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Abstract

We study the problem of decomposing the Hessian matrix of a Mixed-Integer Convex
Quadratic Program into the sum of positive semidefinite 2×2 matrices. Solving this problem
enables the use of Perspective Reformulation techniques for obtaining strong lower bounds
for MICQPs with semi-continuous variables but a non-separable objective function. An
explicit formula is derived for constructing 2×2 decompositions when the underlying matrix
is Weakly Scaled Diagonally Dominant, and necessary and sufficient conditions are given
for the decomposition to be unique. For matrices lying outside this class, two exact SDP
approaches and an efficient heuristic are developed for finding approximate decompositions.
We present preliminary results on the bound strength of a 2×2 Perspective Reformulation
for the Portfolio Optimization Problem, showing that for some classes of instances the use
of 2×2 matrices can significantly improve the quality of the bound w.r.t. the best previously
known approach, although at a possibly high computational cost.

Keywords: Mixed-Integer Quadratic Programming, Semicontinuous variables, Portfolio
Optimization, Scaled Diagonal Dominance, Matrix Decomposition.

1 Introduction

We are interested in the solution of Mixed-Integer NonLinear Programs (MINLP) with semicon-
tinuous variables, but where the objective function is not separable among the semicontinuous
variables. To simplify the discussion we will mainly refer to Mixed-Integer Quadratic Programs
(MIQP) of the form

min xTQx+ qTx+ cT y (1a)

s.t. Ax+By ≤ b (1b)

liyi ≤ xi ≤ uiyi i ∈ N (1c)

yi ∈ {0, 1} i ∈ N (1d)

where x = [xi]i∈N ∈ Rn (N = {1, 2, . . . , n}), Q ∈ Rn×n is symmetric and positive semidefinite
(PSD), A,B ∈ Rm×n, and q, c, b, l and u are real-valued column vectors of appropriate dimen-
sions. Constraints (1c) and (1d) imply that each xi is a semicontinuous variable governed by the
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binary variable yi; that is, xi = 0 if yi = 0 and xi ∈ Pi = [li, ui] if yi = 1. We require each Pi to
be a compact interval (i.e., −∞ < li ≤ ui <∞). The formulation can be made more general in
several ways, e.g., by allowing the constraints A(x) and the objective function q(x) to be nonlin-
ear (but, hopefully, convex for the approach to provide significant benefits), or having “other”
variables and (possibly, convex) constraints, but we will stick to (1) for notational simplicity.

When Q is diagonal, we have

xTQx =
∑

i∈N Qiix
2
i , (2)

and the problem is well-suited for application of the Perspective Reformulation (PR) technique.
This amounts to replacing the objective function with its convex envelope with respect to the
semi-continuous constraints (1c)–(1d), which is obtained by substituting (1a) with

min
∑

i∈N Qiix
2
i /yi + qTx+ cT y , (3)

where we assume that x2
i /yi = 0 if yi = 0. Note that

∑
i∈N Qiix

2
i /yi is the perspective function

of (2). Despite its appearance, (3) is convex and therefore its continuous relaxation

min
∑

i∈N Qiix
2
i /yi + qTx+ cT y

s.t. Ax+By ≤ b
liyi ≤ xi ≤ uiyi i ∈ N
yi ∈ [0, 1] i ∈ N

can be efficiently solved. (Henceforth, we will use the notation P to denote the continuous
relaxation of a Mixed-Integer Nonlinear Programming Problem P, and PR as shorthand for the
continuous relaxation of a perspective reformulation, known as a Perspective Relaxation.) For
instance, one can either iteratively approximate it by using linear approximations (Perspective
Cuts [10]), or reformulate it as a Second-Order Cone Program and solve it in one blow with
existing approaches [12], or even consider using specific reformulations [8].

In the present paper, we are interested in the case where the objective function (1a) is
not separable (ie. Q is not a diagonal matrix). A simple but effective extension of the above
approach to the non-separable case was proposed in [10, 11], and refined in [21]. The main idea
is to reformulate (1) as

min
{ ∑

i∈N δix
2
i + xT (Q− diag(δ))x+ qTx+ cT y : (1b)–(1d)

}
, (4)

where δ ≥ 0 is a vector chosen such that Q − diag(δ) � 0. One can then apply the PR to the
separable part of the objective function in (4), which leads to

min
{ ∑

i∈N δix
2
i /yi + xT (Q− diag(δ))x+ qTx+ cT y : (1b)− (1d)

}
. (5)

The advantage of (5) is that its continuous relaxation (5), the PR, often provides a strictly
better bound than the continuous relaxation of (1). Clearly, the quality of the bound depends
on δ, and, intuitively, “the larger δ, the better the bound”.

In this paper, we generalize the above approach by attempting to extract k × k principal
submatrices from Q, where k is small. This leads to either an approximate or an exact decom-
position of Q into k × k matrices. We show how the Perspective Reformulation technique may
then be extended to each of the extracted k × k matrices to obtain a potentially tighter convex
relaxation for (1), as a result of incorporating more of the structure of Q into the PR. For general
k, the problem of finding a “large” or even an “optimal” collection of k × k matrices to extract
is shown to amount to the solution of a semidefinite program. For the case k = 2, we give a
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characterization of the matrices Q which have an exact decomposition (ie. the remainder after
the extraction is zero), and we derive a closed form expression for the matrices in the decompo-
sition whenever such a decomposition exists. Moreover, we show how for a general matrix Q the
characterization may be exploited to devise an efficient heuristic for finding approximate 2×2
decompositions. We remark that in [4] a similar idea (philosophically) has been used to develop
convex MIQP reformulations of non-convex MIQPs. However, whereas in [4] the authors add
a large non-diagonal matrix to the Hessian of the objective function, here we extract k × k
principal submatrices, where k is small.

The structure of the paper is as follows. In Section 2 we review the relevant literature on the
diagonal extraction technique (5). In Section 3 we show how to compute the PR of a general
non-separable k-dimensional MIQP with semicontinuous variables for arbitrary (but, in fact,
necessarily “small”) k. In Section 4 we present two semidefinite programming approaches for
extracting approximate k × k decompositions of Q. In Section 5 we give a characterization of
the class of matrices having an exact 2×2 decomposition and we show how to construct an exact
2×2 decomposition when one exists. In Section 6, we exploit the characterization to devise alter-
native, faster (possibly heuristic) approaches to compute approximate 2×2 decompositions. In
addition, we discuss the relationships between our approach and a method of extending the PR
to non-separable quadratic functions independently developed in the recent [1]. Finally, in Sec-
tion 7 computational results showing the efficiency and effectiveness of the proposed approaches
are reported, and conclusions are drawn.

Throughout the paper, the following notation is used. R+ = {x ∈ R : x ≥ 0}. For a given
n × n matrix A, diag(A) is the diagonal matrix whose i-th diagonal element is Aii. Given an
n-vector d, diag(d) denotes the n×n diagonal matrix whose i-th diagonal element is di. 〈A , B 〉
= trace(ATB) whenever A ∈ Rn×n and B ∈ Rn×n, and ||A|| =

√
〈A , A 〉. I denotes the n× n

identity matrix. Λ(A) is the set of eigenvalues of A and ρ(A) = max { |λ| : λ ∈ Λ(A) } is its
spectral radius. P = { (i, j) ∈ N × N : i < j }. If t ∈ R, then sgn(t) is the sign of t. The
remaining notation is fairly standard.

2 Related work on diagonal extractions

In this section, we give an overview of the methods proposed in the literature for extracting 1×1
principal submatrices from Q; that is, extracting a diagonal matrix diag(δ) and reformulating (1)
as (5). As already pointed out, the quality of the bound provided by the continuous relaxation
of (5) depends on δ. In [10] a simple and inexpensive way of choosing δ, based on an eigenvalue
computation, was used. In [11] an SDP approach was proposed. In particular, given a vector of
weights α = [αi]i∈N ≥ 0 for the individual components of δ, finding the “largest” possible δ can
be cast as the following dual pair of SemiDefinite Programs (SDP):

maxδ
{ ∑

i∈N αiδi : Q−
∑

i∈N D
iδi � 0 , δ ≥ 0

}
minF

{
〈Q , F 〉 : diag(F ) ≥ α , F � 0

} , (6)

where Di = eie
T
i , ei being the i-th vector of the canonical basis of Rn. The idea is that the

weights αi should be chosen in order to reflect the different relevance of having a large quadratic
coefficient for each xi in (4). In [11], unitary weights were used for simplicity, while an approach
for finding the “best possible” δ based on solving the following program, was proposed in [21]:

maxδ minx,y qTx+ cT y +
∑

i∈N δix
2
i /yi + xT (Q− diag(δ))x (7a)

s.t. (1b)− (1c) , y ∈ [0, 1]n (7b)

s.t. δ ≥ 0 , Q− diag(δ) � 0 (7c)
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It is plain to see that the above program indeed produces the best possible lower bound. It
is also easy to see that it is “easy”, as the function φ(δ) = minx,y

{
(7a) : (7b)

}
is clearly

concave in δ, being the pointwise infimum of (infinitely many) linear functions in δ, indexed
over x and y. Indeed, (7) can be formulated as an SDP. In [21] this is done using Lagrangian
duality arguments, but an alternative—and perhaps simpler—approach based on SDP duality is
as follows. Since the innermost objective function of (7) is convex in x, y and concave in δ, and
the feasible region is bounded in the (x, y) component, we may interchange the maximization
and minimization in (7) [18, Corollary 37.3.2], to obtain

minx,y
{
xTQx+ qTx+ cT y + ψ(x, y) : (1b) , (1c) , y ∈ [0, 1]n

}
, (8)

where ψ(x, y) = maxδ

{ ∑
i∈N (x2

i /yi − x2
i )δi : Q− diag(δ) � 0 , δ ≥ 0

}
. (9)

Clearly, (8) is a convex program: the feasible set is convex, and the objective function is convex,
ψ(x, y) being the pointwise maximum of infinitely many linear functions in δ (and the rest being
convex from the start). To cast (8) as a single SDP it suffices to perform the variable change
Φ = Q− diag(δ) (� 0), which yields δi = Qii − Φii; then, one can write

ψ(x, y) =
∑
i∈N

Qiix
2
i /yi +


maxΦ 〈xxT − V (x, y) , Φ 〉
s.t. 〈Oij , Φ 〉 = 2Qij (i, j) ∈ P

〈Di , Φ 〉 ≤ Qii i ∈ N
Φ � 0

(10)

where Oij = eie
T
j + eje

T
i (the symmetric matrix having 1 only in the elements (i, j) and (j, i)

and zero elsewhere) and V (x, y) =
∑

i∈N D
ix2
i /yi. The dual of the maximization problem in

(10) is
minF

{
〈Q , F 〉 : F � xxT − V (x, y) , diag(F ) ≥ 0

}
.

