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Abstract

Random permutation is observed to be powerful for optimization algorithms: for multi-block

ADMM (alternating direction method of multipliers), while the classical cyclic version divergence,

the randomly permuted version converges in practice; for BCD (block coordinate descent), the

randomly permuted version is typically faster than other versions. In this paper, we provide strong

theoretical evidence that random permutation has positive effects on ADMM and BCD, by analyzing

randomly permuted ADMM (RP-ADMM) for solving linear systems of equations, and randomly

permuted BCD (RP-BCD) for solving unconstrained quadratic problems. First, we prove that RP-

ADMM converges in expectation for solving systems of linear equations. The key technical result

is that the spectrum of the expected update matrix of RP-BCD lies in (−1/3, 1), instead of the

typical range (−1, 1). Second, we establish expected convergence rates of RP-ADMM for solving

linear sytems and RP-BCD for solving unconstrained quadratic problems. This expected rate of

RP-BCD is O(n) times better than the worst-case rate of cyclic BCD, thus establishing a gap of at

least O(n) between RP-BCD and cyclic BCD. To analyze RP-BCD, we propose a conjecture of a

new matrix AM-GM (algebraic mean-geometric mean) inequality, and prove a weaker version of it.
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1 Introduction

A simple yet powerful idea for solving large-scale computational problems is to iteratively solve smaller

subproblems. The applications of this idea include coordinate descent (CD), POCS (Projection onto

Convex Sets), SGD (Stochastic Gradient Descent). They are well suited for large-scale unconstrained

optimization problem (see, e.g. Wright [1], for a recent survey of CD) since it decomposes a large

problem into small subproblems. The decomposition idea is crucial for huge problems due to both the

cheap per-iteration cost and small memory requirement. Moreover, this idea is “orthogonal” to other

large-scale optimization ideas such as first-order methods (using only gradient information) and random

projection, and thus can be easily combined with other ideas.

This paper is motivated by a natural question: how should we extend the decomposition idea to solve

problems with constraints? We consider a constrained minimization problem with a convex objective

function and linear constraints (this is for motivation; our analysis is for a much simpler version):

min
x1,...,xn

f(x1, x2, . . . , xn),

s.t. A1x1 + · · ·+Anxn = b,

xi ∈ Xi, i = 1, . . . , n,

(1)

where Ai ∈ R
N×di , b ∈ R

N×1,Xi ⊆ R
di is a closed convex set, i = 1, . . . , n, and f : Rd1+d2+···+dn → R

is a closed convex function. Many machine learning and engineering problems can be cast into linearly-

constrained optimization problems with two blocks (see Boyd et al. [2] for many examples) or more

than two blocks (e.g. linear programming, robust principal component analysis, composite regularizers

for structured sparsity; see Chen et al. [3] and Wang et al. [4] for more examples).

To apply the decomposition idea to a constrained problem, one possible way is to form the augmented

Lagrangian function and perform coordinate descent for the primal problem and a gradient step for

the dual problem, i.e. combining BCD with augmented Lagrangian method, to obtain the so-called

alternating direction method of multipliers (ADMM). ADMM was originally proposed in Glowinski

and Marroco [5] (see also Chan and Glowinski [6], Gabay and Mercier [7]) to solve problem (1) when

there are only two blocks (i.e. n = 2) and the objective function is separable. It is natural and

computationally beneficial to extend the original ADMM directly to solve the general n-block problem

(1) via the following procedure:































xk+1
1 = argminx1∈X1 L(x1, x

k
2 , . . . , x

k
n;µ

k),
...

xk+1
n = argminxn∈Xn

L(xk+1
1 , . . . , xk+1

n−1, xn;µ
k),

µk+1 = µk − β(A1x
k+1
1 + · · ·+Anx

k+1
n − b),

(2)

where the augmented Lagrangian function

L(x1, . . . , xn;µ) = f(x1, . . . , xn)− µT (
∑

i

Aixi − b) +
β

2
‖
∑

i

Aixi − b‖2. (3)

