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Abstract
We prove that integer programming with three alternating quantifiers is NP-complete, even for
a fixed number of variables. This complements earlier results by Lenstra and Kannan, which
together say that integer programming with at most two alternating quantifiers can be done in
polynomial time for a fixed number of variables. As a byproduct of the proof, we show that for
two polytopes P,Q ⊂ R4, counting the projection of integer points in Q\P is #P-complete. This
contrasts the 2003 result by Barvinok and Woods, which allows counting in polynomial time the
projection of integer points in P and Q separately.
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1 Introduction

1.1 Background
In a pioneer paper [19], Lenstra showed that Integer Programming in a bounded dimension
can be solved in polynomial time. The next breakthrough was obtained by Kannan in 1990
and until recently remained the most general result in this direction (see [11]).

I Theorem 1 (Parametric Integer Programming [16]). Fix d1 and d2. Given a polyhedron
P ⊆ Rd1 , a matrix A ∈ Zm×(d1+d2) and a vector b ∈ Zm, the following sentence can be
decided in polynomial time:

∀x ∈ P ∩ Zd1 ∃y ∈ Zd2 : A (x,y) ≤ b. (1.1)

Here P is given by a system C x ≤ γ, with C ∈ Zn×d1 and γ ∈ Zn. The numbers m,n are
part of the input.

In [17], Kannan asked if Theorem 1 can be extended to three alternating quantifiers. We
give an answer in the negative direction to this question:

I Theorem 2. Fix d1 ≥ 1, d2 ≥ 2 and d3 ≥ 3. Given two polyhedra P ⊆ Rd1 , Q ⊆ Rd2 , a
matrix A ∈ Zm×(d1+d2+d3) and a vector b ∈ Zm, then deciding the sentence

∃x ∈ P ∩ Zd1 ∀y ∈ Q ∩ Zd2 ∃z ∈ Zd3 : A (x,y, z) ≤ b (1.2)

is an NP-complete problem. Here P and Q are given by two systems C x ≤ γ and D y ≤ δ,
with C ∈ Zn×d1 , γ ∈ Zn, D ∈ Zq×d2 , and δ ∈ Zq.
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6:2 The Computational Complexity of Integer Programming with Alternations

Let us emphasize that in both Theorem 1 and 2, there is no bound on the number of
inequalities involved. In other words, the parameters m,n and q are not fixed. Theorem 2
is especially surprising for the following reasons. First, in [22], we gave strong evidence
that (1.2) is decidable in polynomial time if m,n and q are fixed. Second, by an easy
application of the Doignon–Bell–Scarf theorem, (1.1) is polynomial time reducible to the case
with m and n fixed. Unfortunately, this simple reduction breaks down when there are more
than two quantifiers (see Section 7.1) as in (1.2). Still, in [22], we speculated that a more
involved reduction argument might still apply to (1.2). Theorem 2 refutes the possibility of
any reduction from (1.2) to an easier form with m,n and q bounded for which decision could
be in polynomial time, unless P = NP. In fact, Theorem 2 holds even when P is an interval
and Q is an axis-parallel rectangles (see Theorem 9 and §7.8). Thus, the problem (1.2) is
already hard when n, q are fixed and only m is unbounded.

In [25], Schöning proved that it is NP-complete to decide whether

∃x ∈ Z ∀y ∈ Z : Ψ(x, y). (1.3)

Compared to (1.2), this has only two quantifiers. However, here the expression Ψ(x, y) is
allowed to contain both conjunctions and disjunctions of many inequalities. So Theorem 2
tells us that disjunctions can be discarded at the cost of adding one extra alternation. In the
next subsection, we generalize this observation.

1.2 Presburger sentences
In [14], Grädel considered the theory of Presburger Arithmetic, and proved many completeness
results in this theory when the number of variables and quantifiers are bounded. Those
results were later strengthened by Schöning in [25]. They can be summed up as follows:

I Theorem 3 ([25]). Fix k ≥ 1. Let Ψ(x,y) be a Boolean combination of linear inequalities
with integer coefficients in the variables x = (x1, . . . , xk) ∈ Zk and y = (y1, . . . , y3) ∈ Z3.
Then deciding the sentence

Q1 x1 ∈ Z . . . Qk xk ∈ Z Qk+1 y ∈ Z3 : Ψ(x,y)

is ΣP
k-complete if Q1 = ∃, and ΠP

k-complete if Q1 = ∀. Here Q1, . . . , Qk+1 ∈ {∀ ,∃} are
m+ 1 alternating quantifiers.

This result characterizes the complexity of so called Presburger sentences with k + 1
quantifiers in a fixed number of variables. The main difference between Presburger Arithmetic
versus integer programming is that the expression Ψ allows both conjunction and disjunction
of many inequalities. This flexibility allows effective reductions of classical decision problems
such as QSAT. For some time, it remains a question whether such reductions can be carried
with only conjunctions, and at the same time keeping the number of variables fixed. We
prove the following result, which generalizes Theorem 2:

I Theorem 4. Integer programming in a fixed number of variables with k + 2 alternating
quantifiers is ΣP

k/ΠP
k-complete, depending on whether Q1 = ∃/∀. Here the problem is allowed

to contain only a system of inequalities.

We refer to Theorem 13 for the precise statement. Thus, we see that integer programming
requires only one more quantifier alternation to achieve the same complexity as Presburger
Arithmetic. Again, we emphasize that while the number of variables and quantifiers are fixed
in Theorem 4, the linear system is still allowed many inequalities.
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Figure 1 Three examples of convex polygons P,Q ⊂ R2.

1.3 Counting points in projections of non-convex polyhedra
For polytopes in arbitrary dimension, counting the number of integer points is classically
#P-complete, even for 0/1 polytopes. In a fixed dimension d, Barvinok famously showed
this can be done in polynomial time:

I Theorem 5 ([2]). Fix d. Given a polytope P ⊂ Rd, the number of integer points in
P ∩ Zd can be computed in polynomial time. Here P is described by a system Ax ≤ b, with
A ∈ Zm×d, b ∈ Zm.

