M and M** are given as (76) and
(77), there exists a point in D® | denoted by (i,aﬁl,ﬁg,ﬁg), such that

[ ((MﬁJO)T(Ax_y)_EeZV>+ ]

. (x—t)F
x z (—z—t)*"
j j ATM;PSJ U3 + U1 — Vg
N <3 @ ﬁ Ty — )t ) (80)
(%) () T
U3 u3 |1, el't + (aeﬁ + (MﬁJO)Ty> U3

—
- () 1,
where ()~ denotes the vector (1), (T2) ™, (83) ™), and 3 = oo 2(M+, M++) is the Robinson’s
constant determined by (M™*, M*1) given in (76) and (77). Note that ¢ = |z| implies that
(x —t)t = (—z —t)" =t~ = 0. Also, since (01,02, 03) is feasible to (73), we have (J)~ = 0,
(V1 + 02 —e)T =0 and ATM75J U3 + 01 — U2 = 0. Thus (80) is reduced to
0
}. (81)

Note that for every a* € Col(Mp, ), we have |ai|ls = 1 and thus (a®)T (Az —y) < ||Az — yl|2.
0
This implies that [(a’)? (Az —y) — 5]+ < (|Az — y||l2 — €)* and hence

_|_

T
el't + [eeﬁ + (MﬁJO)Ty] U3
1

o= 2l < 5o { | [ (35, )7z = ) = ]

(M5, )7 (Az —y) —ceg] " < (1A~ ylla — <) e,

and hence

< N(|Az —yl2 —)*. (82)

H (M5, )7 (A~ y) — eeg]” 1

By the definition of 1, we see that 27 ATg = 27 = ||xg||1 + x%ng and thus
T T AT T T
€] — T ATg| = [zl — sl — Zng] < sl + laLng] < 2l = 20w(@n.
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We also note that
lgllz = [[(AAT) " Anlly < [[(AAT) " Alles2lInlloe < c2, (83)

where cg is the constant given in (16). Thus, by letting ¢ = Az —y and noting that Mﬁ] U3 = —g,
0
we have

el't + [Eeﬁ + (M5 )Ty]T'fJg

T T AT Af- ~ _ Taj. =~ T~
By ’e || + 2" A MPJng ) Mplovg—keeNvg

" x| — aT ATg + ¢"g + eel vy

< 20h(x)1 + 6" gl + ek s
< 20%(x)1 + ||Dll2llgll2 + el|Ts])1
< 204(2)1 + o[ Az — yll2 + ecy, (84)

where the last inequality follows from (79) and (83). Merging (81), (82) and (84) leads to

o= &2 <73 |[NI(| Az = yll2 = &) + 200(a)1 + er2 + call Az — yla] (85)
Note that the set Sﬁ, and S* are compact convex sets. Let x* and T denote the projection
of x onto S* and Sz respectively, namely, 2* = mg«(z) € S* and T = 7g, (x) € S5 . Since

Jo PJO Jo
S* € 53 , we have [z — Z|2 < [lz — 272. By (71), (57"(5*,573] ) < &', which together with
0

Lemma 5.4 implies that

lz* =3 < 67(S%, 85, )l — 2”2 + [z = Z[2) < &'(lo = ll2 + o = 7|2).-  (86)

Note that 7 € S5 C S5 and 7 is the projection of z into the convex set S5 . Thus ||z -2 <
Py Jo Jo

|z — Z||2. By triangle inequality and (86), we have

[z —a*la < [l =Tz + |7 — 272
<l = Zfle + [z = 272
< o =3l + Ve'(le — a2 + [lz — ]l2). (87)

Since ||z — Z||2 < ||z — 2*||2, it follows from (87) that

lz = a2 < flo = Zll2 + v/2¢' [ — 272, (88)

which implies that

v 2¢e! 2¢' + 4|z — 7
|!ar—x*|’2§< Y 82+ I =2l

2
) < 26" + 2|z — 7|2,

where the last inequality follows from the fact (%%)2 < L;rbz. Combination of the inequality

above and (85) immediately yields (78), i.e.,
|z —2*||2 < 26" + 273 {N(\\Am —ylla — &) + 204(x)1 + c1e + ca]| Az — yllz} :
In particularly, when z satisfies ||Az — y||2 < &, the above inequality is reduced to

|2 = 2%[|la < 26" 4 293 {20%(x)1 + (c1 + c2)e} = 4yzon ()1 + 2y3(c1 + c2)e + 2¢,
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as desired. 0
We immediately have the following corollary.