The convergence of the direct extension of ADMM to multi-block case had been an open question,

until a counter-example was recently given in Chen et al. [3]. More specifically, Chen et al. [3] showed
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that even for the simplest scenario where the objective function is 0 and the number of blocks is 3,

ADMM can be divergent for a certain choice of A = [A1, A2, A3]. There are several proposals to

overcome the drawback (see, e.g., [8–25]), but they either need to restrict the range of original problems

being solved, add additional cost in each step of computation, or limit the stepsize in updating the

Lagrange multipliers. These solutions typically slow down the performance of ADMM for solving most

practical problems. Moreover, it is not clear how to compare the convergence speed of these algorithms

as they typically contain different parameters. One may ask whether a “minimal” modification of cyclic

multi-block ADMM (2) can lead to convergence, and whether we can provide some convergence speed

analysis that is easy to interpret.

One of the simplest modifications of (2) is to add randomness to the update order. Randomness has

been very useful in the analysis of block coordinate descent (BCD) methods and stochastic gradient

descent (SGD) methods. In particular, a recent work Sun and Ye [26] showed that randomized CD

(R-CD) can be up to O(n2) times faster than cyclic CD (C-CD) for quadratic minimization in the worst

case, where n is the number of variables 1. Another example is the comparison of IAG (Incremental

Aggregated Gradient) in Blatt et al. [27] and its randomized version SAG (Stochastic Average Gradient)

[28]: it turns out that the introduction of randomness leads to better iteration complexity bounds.

There is also some study on randomly permuted version of pure SGD [29]. These examples show that

randomization may improve the algorithm in theory and in practice.

It is important to note that the iteration complexity bounds for randomized algorithms are usually

established for independent randomization (sampling with replacement), while in practice, random

permutation (sampling without replacement) has been reported to exhibit faster convergence (e.g.

Shalev et al. [30], Recht and Re [31], Sun [32]). Interestingly, our simulation shows that for solving linear

system of equations, randomly permuted ADMM (RP-ADMM) always converges, but independently

randomized versions of ADMM can be divergent even for Gaussian data. Therefore, we focus on the

analysis of RP-ADMM in this paper.

Random permutation is known to be notoriously difficult to analyze. Even for unconstrained

quadratic minimization, the convergence rate of RP-BCD is poorly understood. Many existing works

treated cyclic BCD and RP-BCD together [33–35], and thus the best known convergence rate of RP-

BCD for general convex problems are in fact the same as that of C-BCD [35]. However, in light of a

recent study which established an up to O(n2) gap between cyclic CD and R-CD [26], it is unlikely that

RP-CD has the same convergence rate as C-CD since that would imply RP-CD could be O(n2)-times

slower than R-CD. For the special example that demonstrates the gap between C-CD and R-CD, it was

shown recently that RP-CD is faster than R-CD 2 [36]. However, the general quadratic case seems to

be quite difficult, probably due to its close connection to a matrix AM-GM (algebraic mean-geometric

mean) inequality [37], the difficulty of which is essentially to prove an inequality in non-commutative

algebra.

1Rigorously speaking, these two bounds are not directly comparable since the result for the randomized version only

holds with high probability, while the result for the cyclic version always holds; anyhow, this O(n2) gap is still meaningful

if ignoring this difference between deterministic and randomized algorithm.
2This paper appeared after the first version of the current paper.
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1.1 Summary of Contributions

We consider two extremes of a general RP-ADMM: i) the objective is zero, i.e., RP-ADMM for solving

a linear system; ii) the constraint is zero and the objective is a quadratic function, i.e., RP-BCD for

solving quadratic minimization. Due to the lack of understanding of random permutation for quadratic

minimization as discussed previously, we restrict to the two cases in this paper.

The first result of this paper is the expected convergence of RP-ADMM for solving linear systems.