For a set S ⊂ Rd, denote by E(S) := S ∩ Zd. The previous results say that |E(P )|
is computable in polynomial time. Given two polytopes P ⊂ Q ⊂ Rd, we clearly have
|E(Q\P )| = |E(Q)| − |E(P )|. So the number of integer points in a complement can also be
computed effectively.

Theorem 5 was later generalized by Barvinok and Woods to count the number of integer
points in projections of polytopes:

I Theorem 6 ([5]). Fix d1 and d2. Given a polytope P ⊂ Rd1 , and a linear transformation
T : Zd1 → Zd2 , the number of integer points in T (P ∩ Zd1) can be computed in polynomial
time. Here P is described by a system Ax ≤ b and T is described by a matrix M , where
A ∈ Zm×d1 , b ∈ Zm and M ∈ Zd2×d1 .

For a set S ⊂ Rd, denote by E1(S) the projection of S ∩ Zd on the first coordinate, i.e.,

E1(S) := {x ∈ Z : ∃z ∈ Zd−1 (x, z) ∈ S}.

By Theorem 6, |E1(P )| can be computed in polynomial time for every polytope P ⊂ Rd.

We prove the following result:

I Theorem 7. Given two polytopes P ⊂ Q ⊂ R4, computing |E1(Q\P )| is #P-complete.

In other words, it is #P-complete to compute the size of the set

E1(Q\P ) = {x ∈ Z : ∃z ∈ Z3 (x, z) ∈ Q\P} . (1.4)

Note that the corresponding decision problem |E1(Q\P )| ≥ 1 is equivalent to |E(Q\P )| ≥ 1,
and thus can be decided in polynomial time by applying Theorem 5.

The contrast between Theorem 6 and our negative result can be explained as follows.
The proof Theorem 6 depends on the polytopal structure of P and exploited convexity in
a crucial way. By taking the complement Q\P , we no longer have a convex set. In other
words, we show that projection of the complement Q\P is complicated enough to allow
encoding of hard counting problems, even in R4 (see also §7.5).

CCC 2017



6:4 The Computational Complexity of Integer Programming with Alternations

I Remark 1. To understand the theorem, consider three examples of polygons P,Q ⊂ R2

as in Figure 1. Note that the sets of integer points of the vertical projections of P,Q and
P ∪Q are the same in all three cases, but the sets number of integer points of the vertical
projections of Q\P are quite different.

As an easy consequence of Theorem 7 we obtain:

I Corollary 8. Given r simplices T1, . . . , Tr ⊂ R4, computing |E1(T1 ∪ · · · ∪ Tr)| is #P-
complete.

1.4 Outline of the paper
We begin with notations (Section 2) and a geometric construction of certain polytopes based
on Fibonacci numbers (Section 3). In Section 4 we use this construction to prove Theorem 2
via a reduction of the GOOD SIMULTANEOUS APPROXIMATION (GSA) Problem
in Number Theory, which is known to be NP-complete. The proof of Theorem 4 is via a
reduction of QSAT (Section 5). The proof of Theorem 7 follows a similar route via reduction
of #GSA (Section 6). Finally, we conclude with final remarks and open problems (Section 7).

2 Notations

We a use N = {0, 1, 2, . . .} and Z+ = {1, 2, . . .}.
All constant vectors are denoted a, b, x, y, t etc.
Matrices are denoted A,B,C, etc.
Variables are denoted x, y, z, etc.; vectors of variables are denoted x,y, z, etc.
We write x ≤ y if xj ≤ yj for all i.
A polyhedron is an intersection of finitely many closed half-spaces in Rn.
A polytope is a bounded polyhedron.
Polyhedra and polytopes are denoted by P,Q,R, etc.

3 Geometric constructions and properties

3.1 Fibonacci points
We consider the first 2d Fibonacci numbers:

F0 = 0, F1 = 1, F2 = 1, . . . , F2d−1.

From these, we construct d integer points:

φ1 = (F1, F0), φ2 = (F3, F2), . . . , φd = (F2d−1, F2d−2). (3.1)

Let

Φ = {φ1, . . . , φd} ⊂ Z2 and J = [1, F2d−1]× [0, F2d−2] ∩ Z2. (3.2)

We have Φ ⊂ J . Denote by C the curve consisting of d− 1 segments connecting φi to φi+1
for i = 1, . . . , i− 1.

We also define the following two polygons. Their properties will be mentioned later.

R1 =
{

y = (y1, y2) ∈ R2 :
[

y1 ≥ 1
y2 ≤ F2d−2

y2F2d−1−y1F2d−2 ≥ 1

]}
, (3.3)
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and

R2 =
{

y ∈ R2 :
[
y1 ≤ F2d−1
y2 ≥ 0

]
and y2F2i − y1F2i−1 ≤ −2 for i = 1, . . . , d

}
. (3.4)

The following properties are straightforward from the above definitions:
(F1) The points φ1, . . . , φd are in convex position. The curve C connecting them is convex

(upwards). See Figure 2.
(F2) Each segment (φi φi+1) and each triangle ∆i = (0φi φi+1) has no interior integer points.

This can be deduced from the facts that two consecutive Fibonacci numbers are coprime,
and also

FiFi+3 − Fi+1Fi+2 = (−1)i−1 for all i ≥ 0.

(F3) The set of integer points in J \Φ can be partitioned into 2 parts: those lying strictly
above the convex curve C, and those lying strictly below it.

(F4) The part of J \Φ lying above C is exactly R1 ∩ Z2. This can be seen as follows. The
line ` connecting 0 and φd is defined by:

y2F2d−1 − y1F2d−2 = 0.

So every integer point y = (y1, y2) lying above ` satisfies:

y2F2d−1 − y1F2d−2 ≥ 1.

By property (F2), there are no integer points y between C and `. The other two edges of
R1 come from J . See Figure 2.