Now, a well-known application of the Lemma on the Schur complement gives

F � xxT − V (x, y) ≡
[

1 xT

x F + V (x, y)

]
� 0 .

Analogously, using the well-known

yi ≥ 0 , wi ≥ 0 , wi ≥ x2
i /yi ≡

[
wi xi
xi yi

]
� 0 ,

one ends up with the SDP form of (8)

minx,y,F,w qTx+ cT y +
∑

i∈N Qiiwi + 〈Q , F 〉
s.t. (1b) , (1c) , y ∈ [0, 1]n , diag(F ) ≥ 0[

1 xT

x F + diag(w)

]
� 0[

wi xi
xi yi

]
� 0 i ∈ N

. (11)

If the strong duality property holds for (10) (e.g., if Q � 0), then solving (11) provides the
best possible lower bound and the corresponding optimal solution (x, y). This could be used
to compute the optimal δ as in (9), but in fact that is already provided by the dual variables
of the diag(F ) ≥ 0 constraint. This is important as typically one does not want to solve (11)
at all iterations of an enumerative approach to the original (1), for the large-scale SDP (11)
is rather costly to solve. Instead, this is only done once at the root node to compute the
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“best possible” diagonal, denoted by δl, which is then kept fixed throughout the branch and
cut (B&C) algorithm. This has been shown [9, 21] to be significantly better than using the
diagonal, denoted by δs, obtained from the (much cheaper) SDP problem (6); that is, the extra
time spent in the SDP is largely compensated by the reduction in B&C time, at least for “hard”
instances. Note, however, that as branching occurs the optimal solution (x, y) of the continuous
relaxation changes; therefore, “deep down” in the enumeration tree δl may no longer be the
optimal choice. In fact, in [21] it is reported that using a convex combination of δl and δs is
sometimes preferable.

3 Perspective relaxations for MIQPs with indicator constraints

We now study the problem of computing “good formulations” of (small-scale) MIQPs of the
form (1). We start by considering the basic convex 2×2 MIQP with semi-continuous variables

min
{
q11x

2
1 + 2q12x1x2 + q22x

2
2 : liyi ≤ xi ≤ uiyi , yi ∈ {0, 1} i ∈ {1 , 2}

}
, (12)

where the Hessian is positive semidefinite, i.e., q11 > 0, q22 > 0, and q11q22 ≥ (q12)2 (the case
where either q11 = 0 or q22 = 0 being, clearly, uninteresting). For simplicity we omit linear terms
(both in x and in y) in the objective function, which can of course be present, because they
would just pass unchanged through the derivation: the perspective function of a linear function
is the original function.

We want to derive the tightest possible reformulation of (12), a task for which there is no
lack of theory. For instance, we could use the standard RLT [20]. Also, an in-depth study of
the polyhedral structure of the set is available in [14]. For our purposes, however, the following
simple tools are perhaps better suited.

3.1 The Perspective Reformulation of Alternatives

Let us consider a more abstract setting, where we have a set K of (indices of) different finite-
dimensional spaces. That is, we see x ∈ Rn as partitioned into x = [xk]k∈K ; alternatively,
N = {1, . . . , n} is partitioned as N = ∪k∈KNk, with Nk ∩Nh = ∅ for all k 6= h (and each Nk

nonempty). We will require each xk ∈ R|Nk| to be either 0 or to live in a compact set; for our
purposes we can assume these to be polyhedra, i.e., Pk = { xk : Akxk ≤ bk }, although this is
not necessary in general. It is well-known that compactness of the Pk is equivalent to the fact
that their recession cones only contain 0, i.e., { xk : Akxk ≤ 0 } = {0}. On each Pk we have
a closed convex function fk(xk) + ck. We then consider the alternatives function in the global
space, where only the variables in any one of the subspaces at a time can be different from 0:

f(x) =


fk(xk) + ck if xk ∈ Pk and xh = 0 ∀ h ∈ K \ {k}
0 if x = 0
+∞ otherwise

. (13)

Computing the convex envelope cof(x) of (13) is a simple task. Let us define Bk as the n×|Nk|
block-structured matrix with |K| blocks, such that all the blocks are zero except for the one
corresponding to the variables in Nk which is the identity matrix. Introducing auxiliary variables
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x̄ = [x̄k]k∈K and θ = [θk]k∈K , one can just write from the very definition that

cof(x) = minx̄,θ
∑

k∈K θ
kfk(x̄k) (14a)

s.t.
∑

k∈K θ
k ≤ 1 , (14b)∑

k∈K θ
kBkx̄k = x (14c)

Akx̄k ≤ bk , θk ≥ 0 k ∈ K (14d)

In (14c), due to (13), if for k 6= h one had xi > 0 and xj > 0 for i ∈ Nk and j ∈ Nh, then
f(x) = +∞. Hence, the only feasible way to choose x̄k is for it to only have nonzero values for
i ∈ Nk. In other words, (14c) equivalently reads “θkx̄k = xk for all k ∈ K”, leading to

cof(x) = min
{ ∑

k∈K θ
kfk(xk/θk) :

∑
k∈K θ

k ≤ 1 , Akxk ≤ bkθk , θk ≥ 0 k ∈ K
}
. (15)

In plain words, the convex envelope of the alternatives is just the sum of the individual convex
envelopes plus the simplex constraint “

∑
k∈K θ

k ≤ 1”. If θk were binary variables, that alone
would guarantee that at most one of the alternatives be chosen. This is precisely how we will
use the result. We remark that the above development is closely related to the work of [6].

3.2 The 2-dimensional case

Using the above result we can now easily compute the PR of (12). This simply starts with the
(somewhat awkward) reformulation

min q11(x1
1)2 + q22(x2

2)2 + q11(x12
1 )2 + 2q12x

12
1 x

12
2 + q22(x12

2 )2 (16a)

s.t. xi = xii + x12
i , yi = yi + y12 i ∈ {1 , 2} (16b)

liy
i ≤ xii ≤ uiyi , liy

12 ≤ x12
i ≤ uiy12 i ∈ {1 , 2} (16c)

y1 + y2 + y12 ≤ 1 (16d)

y1, y2, y12 ∈ {0, 1} . (16e)

The aim of (16) is apparent: by enumerating all three possible nonzero configurations that
the binary variables can take ([y1 = 1, y2 = 0] ≡ [y1 = 1], [y1 = 0, y2 = 1] ≡ [y2 = 1],
[y1 = y2 = 1] ≡ [y12 = 1]), we are forcing upon (12) the alternatives structure of (13). Note that
(16b) are not really constraints, but rather ways of recovering the value of the original variables
given that of the newly introduced ones; in other words, the problem can be rewritten without
the original xi and yi, substituting them away using (16b). We can now apply (15), obtaining
the PR

min q11(x1
1)2/y1 + q22(x2

2)2/y2 +
[
q11(x12

1 )2 + 2q12x
12
1 x

12
2 + q22(x12

2 )2
]
/y12

s.t. (16b) , (16c) , (16d) , y1, y2, y12 ≥ 0 .
(17)

Although (17) is of significantly larger dimension than (12), having 11 variables instead of 4, it
also has 4 equality constraints that can be used to project away 4 of the variables. This leads
to the more compact

min
q11(x1 − x12

1 )2

y1 − y12
+
q22(x2 − x12

2 )2

y2 − y12
+

1

y12

[
x12

1 x12
2

] [ q11 q12

q12 q22

] [
x12

1

x12
2

]
s.t. li(yi − y12) ≤ xi − x12

i ≤ ui(yi − y12) , liy
12 ≤ x12

i ≤ uiy12 i ∈ {1 , 2}

y1 + y2 − y12 ≤ 1 , y1 ≥ y12, y2 ≥ y12, y12 ≥ 0 .
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This formulation uses only three variables more than the original one, hence it may be a rea-
sonable starting point to develop solution approaches actually using these ideas. However, let
us mention that any modern solver confronted with (17) would probably do the substitutions
itself, so we won’t really differentiate between the two. Also, an in-depth polyhedral description
of the projection of (17) to the space of the original variables has been provided in [14], which
therefore could be applied to avoid the introduction of the new variables. This might be useful
also in view of the fact that further variables are necessary if the objective function has to be
reformulated in terms of conic constraints to pass the above formulation to a (MI-)SOCP solver;
that is, (17) have to be rewritten as

min w1 + w2 + w12

s.t. (16b) , (16c) , (16d) , y1, y2, y12 ≥ 0

w1y1 ≥ q11(x1
1)2 , w2y2 ≥ q22(x2

2)2 , w12y12 ≥
[
x12

1 x12
2

] [ q11 q12

q12 q22

] [
x12

1

x12
2

]
which requires three further variables. However, the use of polyhedral techniques to replace
the conic formulation, albeit of possible computational interest, would not change the quality
of the obtained lower bounds, which is what this paper is mainly aimed at, and therefore its
exploration is left for future research.