More specifically, when the objective function is zero and the constraint is a non-singular square linear

system of equations, the expected output of randomly permuted ADMM converges to the unique primal-

dual optimal solution. A major technical result in this proof is that the eigenvalues of the expected

iteration matrix of RP-BCD for quadratic problems lie in (−1/3, 1), instead of the typical range (−1, 1).

The second result is about the expected convergence rate of RP-ADMM for solving linear systems

and RP-BCD for solving quadratic problems. We show that RP-BCD for a convex quadratic min-

imization problem with equal diagonal entries has expected iteration complexity O(n
λavg

λmin
log(1/ǫ)),

where λavg and λmin are the average eigenvalue and the minimum eigenvalue of the coefficient matrix,

and one “iteration” here means a cycle of updating all blocks. This improves an existing bound of

O(n2 λavg

λmin
log(1/ǫ)) for RP-BCD by a factor of n. Built on this result, we further show that RP-ADMM

for solving linear systems achieves the same expected iteration complexity bound O(n
λavg

λmin
log(1/ǫ)).

Technically, we provide a simple and clean proof of the expected convergence, by applying a classical

result on the eigenvalues of Jordan product. For proving the expected convergence rate, we propose a

new variant of the matrix AM-GM inequality conjecture, and prove a weaker version of this conjecture.

Our result shows that random permutation may be a good answer to the question “how to apply

the decomposition idea to solve constrained problems”. As multi-block BCD is widely used for large-

scale unconstrained problems, we expect multi-block RP-ADMM to be a good candidate for large-scale

linearly constrained problems. Our result provides one of the few direct analyzes of random permutation

in optimization algorithms, and offers an explanation of the mysterious gap between RP-ADMM and

cyclic ADMM. As reflected by the proof, the intuition is that random permutation provides “3-level

symmetrization” that adjusts the spectrum of the update matrix. Based on the analysis for RP-ADMM,

we are able to improve the best known complexity of RP-BCD for equally-diagonal quadratic problems

by a factor of n, when expressing the complexity only in terms of the quantity
λavg

λmin
.

1.2 Related Works

This paper is a stronger version of a previous technical report Sun et al. [38] which was not published.

Another related work is the paper Chen et al. [39], which modifies the proof of [38] to make it work

with a quadratic objective function.

We highlight a few novel contributions of the current paper (neither in the original technical report

[38] nor in the paper [39]).

(i) The current paper provides a much simpler proof for the result of expected convergence.

(ii) The current paper provides the first convergence rate analysis of RP-ADMM. See Theorem 4

6



and the proof in Section 4.5, Section 7.2 and Section 7.1.

(iii) The current paper provides an improved convergence rate analysis of RP-BCD, See Theorem 3

and the proof in Section 4.3 and Section 7.3.

(iv) The current paper introduces a theory-motivated algorithm Bernoulli-ADMM, which reduces

the sampling time yet still achieves the expected convergence. This update order has not appeared

before even in other algorithm setups to our knowledge. See Section 2.5 and Proposition 1.

Besides the technical contributions, we want to emphasize that the current paper is not just adding

new result to our previous technical report [38], but actually completes a missing step of the story. From

a mathematical point of view, the most striking consequence of our original proof is that the spectral

radius of RP-BCD lies in a smaller region (−1/3, 1). It is natural to think that this fundamental

fact should have an impact on the analysis of original RP-BCD. Our current paper fills this gap by

showing that this result can help build an O(n) gap between the (expected) onvergence rate of RP-

BCD and cyclic BCD. A general message is that on one hand, to understand constrained optimization

we have to understand unconstrained optimization (analyzing ADMM reduces to analyzing BCD); on

the other hand, analyzing constrained optimization helps improve the understanding of unconstrained

optimization (the analysis of ADMM leads to progress in BCD). We find this interaction between

unconstrained optimization (BCD) and constrained optimization (ADMM) fascinating. The whole

story is only revealed in the current paper, but not in the previous technical report [38] or Chen et

al. [39].

