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Abstract. We study the computational complexity of finding stable outcomes in hedonic
games, which are a class of coalition formation games. We restrict our attention to symmetric
additively-separable hedonic games, which are a nontrivial subclass of such games that are
guaranteed to possess stable outcomes. These games are specified by an undirected edge-
weighted graph: nodes are players, an outcome of the game is a partition of the nodes into
coalitions, and the utility of a node is the sum of incident edge weights in the same coalition. We
consider several stability requirements defined in the literature. These are based on restricting
feasible player deviations, for example, by giving existing coalition members veto power. We
extend these restrictions by considering more general forms of preference aggregation for
coalition members. In particular, we consider voting schemes to decide if coalition members
will allow a player to enter or leave their coalition. For all of the stability requirements we
consider, the existence of a stable outcome is guaranteed by a potential function argument,
and local improvements will converge to a stable outcome. We provide an almost complete
characterization of these games in terms of the tractability of computing such stable outcomes.
Our findings comprise positive results in the form of polynomial-time algorithms, and negative
(PLS-completeness) results. The negative results extend to more general hedonic games.

1 Introduction

Hedonic games were introduced in the economics literature as a flexible model of
coalition formation [13]. In a hedonic game, each player has preferences over coalitions
and an outcome of the game is a partition of the players into coalitions. The defining
feature of a hedonic game is that for a given outcome each player cares only about the
other players in the same coalition. It is natural to judge the quality of an outcome
by how stable it is with respect to the players’ preferences. Many different notions of
stability appear in the literature. The survey by Aziz and Savani [2] gives detailed
background on hedonic games and outlines their applications. This paper studies the
computational complexity of finding stable outcomes in hedonic games.

In this paper, we consider and extend the stability requirements for hedonic games
introduced in the seminal work of Bogomolnaia and Jackson [7]. An outcome of a
hedonic game is called Nash-stable if no player prefers to be in a different coalition.
For Nash stability, the feasibility of a deviation depends only on the preferences of the
deviating player. Less stringent stability requirements restrict feasible deviations: a
coalition may try to hold on to an attractive player or block the entry of an unattrac-
tive player. In [7], deviations are restricted by allowing members of a coalition to
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“veto” the entry or exit of a player. They introduce indiwvidual stability, where every
member of a coalition has a veto that can prevent a player from joining (deviating
to) this coalition, i.e., a player can deviate to another new coalition only if everyone
in this new coalition is happy to have her. They also introduce contractual individual
stability, where, in addition to a veto for entering, coalition members have a veto to
prevent a player from leaving the coalition - a player can deviate only if everyone in
her coalition is happy for her to leave.

The case where every member of a coalition has a veto on allowing players to enter
and/or leave the coalition can be seen as an extreme form of voting. This motivates
the study of more general voting mechanisms for allowing players to enter and leave
coalitions. In this paper, we consider general voting schemes, for example, where a
player is allowed to join a coalition if the majority of existing members would like the
player to join. We also consider other methods of preference aggregation for coalition
members. For example, a player is allowed to join a coalition only if the aggregate
utility (i.e., the sum of utilities) existing members have for the entrant is non-negative.
These preference aggregation methods are also considered in the context of preventing
a player from leaving a coalition. We study the computational complexity of finding
stable outcomes under stability requirements with various restrictions on deviations.

1.1 The model

In this paper, we study hedonic games with symmetric additively-separable utilities,
which allow a succinct representation of the game as an undirected edge-weighted
graph G = (V, E,w). For clarity of our voting definitions, we assume w.l.0.g. that
we # 0 for all e € F (an edge with weight 0 can be dropped). Every node i € V
represents a player. An outcome is a partition p of V into coalitions. Denote by
p(i) the coalition to which i € V belongs under p, and by E(p(i)) the set of edges
{{ij} € E|j € p(i)}.

The utility of ¢ € V under p is the sum of the weights of edges to others in the

same coalition, i.e.,
Z w(e).
e€E(p(i))
Each player wants to maximize her utility, so a player wants to deviate if there exists
a (possibly empty) coalition ¢ where

Z w(e) < Z w({i, j})-
e€E(p(i)) {{ig}eE | jec}

We consider different restrictions on player deviations. They restrict when players are
allowed to join and/or leave coalitions. A deviation of player i to coalition ¢ is called

— Nash feasible if player ¢ wants to deviate to c.
— wvote-in feasible with threshold T, if it is Nash feasible and either at least a Tj,
fraction of i’s edges to ¢ are positive or i has no edge to c.



— wvote-out feasible with threshold T,,; if it is Nash-feasible and either at least a T,
fraction of i’s edges to p(i) are negative or i has no edges within p(7).
— sum-in feasible if it is Nash feasible and

> w({igh =0

{{ijrel | jec}

— sum-out feasible if it is Nash feasible and

Z w(e) < 0.

e€E(p(i))

Outcomes where no corresponding feasible deviation is possible are called Nash sta-
ble, vote-in stable, vote-out stable, sum-in stable, and sum-out stable, respectively.
Outcomes which are vote-in (resp. vote-out) stable with T, = 1 (resp. T,,; = 1) are
also called veto-in (resp. veto-out) stable. Note that an outcome is veto-in stable iff it
is an individual stable outcome; and an outcome is both veto-in and veto-out stable
iff it is a contractual individual stable outcome (we use the terms individual stable
and contractual individual stable since they are commonly used and known in the
economics literature following their definition in [7]).

1.2 An example

Figure (1] gives an example of an additively-separable symmetric hedonic game that
we use to illustrate some of the stability requirements that we have defined. Con-
sider the outcome {{a,b,d},{c,e, f}}. The utilities of the players a,b,c,d, e, f are
10,5, —1,5,1, 4, respectively.

5 /b\—l

Fig. 1. An example of an additively-separable symmetric hedonic game.

Players a, b, d, f have no Nash-feasible deviations, ¢ has a Nash-feasible deviation
to go alone and start a singleton coalition, and e has a Nash-feasible deviation to
join the other coalition. The deviation of ¢ is not veto-out feasible, since f prefers ¢
to stay, however it is vote-out feasible for any T,,; < 0.5. It is also sum-out feasible.
The deviation of e is not veto-in feasible, but is vote-in feasible for any T}, < 2/3.
Since there are no deviations that are both veto-in and veto-out feasible, this is
a contractual individual stable outcome. The outcome {{a,b,d},{c},{e, f}} is an
individual stable outcome, and {{a,b,d, e, f},{c}} is Nash stable.



1.3 Justification of the model

With the goal of understanding how difficult it is for agents to find stable outcomes,
we focus on a model in which they are guaranteed to exist. The computational com-
plexity of a problem is measured in terms of the size of its input and therefore depends
on the representation of the problem instance. For games, we desire that the size of
the input is polynomial in the number of players, as this is the natural parameter
with which to measure the size of the game. We consider only such succinct represen-
tations, since otherwise we can find solutions using trivial algorithms (enumeration
of strategy profiles) that are polynomial in the input size. Our focus on additively-
separable games is motivated by the hardness of even deciding the existence of stable
outcomes and other solution concepts for more general (universal) succinct repre-
sentations, such as hedonic nets [I5]. A non-symmetric additively-separable game,
which is represented by a edge-weighted directed graph, may not have a Nash-stable
outcome [7, 5], and deciding existence is NP-complete. We study a more restrictive
model where stable outcomes (for all of the stability requirements we consider) are
guaranteed to exist, noting that our hardness results extend to all more general mod-
els where existence of stable outcomes is either guaranteed or promised, i.e., instances
are restricted to those possessing stable outcomes.

In a symmetric additively-separable hedonic game, for each of the stability re-
quirements we consider, a stable outcome always erists by a simple potential func-
tion argument: the potential function is the total happiness of an outcome, i.e., the
sum of players’ utilities. Unilateral player deviations improve the potential. So for all
our considered stability requirements, local improvements will find a stable outcome,
and all the problems we consider are in the complexity class PLS (polynomial local
search) [23], which we introduce next.

1.4 Local search and the complexity class PLS

Local search is one of few general and successful approaches to difficult combinatorial
optimisation problems. A local search algorithm tries to find an improved solution
in the neighborhood of the current solution. A solution is locally optimal if there is
no better solution in its neighborhood. Johnson et al. [23] introduced the complexity
class PLS (polynomial local search) to capture those local search problems for which
a better neighboring solution can be found in polynomial time if one exists, and a
local optimum can be verified in polynomial time.