3.3 Higher dimensions

The above technique can obviously be used to compute convex envelopes in higher dimensions,
although of course the size of these grows exponentially fast. For instance, the 3×3 case amounts
to enumerating all 23 − 1 = 7 nonempty subsets of the set t = {1 , 2 , 3}, i.e., the possible
configurations C(t) = 2t \ ∅ (= { {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} }) of the indices of
the three binary variables y1, y2 and y3 which have the value 1, excluding the all-0 case. Then,
for each c ∈ C(t) we define one single variable yc, plus “copies” xci of xi for all i ∈ c. The xci
variables are naturally partitioned in 2|t| − 1 = 7 variable-length sub-vectors according to the
configuration, i.e., x = [xc]c∈C(t) where xc = [xci ]i∈c. We accordingly define the sub-matrices Qc

of the |t| × |t| (= 3 × 3) Hessian Q of the problem restricted to the indices in c. This finally
yields

min
∑

c∈C(t)

[
(xc)TQcxc

]
/yc

s.t. xi =
∑

c∈C(t) : i∈c x
c
i i ∈ t

yi =
∑

c∈C(t) : i∈c y
c i ∈ t

liy
c ≤ xci ≤ uiyc c ∈ C(t) , i ∈ c∑
c∈C(t) y

c ≤ 1

yc ∈ {0, 1} c ∈ C(t)

(18)

Extending (18) to the generic k×k case is straightforward: one just has to change the definition
of t. However, given the combinatorial explosion in the size of the formulation, it is likely that
these ideas can only be of practical use (if ever) for very small values of k. This is similar to what
happens in the RLT technique [20] of which this is clearly a special case: while a hierarchy can be
defined which provides tighter and tighter relaxations as k grows, the size of the corresponding
formulations grows so rapidly in k that only k = 2, or occasionally k = 3, have ever found
practical application.

In our case, a further issue has to be considered: the above reformulations only work for
small matrices, while the applications require much larger ones (e.g., n in the hundreds). Since
it is clearly impractical to develop formulations with k = n, the idea is to extend the approach
described in §2 to the k ≥ 2 case. That is, we seek to (approximately) decompose Q as the sum
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of several k× k PSD matrices, to each of which the technique can be separately (and, hopefully,
efficiently) applied.

4 SDP approaches for finding approximate k×k decompositions

In this section we explore the direct generalization of the approach described in §2. That is,
we define the problem of approximately decomposing the PSD matrix Q in (1a) as the sum of
(many, much) smaller matrices as an SDP. We explore both the simple approach where only
Q is considered, as well as the exact approach where all the constraints in (1) are taken into
account to find the “best” possible decomposition. We of course start with the 2×2 case.

Definition 4.1 For each (i, j) = p ∈ P let Ep = [ei, ej ] ∈ Rn×2, where as usual eh is the h-th
vector of the canonical basis of Rn. Given a PSD matrix Q ∈ Rn×n, we say that Q admits a 2×2
decomposition (or equivalently is 2×2-decomposable or is 2×2D) if and only if the following set
of conic (semidefinite) constraints has a solution with respect to the variables Πp ∈ R2×2 (i.e.,
Πp are 2×2 matrices):

Q =
∑

p∈P E
pΠp(Ep)T (19a)

Πp � 0 p ∈ P (19b)

Observation 4.1 Let p = (i, j) ∈ P and πijij be the offdiagonal entry of the 2 × 2 matrix Πij.

From equation (19a) it is straightforward to derive that if Q admits a 2×2D then πijij = Qij.

Clearly, it is possible to restrict P to the set of indices of nonzero elements of Q, provided
that each row/column has at least a nonzero. Indeed, Qij = 0 implies that Πij

12 = Qij = 0;

then, one can also set Πij
11 = Πij

22 = 0, as the diagonal elements of the Πp matrices (which must
necessarily be non-negative) can always be increased without violating (19b). For the general
case where Q has some all-zero row/column (save for the diagonal), consider that the existence
of a 2×2D is invariant w.r.t. symmetric reshuffling of the rows and columns of Q: just pre/post
multiply each of the blocks by the appropriate permutation matrix. Hence, w.l.o.g. we can
assume that

Q =

[
Q11 0

0 Q22

]
, (20)

with Q22 diagonal, and each row/column in Q11 having at least one nonzero off-diagonal. Hence,
one can just decompose Q11, and the 2×2D of Q is then obtained by just adding to that Q22

(which is diagonal, and therefore trivially 2×2D).

Thus, detecting a 2×2D is a polynomial-time problem. Analogously, it is easy to write as
an SDP the problem of extracting “the largest possible decomposition” of Q. Similarly to (6)
one may arbitrarily choose a linear objective function in the Πp variables; alternatively (and,
perhaps, more naturally since the problem is already conic anyway) one might consider

min
{
‖Φ ‖2 : Q = Φ +

∑
p∈P E

pΠp(Ep)T , (19b) , Φ � 0
}
. (21)

Clearly, the optimal value of (21) is zero if an only if (19) has a solution. Any feasible solution
to problem (21) can then be used to define a 2×2 Perspective Reformulation (2×2PR for short)
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of (1) as follows:

min xTΦx+ qTx+ cT y +
∑

p=(i,j)∈P

[
Πp

11

(xp,ii )2

yp,i
+ Πp

22

(xp,jj )2

yp,j
+

(xp,p)TΠpxp,p

yp,p

]
(22a)

s.t. (1b)–(1d)

xi = xp,ii + xp,pi , yi = yp,i + yp,p p ∈ P , i ∈ p (22b)

liy
p,i ≤ xp,ii ≤ uiy

p,i , liy
p,p ≤ xp,pi ≤ uiy

p,p p ∈ P , i ∈ p (22c)

yp,p + yp,i + yp,j ≤ 1 p = (i, j) ∈ P (22d)

yp,i, yp,j , yp,p ∈ {0, 1} , yp,p ∈ {0, 1} p = (i, j) ∈ P . (22e)

Here, the constraints (22b)–(22e) as well as the right-most sum in the objective function (22a)
are obtained by replicating (17) and (16e) for each pair (i, j) ∈ P . However, there is no guarantee
that the optimal solution to (21) provides the best lower bound in the corresponding 2×2PR,
i.e., the continuous relaxation of (22). Yet, as for the one-dimensional case discussed in §2 it is
possible to write the problem of finding the 2×2D that provides the best bound by maximizing
the continuous relaxation of (22) over all approximate decompositions (Π,Φ). Interchanging
max/min then yields

min
x,y

qTx+ cT y + max
Φ,Π
〈Φ , xxT 〉+

∑
p=(i,j)∈P

〈 (xp,ii )2

yp,i
0

0
(xp,jj )2

yp,j

+
xp,p(xp,p)T

yp,p
, Πp

〉
(23a)

s.t. (1b)–(1c) , (22b)–(22d)

yp,i , yp,j , yp,p ∈ [0, 1] p = (i, j) ∈ P (23b)

y ∈ [0, 1]n (23c)

Q = Φ +
∑

p∈P E
pΠp(Ep)T , (19b) , Φ � 0 . (23d)

One can now proceed as in the one-dimensional case by computing the dual of the inner maxi-
mization problem. This is made slightly easier by defining

Ô12 =

[
0 1
1 0

]
, D̂1 =

[
1 0
0 0

]
, D̂2 =

[
0 0
0 1

]
(24)

so as to express the equality constraint in (23d) as

〈 Ô12 , Πij 〉+ 〈Oij , Φ 〉 = 2Qij (i, j) ∈ P∑
j>i〈 D̂1 , Πij 〉+

∑
j<i〈 D̂2 , Πji 〉+ 〈Di , Φ 〉 = Qii i ∈ N

,

where Oij = Eij(Eij)T . The dual of the inner SDP problem then is

min
∑

p∈P 2Qpfp +
∑

i∈N Qiifi (25a)

s.t.
∑

p∈P O
pfp +

∑
i∈N D

ifi � xxT (25b)

Ô12fp + D̂1fi + D̂2fj �

 (xp,ii )2

yp,i
0

0
(xp,jj )2

yp,j

+
xp,p(xp,p)T

yp,p
p = (i, j) ∈ P . (25c)

When x and y are variables, the conic constraints (25b) and (25c) are nonlinear. However, they
can be transformed into linear constraints by introducing auxiliary variables and constraints, as
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follows: [
1 xT

x
∑

p∈P O
pfp +

∑
i∈N D

ifi

]
� 0 (26a)

Ô12fp + D̂1fi + D̂2fj �
[
wpi 0
0 wpj

]
+W p p = (i, j) ∈ P (26b)[

wpi xp,ii

xp,ii yp,i

]
� 0 p ∈ P , i ∈ p (26c)[

W p xp,p

(xp,p)T yp,p

]
� 0 p ∈ P , (26d)

with W p obviously being 2×2 matrices. All in all, (23) then is

min qTx+ cT y +
∑

p∈P 2Qpfp +
∑

i∈N Qiifi

s.t. (1b)–(1c) , (22b)–(22d) , (23b)–(23c) , (26)
, (27)

which is a rather “large” SDP as n grows. As we shall see, actually solving (27) can be rather
challenging. However, it is poised to produce a tighter lower bound than (6), and our main
interest is in evaluating how significant the improvement in bound quality is. We remark that the
dual optimal solution of the constraints (26b) provides the optimal 2×2D Πp, p ∈ P . Extending
both phases of the approach—finding the decomposition and defining the corresponding PR—to
the k × k case for generic k is now almost straightforward, mostly boiling down to defining the
appropriate notation. However, our results will show that the approach is already extremely
demanding for k = 2, and likely even more so when k grows larger. Hence, the detailed derivation
of the k × k case is better left to the Appendix A.

5 Exact 2×2 decompositions

In this section, we give a characterization of the PSD matrices having an exact 2×2 decompo-
sition (in the sense of Definition 4.1) and we show how to construct 2×2 decompositions when
they exist. We assume n ≥ 2 throughout, unless otherwise stated.