Besides the above unique aspects, the current paper inherits some interesting numerical findings

from the technical report Sun et al. [38] which do not appear in Chen et al. [39]. We find that cyclic

ADMM diverges with probability 1 for many random distributions of data, thus showing that the

seemingly surprising divergence behavior reported in [3] is quite common. However, it is easy to miss

this finding if one uses the Gaussian distribution to generate data. Another interesting finding is that

the independently randomized version of ADMM diverges with probability 1 for Gaussian data but not

for the counter-example in [3], preventing us from analyzing the independently randomized version.

Without these findings, the motivation of studying RP-ADMM would be less clear. See Section 2.4 and

Section 8.

1.3 Notation and Organization

Notation. For a matrix X , we denote X(i, j) as the (i, j)-th entry of X , eig(X) as the set of eigenvalues

of X , ρ(X) as the spectral radius of X (i.e. the maximum modulus of the eigenvalues of X), ‖X‖ as
the spectral norm of X , and XT as the transpose of X . When X is block partitioned, we use X [i, j] to

denote the (i, j)-th block of X . When X is a real symmetric matrix, let λmax(X) and λmin(X) denote

the maximum and minimum eigenvalue of X respectively. For two real symmetric matrices X1 and X2,

X1 ≻ X2 (resp. X1 � X2) means X1−X2 is positive definite (resp. positive semi-definite). We use Im to

denote the identity matrix with dimension m, and we will simply use I when it is clear from the context

what the dimension is. For square matrices Ui ∈ Rui×ui , i = 1, . . . , k, we denote Diag(U1, U2, . . . , Uk)

as the block-diagonal matrix with Ui being the i-th diagonal block.

Organization. In Section 2, we present three versions of randomized ADMM, with an emphasis on
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RP-ADMM. In Section 3, we present our main results Theorem 1, Theorem 2 and their proofs. The

subsequent sections are devoted to the proofs of the two technical results Lemma 1 and Lemma 2, which

are used in the proof of Theorem 2. In particular, the proof of Lemma 1 is given in Section 5, and the

proof of Lemma 2 is given in Section 6.

2 Algorithms

In this section, we will present both randomly permuted and independently randomized versions of

ADMM for solving (1), and specialize RP-ADMM for solving a square system of equations. We also

present a rather novel algorithm Bernoulli-randomized ADMM (motivated by our proof).

2.1 Randomly Permuted ADMM

In this subsection, we first propose RP-ADMM for solving the general optimization problem (1), then

we present the update equation of RP-ADMM for solving a linear system of equations.

Define Γ as

Γ , {σ | σ is a permutation of {1, . . . , n}}. (4)

At each round, we draw a permutation σ of {1, . . . , n} uniformly at random from Γ, and update the

primal variables in the order of the permutation, followed by updating the dual variables in a usual way.

Obviously, all primal and dual variables are updated exactly once at each round. See Algorithm 1 for the

details of RP-ADMM. Note that with a little abuse of notation, the function L(xσ(1), xσ(2), . . . , xσ(n);µ)

in this algorithm should be understood as L(x1, x2, . . . , xn;µ). For example, when n = 3 and σ = (231),

L(xσ(1), xσ(2), xσ(3);µ) = L(x2, x3, x1;µ) should be understood as L(x1, x2, x3;µ).

Algorithm 1 n-block Randomly Permuted ADMM (RP-ADMM)

Initialization: x0
i ∈ Rdi×1, i = 1, . . . , n; µ0 ∈ RN×1.

Round k (k = 0, 1, 2, . . . ):

1) Primal update.

Pick a permutation σ of {1, . . . , n} uniformly at random.