A problem in PLS comprises a finite set of candidate solutions. Every candidate so-
lution has an associated non-negative integer cost, and a neighbourhood of candidate
solutions. In addition, a PLS problem is specified by the following three polynomial-
time algorithms that:

1. construct an initial candidate solution;
2. compute the cost of any candidate solution in polynomial time;



3. given a candidate solution, provide a neighbouring solution with lower cost if one
exists.

The goal in a PLS problem is to find a local optimum, that is, a candidate solution
whose cost is no more than the cost of any of its neighbours.

Suppose A and B are problems in PLS. Then A is PLS-reducible to B if there
exist polynomial-time computable functions f and g such that f maps an instance
I of A to an instance f(I) of B, and g maps the local optima of instance f(I) of
B to local optima of instance I. A problem in PLS is PLS-complete if all problems
in PLS are PLS-reducible to it. Prominent PLS-complete problems include finding a
locally optimal max-cut in a graph (LocALMAXCuT) [30], or a stable solution in a
Hopfield network [23]. PLS captures the problem of finding pure Nash equilibria for
many classes of games where pure Nash equilibria are guaranteed to exist, such as
congestion games [I§], for which is also PLS-complete to find a pure equilibrium.

On the one hand, finding a locally optimal solution is presumably easier than
finding a global optimum; in fact, it is very unlikely that a PLS problem is NP-hard
since this would imply NP =coNP [23]. On the other hand, a polynomial-time algorithm
for a PLS-complete problem would resolve a number of long open problems, e.g., since
it would show that simple stochastic games can be solved in polynomial time [34].
Thus, PLS-complete problems are believed not to admit polynomial-time algorithms.

1.5 Computational problems

We define the search problems, NASHSTABLE, IS (individual stable), CIS (contrac-
tual individual stable), VOTEIN, and VOTEOUT of finding a stable outcome for the
respective stability requirement. We introduce VOTEINOUT as the search problem
of finding an outcome which is vote-in and vote-out stable. All voting problems are
parametrized by T, and/or T,,;. We recall that outcomes which are vote-in (resp.
vote-out) stable with T}, = 1 (resp. T,y = 1) are also called veto-in (resp. veto-out)
stable, so IS is the computational problem of finding a veto-in stable outcome, and
CIS is the problem of finding an outcome that is both veto-in and veto-out stable.
We also introduce SUMCIS as the problem of finding an outcome which is sum-in
and sum-out stable.

Symmetric additively-separable hedonic games are closely related to party affilia-
tion games, which are also specified by an undirected edge-weighted graph. In a party
affiliation game each player must choose between one of two “parties”; a player’s hap-
piness is the sum of her edges to nodes in the same party; in a stable outcome no
player would prefer to be in the other party. The problem PARTYAFFILIATION is to
find a stable outcome in such a game. If such an instance has only negative edges then
it is equivalent to the problem LOCALMAXCUT, which is to find a stable outcome
of a local max-cut game. In party affiliation games there are at most two coalitions,
while in hedonic games any number of coalitions is allowed. Thus, whereas PARTY AF-
FILIATION for instances with only negative edges is PLS-complete [30], NASHSTABLE



is trivial in this case, as the outcome where all players are in singleton coalitions
is Nash-stable. Both problems are trivial when all edges are non-negative, in which
case the grand coalition of all players is Nash-stable. Thus, interesting hedonic games
contain both positive and negative edges.

The problem ONEENEMYPARTYAFFILIATION is to find a stable outcome of a
party affiliation game where each node is incident to at most one negative edge.
In this paper, we use a variant of this problem as a starting point for some of our
reductions:

Definition 1. We define the problem ONEENEMYPARTYAFFILIATION® as a re-
stricted version of ONEENEMYPARTYAFFILIATION which is restricted to instances
where no player is ever indifferent between the two coalitions.

We show in Corollary [1] (page that ONEENEMYPARTYAFFILIATION* is PLS-
complete.

1.6 Our results

In this paper, we examine the complexity of computing stable outcomes in symmetric
additively-separable hedonic games. We observe that NASHSTABLE, i.e., the problem
of computing a Nash-stable outcome, is PLS-complete (Observation . Here, we give
a simple reduction from PARTYAFFILIATION, which was shown to be PLS-complete
n [30]. Our reduction relies on a method to ensure that all stable outcomes use
exactly two coalitions (where in general there can be as many coalitions as players).

Moreover, we study IS, i.e., the problem of finding an individually-stable outcome.
We show that if the outcome is restricted to contain at most two coalitions, an
individually-stable outcome can be found in polynomial time (Proposition . This
suggests that a reduction showing PLS-hardness for IS cannot be as simple as for
NASHSTABLE: one would need to construct hedonic games that allow three or more
coalitions.

In order to prove that IS is PLS-complete, we first define a restricted version of
PARTYAFFILIATION, called ONEENEMYPARTYAFFILIATION, in which each player
dislikes at most one other player. Our main technical result is that ONEENEMY-
PARTYAFFILIATION is PLS-complete (Theorem [2). This reduction is from CIRCUIT-
FrIP and is rather involved. The instances of ONEENEMYPARTYAFFILIATION that
we produce via this reduction have the property that no player is ever indifferent
between two coalitions. We then show that such instances can be reduced to IS.

Perhaps surprisingly, given the apparently restrictive nature of the stability re-
quirement, we show that SUMCIS is PLS-complete (Theorem .

In contrast, we show that the problem CIS of finding a contractually-individually-
stable outcome can be solved in polynomial time. We make explicit two conditions
in Propositions |2 and , both met in the case of CIS, that (individually) guarantee
that local improvements converge in polynomial time. We use these propositions to



give further positive results for other combinations of restrictions, where either the

entering or leaving restriction is veto based.

Enter 1: 2: 3: 4:
m no restr. sum-in veto-in vote-in
A: NASHSTABLE IS VoOTEIN
10 Testr. PLS-complete PLS-complete PLS-complete PLS-complete
Observation Observation Theorem Theorem
B: suMCIS
sum-out PLS-complete | PLS-complete P ?
Theorem Theorem Proposition
C: CIS
veto-out P P P P
Proposition Proposition Proposition or 3| Proposition
D: VoTeOuT VOTEINOUT
? ? P P (1, Tour > 0.5)
vote-out (see Theorem @ (see Theorem @ Proposition Theorem

Fig. 2. Table showing the computational complexity of the search problems for different entering and leaving
deviation restrictions. Note that columns 1 and 2 are essentially equivalent, since if a player has a Nash-
feasible deviation that results in a negative payoff, she also has a sum-in feasible (and hence also Nash-
feasible) deviation, namely to form a singleton coalition.

Finally, we study the complexity of finding vote-in and vote-out stable outcomes.
Using a different argument to the polynomial-time cases mentioned previously, we
show that local improvements converge in polynomial time in the case of vote-in-
and vote-out- stability with T},, T, > 0.5 and Tj, + Ty > 1 (Theorem . We
show that if we require vote-in-stability alone, we get a PLS-complete search prob-
lem (Theorem . The problem of finding a vote-out stable outcome is conceptually
different (e.g., we can find a veto-out-stable outcome in polynomial time, whereas it
is PLS-complete to find a veto-in-stable outcome). The technical difficulty in proving
a hardness result for VOTEOUT is restricting the number of coalitions. Ultimately,
we leave the complexity of VOTEOUT open, but do show that k-VOoTEOUT, which
is the problem of computing a vote-out stable outcome when at most k£ coalitions are
allowed, is PLS-complete (Theorem [6).

Our results are summarized in Figure [2, which gives an almost complete charac-
terization of tractability.

1.7 Related work

Hedonic coalition formation games were first considered by Dreze and Greenberg [13].
Greenberg [21] later surveyed coalition structures in game theory and economics.
Based on [13], Bogomolnaia and Jackson [7] formulated different stability concepts in
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the context of hedonic games - see also the survey [32]. These stability concepts were
our motivation to introduce definitions of stability based on voting and aggregation.

The general focus in the game theory community has been on characterizing
the conditions for which stable outcomes exist. Burani and Zwicker [9] showed that
additively-separable and symmetric preferences guarantee the existence of a Nash-
stable outcome. They also showed that under certain different conditions on the
preferences, the set of Nash-stable outcomes can be empty but the set of individually-
stable partitions is always non-empty.