(F5) The part of J \Φ lying below C is exactly R2 ∩ Z2. This can be seen as follows. The
line connecting φi and φi+1 is defined by

y2F2i − y1F2i−1 = −1.

So all integer points below that line satisfies:

y2F2i − y1F2i−1 ≤ −2.

This gives d− 1 faces for R2, one for each 1 ≤ i ≤ d− 1. The other two faces of R2 come
from J . See Figure 2.

3.2 The polytopes
Given α = (α1, . . . , αd) ∈ Qd and ε ∈ (0, 1

2 )∩Q, for each 1 ≤ i ≤ d, we define two polygons:

Pi = {(x,w) ∈ R2 : 1 ≤ x ≤ N, αix− ε ≤ w ≤ αix+ ε}, (3.5)

and

Qi = {(x,w) ∈ R2 : 1 ≤ x ≤ N, αix+ ε− 1 < w ≤ αix+ ε}. (3.6)

Next, for each 1 ≤ i ≤ d, we define two new polytopes

P ′i = {(x, φi, w) : (x,w) ∈ Pi} ⊂ R4, (3.7)

CCC 2017
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Figure 2 The points φ1, . . . , φd ∈ Φ form a convex curve C (blue).

and

Q′i = {(x, φi, w) : (x,w) ∈ Qi} ⊂ R4, (3.8)

where φi is from (3.1). Finally, we define the convex hulls:

P = conv(P ′1, . . . , P ′d) ⊂ R4, (3.9)

and

Q = conv(Q′1, . . . , Q′d) ⊂ R4. (3.10)

The following properties are straightforward from the above definitions:
(P1) Each Pi is a parallelogram with vertices

{
(1, αi ± ε), (N,αiN ± ε)

}
.

(P2) Each Qi is a (partially open) parallelogram with vertices{
(1, αi + ε), (1, αi + ε− 1), (N,αiN + ε), (N,αiN + ε− 1)

}
.

(P3) Each P ′i is a parallelogram in R4 (i.e., a Minkowski sum of two intervals), with vertices{
(1, φi, αi ± ε), (N,φi, αiN ± ε)

}
.

(P4) Each Q′i is a (partially open) parallelogram in R4, with vertices{
(1, φi, αi + ε), (1, φi, αi + ε− 1), (N,φi, αiN + ε), (N,φi, αiN + ε− 1)

}
.

(P5) We have Pi ( Qi, P ′i ( Q′i and P ( Q. Each P ′i forms a 2-dimensional face of P . Each
Q′i forms a 2-dimensional face of Q.

(P6) All the vertices of P ′1, . . . , P ′d are in convex position. This follows from (3.7) and (F1).
(P7) The polytope P has 4d vertices, which are all the vertices of P ′1, . . . , P ′d. For every

vertex (x,y, w) of P , we have y ∈ Φ, by (P3) and (P6).
(P8) For every φi ∈ Φ, we have:{

(x,w) ∈ R2 : (x, φi, w) ∈ P
}

= Pi.

(P9) All the vertices Q′1, . . . , Q′d are also in convex position, by (3.8) and (F1).
(P10) The polytope Q has 4d vertices, which are all the vertices of Q′1, . . . , Q′d. For every

vertex (x,y, w) of Q, we have y ∈ Φ, by (P4) and (P9).
(P11) For every φi ∈ Φ, we have:{

(x,w) ∈ R2 : (x, φi, w) ∈ Q
}

= Qi.

(P12) For every point (x,y, w) ∈ P ∩ Z4, we have either y ∈ Φ or y ∈ R2. This follows
from (3.9), (F1) and (F5). The same holds for Q.

We will be using these properties in the latter sections.
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4 Proof of Theorem 2

4.1
By a box in Zd, we mean the set of integer points of the form [α1, β1]× · · · × [αd, βd] ∩ Zd.
We will prove the following stronger version of Theorem 2.

I Theorem 9. Given a polytope U ⊂ R6 and two finite boxes I ⊂ Z, J ⊂ Z2, deciding the
sentence

∃x ∈ I ∀y ∈ J ∃z ∈ Z3 : (x,y, z) ∈ U (4.1)

is an NP-complete problem. Here U is described by a system A (x,y, z) ≤ b, where A ∈ Zm×6

and b ∈ Zm.

Since low dimensional boxes can be easily embedded into higher dimensions, the above
implies Theorem 2 for every d1 ≥ 1, d2 ≥ 3 and d3 ≥ 3. Compared to Theorem 2, all
parameters in the above theorem are fixed, except for m. So from now on, the symbols n
and d will be reused for other purposes. For a vector α = (α1, . . . , αd) ∈ Qd and an integer
x ∈ Z, we define

{{xα}} = max
1≤i≤d

{{qαi}}, (4.2)

where for each rational β ∈ Q, the quantity {β} is defined as:

{{β}} := min
n∈Z
|β − n| = min

{
β − bβc, dβe − β

}
.

GOOD SIMULTANEOUS APPROXIMATION (GSA)
Input: A rational vector α = (α1, . . . , αd) ∈ Qd and N ∈ N, ε ∈ Q.
Decide: Is an integer x ∈ [1, N ] such that {{xα}} ≤ ε?

Note that GSA is only non-trivial for ε < 1/2. We need the following result by Lagarias:

I Theorem 10 ([18]). GSA is NP-complete.