For i = 1, . . . , n, compute xk+1
σ(i) by

xk+1
σ(i) = arg min

xσ(i)∈Xσ(i)

L(xk+1
σ(1), . . . , x

k+1
σ(i−1), xσ(i), x

k
σ(i+1), . . . , x

k
σ(n);µ

k) (5)

2) Dual update. Update the dual variable by

µk+1 = µk − β(
n
∑

i=1

Aix
k+1
i − b). (6)
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2.1.1 Optimization Formulation of Solving a Linear System of Equations

Consider a special case of (1) where fi = 0, Xi = Rdi , ∀i and N =
∑

i di (i.e. the constraint is a square

system of equations). Then problem (1) becomes

min
x∈RN

0,

s.t. A1x1 + · · ·+Anxn = b,
(7)

where Ai ∈ RN×di , xi ∈ Rdi×1, b ∈ RN×1. Solving this feasibility problem (with 0 being the objective

function) is equivalent to solving a linear system of equations

Ax = b, (8)

where A = [A1, . . . , An] ∈ RN×N , x = [xT
1 , . . . , x

T
n ]

T ∈ RN×1, b ∈ RN×1.

Throughout this paper, we assume A is non-singular. Then the unique solution to (8) is x =

A−1b, and problem (7) has a unique primal-dual optimal solution (x, µ) = (A−1b, 0). The augmented

Lagrangian function (3) for the optimization problem (7) becomes

L(x, µ) = −µT (Ax− b) +
β

2
‖Ax− b‖2. (9)

Throughout this paper, we assume β = 1; note that our algorithms and results can be extended to any

β > 0 by simply scaling µ.

2.1.2 Example of 3-block ADMM

Before presenting the update equation of general RP-ADMM for solving (7), we consider a simple case

N = n = 3, di = 1, ∀i and σ = (123), and let ai = Ai ∈ R3×1. The update equations (5) and (6) can be

rewritten as

−aT1 µk + aT1 (a1x
k+1
1 + a2x

k
2 + a3x

k
3 − b) = 0,

−aT2 µk + aT2 (a1x
k+1
1 + a2x

k+1
2 + a3x

k
3 − b) = 0,

−aT3 µk + aT3 (a1x
k+1
1 + a2x

k+1
2 + a3x

k+1
3 − b) = 0,

(a1x
k+1
1 + a2x

k+1
2 + a3x

k+1
3 − b) + µk+1 − µk = 0.

Denote yk = [xk
1 ;x

k
2 ;x

k
3 ; (µ

k)T ] ∈ R
6×1, then the above update equation becomes











aT1 a1 0 0 0

aT2 a1 aT2 a2 0 0

aT3 a1 aT3 a2 aT3 a3 0

a1 a2 a3 I3×3











yk+1 =











0 −aT1 a2 −aT1 a3 aT1
0 0 −aT2 a3 aT2
0 0 0 aT3
0 0 0 I3×3











yk +

[

AT b

b

]

. (10)

Define

L ,







aT1 a1 0 0

aT2 a1 aT2 a2 0

aT3 a1 aT3 a2 aT3 a3






, R ,







0 −aT1 a2 −aT1 a3
0 0 −aT2 a3
0 0 0






. (11)

The relation between L and R is

L−R = ATA.

9



Define

L̄ ,

[

L 0

A I3×3

]

, R̄ ,

[

R AT

0 I3×3

]

, b̄ =

[

AT b

b

]

(12)

then the update equation (10) becomes L̄yk+1 = R̄yk + b̄, i.e.

yk+1 = (L̄)−1R̄yk + L̄−1b̄. (13)

As a side remark, reference Chen et al. [3] provides a specific example of A ∈ R3×3 so that ρ((L̄)−1R̄) >

1, which implies the divergence of the above iteration if the update order σ = (123) is used all the time.

This counterexample disproves the convergence of cyclic 3-block ADMM.