Ballester [5] showed that for hedonic games represented by an individually ra-
tional list of coalitions, the complexity of checking whether core-stable, Nash-stable
or individual-stable outcomes exist is NP-complete, and that every hedonic game
has a contractually-individually-stable solution. Sung and Dimitrov [33] showed that
for additively-separable hedonic games checking whether a core-stable, strict-core-
stable, Nash-stable or individually-stable outcome exists is NP-hard. For core-stable
and strict-core-stable outcomes those NP-hardness results have been extended by Aziz
et al. [3] to the case of symmetric player preferences. Recently, the paper [28] unifies
and extends several of these results by identifying simple conditions on expressivity
of hedonic games that are sufficient for the problem of checking whether a given game
admits a stable outcome to be computationally hard.

Branzei and Larson [8] studied the tradeoff between stability and social welfare
in additively-separable hedonic games. Elkind and Wooldridge [15] characterize the
complexity of problems related to coalitional stability for hedonic games represented
by hedonic nets, a succinct, rule-based representation based on marginal contribution
nets (introduced by leong and Shoham [22]). Cechlarova [I0] surveys algorithmic
problems related to stable outcomes.

The definition of party affiliation games we use appears in Balcan et al. [4]. Recent
work on local max cut and party affiliation games has focused on approximation [6,
11]; see also [27]. For surveys on the computational complexity of local search, see
[26], 1]. Our PLS-hardness results use ideas from Krentel [24], Schéffer and Yannakakis
[30], Monien and Tscheuschner [25], and in particular Elsdsser and Tscheuschner [17].
We use the PLS-completeness of LOCALMAXCUT which was shown in Schaffer and
Yannakakis [30].

There is an extensive literature on weighted voting games, which are formally
simple coalitional games. For such a game, a “solution” is typically a vector (or set of
vectors) of payoffs for the players, rather than a coalition structure as in our setting;
for recent work on computational problems associated with weighted voting games
see [14], 16]. Deng and Papadimitriou [I2] examined the computational complexity of
computing solutions for coalitional games for a model similar to additively-separable
hedonic games, where the game is given by an edge-weighted graph, and the value of
a coalition of nodes is the sum of weights of edges in the corresponding subgraph.



1.8 Outline of the paper

In Section [2| we show that NASHSTABLE is PLS-complete. In Section [3, we prove our
main technical result: ONEENEMYPARTY AFFILIATION is PLS-complete. ONEENEMY-
PARTYAFFILIATION is the starting point for our reduction to IS (i.e., VETOIN) in
Section [, which shows that it too is PLS-complete. In Section [5], we show that the
remaining veto-based problems, namely all those (except for IS) in row C and col-
umn 3 in Figure 2 can be solved in polynomial time. In Section [6] we show that the
problem sUMCIS is PLS-complete. In Section [7], we give both positive and negative
results for computing stable outcomes under various voting-based stability require-
ments. Finally, in Section [§, we conclude with open problems.

2 Nash stability and restricting the number of coalitions

In this section, we show that NASHSTABLE is PLS-complete via a reduction from
PARTYAFFILIATION. Recall that in Nash-stable outcomes for hedonic additive sep-
arable games, players might form more than two coalitions while party affiliation
games are restricted to two coalitions. To deal with this we use a mechanism, called
supernodes, which can restrict the number of coalitions that will be non-empty in
stable outcomes. In the reduction in this section we use two supernodes to restrict to
two coalitions; later in the paper we will use a variable number of k& supernodes to
restrict the number of coalitions to k.

Observation 1 NASHSTABLE is PLS-complete.

Proof. Consider an instance of PARTYAFFILIATION, represented as an edge-weighted
graph G = (V, E,w). We augment G by introducing two new players, called super-
nodes. Every player ¢ € V has an edge of weight W > > _.|w.| to each of the
supernodes. The two supernodes are connected by an edge of weight —M, where
M > |V|-W. By the choice of M the two supernodes will be in different coalitions
in any Nash-stable outcome of the resulting hedonic game. Moreover, by the choice
of W, each player will be in a coalition with one of the supernodes. So, in every
Nash-stable outcome we have exactly two coalitions. The fact that edges to super-
nodes have all the same weight directly implies a one-to-one correspondence between
the Nash-stable outcomes in the hedonic game and in the party affiliation game. O

3 Key technical result: ONEENEMYPARTYAFFILIATION is
PLS-complete

In this section, we prove our key technical result, that ONEENEMYPARTYAFFI-
LIATION is PLS-complete. The instances that we produce have the useful property
that no player is every indifferent between two coalitions, which we make explicit in
Corollary [T We use these special instances for other reductions in this paper.
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The starting point for our reduction to ONEENEMYPARTYAFFILIATION is the
prototypical PLS-complete problem CIRCUITFLIP, introduced and shown to be PLS-
complete in [23].

Definition 2. An instance of CIRCUITFLIP is a boolean circuit with n inputs and
n outputs. A feasible solution is an assignment to the inputs and the value of a
solution s the output treated as a binary number. The neighbourhood of an assignment
consists of all assignments obtained by flipping exactly one input bit. The objective is
to maximise the value.

Theorem 2. ONEENEMYPARTYAFFILIATION is PLS-complete.

Proof. We reduce from CIRCUITFLIP. Let C' be an instance of CIRCUITFLIP with
inputs Vi, ..., V,, outputs C,...,C,, and gates G1,...,Gy. We make the following
simplifying assumptions about C: (i) The gates are topologically ordered so that if
the output of G; is an input to G, then ¢ > j. (ii) All gates are NOR gates with fan-in
2. (iii) Gy, ..., Gy, is the output and G,,11, ..., Gy, is the (bitwise) negated output of
C with G; and G, being the most significant bits. (iv) Gani1, ..., Gs, outputs a
(canonical) better neighbouring solution if Vi, ...V}, is not locally optimal.

We use two complete copies of C'. One of them represents the current solution
while the other ones represents the next (better) solution. Each copy gives rise to
a graph. We will start by describing our construction for one of the two copies and
later show how they interact. Given C' construct a graph G¢ as follows:

We have nodes vy, ..., v, representing the inputs of C', and nodes g; representing
the output of the gates of C'. We will also use g; to refer to the whole gate. For i € [n],
denote by w; := gon+; the nodes representing the better neighbouring solution. Recall
that g1, ..., g, represent the output of C' while g,, 11, . .., g2, correspond to the negated
output.

In our party affiliation game we use 0 and 1 to denote the two coalitions. We
slightly abuse notation by using u = k for k € {0,1} to denote that node u is
in coalition k. In the construction, we assume the existence of nodes with a fixed
coalition. This can be achieved as in the proof of Observation [1| with the help of
supermodels. We use 0 and 1 to refer to those constant nodes. In the graphical
representation (cf. Figure , we represent those constants by square nodes.

We follow the exposition of Schéffer and Yannakakis [30] and Elsésser and Tscheuschner
[T7] and use types to introduce our construction. Nodes may be part of multiple types.
In general types are ordered w.r.t. decreasing edge weights. So earlier types are more
important. Different types will serve different purposes.

Type 1: Check Gates. For each gate g; we have a three-part component as depicted in
Figure The inputs of g;, denoted I1(g;) and I5(g;), are either inputs of the circuit
or outputs of some gate with larger index. The main purpose of this component is to
check if g; is correct, i.e., g; = —=(I1(g;) AN 12(gi)), and to set z; = 1 if g; is incorrect. The
a, B, v, 6 and A nodes are local nodes for the gate. A gate can be in two operational
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modes, called gate push regimes. Type 7 will determine in which of the following push
regimes a gate is.

Definition 3 (Gate push regimes). In the RESET GATE regime o1, 2, Vi1
and 7,2 get a bias towards 1 while X\;1, N2, Bi1, Bi2, Bis,0i1,0i2 and ;3 get a bias
towards 0. In the FIX GATE regime we have opposite biases.

Type 2: Propagate Flags. In order to propagate incorrect values for the z variables
we interconnect them as in Figure by using the topological order on the gates.
Observe that for any locally optimal solution z; = 1 enforces z; = 1 for all j < 7. The
component is also used to (help to) fix the gates in order and to RESET them in the
opposite order. Node zy 1 is for technical convenience.

Type 1 and 2 components are the same for both copies. In the following we
describe how the copies interact. We denote the two copies of C' by C° and C' and
also use superscripts to distinguish between them for nodes of type 1 and 2.

Type 3: Set/Reset Clircuits. The component of type 3 interconnects the z-flags from
the two circuits C°, C'. This component is depicted in Figure and has multiple
purposes. First, it ensures that in a local optimum d° and d* are not both 1. Second,
at the appropriate time, it triggers to reset the circuit with smaller output. And third,
it locks d” or d* to 1 and resets them back to 0 at the appropriate times.