We begin with the following observation. Recall that a square matrix A ∈ Rn×n is weakly
diagonally dominant (WDD) if |aii| ≥

∑
j:j 6=i |aij | for every i ∈ N .

Observation 5.1 If Q � 0 is WDD, then Q is 2×2-decomposable.

Proof: First, since Q � 0, we have Qii ≥ 0 for all i ∈ N . Next, note that by Observation 4.1 the
non-diagonal entry of Πij must be equal to Qij in any feasible 2×2D, therefore system (19) has
a solution if and only if the following one is feasible:∑

j:j 6=i π
ij
i = Qii i ∈ N (28a)

πiji π
ij
j ≥ Q

2
ij (i, j) ∈ P (28b)

πiji ≥ 0 , πijj ≥ 0 (i, j) ∈ P , (28c)

where πiji and πijj represent the diagonal entries of Πij .

For every i ∈ N , arbitrarily choose convex multipliers {αiki }k:k 6=i ⊆ R+ such that
∑

k:k 6=i α
ik
i =

1, and for each j ∈ N with j 6= i define πiji by

πiji = |Qij |+ αiji

(
Qii −

∑
k:k 6=i |Qik|

)
. (29)
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By weak diagonal dominance of Q and the fact that Qii ≥ 0, we have πiji ≥ 0. Moreover,

πiji π
ij
j ≥ |Qij ||Qji| = Q2

ij , and∑
l:l 6=i π

il
i =

∑
l:l 6=i |Qil|+

(∑
l:l 6=i α

il
i

)(
Qii −

∑
k:k 6=i |Qik|

)
=

∑
l:l 6=i |Qil|+Qii −

∑
k:k 6=i |Qik| = Qii .

2

Being WDD is sufficient, but not necessary for a PSD matrix to be 2×2-decomposable, as
can be seen from the following example: 2 2 1

2 5 1
1 1 2

 =

 1 2 0
2 4 0
0 0 0

+

 1 0 1
0 0 0
1 0 1

+

 0 0 0
0 1 1
0 1 1

 . (30)

However, a necessary and sufficient condition may be obtained from a slight relaxation of weak
diagonal dominance. A square matrix A ∈ Rn×n is weakly scaled diagonally dominant (WSDD)
if there exists a positive definite diagonal matrix D ∈ Rn×n such that DAD is WDD. In other
words, A is WSDD if and only if there is some n-dimensional vector d > 0 such that

|diaiidi| ≥
∑

j:j 6=i |diaijdj | ≡ |aii|di ≥
∑

j:j 6=i |aij |dj ∀ i ∈ N . (31)

A straightforward calculation shows that the matrix in (30) is WSDD, for example using D =
diag( 7/4 , 1 , 3/2 ).

There are many (at least 40) known characterizations of WSDD matrices (see for instance
[5, 17, 19] and the references therein). In particular, in the following theorem, the equivalences
(2) ⇐⇒ (3) ⇐⇒ (4) are well-known. Nevertheless, we include the proofs of these implications
for completeness, as well as to motivate Proposition 5.1, in which we give an explicit formula
for constructing 2×2 decompositions when they exist. The proof we provide for the implication
(3) =⇒ (4) is essentially [19, Theorem 11].

Theorem 5.1 Given Q � 0, let D = diag(Q) and V = Q −D. If Qii > 0 for all i ∈ N , then
the following are equivalent:

(1) Q is 2×2-decomposable;

(2) D ± |V | � 0, where |V |ij = |Vij | for every (i, j) ∈ N ×N ;

(3) ρ(|I − Q̄|) ≤ 1, where Q̄ = D−
1
2QD−

1
2 ;

(4) Q is WSDD.

Proof: It is straightforward to show that in the case where Q is reducible, each of (1)–(4) holds
for Q if and only if it holds for each of its irreducible components. Hence, we can restrict to the
case where Q is irreducible. We prove a cycle of implications.

(1) =⇒ (2): Note that the system (28) is identical for every matrix Q̃ ∈ A(Q), where

A(Q) =
{
Q̃ ∈ Sn : diag(Q̃) = diag(Q) , |Q̃ij | = |Qij | ∀ i, j ∈ N

}
,

and Sn is the set of n × n (real-valued) symmetric matrices. Hence, if Q is 2×2D, then so is
every Q̃ ∈ A(Q). As already mentioned, Q being 2×2D immediately implies that Q � 0, hence
Q̃ � 0 for every Q̃ ∈ A(Q). Since D ± |V | ∈ A(Q), the result follows.

(2) =⇒ (3): Suppose that D ± |V | � 0. Then, since D � 0, we have
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0 � D−
1
2 (D ± |V |)D−

1
2 = I ±D−

1
2 |Q−D|D−

1
2 = I ± |Q̄− I| ,

where Q̄ = D−
1
2QD−

1
2 . Hence, Λ(|I − Q̄|) ⊆ [−1, 1], and therefore ρ(|I − Q̄|) ≤ 1.

(3) =⇒ (4): Suppose that ρ(|I − Q̄|) ≤ 1. Since Q is irreducible, so is |I − Q̄|; hence, by

the Perron-Frobenius Theorem [13, 16], there exists an eigenvalue λ ∈ Λ(|I − Q̄|) such that
λ = ρ(|I − Q̄|); moreover, there is an associated eigenvector x > 0. Thus, for every i ∈ N we
have ∑

j:j 6=i |Q̄ij |xj = |I − Q̄|ix = λxi ≤ xi = Q̄iixi .

Hence, Q̄ is WSDD, and therefore so is Q.

(4) =⇒ (1): Suppose Q is WSDD. Then, there exists a diagonal matrix U � 0 such that

UQU is WDD. By Observation 5.1, UQU then has a 2×2D, say UQU =
∑

(i,j)∈P E
ijΠ̄ij(Eij)T .

Hence, Q =
∑

(i,j)∈P U
−1EijΠ̄ij(U−1Eij)T which can be rewritten as Q =

∑
(i,j)∈P E

ijΠij(Eij)T

where the diagonal entries of Πij are given by πiji := U−1
ii π̄

ij
i U
−1
ii and πijj := U−1

jj π̄
ij
j U
−1
jj . This

completes the proof. 2

Remark 5.1 After the submission of the initial version of our manuscript, it was brought to our
attention that the equivalence between weak scaled diagonal dominance and 2×2-decomposability
has been independently demonstrated in [3, Lemma 9] (see also [15, Theorem 3.1] and [2, Remark
2.2]).In fact, the equivalence is a natural consequence of results in [5] characterizing the class of
positive semidefinite WSDD matrices as the matrices having factor width at most 2.

In Theorem 5.1, the assumption that Qii > 0 for all i ∈ N is not restrictive and is only
made for convenience. Indeed, if Qii = 0 for some i ∈ N , the fact that Q � 0 entails that
Qij = Qji = 0 for every j ∈ N . Hence, we can assume w.l.o.g. that Q can be partitioned as in
(20), where all diagonal elements of Q11 are nonzero, and Q22 = 0 (the zero matrix). It is then
straightforward to show that Q has a 2×2D if and only if Q11 does.

Proposition 5.1 Under the hypotheses of Theorem 5.1, assume in addition that Q is both 2×2D
and irreducible and let (λ, x) be an eigenpair for |I − Q̄| such that λ = ρ(|I − Q̄|) and x > 0.
Arbitrarily choosing ti ∈ [λ, 1] for each i ∈ N , a 2×2D of Q is given by

πiji =
ti|Qij |

√
Qii

λ
√
Qjj

x−1
i xj +

Qii(1− ti)
n− 1

∀ i, j ∈ N , i 6= j . (32)

Proof: First note that λ > 0, since otherwise Q would be diagonal, and therefore reducible,
contradicting the hypothesis. Hence, each πiji is well-defined. Next, since 0 ≤ ti ≤ 1 for each

i ∈ N , we have πiji ≥ 0. In addition,

πiji π
ij
j ≥

ti|Qij |
√
Qii

λ
√
Qjj

x−1
i xj

tj |Qij |
√
Qjj

λ
√
Qii

x−1
j xi =

titj
λ2

Q2
ij ≥ Q2

ij ,

since ti ≥ λ, tj ≥ λ. Furthermore, for every i ∈ N ,

∑
j:j 6=i

πiji =
∑
j:j 6=i

(
ti|Qij |

√
Qiixj

λ
√
Qjjxi

+
Qii(1− ti)
n− 1

)
=

 ti√Qii
λxi

∑
j:j 6=i

|Qij |xj√
Qjj

+Qii(1− ti)

=
tiQii
λxi

∑
j:j 6=i

|Qij |√
QiiQjj

xj

+Qii(1− ti) =
tiQii
λxi
|I − Q̄|ix+Qii(1− ti)

= tiQii +Qii(1− ti) = Qii . 2
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In the case where Q is 2×2-decomposable but reducible, (32) is not necessarily well-defined,
since we may have xi = 0 for some i ∈ N . However, in this case Q can be brought, by symmetric
exchanges of rows and columns, to a block-diagonal form with k diagonal blocks Qh, h = 1, . . . , k
(cf. (20)), each of which is irreducible. Then, (32) can be applied to each of the blocks Qh

separately, where (x, λ) is the eigenpair associated with |I − diag(Qh)−
1
2Qhdiag(Qh)−

1
2 |.

It is also possible to characterize when the 2×2D obtained by (32) is unique:

Corollary 5.1 Under the hypotheses of Theorem 5.1, assume in addition that Q is irreducible.
Then Q has a unique 2×2D if and only if ρ(|I − Q̄|) = 1.

The proof of this result is somewhat long, and so it is deferred to Appendix B.