Let us emphasize that in GSA, the number d is part of the input. If d is fixed instead,
then the problem can be decided in polynomial time (see [18] and [15, Ch. 5]). What follows
is a reduction of GSA to a sentence of the form (4.1). GSA can be expressed as an integer
programming problem:

∃ x,w1, . . . , wd ∈ Z : 1 ≤ x ≤ N, −ε ≤ αix− wi ≤ ε. (4.3)

The inequalities on wi can be expressed as (x,wi) ∈ Pi, where Pi was defined in (3.5). Letting
I = [1, N ] ∩ Z, we see that GSA is equivalent to deciding:

∃x ∈ I :
d∧
i=1

[
∃w ∈ Z : (x,w) ∈ Pi

]
. (4.4)

I Lemma 11. Let Φ = {φ1, . . . , φd} be as in (3.2) and P be as in (3.9). We have:

{{xα}} ≤ ε ⇐⇒ ∀y ∈ Φ ∃w ∈ Z : (x,y, w) ∈ P. (4.5)

CCC 2017
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Proof. Indeed, assume {{xα}} ≤ ε, i.e., x satisfies GSA. By (4.4), for every i = 1, . . . , d,
there exists wi ∈ Z with (x,wi) ∈ Pi. Now (P8) implies that (x, φi, wi) ∈ P . Since this holds
for every φi ∈ Φ, the RHS in (4.5) is satisfied. For the other direction, assume the RHS
in (4.5) holds. Then for every φi ∈ Φ, there exists wi ∈ Z with (x, φi, wi) ∈ P . By (P8), we
have (x,wi) ∈ Pi. By (4.4), x satisfies GSA, i.e., {{xα}} ≤ ε. J

By the above lemma, GSA is equivalent to:

∃x ∈ I ∀y ∈ Φ ∃w ∈ Z : (x,y, w) ∈ P. (4.6)

Consider J from (3.2), which contains Φ. We can rewrite the above sentence as:

∃x ∈ I ∀y ∈ J
[
(y ∈ J \Φ) ∨ ∃w ∈ Z : (x,y, w) ∈ P

]
. (4.7)

Recall the polygons R1 and R2 defined in (3.3) and (3.4). By properties (F3), (F4) and (F5),
we can rewrite y ∈ J \Φ as (y ∈ R1) ∨ (y ∈ R2). Now, we can rewrite (4.7) as:

∃x ∈ I ∀y ∈ J
[

(y ∈ R1) ∨ (y ∈ R2) ∨ ∃w ∈ Z : (x,y, w) ∈ P
]
. (4.8)

Next, define two polytopes R′1 and R′2 as follows:

R′i :=
{

(x,y, 0) ∈ R4 : 0 ≤ x ≤ N, y ∈ Ri
}
⊂ R4 for i = 1, 2. (4.9)

Polytopes R′1 and R′2 are defined in such a way so that for every x ∈ I and y ∈ J , we have
y ∈ Ri if and only if there exists w ∈ Z such that (x,y, w) ∈ R′i.1 Now, it is clear that (4.8)
is equivalent to:

∃x ∈ I ∀y ∈ J
[( 2∨

i=1
∃w ∈ Z : (x,y, w) ∈ R′i

)
∨

(
∃w ∈ Z : (x,y, w) ∈ P

)]
.

which is equivalent to:

∃x ∈ I ∀y ∈ J ∃w ∈ Z : (x,y, w) ∈ R′1 ∪R′2 ∪ P. (4.10)

The difference between (4.10) and (4.1) is that we have 3 polytopes instead of just one.

4.2
The final step is two compress three polytopes R′1, R′2 and P into one polytope. Recall from
(P7) that P has 4d vertices, which correspond to the vertices of all Pi for 1 ≤ i ≤ d. The
vertices of R1 and R2 can be computed in polynomial time from systems (3.3) and (3.4).
From there we easily get the vertices of R′1 and R′2. Since P,R′1 and R′2 are in the fixed
dimension 4, we can write down all their facets in polynomial time using their vertices. So
we can represent:

P =
{

(x,y, w) ∈ R4 : A1 (x,y, w) ≤ b1
}
,

R′1 =
{

(x,y, w) ∈ R4 : A2 (x,y, w) ≤ b2
}
,

R′2 =
{

(x,y, w) ∈ R4 : A3 (x,y, w) ≤ b3
}
.

(4.11)

The above three systems all have lengths polynomial in the input α, N and ε. Next, we need
the following lemma:

1 Such a w must automatically be 0 by the definition of R′
i.
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I Lemma 12. Fix n and r. Given r polytopes R1, . . . , Rr ⊂ Rn described by r systems

Ri = {x ∈ Rn : Ai x ≤ bi},

there is a polytope U ∈ Rn+`, where ` = dlog2 re, such that

x ∈
r⋃
i=1

Ri ∩ Zn ⇐⇒ ∃t ∈ Z` : (x, t) ∈ U ∩ Zn+`. (4.12)

Furthermore, the system A (x, t) ≤ b that describes U can be found in polynomial time, given
Ai’s and bi’s as input.
Proof. Let ` = dlog2 re, we have 2` ≥ r. Pick t1, . . . , tr ∈ {0, 1}` as r different vertices of
the `-dimensional unit cube. Define

Uj = {(x, tj) ∈ Rn+` : x ∈ Rj} for j = 1, . . . , r ,

and

U = conv(U1, . . . , Ur).

In other words, we form Uj by augmenting each Rj with ` coordinates of tj . Since t1, . . . , tr
are in convex position, so are the new polytopes U1, . . . , Uj . So the vertices of U are all
the vertices of all Uj . Note that for every t ∈ conv(t1, . . . , tr), we have t ∈ Z` if and only if
t = tj for some j. This implies that the only integer points in U are those in Uj ’s. In other
words:

(x, t) ∈ U ∩ Zn+` ⇐⇒ x ∈ Rj ∩ Zn and t = tj for some j = 1, . . . , r.

So we have (4.12).
For each Rj , its vertices can be computed in polynomial time from the system Ai x ≤ bi.