The z and y nodes can also be in two different operational modes called COM-
PUTE regime and RESET regime which is determined by Type 6.

Definition 4 (Circuit push regimes). Let k € {0,1}. In the COMPUTE regime
for 2" all z[' get a bias to O for all 0 < i < N + 1 and y* gets a bias to 1. In the
RESET regime for 2" we give opposite biases.

Type 4: Check Outputs. This component compares the current output of the two cir-
cuits and gives incentive to set one of the nodes d° or d! to 1 for which the output of the
corresponding circuit is smaller. For all i € [n], we have edges (d°, ¢°_,), (d°, g}), (d*, g1..),
(d', ¢?) and (0,40..), (1,9}),(0,9;:.,), (1, g7) of weight 22"*1~* To break symmetry we
have edges (0,d°), (1,d") of weight 2".

Type 5: Feedback Better Solution. This component is depicted in Figure It is
used to feedback the improving solution of one circuit to the input of the other circuit.
Its operation is explained in Lemma [2]

For the remaining types we use the following lemma and definition which are
analogous to those in [I7, 25].

Lemma 1. For any polynomial-time computable function f : {0,1}* + {0,1}™ one
can construct a graph G¢(Vy, E¢,w) having the following properties: (i) there exist
S1s.vy Sk L1y oyt € Vi with no negative incident edge, (i1) each node in Vy is only
incident to at most one negative edge, (i) f(s) =t in any Nash-stable solution of
the party affiliation game defined by G.
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Proof. Tt is well known that for any polynomial computable function f : {0, 1}*
{0,1}™ one can construct a circuit C' with polynomial many gates that implements
this function [31, Theorem 9.30]. Clearly, we can also restrict C' to NOR gates with
fan-in and fan-out at most 2. Organize the gates in levels according to their distance
to C’s output; output gates are at level 1.

We replace each gate g; at level ¢ with the gadget below. Nodes a,b are inputs
and d is the output of the gate.

Fig. 4. NOR gate

If a (or b) is an input of the circuit then we connect a to the corresponding input
s-node by an edge of weight 3*!. If £ = 1, i.e., g; is an output gate, then we connect
d to the corresponding output ¢-node with an edge of weight 1. Otherwise (¢ > 1), d
is also the input to at most 2 lower level gates. The corresponding edges have weight
at most 3!, In any Nash-stable solution, d = 1 if and only if @ = b = 0. In other
words d = NOR(a,b). The claim follows since our construction fulfils properties (i),
(ii) and (iii). 0

Definition 5. For a polynomial-time computable function f : {0,1}* + {0,1}™ we
say that G¢ as constructed in Lemma|l] is a graph that looks at si,...,s, € V; and
biases t1,...,t, € Vy according to the function f.

In the final three types we look at and bias nodes from the lower types already defined.
For the final types we do not give explicit edge weights. In order that the “looking”
has no side-effects on the operation of the lower types, we scale edge weights in these
types such that any edge weight of lower type is larger than the sum of the edge
weights of all higher types. More precisely, for j € {5,6, 7}, the weight of the smallest
edge of type j is larger than the sum of weights of all edges of types (j +1),...,8.

In the following, denote by C(v) the value of circuit C' of the CIRCUITFLIP in-
stance on input v = (v;)iejn) and w(v) the better neighbouring solution. Both are
functions as in Definition Bl

Type 6: Change Push Regimes for z. The component of type 6 looks at v°, v*, d°, d*,
n® and n' (type 5) and biases 2?, 2}, y° and y! as follows. 2¥ is put in the COMPUTE

regime if at least one of the following 3 conditions is fulfilled: (i) C'(v°) > C(v'), (ii)
w(vt) = 0% or (iii) w(v?) # n! Ad® = 1. Else 2° is put into the RESET regime.
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Likewise z! is put in the COMPUTE regime if at least one of the following three
conditions is fulfilled: (i) C'(v°) < C(vh), (i) w(v®) = o', or (iil) w(v®) £ P Ad' = 1.
Else 2! is put into the RESET regime. Note that conditions (i) and (ii) are important
for normal computation, while (iii) is needed to overcome bad starting configurations.

Type 7: Change Push Regimes for Gates. For each i € [N] and x € {0,1},if 2, =0
we put the local variable of gf in the FIX GATE regime and in the RESET GATE
regime otherwise.

Type 8: Fiz Incorrect Gate. For each i € [N] and k € {0, 1}, the components of type
8 give a tiny offset to g for computing correctly. For each gate g;' we look at of |, afy
and bias g to =(af; A afy).

This completes our construction. We proceed by showing properties of Nash-stable
outcomes. Each of the following six lemmas should be read with the implicit clause:
“In every Nash-stable outcome.”

Lemma 2. Let k € {0, 1}, then the following holds for all i € [n]:
(a) If d* = 0 then wf is indifferent w.r.t. edges of type 5.
(b) If d* =1 then nf = w¥.

1

indifferent w.r.t. edges of type 5. The case nf = 1 is symmetric. This proves (a). If

d® =1 then 6, = 07y = 1, so 5} is indifferent w.r.t. the edges connecting it to 67,
and 0f, = 1. Hence nj* will copy the value of wj’, which proves (b). 0

Proof. Suppose d® = 0. If i = 0 then 07, = 1 and 07, = puf = 0, and hence wj' is

Lemma 3. If gf is incorrect then zf = 1. If 2 =1 then 2§ =1 for all 0 < j < i
and y~ = 0.

Proof. Gate gF can be incorrect in two ways:

(i) I;(gF) =1 for some j € {1,2} and gf =1,
(i) 1i(g7) = I2(g7) = 0 and gi = 0.

For case (i) observe that [;(gf) =1 = af; =1 = X\; =0 = ff;, =0.
Together with gf = 1 this directly implies 77, = 1. Consider now case (ii). Since
LIi(gf') = Ix(gf) = 0 we have 07, = 07, = 0 and therefore 3’y = 0. Together with
gi' = 0 this directly implies 73 = 0. In either case, this implies zf = 1, proving the
first part of the lemma.

The second claim holds by induction, since 2" = 1 enforces 2" ; = 1, while 2§ =1
enforces y"* = 0. O

Lemma 4. If zf'; = 1 then the inputs I (gf) and I(gf) are indifferent with respect
to the type 1 edges of gate g .
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Proof. We show that of, = afy = 1 and 47, = 0fy = 0, which implies the claim.
According to type 7, since zj; = 1, gate 7 is in the RESET GATE regime.

We first show that in this regime, we must have of; = af, = 1. It is immediate
that if [;(gF) = 1 then of; = 1 for j € {1,2}. We now show that I; ;(gF) = 0 implies
af; = 1for j € {1,2}. Suppose without loss of generality, that j = 1. Suppose
I1(g7) = 0 and for the sake of contradiction that af; = 0. Since of, is biased to 1 it
can only be 0 if Af; = 1. Since Af; is biased to 0, it can only be 1 if 5} = 1. Since

71 1s biased to 0, it can only be 1 if g; = 1 and 7} = 0. However, since 3} = 1 and
gi =1 and 7/ is biased to 1, we have 7f"; = 1. Thus of; = 1.

We are left to show that in the RESET GATE regime we must have 67

o= 0. If (Ii(gf), I2(g7)) = (0,0), it is immediate that 67, = 7y = 0. Suppose
(11(g5), I2(gf)) = (0,1). Then it is immediate that 67", = 0, and then since &7, is
biased to 0, it must also be 0. The case (11(g¥), I2(gf)) = (1, 0) is symmetric. Finally,
suppose (11(gf), I2(gf)) = (1,1). If 67, = 7y = 1 then it is immediate that ff3 = 1.
Then 67 and 4f, are both indifferent to the edges of type 1, but they are not stable
since they are biased to 0. Suppose /) =1 and 0y = 0. If 5f'3 = 0 then 67 is indif-
ferent to the edges of type 1, but is biased to 0 and hence is not stable. If 3 = 1,
then since ff; is biased to 0, we must have g; = 0 and 73 = 1. But then 7/ is not
stable since it is biased to 0. The case 0f'; = 0 and d;'y = 1 is symmetric. O

Lemma 5. Suppose 2z, = 0 and 2 =1 for some index 1 <1i < N.

(a) If gf is correct then vy = vy = 0 and yf3 = 1.

(b) If g¥ is not correct then gf is indifferent w.r.t. edges of type 1 but w.r.t. the edges
only in type 8 deviating would improve her happiness.