2.1.3 General Update Equation of RP-ADMM

In general, for the optimization problem (7), the primal update (5) becomes

−AT
σ(i)µ

k +AT
σ(i)(

i
∑

j=1

Aσ(j)x
k+1
σ(j) +

n
∑

l=i+1

Aσ(l)x
k
σ(l) − b) = 0, i = 1, . . . , n. (14)

Replacing σ(i), σ(j), σ(l) by i, j, l, we can rewrite the above equation as

−AT
i µ

k +AT
i (

∑

σ−1(j)≤σ−1(i)

Ajx
k+1
j +

∑

σ−1(l)>σ−1(i)

Alx
k
l − b) = 0, i = 1, . . . , n, (15)

where σ−1 denotes the inverse mapping of a permutation σ, i.e. σ(i) = t ⇔ i = σ−1(t). Denote the

output of Algorithm 1 after round (k − 1) as

yk , [xk;µk] =
[

xk
1 ; . . . ;x

k
n;µ

k
]

∈ R
2N×1. (16)

The update equations of Algorithm 1 for solving (7), i.e. (15) and (6), can be written in the matrix

form as (when the permutation is σ and β = 1)

yk+1 = L̄−1
σ R̄σy

k + L̄−1
σ b̄, (17)

where L̄σ, R̄σ, Lσ, Rσ, b̄ are defined by

L̄σ ,

[

Lσ 0

A IN×N

]

, R̄σ ,

[

Rσ AT

0 IN×N

]

, b̄ =

[

AT b

b

]

, (18)

in which Lσ ∈ RN×N has n× n blocks and the (i, j)-th block is defined as

Lσ[i, j] ,







AT
i Aj σ−1(j) ≤ σ−1(i),

0 otherwise.
(19)

and Rσ is defined as

Rσ , Lσ −ATA. (20)

Another expression of Lσ, equivalent to (19), is the following:

Lσ[σ(i), σ(j)] ,







AT
σ(i)Aσ(j) j ≤ i,

0 j > i,
(21)

10



To illustrate the above expression of Lσ, we consider the n-coordinate case that di = 1, ∀i. In this case,

each block xi is a single coordinate, and each Ai is a vector. Denote ai , Ai ∈ RN×1. Let Lσ(k, l)

denote the (k, l)-th entry of the matrix Lσ, then the definition (21) becomes

Lσ(σ(i), σ(j)) ,







aTσ(i)aσ(j) j ≤ i,

0 j > i,
(22)

A user-friendly rule for writing Lσ is described as follows (use σ = (231) as an example). Start from a

zero matrix. First, find all reverse pairs of σ; here, we say (i, j) is a reverse pair if i appears after j in

σ. For the permutation (231), all the reverse pairs are (1, 3), (3, 2) and (1, 2). Second, in the positions

corresponding to the reverse pairs, write down the corresponding entries of ATA, i.e. aT1 a3, a
T
3 a2 and

aT1 a2, respectively. At last, write aTi ai in the diagonal positions. Using this rule, we can write down

the expression of L(231) as

L(231) =







aT1 a1 aT1 a2 aT1 a3

0 aT2 a2 0

0 aT3 a2 aT3 a3






.

A user-friendly rule to quickly check the correctness of an expression of Lσ is the following (still take

σ = (231) as an example). According to the order of the permutation (231), the 2nd row, the 3rd row

and the 1st row should have a strictly decreasing number of zeros (2 zeros, 1 zero and no zero). In

contrast, the 2nd column, the 3rd column and the 1st column should have a strictly increasing number

of zeros.

For the general case that di ≥ 1, ∀i, we can write down the block partitioned Lσ in a similar way.

For example, when n = 3 and σ = (231), we have

L(231) =







AT
1 A1 AT

1 A2 AT
1 A3

0 AT
2 A2 0

0 AT
3 A2 AT

3 A3






.

2.2 Randomly Permuted BCD

RP-ADMM is a generalization of RP-BCD. In fact, when the constraint does not exist, RP-ADMM

reduces to RP-BCD. In this subsection, we present RP-BCD for solving convex quadratic problems.