To conclude this section we comment on the connection between our results and the well-
known fact that any PSD matrix Q can be written as a non-negative combination of at most
n rank-1 PSD matrices, i.e., Q =

∑
i∈N λixix

T
i . For example, one may choose {xi}i∈N ⊂ Rn

to be any orthonormal basis of eigenvectors for Q, and {λi}i∈N ⊂ R+ to be the corresponding
eigenvalues. If Q has a 2×2D, then it can also be written as the sum of O(n2) sparse matrices.
Interestingly, it is always possible to choose the terms of the 2×2D so that, besides being sparse,
they are also rank-1. We remark that this result was arrived at independently (and via a shorter
proof) in [3, Lemma 9].

Proposition 5.2 Let n ≥ 3. For any n × n 2×2-decomposable matrix Q there exists a 2×2D
such that rank(Πij) ≤ 1 for all (i, j) ∈ P .

Again, the proof of this result is deferred to Appendix B. It can be seen that the rank-1
2×2D for a given Q is not necessarily unique. For example, it is straightforward to check that
the rank of every block in the decomposition (30) is equal to 1. Yet, another possible rank-1
decomposition is: 2 2 1

2 5 1
1 1 2

 =

 4
3 2 0
2 3 0
0 0 0

+

 2
3 0 1
0 0 0
1 0 3

2

+

 0 0 0
0 2 1
0 1 1

2

 .

This is tied to the fact that one can choose different objective functions f in (47) (cf. Appendix
B), leading to different rank-1 decompositions.

6 Heuristic approaches for approximate 2×2 decomposition

We now combine the results of §5 with those of §2 to propose fast heuristics for finding ap-
proximate 2×2Ds of a matrix Q without the need of solving large SDP problems like (21). The
observation is that for any Q � 0, we know:

• how to select the “largest” diagonal D � 0 such that Q −D � 0, which just amounts to
solving the “small” SDP (6), with any choice of α (or even using ||Q − diag(δ)||2 as the
objective function);

• the quick formula (32), just requiring a largest eigenvalue computation, which gives us an
exact 2×2D for Q, whenever one exists.

In other words, we want to write Q = R + X, where X is 2×2D and R � 0, so that R—the
remainder—is as small as possible. If ρ(|I − Q̄|) ≤ 1, i.e., Q is 2×2D, we can quit immediately
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(X = Q, R = D = 0). Otherwise we can exploit the (obvious) fact that a diagonal matrix is
surely 2×2D. We therefore restrict R to have the form

R(ε) = ε(Q−D)

for ε ≥ 0 and any fixed D such that R(1) = Q − D � 0 (for instance, but not necessarily,
the optimal solution to (6)). This choice immediately implies that R(ε) � 0 for any ε ≥ 0.
Furthermore,

X(ε) = Q−R(ε) = (1− ε)Q+ εD . (33)

Clearly, X(1) is 2×2D. Also, for any ε we have a quick way to detect whether or not X(ε)
is 2×2D. Hence we can just do a binary search with ε ∈ [0, 1] to look for the smallest ε such
that X(ε) is 2×2D. Having found this ε∗, we then use X(ε∗) to generate the 2×2D via (32),
shouldering the remainder R(ε∗). The process is independent of how D is computed, only
provided that Q−D � 0. This is relevant, because one can use both δs and δl (cf. (9)/(8)).

Interestingly, the process can be iterated. Basically, one is exploring the space of all pairs
(X,R) such that Q = X + R, X is 2×2D, and R � 0, among which we surely know the trivial
one (0, Q). Given any feasible pair (X,R), we can easily compute a diagonal D (e.g. by solving
(6) with Q = R) such that R − D � 0: this means that (X + D,R − D), is another feasible
pair, clearly better than the previous one (if D 6= 0). In other words, we can make an improving
step in the direction (D,−D); from there we take a step in the direction (Q, 0) with the above
idea, i.e., finding the smallest ε such that X(ε) is 2×2D. We note, however, that with “obvious”
choices of D the process does not iterate long. In fact, assume that D has been obtained by
solving (6). Because R(ε∗) = ε∗(Q − D), if one solves (6) again with Q = R(ε∗), clearly the
optimal solution can only be δ = 0. Indeed, assume by contradiction that a D′ 6= 0 such that
ε∗(Q −D) −D′ � 0 exists: this means that ε∗(Q −D − (1/ε∗)D′) � 0, i.e., D + (1/ε∗)D′ was
feasible for (6) before. But, clearly, D + (1/ε∗)D′ is a better solution to (6) than D, whatever
reasonable objective function one chooses. Despite this, the approach is able in some cases to
find very good solutions in a short time (as shown in the next section).

Although the above heuristic is very efficient in practice (cf. §7), we remark that by changing
the requirement that each X(ε) be 2×2D (hence WSDD) to the stricter requirement that each
X(ε) be WDD, an explicit formula can be obtained for the optimal value of ε that does not
require any eigenvalue computations (although at the possible expense of the quality of the
bound on (1)). Indeed, by (33) X(ε) is WDD if and only if

εdii + (1− ε)Qii ≥ (1− ε)
∑

j 6=i |Qij | ∀ i ∈ N . (34)

Let N− = { i ∈ N : vi :=
∑

j 6=i |Qij | −Qii > 0 }; if N− = ∅ then Q = X(0) is WDD, and hence
2×2D already. Otherwise, since dii ≥ 0 for each i ∈ N , (34) holds if and only if

εdii/vi ≥ 1− ε ∀ i ∈ N− .

Solving the above for ε, we obtain

X(ε) is WDD ≡ ε ≥ 1/( 1 + γ ) where γ = min
{
dii/vi : i ∈ N−

}
.

Taking ε = 1/(1 + γ), a 2×2D for X(ε) may be obtained immediately via the formula (29).

We remark that in [1], an alternative decomposition-based approach has been independently
developed for finding convex relaxations of (1) which has some features in common with the
approach we have outlined in this section. In [1], the authors observed that the quadratic form
associated with an arbitrary symmetric matrix Q may be decomposed as follows:

xTQx =
∑n

i=1

(
Qii −

∑
j 6=i |Qij |

)
x2
i +

∑n
i=1

∑n
j=i+1 |Qij |(xi + sgn(Qij)xj)

2 . (35)
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We note that (35) may be obtained from the following decomposition of Q:

Q = diag(z) +
∑

p=(i,j)∈P E
p

[
|Qij | Qij
Qij |Qij |

]
(Ep)T , (36)

where z is the n-dimensional vector such that zi = Qii −
∑

j 6=i |Qij | for each i ∈ N . In [1], a
convex relaxation of (a special case of) (1) is obtained by taking a sum of the convex envelopes
of each of the (1 and 2-dimensional) terms in (35) with respect to the feasible set of (1).

7 Computational results and conclusions

We now present computational results aimed at assessing whether formulations employing the
2×2PR, i.e., (22), have the potential of improving lower bounds w.r.t. state-of-the-art ones
using the PR of the diagonal terms only. For this we have used the Mean-Variance portfolio
optimization problem already employed in [8, 9, 10, 11, 12, 21], and available at

http://www.di.unipi.it/optimize/Data/MV.html .

The interested reader is referred to these references for details on how the instances were gen-
erated, as well as the behaviour of solution approaches based on the PR with diagonal terms
only (the covariance matrix Q is often estimated using a factor model, i.e., Q = D + L, where
D is a non-negative diagonal matrix and L is a low-rank PSD matrix, see e.g. [7]). However,
we could not use the same instances used there (with n ∈ {200, 300, 400}) as some of the ap-
proaches do not scale to those sizes; instead, we considered instances with n ∈ {25, 50}. We
constructed instances mirroring those used in the literature, i.e., (initially) with three different
kinds of matrices Q: diagonally dominant ones (“p”, or “+” instances), almost but not quite
diagonally dominant ones (“z”, or “0” instances), and strongly not diagonally dominant ones
(“n”, or “−” instances). All those instances had Q > 0; we also found that matrices with neg-
ative (off-diagonal) elements behaved quite differently. Hence, for each instance we produced a
second instance by changing the sign of all the off-diagonal elements of Q. These are SDP when
the original matrix is of type “p”, but not necessarily when it is of type “z” or “n”; hence, the
matrices were, whenever necessary, corrected by adding to them the smallest possible diagonal
that restored Q � 0, à la (6). We denote by “o”, “y” and “m” the instances thusly produced
starting from, respectively, “p”, “z” and “n” ones. For each type we produced 10 different
instances by changing the seed of the random generator.

We tested 6 different approaches:

1. Ds and Dl denote the bounds obtained by the diagonal PR (5) when δ is obtained by
solving (6) and (7), respectively;

2. 2×2s and 2×2l denote the bounds obtained by the 2×2PR (the continuous relaxation of
(22)) when the 2×2D is obtained by solving (21) and (27), respectively;

3. 2×2hs and 2×2hl denote the bounds obtained by the 2×2PR (the continuous relaxation of
(22)) when the 2×2D is obtained from the heuristic of §6, starting from the diagonal Ds

and Dl, respectively.

Tables 1 and 2 report, for each approach, the gap of the corresponding relaxation w.r.t. the
optimal integer solution (in percentage) and the running time (in seconds) required to compute
it. A number of comments is necessary:
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• The optimal integer solution has been obtained by running a B&C solver (in particular,
Cplex 12.7) on the diagonal PR (5), with the Dl diagonal. While “p”, “z” and “n”
instances can be solved quickly (cf. e.g. [8, 9] for much larger sizes), the same does not
hold for the new “o”, “y” and “m” instances, some of which required many days of CPU
time to be solved because of the rather weak bounds. Since the optimal solution was
obtained with high accuracy (1e-4 relative), the gaps have been computed as (ub− lb)/ub,
where ub is the value of the best feasible solution produced by the B&C, and lb the lower
bound produced by each PR. Most often the gap is rather computed as (ub − lb)/lb,
which is the safe option when ub can be arbitrarily far from the optimal value. In our case,
however, the formula is sensible because ub is very close to the optimal value. Furthermore,
this makes comparison between the different lower bounds more accurate. Finally, as the
tables will show, for several instances even the best bounding procedure returns (the very
weak) lb = 0; with the formula we adopted this gives a gap of 1 = 100%, whereas the
standard formula would be ill-defined.