Proof. According to type 7, since zf,; = 0, gate ¢ is in the FIX GATE regime. Thus
7fy and 7, are biased to 0. First suppose the gate is correct.

If the correct output is 0 then we have g = 0, and 2 = 1 by assumption. Then
751 and 77 either prefer 0 or are indifferent w.r.t. the edges in type 1 (depending
on the values of ff; and 3f%,). As they are biased to 0 they will be 0. Suppose that
Vi3 = 0 for the sake of contradiction. Then since it is biased to 1, we must have

3 = 0. Since 3’3 is biased to 1, we must have ¢7'; = df'y = 0. However, as the correct
output is 0, at least one of the input bits must be 1. Suppose w.l.o.g. that I;(gf) = 1.
Then, since 47 is indifferent w.r.t. the edges in type 1 and is biased to 1, it must be
1, a contradiction.

Now suppose the correct output is 1. Thus we have ¢gf = 1, and 2 = 1 by
assumption. Then 73 either prefers 1 or is indifferent w.r.t. the edges in type 1
(depending on the value of jf;). Since 7} is biased to 1, it will be 1. Suppose that
751 = 1 for the sake of contradiction. Since 77 is biased to 0 it can only be 1 if

71 = 0. Since ff is biased to 1 is can only be 0 if Af; = 0. Since Af; is biased to
1 it can only be 0 if of; = 1. Since the output is 1 the input I;(gF) = 0, and then
since f; is indifferent w.r.t. the edges in type 1 and is biased to 0, it must be 0, a
contradiction. The same reasoning applies for 4f%. This completes the proof of (a).
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Now suppose the output is incorrect. Note that g; is indifferent w.r.t. the edges
of type 1 if and only if 8F) # 7/ and Bfy # 7y and Bf3 = 7f5.

First suppose the output is 0. Thus we have g = 0, and zf = 1 by assumption.
Since the output is 0 and incorrect, we have I (gf) = I2(gf) = 0,

Suppose /7, = 7y = 1. Then 7 is indifferent w.r.t. the edges in type 1 and is
biased to 0, a contradiction. Now suppose "} = 7/, = 0. Since 5 is biased to 1, we
have A7, = 0. Since A, is biased to 0, we have of; = 1. But af; is indifferent w.r.t.
the edges of type 1 and biased to 0, a contradiction. Thus S, # 7}, and likewise
By # Via-

Now suppose f8f3 = 1 and 7f; = 0. Then ~/; is indifferent w.r.t. the edges in
type 1 and biased to 1, a contradiction. Now suppose 3f3 = 0 and 7/'3 = 1. Then 7/
prefers to be 0 than 1, a contradiction. We have shown that ¢f is indifferent w.r.t.
edges of type 1 when the output is 0 and incorrect.

Since I1(gf) = I2(gf) = 0, and of ; and o, are biased to 0, we have o, = af, = 0.
Thus type 8 biases g to 1, and it would gain by flipping as claimed.

Now suppose the output is 1. Thus we have g = 1, and 2]’ = 1 by assumption.
Suppose '} = 771 = 0. Then /", prefers to be 1 than 0, a contradiction. Suppose
By = i1 = 1. Then ~f is indifferent w.r.t. edges of type 1 and is biased to 0, a
contradiction. Thus 8f # 7/, and likewise f; # /5.

Now suppose 33 = 1 and 3 = 0. Then 75 prefers to be 1 than 0, a contradiction.
Now suppose 53 = 0 and /3 = 1. Since ]'; is biased to 1, we must have 67'; = 07y =
0. Since the output is 1 and incorrect, we have at least one of I;(gf) and I5(gF) equal
to 1. Suppose w.l.o.g. that ;(gf) = 1. Then, since §7, is indifferent w.r.t. the edges
in type 1 and is biased to 1, it must be 1, a contradiction. We have shown that gf is
indifferent w.r.t. edges of type 1 when the output is 1 and incorrect.

At least one of I1(gF) and I5(gf) are 1. Suppose w.l.o.g. that I;(gf) = 1. Then
af; = 1. Thus type 8 biases gf to 0, and it would gain by flipping as claimed. This
completes the proof of (b). 0

Lemma 6. [fd" =1 and d* = 0 then for all 1 < i < 2n, node gF is indifferent w.r.t.
edges in type 4.

Proof. Each of these nodes is incident to exactly two type 4 edges both having the
same weight. For 1 < ¢ < n these are (1,¢/) and (d¥, gf), while for n +1 < i < 2n
these are (0,¢F) and (d”, g¥). The claim follows since d* = 1 and d* = 0. O

Lemma 7. Suppose d* =1 and d* = 0.

(a) If 2% is in the COMPUTE regime then zf =0 for all0 <i < N + 1 and y" = 1.
(b) If 2% is in the RESET regime then zf =1 for all0 <i < N + 1 and y" = 0.

Proof. We start proving part (a). Since z” is in the COMPUTE regime we imme-
diately get zy,, = 0. Assume, by way of contradiction, that there exists an in-
dex 1 <4 < N such that 2] = 1 and 27, = 0. First assume g; is correct. Then
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Y = = 0 and 9f; = 1 by Lemma (a). This and the fact that 27, is biased
to 0 implies that 2z = 0, a contradiction. Now assume ¢} is not correct. Then, by
Lemma, (b), g¥ is indifferent w.r.t. edges of type 1 but w.r.t. the edges only in type
8 flipping would improve her happiness. If 3n + 1 < ¢ < N this already implies
that g/ would gain by switching, a contradiction. For the outputs and negated out-
puts, i.e., 1 < i < 2n, we know by Lemma [0] that ¢/ is indifferent w.r.t. edges in
type 4. Moreover for the gates that represent the better neighbouring solution, i.e.
2n + 1 < i < 3n, we know by Lemma [f(a) that ¢ is indifferent w.r.t. edges in type
5. (Recall that wf is just another name for g5, . ,.) In either case, g/ would gain by
switching, a contradiction. Thus, 2> = 0 for all 1 < ¢ < N. It remains to show that
2§ = 0 and y® = 1. Since 2§ = 0 and 2" is in the COMPUTE regime, we get (by
inspection of type 3 edges) that z{j = 0 which then implies y* = 1. This completes
the proof of part (a).

To see part (b), observe that d® = 0 together with the bias of y* to 0 implies
y" = 0. Now since y® = 0 and d* = 1 the bias of z{ enforces zj = 1. The rest is by
induction since z7 = 1 and the bias directly implies 2, ; = 1 for all 0 < ¢ < N. This
completes the proof of part (b). O

We now continue with the proof of Theorem [2} Suppose we are in a Nash-stable
outcome of the party affiliation game. For our proof we assume C(v°) > C(v'). We
will point out the small differences of the other case afterwards. Since C'(v°) > C(v!),
2% is in the COMPUTE regime, i.e., all 20 are biased to 0 and y° is biased to 1 (by
type 6). Thus, 23,, = 0.

The remainder of the proof splits depending on the coalition of z{ and z{. By

Lemma [3| we know that zf = 0 implies that all gates in C* are correct.
2% = 1: By Lemma [3| we have 2 = 1 and ¢y° = 0. If &° = d' = 0 then d° is better
off changing to 1 (by inspection of type 3 edges). If d® = 1 then Lemma [fj(a) implies
29 = 0, a contradiction. If d* = 1 and 2! is in the RESET regime then by Lemmal7|(b)
and Lemma , vl is indifferent w.r.t. type 1 edges. Thus v! = n°. But then either
condition (ii) or (iii) for putting 2! in the COMPUTE regime (cf. type 6) are fulfilled.
So z! has to be in the COMPUTE regime. Lemma [7j(a) then implies z} = 0. But
then the neighbourhood of d* in type 3 is dominated by 0, a contradiction to d' = 1.
2 =0and 2 = 1: By Lemmawe have 2} =1 and y' = 0. Since C(v°) > C(v') we
know that z° is in the COMPUTE regime. So z) = 0 enforces z) = 0 and 3° = 0. By
inspection of type 3 edges we have d° = 0 and thus d' = 1. First assume that 2! is
in the RESET regime, then zzl =1forall0<¢< N+ 1 and Lemma says that the
inputs of all gates g} are indifferent w.r.t. type 1 edges. In particular this holds for
vt = (v])ief), s0 v' = n°. By Lemma |(b), n° = w®. Since z{ = 0, C° is computing
correctly and thus w® = w(v?). Combining this we get v; = w(v®) which contradicts
our assumption that 2! is in the RESET regime. Thus 2! is in the COMPUTE regime.
Since d* = 1 we can apply Lemma (a) to conclude 2} = 0, a contradiction.
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2Y =0 and 2 = 0: By Lemma [3| we have z) = 2z} = 0 and ¢° = y' = 1. Moreover
we know that both circuits are computing correctly. If d° = 1 then d* = 0 and d°
is indifferent w.r.t. type 3 edges. Since both circuits are computing correctly and
C(v°) > C(v!), the type 4 edges enforce d° = 0. But then d' is indifferent w.r.t.
type 3 edges and the type 4 edges enforce d* = 1. So, d* = 0 and d' = 1. If 2! is
in the RESET regime then Lemma [7[b) gives 2{ = 1, a contradiction. Thus, z' is
in the COMPUTE regime. Since d' = 1 we can apply Lemma (b) This and the
fact that C° is computing correctly implies n° = w(v?). So 2! can only be in the
COMPUTE regime if v! = w(v?). Since C'(v°) > C(v') this implies that v° = v! is a
local optimum for the circuit C.