From these, we easily get the vertices for each Uj . Thus, we can find all vertices of U in
polynomial time. Note that U is in a fixed dimension n+`, since n and r are fixed. Therefore,
we can find in polynomial time all the facets of U using those vertices. This gives us a system
A (x, t) ≤ b of polynomial length that describes U . J

Applying the above lemma for three polytopes R′1, R′2 and P with n = 4 and r = 3, we
find a polytope U ⊂ R4+` such that:

(x,y, w) ∈ (R′1 ∪R′2 ∪ P ) ∩ Z4 ⇐⇒ ∃t ∈ Z` : (x,y, w, t) ∈ U ∩ Z4+`. (4.13)

Here we have ` = dlog2 3e = 2, which means t ∈ Z2 and U ⊂ R6. The lemma also allows us
to find a system A (x,y, w, t) ≤ b that describes U , which has size polynomial in the systems
in (4.11). Now, we can rewrite (4.10) as:

∃x ∈ I ∀y ∈ J ∃w ∈ Z : ∃t ∈ Z2 (x,y, w, t) ∈ U,

which is equivalent to

∃x ∈ I ∀y ∈ J ∃z ∈ Z3 : A (x,y, z) ≤ b.

Here z = (w, t) ∈ Z3. The final system A (x,y, z) ≤ b still has size polynomial in the original
input α, N and ε. Therefore, the original GSA problem is equivalent to (4.1). This implies
that (4.1) is NP-hard.

It remains to show that (4.1) is in NP. We argue that more general sentence (1.2) is also
in NP. From a result in [14], if (1.2) is true, there must be an x satisfying it with length
polynomial in the input P,A and b. For such an x, we can apply Theorem 1 to check the rest
of the sentence, which has the form ∀y∃z, in polynomial time. This shows that deciding (1.2)
is in NP, and thus NP-complete. J

CCC 2017
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5 Proof of Theorem 4

Recall the definition of boxes from Section 4. In this section, we prove:

I Theorem 13. Fix k ≥ 1. Given a polytope U ⊂ Rk+7 and finite boxes I1, . . . , Ik ⊂ Z,
J ⊂ Z2, K ⊂ Z5, then the problem of deciding:

Q1 x1 ∈ I1 . . . Qk xk ∈ Ik ∀y ∈ J ∃z ∈ K : (x,y, z) ∈ U (5.1)

is ΣP
k complete if Q1 = ∃, and ΠP

k complete if Q1 = ∀. Here Q1, . . . , Qk ∈ {∃ ,∀} are k
alternating quantifiers with Qk = ∃. The polytope U is described by a system A (x,y, z) ≤ b,
where A ∈ Zm×(k+7) and b ∈ Zm.

For the proof, we work with the canonical problem Q3SAT. Let Ψ a Boolean expression
of the form:

Ψ(u1, . . . ,uk) =
N∧
i=1

(ai ∨ bi ∨ ci). (5.2)

Here each uj = (uj1, . . . , uj`) ∈ {0, 1}` is a tuple of ` Boolean variables, and each ai, bi, ci is
a literal in the set {ujs, ¬ujs : 1 ≤ j ≤ k, 1 ≤ s ≤ `}. From Ψ, we construct a sentence:

Q1 u1 ∈ {0, 1}` Q2 u2 ∈ {0, 1}` . . . Qk uk ∈ {0, 1}` : Ψ(u1, . . . ,uk). (5.3)

Here Q1, Q2, . . . , Qk ∈ {∀ ,∃} are k alternating quantifiers with Qk = ∃ . The numbers ` and
N are part of the input.

QUANTIFIED 3-SATISFIABILITY (Q3SAT)
Input: A Boolean expression Ψ of the form (5.2).
Decide: The truth of the sentence (5.3).

For clarity, we use the notation Q3SATk to emphasize problem (5.3) for a fixed k. It is well-
known that Q3SATk is ΣP

k -complete if Q1 = ∃ and ΠP
k -complete if Q1 = ∀ (see e.g. [23, 20]

and [1]). We proceed to reduce (5.3) to (5.1). In fact, by representing each Boolean string
uj ∈ {0, 1}` as an integer xj ∈ [0, 2`), we will only need to use I1 = I2 = · · · = Ik = [0, 2`)∩Z.

For every string uj = (uj1, . . . , uj`) ∈ {0, 1}` , let xj ∈ [0, 2`) be the corresponding
integer in binary. Then ujs is true or false respectively when the s-th binary digit of xj is 1
or 0. In other words, ujs is true or false respectively when bxj/2s−1c is odd or even. Observe
that t = bxj/2s−1c is the only integer that satisfies xj/2s−1 − 1 < t ≤ xj/2s−1. Now, each
term ujs or ¬ujs can be expressed in xj as follows:

ujs ⇐⇒ ∃w ∈ Z :
{

2w + 1 > xj/2s−1 − 1
2w + 1 ≤ xj/2s−1

}
,

¬ujs ⇐⇒ ∃w ∈ Z :
{

2w > xj/2s−1 − 1
2w ≤ xj/2s−1

}
.

(5.4)

Let x = (x1, . . . , xk) ∈ [0, 2`)k. Recall that each term ai, bi, ci in (5.2) is ujs or ¬ujs for
some j and s. So each clause ai ∨ bi ∨ ci can be expressed in x as:

ai ∨ bi ∨ ci ⇐⇒ ∃w ∈ Z :
[
Di (x, w) ≤ di

]
∨
[
Ei(x, w) ≤ ei

]
∨
[
Fi (x, w) ≤ f i

]
, (5.5)
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where three systems Di (x, w) ≤ di, Ei(x, w) ≤ ei, Fi (x, w) ≤ f i are of the form (5.4)
(with different j and s for each). Note that the strict inequalities in (5.4) can be sharpened
without losing any integer solutions (see Remark 2). We define the polytopes:

Ki =
{

(x, w) ∈ Rk+1 : x1, . . . , xk, w ∈ [0, 2`), Di (x, w) ≤ di
}
,

Li =
{

(x, w) ∈ Rk+1 : x1, . . . , xk, w ∈ [0, 2`), Ei (x, w) ≤ ei
}
,

Mi =
{

(x, w) ∈ Rk+1 : x1, . . . , xk, w ∈ [0, 2`), Fi (x, w) ≤ f i
}
.

So the RHS in (5.5) can be rewritten as:

∃w ∈ Z : (x, w) ∈ Ki ∪ Li ∪Mi.