• Presenting the results is not trivial, because they have a very large variance not only
between different classes of instances, but even within the same class. Hence, reporting
averages is not a feasible option, as they would hide too much detail; on the other hand,
for space reasons we cannot report results for all instances. The compromise we reached is
to present individual results, but only for half of the instances (the “odd ones”); the results
on the other half are completely analogous, and would not change the overall picture.

• Computing the bound is typically a two-stage process: first either the diagonal or the
2×2D is computed, and then the PR using them is solved. In the tables, “t.” is the time
for the first, and “tb.” that for the second. The exception is 2×2l, where one computes
at the same time both (but at a rather astonishing price). Also, 2×2hs and 2×2hl first
compute a diagonal, and then the 2×2D out of it; for these cases, “t.” refers to the latter
phase, as the time for computing the diagonal can be found in the corresponding columns
Ds and Dl.

• Running times are on Intel Core i7@2.5 Ghz. The bound is computed solving (5) or (22)
formulated as SOCP using Cplex 12.7, while the SDP problems are solved with SeDuMi

1.1. In some cases, these choice may not be the ones attaining the best performances. For
instance, the best solver for computing Ds, according to [11], is DSDP. Also, the SOCP
formulation is often not the best approach to compute the PR in the diagonal case, as
shown in [8, 9, 12, 21]. However, the running times of (22), and even more of (27), are so
large as to make it hardly relevant to discuss the best solution approaches for the diagonal
cases. Furthermore, always using the same solution approaches improves consistency of
the results.

Table 1 and 2 paint an uncharacteristically varied panorama. The only constant results are:

• The gaps provided by 2×2hs , are almost always identical, or at least extremely close, to
those obtained by 2×2hl (using Dl); when the former provides better gaps the difference is
minor, and in a few cases (eg., 25-n-i and 50-z-i) the converse actually happens.

• Most often, the gaps provided by the (very cheap) heuristic, basically irrespective of the
choice of the starting diagonal, are identical, or at least extremely close, to those of the
much more costly 2×2s. Sometimes the SDP-based approach produces visibly better gaps
(e.g., 25-n-i and 50-n-i), but when this happens the bound is typically not the best one.
Although we don’t report them, we can add that the objective function values (in the
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Table 1: Results with different decompositions for n = 25.
Ds Dl 2×2s 2×2h

s 2×2h
l 2×2l

t. tb. gap t. tb. gap t. tb. gap t. tb. gap t. tb. gap t. gap

25-p-a 0.28 0.04 2.28 0.75 0.04 2.21 5.12 1.14 2.21 3.8e-3 1.81 2.21 2.1e-4 2.24 2.21 6.5e+3 2.21
25-p-c 0.28 0.03 2.48 0.65 0.03 2.36 5.94 1.33 2.30 3.2e-4 1.94 2.30 2.0e-4 2.49 2.30 1.0e+4 2.30
25-p-e 0.28 0.03 1.83 0.63 0.03 1.46 5.82 1.21 3.70 2.9e-4 1.90 3.70 2.2e-4 2.41 3.70 1.1e+4 1.29
25-p-g 0.28 0.03 2.16 0.65 0.03 1.75 5.35 0.94 1.74 2.5e-4 1.93 1.74 2.1e-4 2.55 1.74 8.2e+3 1.71
25-p-i 0.29 0.03 0.71 0.64 0.03 0.56 5.28 0.76 2.33 2.5e-4 1.67 2.33 2.1e-4 2.42 2.33 9.3e+3 0.55

25-o-a 0.51 0.03 3.95 0.68 0.03 2.83 7.31 1.21 2.81 4.2e-3 2.49 2.81 1.2e-3 2.33 2.81 2.5e+3 2.80
25-o-c 0.93 0.03 8.23 0.61 0.03 5.09 7.34 1.17 2.48 4.0e-4 2.67 2.48 7.1e-4 2.55 2.48 2.4e+3 2.47
25-o-e 0.33 0.03 17.26 0.61 0.03 15.30 7.04 0.83 8.90 2.7e-4 2.42 8.90 4.0e-3 2.24 8.90 1.4e+3 8.90
25-o-g 0.29 0.03 10.33 0.63 0.03 8.11 6.95 0.93 3.06 2.5e-4 2.67 3.06 3.3e-4 2.47 3.06 2.2e+3 3.05
25-o-i 0.29 0.02 14.93 0.65 0.02 13.65 7.24 0.83 6.58 3.7e-4 2.14 6.58 2.2e-4 2.14 6.58 1.4e+3 6.58

25-z-a 0.29 0.04 2.39 0.65 0.03 1.84 5.63 0.71 16.18 7.8e-3 2.42 16.26 5.6e-3 2.22 16.26 1.6e+4 1.50
25-z-c 0.29 0.04 3.06 0.64 0.03 2.44 5.78 0.60 15.27 5.7e-3 2.82 15.83 5.3e-3 1.81 15.72 1.9e+4 1.64
25-z-e 0.29 0.03 0.02 0.67 0.03 0.00 5.66 1.21 0.07 4.8e-3 1.50 0.07 5.2e-3 1.65 0.08 1.4e+4 0.00
25-z-g 0.29 0.03 1.55 0.66 0.03 1.32 7.70 1.75 1.33 5.2e-3 3.48 1.39 5.6e-3 2.59 1.55 1.4e+4 1.21
25-z-i 0.29 0.03 0.98 0.65 0.03 0.81 6.05 1.09 0.97 4.6e-3 2.65 1.00 5.0e-3 2.01 0.98 1.4e+4 0.78

25-y-a 0.38 0.01 100.0 0.78 0.01 100.0 8.17 0.72 100.0 2.4e-4 1.27 100.0 2.3e-4 1.20 100.0 1.2e+3 100.0
25-y-c 0.36 0.01 100.0 0.73 0.01 100.0 8.04 0.81 100.0 2.4e-4 1.26 100.0 3.0e-4 1.26 100.0 1.4e+3 100.0
25-y-e 0.36 0.03 2.14 0.69 0.01 2.10 8.51 1.11 0.32 2.5e-4 1.32 0.32 2.4e-4 1.32 0.32 3.3e+3 0.21
25-y-g 0.36 0.04 24.57 0.63 0.04 24.57 8.66 1.42 9.14 2.3e-4 2.28 9.14 2.2e-4 2.29 9.14 3.5e+3 8.71
25-y-i 0.36 0.03 15.96 0.66 0.04 15.97 8.28 1.07 3.49 2.3e-4 1.57 3.49 1.8e-4 1.75 3.49 2.6e+3 1.61

25-n-a 0.29 0.02 2.79 0.65 0.03 1.78 7.91 1.31 11.97 4.9e-3 1.75 12.10 5.4e-3 4.10 11.24 1.5e+4 0.27
25-n-c 0.28 0.03 3.04 0.65 0.02 2.04 8.05 1.21 12.12 5.1e-3 2.04 13.04 4.9e-3 1.84 12.66 1.4e+4 1.42
25-n-e 0.28 0.02 2.00 0.63 0.03 1.39 8.34 1.04 7.94 5.3e-3 1.71 9.81 5.2e-3 1.79 9.74 1.8e+4 0.38
25-n-g 0.29 0.03 4.24 0.63 0.03 4.08 7.25 1.04 4.19 6.2e-3 2.00 4.23 5.5e-3 1.76 4.12 1.4e+4 4.06
25-n-i 0.28 0.03 2.68 0.59 0.03 1.37 8.82 1.81 8.60 5.2e-3 1.74 9.15 6.1e-3 2.78 9.43 1.7e+4 0.35

25-m-a 2.69 0.03 100.0 0.67 0.01 100.0 8.38 0.81 100.0 1.0e-3 1.35 100.0 2.6e-4 1.45 100.0 1.2e+3 100.0
25-m-c 0.57 0.03 99.55 0.69 0.03 99.55 8.74 1.20 98.59 3.0e-4 1.73 98.59 1.9e-4 1.97 98.59 1.5e+3 98.59
25-m-e 1.13 0.02 100.0 0.67 0.01 100.0 7.89 0.71 100.0 5.2e-4 1.20 100.0 2.0e-4 1.23 100.0 1.3e+3 100.0
25-m-g 0.41 0.04 5.32 0.65 0.03 5.32 8.96 1.30 4.79 2.8e-4 1.69 4.79 2.0e-4 1.78 4.79 3.0e+3 4.66
25-m-i 0.38 0.02 100.0 0.65 0.02 100.0 7.95 0.67 100.0 2.5e-4 1.30 100.0 1.9e-4 1.39 100.0 1.3e+3 100.0
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Table 2: Results with different decompositions for n = 50.
Ds Dl 2×2s 2×2h

s 2×2h
l 2×2l

t. tb. gap t. tb. gap t. tb. gap t. tb. gap t. tb. gap t. gap

50-p-a 0.38 0.07 1.47 0.98 0.06 1.23 172.91 13.47 1.20 1.0e-3 39.33 1.20 6.5e-4 39.10 1.20 1.6e+5 1.20
50-p-c 0.31 0.06 2.45 0.95 0.07 2.16 182.99 12.60 2.11 8.6e-4 27.51 2.11 6.7e-4 38.13 2.11 1.6e+5 2.11
50-p-e 0.32 0.06 0.89 0.92 0.06 0.33 173.14 13.08 1.40 7.8e-4 41.42 1.40 7.5e-4 43.97 1.40 2.0e+5 0.26
50-p-g 0.32 0.05 0.83 0.97 0.05 0.73 169.28 14.77 0.72 7.7e-4 45.43 0.72 7.5e-4 43.98 0.72 2.2e+5 0.68
50-p-i 0.32 0.06 1.33 0.95 0.05 1.24 164.57 15.81 1.25 7.6e-4 36.86 1.25 7.0e-4 38.26 1.25 2.6e+5 1.24