This finishes the proof in case C'(v°) > C(v!'). The case C(v°) < C(v') is com-
pletely symmetric except here the conclusion v = v! in the very last sentence leads
to the contradiction C'(v?) < C'(v°). So this case can’t happen in a local optimum.

Note that throughout the construction we made sure that no node is incident to
more than one negative edge. This completes the proof of Theorem O

The instance produced by this reduction has the property that no node is indifferent
between the two coalitions. We will make use of this property later in the paper.

Corollary 1. ONEENEMYPARTYAFFILIATION is PLS-complete even if restricted to
instances where no player is ever indifferent between the two coalitions, i.e. ONE-
ENEMYPARTYAFFILIATION™® is PLS-complete.

4 Individual stability

In this section, we study the computational complexity of finding individual stable
outcomes. We first provide a polynomial-time algorithm for 2-IS, which we define
as the problem of finding an individual stable outcome when only two coalitions
can form, i.e., we restrict the number of coalitions in the problem definition as for
PARTYAFFILIATION. The main result in this section is that IS is PLS-complete. We
reduce from ONEENEMYPARTYAFFILIATION that was shown to be PLS-complete
in the previous section. Our reduction uses exactly 5 coalitions, a restriction which
we enforce using supernodes. We leave open the computational complexity of 3-IS
and 4-IS.

Proposition 1. 2-IS can be solved in polynomial time.

Proof. We assume that there is at least one negative edge. Otherwise, the grand
coalition is Nash-stable. The algorithm goes as follows:

Start with any bipartition. Move nodes with incident negative edges so that
they have a negative edge to the other coalition. In each of the two coalitions,
contract all nodes with negative incident edges into a single node and call the
contracted nodes s and t. For any other node the new edge weights to s and
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t are the sum of the original edge weights to the corresponding contracted
nodes. Now (ignoring all edges between s and ¢) compute a min cut between
s and t via a max flow algorithm and assign the nodes accordingly.

After the first stage, all nodes that we are about to contract have a negative edge to
the other coalition. So they are not allowed to join the other coalition. This property
is preserved by contraction. Afterwards, the flow algorithm operates only on positive
edges and computes a global minimum cut between s and ¢. Thus, the cut also
maximizes the total happiness of all non-contracted nodes, so none of these nodes
has an incentive to switch coalitions. All performed steps of the algorithm can be
done in polynomial time. O

Next we show that IS is PLS—completeE] when we do not impose a restriction on
the number of coalitions in the problem definitions as we did for 2-IS.

Theorem 3. IS is PLS-complete.

Proof. We start with an instance of ONEENEMYPARTYAFFILIATION®. The instance
has the property that no player is ever indifferent between the two coalitions that
make up stable outcomes. We add five supernodes which are connected by a complete
graph of sufficiently large negative edges. This enforces that in any stable outcome
the supernodes are in different coalitions, say 0, 1, 2, 3, 4. The supernodes are used
to restrict which coalition a node can be in in a stable outcome. This is achieved
by having large positive edges of equal weight to the corresponding supernodes. All
original nodes of the ONEENEMYPARTYAFFILIATION* instance are restricted to be
0 or 1.

We now show how to simulate a negative edge of ONEENEMYPARTY AFFILIATION*
by an IS-gadget. To do so, we replace a negative edge (a,b) of weight —w with the
gadget in Figure[] Nodes a and b are original nodes and restricted to {0, 1}, node o’ is
restricted to {0, 1,2}, node ¥ is restricted to {0, 1,3}, node c is restricted to {2, 3,4},
node d is restricted to {2,4}, node e is restricted to {1,2}, node f is restricted to
{0,2}. As depicted in the gadget, nodes V', ¢, d, e, and f have additional offsets.

Coalitions 2, 3 and 4 are only used locally within the gadget. The pseudocode next
to the gadget describes how the internal nodes of the gadget are biased. Here, checking
whether a node can improve is w.r.t. her original neighborhood. We use “look at”
and “bias” as defined in the following lemma and definition, which are analogous to
those in [I7, 25]. In particular, we check if a node can improve by looking at all nodes
in her original neighborhood.

Lemma 8. For any polynomial-time computable function f : {0,1}* ~ {0,1,2,3}™
one can construct a graph Gy = (Vy, Ef,w) having the following properties: (i) there
exist S1, ..., Sk, t1,...,tm € V3, (it) all edges e € Ey are positive, (iii) f(s1,...,5k) =
(t1,...,tm) in any stable solution of the hedonic game defined by G.

! The version of Theorem [3|that appeared in [20] missed a special case that is dealt with here.
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Bias internal nodes

if a can improve then
bias ¢ to 3
bias a’ to 2

else
bias a’ to {0,1}
bias ¢ to 2

end if

if b can improve then
bias b’ to 3

else
bias b’ to {0,1}

end if

Fig. 5. Gadget to replace negative edges

Proof. We first show how to construct a graph Gy, which implements a function
f:{0,1}* + {0, 1}*™. This part is similar to the proof of Lemma[i} Afterwards, we
show how to augment G to implement f : {0,1}* — {0,1,2,3}™

It is well known that for any polynomial computable function f’ : {0,1}F —
{0, 1}*™ one can construct a circuit C' with polynomial many gates that implements
this function [31, Theorem 9.30]. Clearly, we can also restrict C' to NOR gates with
fan-in and fan-out at most 2. Organize the gates in levels according to their distance
to C’s output; output gates of C' are at level 1.

We replace each gate g; at level ¢ with the gadget in Figure [6 Nodes u,v are
inputs and y is the output of the gate. Nodes u, v,y are restricted to {0,1}. Nodes w
and z are internal to the gate and restricted to w € {1,2} and = € {0, 2}, respectively.
By construction of the NOR gate, we have that in any Nash-stable solution, y = 1 if
and only if u = v = 0. In other words y = NOR(u,v).

Fig. 6. NOR gate without negative edges

If w (or v) is an input of the circuit then we connect u to the corresponding input
s-node by an edge of weight 3**!. To connect the output t-nodes, we need to augment



21

G in order to allow for the extended range of the function f : {0,1}* — {0,1,2,3}™.
For each output node ¢; we will use 4 outputs of G .

For each of this 4 outputs, we first change the domain by using a slightly modified
NOR-gate. Observe, that by changing the offsets and restrictions of nodes w, z, and
y in a NOR-gate, we can change the domain of the NOR gate to any two distinct
values in {0,1,2,3,4}. E.g., if we want y € {2,4} and y = 2 if and only if u = v = 0,
then we can change the restrictions w € {1,3}, x € {2,3}, and y € {2,4}; and the
offset of w to 3, x to 2, and y to 4. Using this idea, we first change the domain of the 4
outputs of C' to {0,4}, {1,4}, {2,4}, and {3,4}, respectively. The 4 modified outputs
are then all connected to the output node ¢; (which we restrict to {0,1,2,3}) with
edges of weight 1. By the right choice of f’, in particular by ensuring that f’ forces
exactly one of the modified outputs being # 4, we can implement any function f.

The claim follows since our construction fulfils properties (i), (ii) and (iii). O

Definition 6. For a polynomial-time computable function f :{0,1}* — {0,1,2,3}™
we say that Gy as constructed in Lemma [y is a graph that looks at si,...,s, € Vj
and biases ti,...,t, € Vy according to the function f.