Let I1 = I2 = · · · = Ik = [0, 2`) ∩ Z, we see that (5.3) is equivalent to:

Q1 x1 ∈ I1 . . . Qk xk ∈ Ik :
N∧
i=1

[
∃w ∈ Z : (x, w) ∈ Ki ∪ Li ∪Mi

]
. (5.6)

For each i, we apply Lemma 12 (with n = k + 1, r = 3) to the polytopes Ki, Li,Mi ⊂ Rk+1.
This gives us another polytope Gi ⊂ Rk+3 that satisfies:

(x, w) ∈ Ki ∪ Li ∪Mi ⇐⇒ ∃v ∈ Z2 : (x, w,v) ∈ Gi.

Substituting this into (5.6), we have an equivalent sentence:

Q1 x1 ∈ I1 . . . Qk xk ∈ Ik :
N∧
i=1

[
∃w ∈ Z3 : (x,w) ∈ Gi

]
, (5.7)

where w = (w,v) ∈ Z3, and each Gi ⊂ Rk+3.

Notice that apart from the outer quantifiers, (5.7) is a direct analogue of (4.4), with Gi
playing the role of Pi and (x,w) in place of (x,w). The proof now proceeds similarly to the
rest of Section 4 after (4.4). Along the proof, we need to define G′i and G in similar manners
to (3.7) and (3.9). The variable y ∈ Z2 is again needed to define G′i. Φ and J from (3.2) are
reused without change. This gives us G′i, G ⊂ Rk+5. At the end of the proof, we also need
to apply Lemma 12 one more time to produce a single polytope U , just like in (4.13). The
dimension 4 in (4.13) is now k + 5. As a result, the final polytope U has dimension k+ 7. In
the final form (5.1), we will have x ∈ Zk,y ∈ Z2 and z = (w, t) ∈ Z5.

We have converted (5.3) to an equivalent sentence (5.1) with polynomial size. This shows
that (5.1) is ΣP

k/ΠP
k-hard depending when Q1 = ∃/∀ . For each tuple x = (x1, . . . , xk), we

can check in polynomial time whether ∀y ∈ J ∃z ∈ K : A (x,y, z) ≤ b by applying
Theorem 1. This shows the membership of (5.1) in ΣP

k/ΠP
k . We conclude that (5.1) is

ΣP
k/ΠP

k -complete when Q1 = ∃/∀ . J

6 Proof of Theorem 7

6.1
Now we prove Theorem 7. We use the same construction as in the proof of Theorem 2.
Recall the definition of {{xα}} from Section 4. We reduce the following counting problem to
a problem of the form (1.4):
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#GOOD SIMULTANEOUS APPROXIMATIONS (#GSA)
Input: A rational vector α = (α1, . . . , αd) ∈ Qd and positive integers N, s1, s2.
Output: The number of integers x ∈ [1, N ] that satisfy {{xα}} ≤ s1/s2 .

The argument in [18] is based on a parsimonious reduction. Namely, it gives a bijection
between solutions for #GSA and the following problem:

#WEAK PARTITIONS
Input: An integer vector a = (a1, . . . , ad) ∈ Zd.
Output: The number of y ∈ {−1, 0, 1}d for which a · y = 0.

It is well known and easy to see that #WEAK PARTITIONS is #P-complete. The
decision version WEAK PARTITION was earlier shown by [27] to be NP-complete with
a parsimonious reduction from KNAPSACK. Together with Lagarias’s reduction, we
conclude:

I Theorem 14. #GSA is #P-complete.

6.2
Now we proceed with the reduction of #GSA to (1.4).

Recall Φ and J from (3.2). We use the notations from section 3.1 and 3.2. Let Pi, P ′i
and P be from (3.5), (3.7) and (3.9). Let Qi, Q′i and Q be from (3.6), (3.8) and (3.10). Let
I = [1, N ] ∩ Z. We have:

I Observation 15. For every x ∈ I, there is a unique w ∈ Z such that (x,w) ∈ Qi.

Indeed, from (3.6), we have (x,w) ∈ Qi if and only if x ∈ I and:

αix+ ε− 1 < w ≤ αix+ ε.

For each x ∈ I, we get a half-open interval of length 1 for w, which has a unique integer.

I Remark 2. Note that each Qi has an open edge defined by αix+ε−1 < w. This can actually
be sharpened without losing any integer point. Indeed, we can multiply the inequality with
the denominators in αi and ε, which have polynomial length. Then the resulting strict integer
inequality of the form a < b is equivalent to a ≤ b− 1. Therefore, we can replace Qi with a
(smaller) closed parallelogram containing the same integer points. Taking the convex hull as
in (3.10), we can similarly replace Q with a (smaller) closed polyhedron, without losing any
integer points in Q.

I Observation 16. For every x ∈ I and φi ∈ Φ, there is a unique integer point (x, φi, wi) ∈ Q.

Indeed, by (P11), for every φi ∈ Φ, we have (x, φi, w) ∈ Q if and only if (x,w) ∈ Qi.
Together with Observation 15, we have Observation 16.

Recall from (P5) that P ⊂ Q. Now consider the following set:

S =
{
x ∈ I : ∃(y, w) ∈ Φ× Z (x,y, w) ∈ Q\P

}
.2 (6.1)

I Lemma 17. For every x ∈ I, we have {{xα}} > ε if and only if x ∈ S.
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Proof. Assume x ∈ S, then there exist some φj ∈ Φ and wj ∈ Z so that (x, φi, wi) ∈ Q\P .
By Observation 16 and the fact that P ⊂ Q, there is no w ∈ Z for which (x, φi, w) ∈ P .
By (4.5), we have {{xα}} > ε. Conversely, assume {{xα}} > ε. By (4.5), there exist φi ∈ Φ
so that there is no w ∈ Z with (x, φi, w) ∈ P . By Observation 16, the unique point (x, φi, wi)
in Q must be outside of P , i.e., (x, φi, wi) ∈ Q\P . We conclude that x ∈ S by (6.1). J

By the above lemma, counting S is equivalent to #GSA. The formulation (6.1) is very
similar to (1.4), with (y, w) in place of z. We cannot conclude directly that S is E1(Q\P )
because of the restricted quantifier ∃y ∈ Φ instead of ∃y ∈ Z2. To turn S into the form (1.4),
we need to convert ∃y ∈ Φ to ∃y ∈ Z2.