Note that RP-ADMM for solving linear systems and RP-BCD fo solving quadratic problems are two

extremes of general RP-ADMM: in the former case the objective function is zero, and in the latter case

the constraint is zero. Interestingly, the two extreme cases are related as the expected iteration matrix

of RP-BCD appears as a component of the expected iteration matrix of RP-ADMM. We will show later

that their eigenvalues are closely related.

Consider a special case of (1) where f(x) = 1
2‖Ax − b‖2, Xi = Rdi , ∀i and there is no constraint.

With abuse of notation, we use A to denote the coefficient matrix, while in the original formulation A

denotes the constraint matrix. We “recycle” the notation A so that we can build a connection with RP-

ADMM for solving linear systems later. Assume N =
∑

i di. Then problem (1) becomes a least-squares

problem

min
x∈RN

1

2
‖Ax− b‖2 =

1

2
‖A1x1 + · · ·+ Anxn − b‖2 (23)

11



where Ai ∈ RN×di, xi ∈ Rdi×1, b ∈ RN×1. Similar to Section 2.1.1, we assume A is non-singular. Then

the unique solution to (8) is x = A−1b.

In the augmented Lagrangian function given in (9), if we delete the first term which depends on the

dual variable µ, we obtain the quadratic function 1
2‖Ax− b‖2. Thus if we eliminate the dual variable µ

in the update equations of RP-ADMM, we will obtain the update equations for RP-BCD. Suppose xk

is the iterate after the k-th epoch (i.e. go through all coordinates once), and σ is the order used in the

k-th iteration, then, as a simpler version of (17), we have

xk+1 = L−1
σ Rσx

k + L−1
σ b, (24)

where Lσ and Rσ are defined as in (21) and (20), and σ is a random permutation.

2.3 Residual Trick for Efficient Implementation of ADMM and BCD

We note here that when di = 1, ∀i (in this case BCD becomes CD), per-epoch computation time of

ADMM and CD (no matter what order) is O(n2); or in other words, per-coordinate-update time is

O(n). For instance, updating xk+1 by (24) in RP-BCD or updating yk+1 by (17) in RP-ADMM only

takes time O(n2). As mentioned in Section 3.1 of [40], the trick is to keep track of the residual. For

both efficient practical implementation and calculation of computation complexity, one should use this

residual trick, but for the ease of theoretical analysis we use the matrix update forms (17) and (24) in

this paper; there is no contradiction as our theory only depends on the value of xk but not the specific

procedure to compute xk.

For completeness, we briefly explain how this trick works in our settings. Suppose di = 1, ∀i, and
we use CD methods to solve (23) with a certain update order (could be any order, such as cyclic,

randomized or randomly permuted). Suppose the coordinate i is picked, then xi is updated by by

x+
i =

1

AT
i Ai

[AT
i (b −A−ix−i)], (25)

where A−i contains all columns of A except Ai, x−i contains all elements of x except xi and represents

the current values, and x+
i represents the new value. A straightforward implementation of (25) requires

multiplying x−i by A−i which takes O(n2) operations. With the residual trick (e.g. [40]), we introduce

the residual r = Ax− b, and replace (25) by

x+
i = xi −

1

AT
i Ai

AT
i r,

r+ = r +Ai(x
+
i − xi).

Now the calculation of xT
i and r+ takes time O(n), and thus one epoch of BCD takes time O(n2). The

same trick can be applied to the primal update of ADMM; with this trick, the dual update (6) can be

rewritten as µ+ = µ− βr which takes time O(n), and thus one epoch of ADMM takes time O(n2).