Recall that the instance of ONEENEMYPARTYAFFILIATION® has the property
that no player is ever indifferent between the two coalitions that make up stable
outcomes. By scaling edge weights we can implement the “look at” required to bias
the internal nodes of the gadget without affecting their original preferences.

We say that node a is locked by the gadget if « = 1 and ¢’ = 0 or a = 0 and
a’ = 1. Node b is said to be locked accordingly. The following three lemmas describe
the operation of the gadget. All three lemmas should be read with the implicit clause:
If the internal nodes (a', V', ¢, d, e, f) of Figure [J are stable. Let —u denote the
complement of u over {0, 1}.

Lemma 9. Node c is either in coalition 2 or 3, while nodes d, e and f are in coali-
tion 2.

Proof. We start by showing that ¢ € {2,3}. By way of contradiction assume ¢ = 4.
Thenc=4=d=4=e=1= f =0. Now & strictly prefers coalitions 0 and 1
to coalition 2 and is only blocked by a from entering one of those coalitions. Thus
a’ € {0,1}. Together with & € {0, 1,3} this directly implies that ¢ can improve by
choosing ¢ = 2, contradicting our assumption. Thus ¢ € {2, 3}.

From ¢ # 4 we immediately get d = 2 = e = 2 = f = 2, which completes the
proof the lemma. O

Lemma 10. If neither a nor b can improve then a and b are locked by the gadget.

Proof. Since neither a nor b can improve, a’ and b’ are biased to {0, 1} and ¢ is biased
to 2. If ¢ = 2 then the bias on a’ assures a’ = —a. So 0’ has an edge of weight w to
both 0 and 1. Together with the bias this implies b’ = —b. If ¢ = 3 then the bias on
b’ assures b’ = —b. So a’ has an edge of weight w to both 0 and 1. Together with the
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bias this implies ' = —a. So in both cases ¢’ = —a and b’ = —b. The claim follows.
O

Lemma 11. Ifa or b (or both) can improve then one improving node is not locked
while the other node is locked by the gadget. Moreover, if a (resp. b) is not locked by
the gadget then b’ = =b (resp. ' = —a).

Proof. We consider three cases: (i) only a can improve, (ii) only b can improve, (iii)
a and b can improve.
Case (i) (only a): Here c is biased to 3, @’ is biased to 2, and ¥’ is biased to {0, 1}.
First assume ¢ = 2. This enforces ¢’ = —a which together with the bias implies
b = —b. But then the bias on ¢ gives ¢ = 3, a contradiction. Thus ¢ = 3, which
enforces b’ = —b and with the bias implies a’ = 2. So a is not locked and b is locked.
Case (ii) (only b): Here ¢ is biased to 2, @’ is biased to {0,1}, and ' is biased to
3. First assume ¢ = 3. This enforces i’ = —b which together with the bias implies
a’ = —a. But then the bias on ¢ gives ¢ = 2, a contradiction. Thus ¢ = 2, which
enforces a’ = —a and with the bias implies &’ = 3. So a is locked and b is not locked.
Case (iii) (@ and b): Here ¢ is biased to 3, @’ is biased to 2, and ¥ is biased to 3. If
¢ = 2 then this enforces a’ = —a, which together with the bias implies &’ = 3. So in
this case a is locked and b is not locked. If ¢ = 3 then this enforces b’ = —b, which
together with the bias implies @’ = 2. So in this case a is not locked and b is locked.
In every case both claims of the lemma are fulfilled. O

To complete the proof we show that a stable outcome of the IS instance is also
a stable outcome for the ONEENEMYPARTYAFFILIATION* instance. Suppose the
contrary. Then there must exist an original node which is stable for IS but not for
ONEENEMYPARTYAFFILIATION*. Clearly such a node must be the node a or b for
some gadget. So either a or b (or both) can improve. But then by the first statement
in Lemma 11| one of the improving nodes is unlocked, say a. Since a was only incident
to one negative edge in the ONEENEMYPARTYAFFILIATION™ instance, a cannot be
locked by any other gadget. Moreover, by the second statement in Lemma a is
now connected in the gadget by a positive edge to the node & and ¥ = —b. On the
one hand, if a = b then the original edge (a, b) contributes —w to a’s utility while now
a receives 0 from the edge (a,?’). On the other hand, if a # b then the corresponding
utility contributions are 0 and w. So if a changes strategy then the difference in her
utility w.r.t. b is the same in both problems, since we just shifted the utility of node
a w.r.t. b by w. So a is also not stable for IS, a contradiction. This finishes the proof
of Theorem [3 O

5 Other veto-based stability concepts

In IS a single player can veto against others joining her coalition but there is no re-
striction on leaving a coalition. The following proposition shows that adding certain
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leaving conditions yields polynomial-time convergence from the all-singleton parti-
tion.

Proposition 2. Any problem in column 3 of Figure [ can be solved in polynomial
time provided that the leaving condition requires that the leaving node has at least one
negative edge within the coalition. In particular this hold for the problems in cells 3B,

3C, and 3D.

Proof. We use local improvements starting from the set of singleton coalitions. Then a
player can make at most one improving step, since all edges in resulting non-singleton
coalitions will be positive because of the veto-in restriction, and so no player can leave
such a coalition. Hence we arrive at a stable outcome in at most |V | improving steps.

g

Interestingly, requiring veto-out feasibility is already enough for polynomial-time
convergence even if we have no restriction on the entering condition. This stands in
contrast to Theorem [l

Proposition 3. All problems in row C of Figure[d can be solved in polynomial time
by local improvements using at most 2|V | improving steps.

Proof. To get a running time of 2|V| (rather than O(|V|?)) we restrict players from
joining a non-empty coalition to which they have no positive edge. This ensures
that whenever a player joins a non-empty coalition then this player (and all players
to which she is connected by a positive edge in the coalition) will never move again.
Moreover, a player can only start a new coalition once. It follows that each player can
make at most two strategy changes. In total we have at most 2|V| local improvements.

O

6 sumCIS

Next we study sUMCIS, where a deviating player’s total weight to the new coalition
is non-negative, and to the old coalition is non-positive. Even though deviations are
very restricted here, it is PLS-complete to compute a stable outcome.

Theorem 4. SUMCIS is PLS-complete.

Proof. We reduce from LOCALMAXCuUT. Consider an arbitrary instance of LOCAL-
MaxCuT with only integer edge weights. Recall that such an instance can be cast
as an instance of PARTYAFFILIATION by negating the weights of the edges. Let
G = (V, E,w) represent the PARTYAFFILIATION instance. For each player i € V' let
o; be the total weight of edges incident to player i, i.e. 0; = Z(i’j)EE w(; 4. Observe
that o; is a negative integer. We augment GG by introducing two new players, called
supernodes. Every player i € V' has an edge of weight = + i to each supernode. The
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two supernodes are connected by an edge of weight —M where M is sufficiently large
(ie., M >3, (=2 +1)). The resulting graph G’ represents our SUMCIS instance.

Consider a stable outcome of the SUMCIS instance G’. By the choice of M the
two supernodes will be in different coalitions. Now consider any player ¢ € V. If ¢
is not in a coalition with one of the supernodes, then ¢’s payoff is negative. On the
other hand joining the coalition of one of the supernodes yields positive payoff, since
2(=Z + 1) + 0; > 0. Thus, each player i € V will be in a coalition with one of the
supernodes. So our outcome partitions V' into two partitions, say Vi, V5.

It remains to show that any stable outcome for the SUMCIS instance is also a
local optimum for the PARTY AFFILIATION instance. Assume that the outcome of the
suMCIS instance is stable but in the corresponding outcome of PARTYAFFILIATION
instance there exists a player ¢ which can improve by joining the other coalition.
W.lo.g. assume i € V1. Then, Y\ wis) < Y ey, Was)- With o3 = >0 w( ) and
since o; is integer, we get

g; 1 o; g; 1
YW S 5 —5 <5 <5< Y Wi
Wis) S5 ~5<5 <5 T35 Wi,s)

seVi seVo

It follows that in the SUMCIS instance, player ¢’s payoff is negative in her current
coalition V; whereas joining V5 would yield positive payoff. This contradicts our as-
sumption that we are in a stable outcome of the SUMCIS instance. The claim follows.

O

7 Voting-based deviations

In this section we study the complexity of computing stable outcomes under various
voting-based stability requirements. We start by showing PLS-hardness for the case
that a deviating player needs a T;, majority in the target coalition but there is no
restriction on leaving coalitions.

Theorem 5. VOTEIN is PLS-complete for any voting threshold 0 < T;, < 1.