6.3
The final step is to modify the polytopes P and Q. In (6.1), we only consider projections of
integer points (x,y, w) ∈ Q\P with y restricted to the set Φ. In general, the complement
Q\P has some other integer points (x,y, w) with y not lying in Φ. By (P12) such a point
must necessarily have y ∈ R2. We can eliminate all of them by taking the convex hulls of P
and Q with a “high enough” box over R2. Below are the details.

Let T = 1 + N maxi αi. By (3.5) and (3.6), we have Pi, Qi ⊂ [1, N ] × [−1, T ]. Recall
from (3.7) and (3.9) that P is the convex hull of all P ′i , which is simply Pi with an added
second component φi. This leads to the following observation:

I Observation 18. For every vector γ ∈ R2, we have:{
(x,y, w) ∈ P : y = γ

}
⊆ [1, N ]× {γ} × [−1, T ].

The same holds for Q.

Next, consider the rectangular box J containing Φ and the complement J \Φ, where J is
from (3.2). From properties (F3), (F4) and (F5), integer points in the complement J \Φ lie
in two separate convex polygons R1 and R2, as described in (3.3) and (3.4). We will only
need R2, which contains integer points below Φ. Define

R =
{

(x,y, w) ∈ R4 : x ∈ [1, N ], y ∈ R2, w ∈ [−1, T ]
}
. (6.2)

and

P̃ = conv(P,R) , Q̃ = conv(Q,R) ⊂ R4. (6.3)

For γ ∈ R2, we denote by Pγ the set:

Pγ =
{

(x,y, w) ∈ P : y = γ
}
,

and analogously for P̃γ , Qγ , Q̃γ and Rγ .

By Observation 18, for every γ, we have Pγ , Qγ ⊆ [1, N ]× {γ} × [−1, T ]. From (6.2), we
have Rγ = [1, N ]×{γ}×[−1, T ] for every γ ∈ R2. Since P̃ = conv(P,R) and Q̃ = conv(Q,R),
we have

P̃γ = Q̃γ = [1, N ]× {γ} × [−1, T ] for every γ ∈ R2. (6.4)

For γ ∈ Φ, we claim that:

P̃γ = Pγ and Q̃γ = Qγ . (6.5)
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Indeed, since γ ∈ Φ, we have γ = φi and Pγ = Pφi for some i. By (3.7) and (P8), we have
Pφi

= P ′i . Since R2 ∩Φ = ∅, we have φi /∈ R2. This implies P ′i ∩R = ∅, because R is a box
over R2, and P ′i is a parallelogram over φi. Recall from (P5) that P ′i forms a 2-dimensional
face of P . Therefore, it still remains a 2-dimensional face of the convex hull P̃ = conv(P,R).
So P̃γ = Pγ = P ′i . The same argument applies to Q̃γ and Qγ .

Note that we also have P̃ ⊂ Q̃, because P ⊂ Q. Consider the complement Q̃\P̃ . Assume
(x,y, w) ∈ Z3 is an integer point in Q̃\P̃ . By (6.4), such a point cannot exist for y ∈ R2. So
we must have y ∈ Φ. Now by (6.5), we also have (x,y, w) ∈ Q\P . Therefore, from (6.1), we
conclude that:

S =
{
x ∈ [1, N ] ∩ Z : ∃(y, w) ∈ Z3 (x,y, w) ∈ Q̃\P̃

}
=

{
x ∈ [1, N ] ∩ Z : ∃z ∈ Z3 (x, z) ∈ Q̃\P̃

}
.

Here z = (y, w). The systems describing Q̃ and P̃ can be obtained in polynomial time
from the input α, N and ε. First, the vertices of P and Q are given by (P7) and (P10).
The vertices of R directly come from those of R2, which can be found from (3.4). By (6.3),
we can obtain the vertices of P̃ and Q̃. The facets of P̃ and Q̃ can be found from their
vertices in polynomial time, since both polytopes are in the fixed dimension 4. In summary,
problem (1.4) applied to P̃ and Q̃ is #P-complete. This proves Theorem 7. J

6.4 Proof of Corollary 8
By Theorem 7, counting |E1(Q\P )| is #P-complete for P ⊂ Q ⊂ R4. Nevertheless, the
complement Q\P can still be triangulated into polynomially many simplices T1 t · · · t Tr.
In fact, by an application of Proposition 5.2.2 in [29], the systems describing all such Ti
can be found in polynomial time. Therefore, counting |E1(T1 t · · · t Tr)| = |E1(Q\P )| is
#P-complete. J

7 Final remarks and open problems

7.1
It is sufficient to prove Theorem 1 for the case when m,n are also bounded. In the system
A (x,y) ≤ b, we view x as the parameters and y as the variables to be solved for. For a
fixed d2 and m ≥ 2d2 , the Doignon–Bell–Scarf theorem [26, §16.5] implies that the system
A (x,y) ≤ b is solvable in y ∈ Zd2 if and only if every subsystem A′ (x,y) ≤ b′ is solvable.
Here A′ is a submatrix with 2d2 rows from A with b′ the corresponding subvector from b. In
other words:

∃y ∈ Zd2 A (x,y) ≤ b ⇐⇒
∧

(A′, b′)

[
∃y ∈ Zd2 A′ (x,y) ≤ b′

]
.

The total number of pairs (A′, b′) is
(
m

2d2

)
, which is polynomial in m.