Corollary 5.7. Let the problem data (A,y,e) be given, where ¢ > 0, y € R™ and A €
R™ " (m, < n) with rank(A) = m. Let £ be any prescribed small number and the polytope Py,
achieve (71). Then under each of the listed conditions in Corollary 3.5, for any x € R™ with
|Az — y||2 < e there is an optimal solution x* of (49) such that

lz —2%||2 < dyson() + 2(vse1 + yse2)e + 26,

where ¢1 and ca are given in (16) and -3 is the Robinson’s constant given in Theorem 5.6.

The weak stability is a more general concept than stability. Any traditional sufficient con-
dition for stability of ¢;-minimization problems, by Theorem 2.3, implies the weak RSP of AT
From a mathematical point of view, we have completely characterized the weak stability of stan-
dard ¢;-minimization under this assumption (see Corollary 3.3). It is worth emphasizing several
important features of the weak RSP of AT.

(i) Uniform recovery of every k-sparse vector is a basic requirement in compressed sens-
ing, and the classic KKT optimality condition is a fundamental tool for understanding the
internal mechanism of ¢;-minimization methods. The weak RSP of AT is a natural property
capturing both the requirement of uniform recovery and the deepest property of any optimal
solution to #1-minimization. So our assumption is actually a strengthened KKK optimality con-
ditions by taking into account the requirement of uniform recovery. As a result, no matter what
(deterministic or random) matrix A is used, the weak RSP of AT is a fundamental property
guaranteeing the success and stableness of £1-minimization methods in sparse data recovery. As
shown by Corollary 3.3, this property cannot be relaxed without damaging the weak stability of
f1-minimization, since it is a necessary and sufficient condition for ¢;-minimization to be weakly
stable for any measurement y € {Az : ||z|jo < k}.

(ii) Our analysis is different from the existing frameworks. It is based on the Hoffman’s error
bound for linear systems and the polytope approximation of the unit /s-ball. The weak RSP of
AT is a constant-free matrix property. The coefficients C, C; and C; in error bounds (2) and (3)
are measured by the Robinson’s constants, no matter the matrix property is constant-free (such
as the weak RSP of AT, RSP of order k of AT or NSP of order k) or is constant-dependent
(such as the RIP, stable or robust stable NSP). Thus our analytic method yields a certain unified
weak stability result irrespective of an individual assumption on A, provided that the imposed
assumption implies the weak RSP of AT (see Corollaries 3.5, 4.5 and 5.7).

(iii) Practical signals are often structured or with some prior information, and typical design
matrices in practice are not Gaussian or Bernoulli. This makes the standard analysis and results
(based on Gaussian and Bernoulli random matrices) difficult to apply in these situations. Thus
the structured sparse data reconstruction recently becomes one of the active research areas in
compressed sensing and applied mathematics. The weak RSP concept derived from optimality
conditions of convex optimization can be easily adapted to these situations to interpret the
behavior of more complex and general recovery problems. For instance, the so-called restricted
RSP property of AT was used to deal with the sign or support recovery of signals in 1-bit
compressed sensing problems [49].

It is also worth mentioning that the analytic method in this paper is not difficult to be
extended to the study of the weak stability of weighted ¢;-minimization problems (e.g., [13, 48,
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47]), Dantzig selector [12], and Lasso problems [40, 29].

6 Conclusions

We have shown that the so-called weak range space property of the transposed design matrix
is a sufficient constant-free condition for various ¢;-minimization problems to be (robustly and)
weakly stable in sparse data reconstruction. For noise-free measurements, this matrix property
turns out to be a necessary condition for standard £;-minimization to be weakly stable. All
existing stability conditions (such as mutual coherence, RIP, NSP, or their variants) imply
our assumption. As a result, certain unified weak stability results have been developed for
/1-minimization under existing matrix properties. In particular, the weak stability under the
constant-free null space property of order k£ and range space property of order k have been
established in this paper. Our stability coefficients are measured by the Robinson’s constants
determined by the problem data. Our study indicates that the reconstruction error bounds
via £1-minimization can be understood from Hoffman’s error bounds for linear systems with
compressed sensing matrices.
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