Proof. We reduce from ONEENEMYPARTYAFFILIATION® represented by an edge-
weighted graph G = (V, E,w). Let A(G) be the maximum degree of a node in G.
Recall that no player is ever indifferent between the two coalitions.

First observe that the case T}, > % is exactly the same as IS (for which we
show hardness in Theorem , since in this case one negative edge is enough to veto

a player joining a coalition. In the following we assume T;, < AG)=L

A(G)

We augment G as follows:

For every negative edge (a,b) in G we introduce 2A(G) — 2 new nodes, called
followers, and connect them with a and b as shown in the Figure [/} Both, a and b,
get A(G)—1 followers and have a § edge to each of them. Moreover, the followers have
also an edge of weight € to the other node. Here 0 < £ < ¢ and 9§ is small enough so
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Fig. 7. Gadget used for showing that VOTEIN is PLS-complete. The gadget augments negative edges with
followers that ensure that there is always a T;,-majority when a player enters a coalition.

that the player preferences of the original players (a and b) are still determined only
by the original edges. In a stable outcome the followers will be in the same coalition
as their “leader”, i.e., the node to which they have a § edge. The followers make sure
that their is always a T},-majority for entering a coalition. In other words, in a stable
outcome of the VOTEIN instance, the voting doesn’t impose any restrictions.

To ensure that any stable outcome for the VOTEIN instance has only two coalitions
we further augment G by introducing two new players, called supernodes. Every
player 7 € V has an edge of weight W > 3" _.|w.| to each of the supernodes. The
two supernodes are connected by an edge of weight —M, where M > |V| - W. This
enforces that the two supernodes are in a different coalition in any stable outcome.
Moreover, by the choice of W, each player in V' will be in a coalition with one of
the supernodes. The fact that edges to supernodes have all the same weight directly
implies that a stable outcome for the VOTEIN instance is also a stable outcome for
the ONEENEMYPARTYAFFILIATION* instance. The claim follows. O

In contrast to VOTEIN, VOTEOUT is conceptually different. In VOTEOUT a coali-
tion of two players connected by a positive edge is vote-out stable. This makes it
hard to restrict the number of coaltions. Doing this is probably the key for proving
PLS-hardness also for VOTEOUT. For the following theorem we consider a version
of VOTEOUT where the number of coalitions are restricted by the problem. Let k-
VOoTEOUT be the problem of computing a vote-out stable outcome when at most k
coalitions are allowed. Observe that for any k£ > 2 such a vote-out stable outcome
exists and that local improvements starting from any k-partition converge to such a
stable outcome.

Theorem 6. k-VOTEOUT is PLS-complete for any voting threshold 0 < T,,; < 1
and any k > 2.

Proof. Our reduction is from ONEENEMYPARTYAFFILIATION, but we first reduce
to the intermediate problem ONEENEMYNASHSTABLE, which is a restricted version
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of NASHSTABLE where each player is only incident to at most one negative edge.
Consider an instance of ONEENEMYPARTYAFFILIATION which is represented as an
edge-weighted graph G = (V, E, w). We augment G with two supernodes in exactly
the same way as in Theorem 5] This ensures that any stable outcome of the ONEEN-
EMYNASHSTABLE instance uses only two coalitions and thus is also a stable outcome
for the ONEENEMYPARTYAFFILIATION instance. Hence, ONEENEMYNASHSTABLE
is PLS-complete.

We now reduce from ONEENEMYNASHSTABLE to k-VOTEOUT. Let G be the
graph corresponding to an instance of ONEENEMYNASHSTABLE. Let A(G) be the
maximum degree of a node in G. We augment G as follows: We introduce s- k- A(G)
new nodes where s is an integer satisfying s > T‘;ﬁ Those nodes are organized in
s+ A(G) complete graphs of k nodes each. All the edges in the complete graphs have
weight —M where M is sufficiently large (M > |V|]- A(G) - € will do). Moreover, we
connect every original node u € V to every new node with an edge of weight —¢,
where € > 0.

By the choice of M and since at most k coalitions are allowed, in any stable
solution there will be one node from each complete graph in each of the k coalitions.
This shifts the utility of each player i € V' with respect to each coalition by —s-A(G)-
e. Moreover, every original node has at least s- A(G) negative edges to each coalition.
Since each node is incident to at most A(G) positive edges, it follows that the fraction
of negative edges to each coalition is at least -5 > Toy. Thus, in every stable outcome
all nodes u € V have a T,,;-majority for leavmg their coalition. This implies that in
the corresponding outcome of the ONEENEMYNASHSTABLE instance, no player can
improve her utility by joining one of the k coalitions used in k-VOTEOUT. Moreover,
in every stable outcome the utility of each node u € V with respect to the set of
original nodes V' is non-negative, since v has at most one negative incident edge in
the ONEENEMYNASHSTABLE instance and k > 2. It follows that a stable outcome for
the k-VOTEOUT instance is also a stable outcome for the ONEENEMYNASHSTABLE
instance. The claim follows. O

It is an interesting open problem whether PLS-completeness also holds if the re-
striction on the number of allowed coalitions is dropped. Can we construct a gadget
that imposes this restriction without restricting the problem a priori?

Since VOTEIN and a restricted version of VOTEOUT are PLS-complete it’s inter-
esting to study the combination of both problems. What happens if we require vote-
in stability and vote-out stability? With a mild assumption on the voting thresholds
Tin, Tous, we establish:

Theorem 7. For any instance of VOTEINOUT with voting thresholds Ty, Tpus > %
and Ty, + Tou > 1, local improvements converge in O(|E|) steps.

Proof. For any outcome p define a potential function ®(p) = @ (p) — &~ (p), where
&t (p) (resp. @~ (p)) is the number of positive (resp. negative) internal edges, i.e.
edges not crossing coalition boundaries. Consider a local improvement of some player
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i from coalition p(i) to p/(i). Since T, > 3, player i has at least as many negative as
positive edges to p(i). Likewise since T}, > %, player ¢ has at least as many positive as
negative edges to p/(i). So @(p) cannot decrease by a local improvement. Moreover,
since T;, + T, > 1, one of the threshold inequalities must be strict, which implies
D(p') > @(p). The claim follows since —|E| < &(p) < |E| and &(p) is integer. O

Without the assumption on the voting thresholds from Theorem [7] the complexity
of computing stable outcomes is an interesting open problem, in particular the case
ﬂ = Tout - 1/2

8 Open problems

In this paper, we studied the computational complexity of finding stable outcomes in
hedonic games. We show that NASHSTABLE is PLS-complete. On the other hand we
show that CIS, that is finding a stable outcome where any member of a coalition can
block (veto) a player from leaving or joining, can be solved in polynomial time. For the
case that a player can only block a player from joining, we show that the corresponding
problem IS is PLS-complete (Theorem. Our reduction to IS uses five coalitions. On
the other hand, 2-IS, where the number of coalitions is restricted to two, is solvable
in polynomial time (Proposition [I]). This leaves open the complexity of 3-IS and
4-1S, where the number of coalitions is restricted to three or four, respectively.

We then study cases where members of a coalition can vote on whether to allow a
player to leave or join a coalition. The problem VOTEIN is parameterized by a voting
threshold, T, € [0,1]. IS can be seen as VOTEIN with 7}, = 1. Theorem 5 shows
hardness for 0 < Tj, < 1, so in fact we show that VOTEIN is PLS-complete for all
voting thresholds. In contrast, we show that the case of VOTEOUT with T,,; = 1 is
polynomial-time solvable (Proposition . This suggests that VOTEOUT is concep-
tually different from VOTEIN. Indeed, it seems difficult to restrict the coalitions in
this case. We do show that k-VOTEOUT, where we restrict the outcome to have at
most k coalitions, is PLS-complete for 0 < T,,; < 1, but we leave the complexity of
VOTEOUT as an interesting open problem.

On the positive side, we show that local improvements converge in polynomial
time in the case of requiring both vote-in- and vote-out- stability with T;,, T, > 0.5
and T;, + T, > 1. We leave open the interesting case of VOTEINOUT with voting
thresholds that do not satisfy T;,, Ty > % and T;, + T,,; > 1. We also leave open
the case of finding an outcome that is vote-in and sum-out stable.

Elsésser and Tscheuschner [I7] showed that local max cut is PLS-complete even
when the input graph has degree at most five. In contrast, Poljak [29] gives a
polynomial-time algorithm for graphs with degree at most three. It would be in-
teresting to study degree restrictions for additively-separable hedonic games.
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