50-o-a 0.38 0.06 18.17 0.99 0.14 14.26 172.69 11.25 3.31 7.5e-4 43.13 3.31 7.7e-4 43.69 3.31 1.6e+5 3.31
50-o-c 0.36 0.07 15.71 0.96 0.08 9.32 172.75 10.25 2.44 7.7e-4 42.01 2.44 7.4e-4 39.08 2.44 1.8e+5 2.44
50-o-e 0.34 0.07 21.84 0.96 0.06 17.18 176.68 15.03 7.95 7.9e-4 57.43 7.95 7.4e-4 57.04 7.95 1.4e+5 7.95
50-o-g 0.32 0.06 19.84 0.91 0.06 15.90 175.49 10.04 6.32 6.7e-4 39.26 6.32 7.2e-4 40.58 6.32 1.0e+5 6.31
50-o-i 0.36 0.06 5.24 0.92 0.07 2.35 174.82 12.99 2.27 7.5e-4 33.67 2.27 6.4e-4 28.75 2.27 1.9e+5 2.27

50-z-a 0.32 0.07 0.46 0.98 0.06 0.30 220.37 16.64 0.41 2.1e-2 39.13 0.45 1.8e-2 31.77 0.42 2.4e+5 0.27
50-z-c 0.32 0.06 2.79 1.02 0.06 1.53 229.32 10.11 10.28 2.4e-2 34.27 11.61 2.2e-2 21.71 11.21 2.8e+5 0.62
50-z-e 0.32 0.07 2.86 0.96 0.06 1.16 193.93 8.39 10.97 1.9e-2 38.50 11.45 2.5e-2 22.97 11.30 3.5e+5 0.51
50-z-g 0.39 0.06 3.46 0.94 0.07 2.52 213.51 7.66 11.62 2.1e-2 42.13 12.32 2.3e-2 21.62 12.16 2.2e+5 2.24
50-z-i 0.32 0.06 2.92 0.97 0.07 1.79 226.16 12.10 3.65 2.2e-2 40.59 4.72 1.9e-2 28.12 4.83 2.2e+5 1.36

50-y-a 0.46 0.03 8.80 0.99 0.11 8.80 207.35 15.44 0.16 7.6e-4 69.33 0.16 6.1e-4 67.33 0.16 2.6e+5 0.14
50-y-c 0.43 0.03 99.76 0.97 0.07 99.76 204.27 15.13 98.09 8.4e-4 132.16 98.09 6.9e-4 139.86 98.09 8.6e+4 98.09
50-y-e 0.46 0.03 100.0 0.99 0.02 100.0 190.83 7.56 100.0 9.8e-4 34.98 100.0 6.5e-4 37.44 100.0 8.9e+4 100.0
50-y-g 0.47 0.04 100.0 1.00 0.02 100.0 206.13 8.39 100.0 8.9e-4 37.45 100.0 8.1e-4 39.14 100.0 7.9e+4 100.0
50-y-i 0.45 0.05 94.62 1.06 0.07 94.62 202.14 16.70 73.27 7.7e-4 65.71 73.27 8.3e-4 162.52 73.27 1.6e+5 73.26

50-n-a 0.33 0.06 3.99 0.99 0.10 2.83 252.97 13.72 2.60 1.8e-2 43.35 3.97 2.0e-2 28.47 3.24 3.2e+5 2.43
50-n-c 0.32 0.07 4.67 1.01 0.07 2.85 258.48 13.38 7.68 2.3e-2 47.34 10.85 1.9e-2 26.42 9.89 2.8e+5 1.05
50-n-e 0.32 0.10 3.12 0.99 0.06 1.54 240.48 9.62 9.23 2.1e-2 43.33 11.90 2.5e-2 20.50 10.85 3.0e+5 0.36
50-n-g 0.32 0.07 3.04 1.01 0.08 1.66 247.21 13.88 1.51 3.6e-2 44.48 2.56 2.7e-2 27.39 1.68 2.4e+5 1.45
50-n-i 0.32 0.12 3.92 0.98 0.07 1.98 258.87 14.72 6.75 2.1e-2 44.46 10.10 2.2e-2 26.78 9.07 2.6e+5 0.57

50-m-a 0.48 0.06 59.97 1.04 0.09 59.97 201.50 15.55 15.47 7.5e-4 68.26 15.47 7.6e-4 82.80 15.47 2.2e+5 15.38
50-m-c 0.48 0.11 100.0 0.96 0.07 100.0 200.48 6.85 100.0 7.6e-4 75.53 100.0 9.6e-4 118.41 100.0 8.9e+4 100.0
50-m-e 0.45 0.03 100.0 0.94 0.08 100.0 192.65 6.76 100.0 1.2e-3 53.00 100.0 7.0e-4 130.69 100.0 9.5e+4 100.0
50-m-g 0.49 0.14 36.35 0.96 0.09 36.35 206.09 17.69 6.03 7.6e-4 114.13 6.03 8.4e-4 89.59 6.03 2.9e+5 6.02
50-m-i 0.45 0.07 98.51 1.04 0.07 98.51 200.08 14.65 90.22 8.1e-4 65.97 90.22 9.3e-4 110.19 90.22 1.4e+5 90.22
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sense of (21)) of the 2×2D produced by the heuristics are almost indistinguishable from
those of the 2×2D of (21).

Also, as expected Dl is always at least as good as Ds, and 2×2l is always at least as good as
the other two 2×2D. Other than that, almost all cases show up. The “optimal” (and extremely
costly to obtain) 2×2l can be barely distinguishable from the “optimal” Dl, and even from
the very cheap Ds. It can also be quite close to the other two 2×2D; in some cases, all the
approaches provide extremely weak bounds. In some cases, 2×2hl and 2×2s are much better
than both Ds and Dl; in other cases they are very significantly worse. In some cases 2×2l is
visibly but not dramatically better than the other two 2×2D, in others the gap is abysmal. In
general, the difference between the “optimal” choices Dl/2×2l and the corresponding “cheap”
ones Ds/2×2s can be anywhere between negligible and humongous.

It is therefore difficult, at this stage, to draw significant conclusions about when using 2×2D
could be promising for computationally solving convex MIQPs with semi-continuous variables.
The only clear result is that finding the 2×2D by standard SDP approaches does not appear to
be feasible for problems of even moderate size. The time for solving (22) is also rather too large
for comfort. Yet, improving the time for solving the 2×2PR and/or the SDP is conceptually
possible: both have been done for the diagonal case [11, 8]. Furthermore, the results clearly
show that, under the right circumstances, the approach can yield significantly stronger bounds
than the best ones available so far. In this sense, our results look more promising than those
reported in [14], which were limited to only one class of tridiagonal matrices. Actually making
use of those bounds would require overcoming substantial hurdles, relative to both efficiently
finding “good” 2×2D (as, in several cases, those provided by the heuristic are not so), and
efficiently solving the 2×2PR once this is done. Both aspects are nontrivial, but conceptually
possible. Therefore, we believe it is fair to state that the idea proposed in this work warrants
further investigation.

A Approximate decompositions in higher dimensions

Similarly to §3.3 we mainly discuss the case of finding 3×3 decompositions, but the arguments
can be extended in a straightforward way to the general k × k case. As already noted, and
confirmed by our computational experience (cf. §7), “large” values of k are unlikely to be of any
practical significance.

The starting point is just defining the set T = { (i, j, k) ∈ N ×N ×N : i < j < k } of all
possible triples. To each t ∈ T we then associate the n × |t| (= n × 3) matrix Et = [ei, ej , ek]
and the |t| × |t| (= 3×3) matrix Γt, which immediately defines the analogous of (21)

min
{
‖Φ ‖2 : Q = Φ +

∑
t∈T E

tΓt(Et)T , Γt � 0 t ∈ T , Φ � 0
}
. (37)

Any feasible solution of (37) is an approximate 3x3D of Q, which is an exact 3x3D if and only
if the optimal value is 0. Given any approximate 3x3D, using the notation defined in §3.3 we
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can easily define the corresponding 3x3PR:

min xTΦx+ qTx+ cT y +
∑

t∈T
∑

c∈C(t)(x
t,c)T (Γt)cxt,c/yt,c (38a)

s.t. (1b)− (1d)

xi =
∑

c∈C(t) : i∈c x
t,c
i , yi =

∑
c∈C(t) : i∈c y

t,c t ∈ T , i ∈ N (38b)

liy
t,c ≤ xt,ci ≤ uiy

t,c t ∈ T , c ∈ C(t) , i ∈ c (38c)∑
c∈C(t) y

t,c ≤ 1 t ∈ T (38d)

yt,c ∈ {0, 1} t ∈ T , c ∈ C(t) (38e)

As in §3.3, in (38a) (Γt)c denotes the submatrix of Γt restricted to the rows and columns
corresponding to the indices in c. For instance, for t = (i, j, k), (Γt){i} = Γt11, (Γt){i,j} is the
(i, j)-th principal 2×2 submatrix of Γt, and (Γt)t = Γt. Combining (37) with (38) again yields
the problem of finding the 3x3D providing the best bound. This again starts with the following
min-max analogous to (23)

min
x,y

qTx+ cT y + max
Φ,Γ
〈Φ , xxT 〉+

∑
t∈T

〈 ∑
c∈C(t)

x̄t,c(x̄t,c)T

yt,c
, Γt

〉
(39a)

s.t. (1b)–(1c) , (38b)–(38d)

yt,c ∈ [0, 1] t ∈ T , c ∈ C(t) (39b)

y ∈ [0, 1]n (39c)

Q = Φ +
∑

t∈T E
tΓt(Et)T , Γt � 0 t ∈ T , Φ � 0 (39d)

where x̄t,c in (39a) denotes the |c|-vector xt,c extended to a |t|(= 3)-vector by filling it with zeroes
for the indices i /∈ c. For any i ∈ c and j ∈ c we also define the |t| × |t| (= 3×3) matrices Dt,i

having a 1 on the diagonal entry corresponding to the position of index i in t, and Ot,ij having
a 1 on the two off-diagonal entries corresponding to the position of the pair (i, j) (cf. (24)), so
as to express the equality constraint in (39d) by∑

t∈T :(i,j)⊂t〈Ot,ij , Γt 〉+ 〈Oij , Φ 〉 = 2Qij (i, j) ∈ P∑
t∈T :i∈t〈Dt,i , Γt 〉+ 〈Di , Φ 〉 = Qii i ∈ N

.