Note that the conjunction over all (A′, b′) commutes with the universal quantifier ∀x.
Therefore:

∀x ∈ P ∩Zd1 ∃y ∈ Zd2 A (x,y) ≤ b ⇐⇒
∧

(A′, b′)

[
∀x ∈ P ∩Zd1 ∃y ∈ Zd2 A′ (x,y) ≤ b′

]
.
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Thus, it is equivalent to check each of the smaller subproblems, each of which has m = 2d2 .
Recall that the number of facets in P is n, which can still be large. However, given the
system C x ≤ γ describing P , we can triangulate P into to a union of simplices P1 t · · · tPk.
Since the dimension d1 is bounded, we can find such a triangulation in polynomial time (see
e.g. [9]). Now for each pair (A′, b′), we have:

∀x ∈ P ∩Zd1 ∃y ∈ Zd2 A′ (x,y) ≤ b′ ⇐⇒
k∧
i=1

[
∀x ∈ Pi∩Zd1 ∃y ∈ Zd2 A′ (x,y) ≤ b′

]
.

Each simplex Pi ⊂ Rd1 has d1 + 1 facets. Each subsentence in the RHS now has m = 2d2

and d1 + 1. Note that the total number of such subsentences is still polynomial, so it suffices
to check each of them individually.

For three quantifiers ∃x ∀y ∃z, this argument breaks down because the existential
quantifier ∃x no longer commutes with a long conjunction.

7.2

By taking finite Boolean combinations, we see that Theorem 5 also allows counting integer
points in a union of k polytopes, where k is bounded (see [3, 4]). In fact, Woods proved
in [29, Prop. 5.3.1] that it is still possible to count all such points in polynomial time when k
is arbitrary. By Corollary 8, we see that this is not the case for projection.

7.3

The GSA Problem plays an important role in both Number Theory and Integer Programming
especially in connection to lattice reduction algorithms (see e.g. [15]). Let us mention that
via a chain of parsimonious reductions one can show that #GSA is also hard to approximate
(cf. [13]). Note also that GSA has been recently used in a somewhat related geometric
context in [12].

7.4

An easy consequence of Lemma 12 proves the first part of the following result:

I Proposition 19. Every set S = {p1, . . . , pr} ⊂ Z2 is a projection of integer points of some
convex polytope P ⊂ R2+d, where d ≤ dlog2 re. Moreover, the bound d ≤ dlog2 re is tight.

We only use the proposition to reduce the dimension of variable z in Theorem 9 from 4
to 3, but it is perhaps of independent interest. Note that a weaker inequality d ≤ r is trivial.

Proof of the Second Part of Proposition 19. Consider a set S = {p1, . . . , pr} of integer
points in convex position and with even coordinates. Assume there is a polytope P ⊂ R2+`

with ` < dlog2 re so that S is exactly the projection of P ∩ Z2+` on Z2. Then there are
integer points q1, . . . , qr ∈ Z` so that (pi, qi) ∈ P . Since r > 2`, by the pigeonhole principle,
we have qi − qj ∈ 2Z` for some i 6= j. Then the midpoint of (pi, qi) and (pj , qj) is an integer
point in Z2+`, which also lies in P by convexity. The projection of this midpoint on Z2 is
(pi + pj)/2, which must lie in S. However, the points in S are in convex positions and thus
contain no midpoints, a contradiction. J
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7.5
Let us give another motivation behind Theorem 7 and put it into context of our other work.
In this paper, we bypass the “short generating function” technology developed for computing
|E1(P )| for convex polytopes P ⊂ Rd. Note, however, that for X = Q\P as in the theorem,
the corresponding short GF fX(t) is simply the difference fQ(t)− fP (t), which can still be
computed in polynomial time (see [2]). Thus, if one could efficiently present the projection
of fX(t) on Z as a short generating function of polynomial size, then one would be able to
compute |E1(Q\P )|, a contradiction. In other words, Theorem 7 is an extension of a result
by Woods [28], which shows that computing projecting short generating functions is NP-hard.
It is also an effective but weaker version of the main result in [21, Th. 1.3], which deals with
the size of short GFs of the projections rather than complexity of their computation.

7.6
Corollary 8 says that computing |E1(T1∪· · ·∪Tk)| is #P-complete even for simplices Ti ⊂ R4.
By a stronger version of Theorem 6 (see [5]), for each polytope Ti, there is a short generating
function gi(t) representing E1(Ti). The union of all those generating functions correspond to
E1(T1 ∪ · · · ∪ Tk). As a corollary we conclude that the union operation on short generating
functions is #P-hard to compute. As in §7.5 above, one should compare this to a stronger
result [21, Th. 1.1], which says that the union of short generating functions can actually have
super-polynomial lengths unless #P ⊆ FP/poly.

7.7
It would be interesting to see if the dimension 4 in Theorem 7 is sharp and cannot be reduced
to 3. One can argue both in favor and against this possibility. First, one can think of the
result as a claim about complexity of nonconvex polyhedra Q\P in Rd. For d = 3, the three
dimensional nonconvex polyhedra are well known to be notoriously complicated to study via
triangulations (see e.g. [24], the proof of the Th. 1.2 in [7] and a lengthly discussion in [9]).
This suggests that for the “long” first coordinate dimensions of Q, it is unlikely that there is
a good way to triangulate Q\P which would allow to compute |E1(Q\P )| efficiently.

To argue in the opposite direction, the problem of computing the number of integer points
for polytopes in Rd becomes simpler for d ≤ 3 (see e.g. [6, 8, 10]), so perhaps there is an ad
hoc approach in this case.

7.8
Note that Theorem 9 was proved for dimensions d1 = 1, d2 = 2 and d3 = 3. One can ask
if the problem still remains NP-complete when some of these dimensions are lowered. In
particular, it would be interesting to see if the following problem is still NP-complete:

∃x ∈ P ∩ Z ∀y ∈ Q ∩ Z2 ∃z ∈ Z2 : (x,y, z) ∈ U,

where P ⊂ R, Q ⊂ R2 and U ⊂ R5 are convex polytopes.
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