The dual of the inner SDP problem then is

min
∑

(i,j)∈P 2Qijfij +
∑

i∈N Qiifi (40a)

s.t.
∑

(i,j)∈P O
ijfij +

∑
i∈N D

ifi � xxT (25b)∑
(i,j)⊂t

Ot,ijfij +
∑
i∈t

Dt,ifi �
∑
c∈C(t)

x̄t,c(x̄t,c)T

yt,c
t ∈ T (40b)

and the nonlinear constraints (25b) and (40b) can be rewritten as[
1 xT

x
∑

(i,j)∈P O
ijfij +

∑
i∈N D

ifi

]
� 0 (26a)∑

(i,j)⊂tO
t,ijfij +

∑
i∈tD

t,ifi �
∑

c∈C(t) W̄
t,c t ∈ T (41)[

W t,c xt,c

(xt,c)T yt,c

]
� 0 t ∈ T , c ∈ C(t) (42)
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Each W t,c in (42) is a |c|×|c| matrix, and W̄ t,c in (41) denotes W t,c extended to a |t|×|t| matrix
by filling it with zeroes for the indices i /∈ c. All in all, (39) then is

min qTx+ cT y +
∑

(i,j)∈P 2Qijfij +
∑

i∈N Qiifi

s.t. (1b)− (1c) , (38b)− (38d) , (39b)− (39c) , (26a) , (41)− (42)

While the derivation clearly works for any k ≥ 3, a fortiori the continuous relaxation of such a
large SDP is going to be extremely challenging to solve as k grows.

B Proofs of Corollary and Proposition

Proof of Corollary 5.1.

Proof: Let x > 0 be the Perron-Frobenius eigenvector for |I− Q̄| (associated with the eigenvalue

λ = ρ(|I − Q̄|)) and define the matrix W = XD−
1
2 |Q|D−

1
2X, where X = diag(x) and D =

diag(Q). Since XD−
1
2 = D−

1
2X is invertible, there is a one-one correspondence between 2×2D’s

of W and 2×2D’s of |Q| (and thus of Q) whenever either W or |Q| is 2×2-decomposable. Hence,
Q has a unique 2×2D if and only if W does. Next, observe that we have

ρ(|I − Q̄|) ≤ 1 ⇐⇒ |I − Q̄|x = λx ≤ x⇐⇒
∑

j:j 6=i |Q̄ij |xj ≤ xi = |Q̄ii|xi ∀ i ∈ N

⇐⇒
∑

j:j 6=i xi|Q̄ij |xj ≤ |Q̄ii|x2
i ≡

∑
j:j 6=iWij ≤Wii ∀ i ∈ N . (43)

Moreover, ρ(|I − Q̄|) = 1 ⇐⇒
∑

j:j 6=iWij = Wii. Hence, the proof will be complete when we
show that W has a unique 2×2D if and only if

∑
j:j 6=iWij = Wii for every i ∈ N .

For the forward direction, suppose by way of contradiction that W has a unique 2×2D and∑
j:j 6=iWij 6= Wii for some i ∈ N . Since Q is 2×2-decomposable, ρ(|I − Q̄|) ≤ 1; hence by (43)

we must have
∑

j:j 6=iWij < Wii. But then, observe that any two distinct choices of the convex

multipliers {αiki }k:k 6=i in (29) yield different values for the variables πiji with j 6= i, and hence
distinct 2×2D’s, contradicting the assumption that the 2×2D of W was unique.

For the backward direction, suppose that
∑

j:j 6=iWij = Wii for every i ∈ N . Then, one
possible 2×2D of W is given by setting

πiji = |Wij | ∀ i, j ∈ N, i 6= j . (44)

Denoting this 2×2D by [Πij ](i,j)∈P , assume by way of contradiction that there exists another

2×2D [Π̂ij ](i,j)∈P 6= [Πij ](i,j)∈P . For each (i, j) ∈ P define the 2 × 2 (diagonal) matrix ∆ij :=

Π̂ij − Πij . We denote by ∆ij
i and ∆ij

j the diagonal entries of ∆ij . We claim that tr(∆ij) ≥ 0,

with equality holding if and only if ∆ij = 0. Indeed, the claim is clearly true when ∆ij
i ,∆

ij
j ≥ 0.

So, suppose instead that (without loss of generality) ∆ij
i < 0. Since 0 � Π̂ij = Πij + ∆ij , using

(44) we obtain

|Wij |2 = ≤ π̂iji π̂
ij
j = (πiji + ∆ij

i )(πijj + ∆ij
j )

= (|Wij |+ ∆ij
i )(|Wij |+ ∆ij

j ) = |Wij |2 + |Wij |(∆ij
i + ∆ij

j ) + ∆ij
i ∆ij

j .

Simplifying and rearranging we obtain

∆ij
j (|Wij |+ ∆ij

i ) ≥ −∆ij
i |Wij | . (45)
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Since Π̂ij � 0, we must have that

|Wij |+ ∆ij
i = πiji + ∆ij

i = π̂iji ≥ 0 . (46)

Moreover, note that if (46) holds with equality, then (45) gives 0 ≥ −∆ij
i |Wij | = (∆ij

i )2, contra-

dicting ∆ij
i < 0. Hence, the inequality in (46) is strict, and thus (45) is equivalent to

∆ij
j ≥

−∆ij
i |Wij |

|Wij |+ ∆ij
i

>
−∆ij

i |Wij |
|Wij |

= −∆ij
i .

Hence, tr(∆ij) = ∆ij
i + ∆ij

j > 0, which proves our claim. But note that

∑
(i,j)∈P tr(∆

ij) = tr
(∑

(i,j)∈P ∆ij
)

= tr
(∑

(i,j)∈P Π̂ij −
∑

(i,j)∈P Πij
)

= tr(W −W ) = 0 .

Hence, we must have that tr(∆ij) = 0 for every (i, j) ∈ P , which by our claim implies that
∆ij = 0 for every (i, j) ∈ P , contradicting the assumption that [Π̂ij ](i,j)∈P 6= [Πij ](i,j)∈P . This
completes the proof of the backwards direction. 2

Proof of Proposition 5.2.

Proof: Assume that Q is 2×2-decomposable. Let P̄ = {S ⊆ N : |S| = 2} and let f : P̄ → N
be defined by

f({i, j}) =

{
n if {i, j} = {1, n}
min{i, j} otherwise

∀ {i, j} ∈ P̄ .

For convenience, we will write f(i, j) instead of f({i, j}). It is easy to see that f is onto. Indeed,
if i = 1, then f(i, 2) = i; if i = n, then f(i, 1) = i; and if 2 ≤ i ≤ n− 1, then f(i, n) = i. With
Π = [Πij ](i,j)∈P consider the optimization problem

max
{
g(Π) =

∑
{i,j}∈P̄ π

ij
f(i,j) : (28)

}
. (47)

Since Q has a 2×2D, (47) is non-empty, in addition to being closed and bounded, and therefore
it has an optimal solution Π̄. We claim that for this solution, the inequalities (28b) are all active.
Indeed, suppose by way of contradiction that, for some {i, j} ∈ P̄ ,

π̄iji π̄
ij
j > Q2

ij (≥ 0) , (48)

where without loss of generality we can assume f(i, j) = j. Since f is onto, there exists r(i) ∈
N \ {i, j} such that f(i, r(i)) = i. So, for any ε > 0, we may define the point Π(ε) by

π(ε)klk =


π̄klk − ε if k = i , l = j
π̄klk + ε if k = i , l = r(i)
π̄klk if k 6= i or k = i and l /∈ {j, r(i)}

∀ k, l ∈ N, k 6= l .

We claim that for all sufficiently small ε > 0, Π(ε) is feasible in (47). Indeed, (28c) and (28b)
hold since by (48) we have

π(ε)iji = π̄iji − ε > 0 and π(ε)iji π(ε)ijj = (π̄iji − ε)π̄
ij
j > Q2

ij .

Furthermore, (28a) holds since∑
l:{i,l}∈P̄ π(ε)ili = (π̄iji − ε) + (π̄

i,r(i)
i + ε) +

∑
l:{i,l}∈P̄ , l 6=j,r(i) π̄

i,l
i = Qii .
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Moreover,

g(Π(ε)) =
∑
{k,l}∈P̄ π(ε)klf(k,l)

= π(ε)ijf(i,j) + π(ε)
i,r(i)
f(i,r(i)) +

∑
{k,l}∈P̄ :{k,l}6={i,j} , {k,l}6={i,r(i)} π(ε)klf(k,l)

= π̄ijj + (π̄
i,r(i)
i + ε) +

∑
{k,l}∈P̄ :{k,l}6={i,j} , {k,l}6={i,r(i)} π̄

kl
f(k,l)

=
∑
{k,l}∈P̄ π̄

kl
f(k,l) + ε = g(Π̄) + ε > g(Π̄) ,

contradicting the optimality of Π̄. Hence, the inequalities (28b) must all be active at Π̄, which
implies that the determinant of all Π̄ij is zero, i.e., the Π̄ij all have rank at most one. 2
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