Finally, when di > 1, similar update equations can still be used except a minor difference that 1
AT

i
Ai

should be replaced by (AT
i Ai)

−1. In a special case that di = d, ∀i and N = dn, each iteration of BCD

takes time O(Nd + d3) and each epoch takes time O(N2 + Nd2). This cost can be reduced if we use

BCGD (i.e. not solving the subproblem exactly but updating each block of variables by a gradient

step). In order not to make the paper more complicated, we will not discuss the inexact versions of

BCD and ADMM in this paper.
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2.4 Two Versions of Independently Randomized ADMM

In this subsection, we present two other versions of randomized ADMMwhich can be divergent according

to simulations. The failure of these versions makes us focus on analyzing RP-ADMM in this paper.

These versions can be viewed as natural extensions of R-BCD (randomized BCD) [41] and [40].

In the first algorithm, called primal-dual randomized ADMM (PD-RADMM), the whole dual vari-

able is viewed as the (n + 1)-th block. In particular, at each iteration, the algorithm draws one index

i from {1, . . . , n, n + 1}, then performs the following update: if i ≤ n, update the i-th block of the

primal variable; if i = n+1, update the whole dual variable. The details are given in Algorithm 2. We

have tested PD-RADMM for the counter-example given in Chen et al. [3], and found that PD-RADMM

always diverges (for random initial points).

A variant of PD-RADMM has been proposed in Hong et al. [17] with two differences: first, instead of

minimizing the augmented Lagrangian L, that algorithm minimizes a strongly convex upper bound of L;
second, that algorithm uses a diminishing dual stepsize. With these two modifications, [17] shows that

each limit point of the sequence generated by their algorithm is a primal-dual optimum with probability

1. Note that [17] also proves the same convergence result for the cyclic version of multi-block ADMM

with these two modifications, thus it does not show the benefit of randomization.

Algorithm 2 Primal-Dual Randomized ADMM (PD-RADMM)

Iteration t (t = 0, 1, 2, . . . ):

Pick i ∈ {1, . . . , n, n+ 1} uniformly at random;

If 1 ≤ i ≤ n:

xt+1
i = argminxi∈Xi

L(xt
1, . . . , x

t
i−1, xi, x

t
i+1, . . . , x

t
n;µ

t),

xt+1
j = xt

j , ∀ j ∈ {1, . . . , n}\{i},
µt+1 = µt.

Else If i = n+ 1:

µt+1 = µt − β(
∑n

i=1 Aix
t+1
i − b),

xt+1
j = xt

j , ∀ j ∈ {1, . . . , n}.
End

In the second algorithm, called primal randomized ADMM (P-RADMM), we only perform random-

ization for the primal variables. In particular, at each round, we first draw n independent random

variables j1, . . . , jn from the uniform distribution of {1, . . . , n} and update xj1 , . . . , xjn sequentially,

then update the dual variable in the usual way. The details are given in Algorithm 3. This algorithm

looks quite similar to RP-ADMM as they both update n primal blocks at each round; the difference is

that RP-ADMM samples without replacement while this algorithm P-RADMM samples with replace-

ment. In other words, RP-ADMM updates each block exactly once at each round, while P-RADMM

may update one block more than one times or does not update one block at each round.

We have tested P-RADMM in various settings. For the counter-example given in Chen et al. [3], we

found that P-RADMM does converge. However, if n ≥ 30 and A is a Gaussian random matrix (each

entry is drawn i.i.d. from N (0, 1)), then P-RADMM diverges in almost all cases we have tested. This

phenomenon is rather strange since for random Gaussian matrices A the cyclic ADMM actually con-

verges (according to simulations). An implication is that randomized versions do not always outperform
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their deterministic counterparts in terms of convergence.

Since both Algorithm 2 and Algorithm 3 can diverge in certain cases, we will not further study them

in this paper. In the rest of the paper, we will focus on RP-ADMM (i.e. Algorithm 1).

Algorithm 3 Primal Randomized ADMM (P-RADMM)

Round k (k = 0, 1, 2, . . . ):

1) Primal update.

Pick l1, . . . , ln independently from the uniform distribution of {1, . . . , n}.
For i = 1, . . . , n:

t = kn+ i− 1,

xt+1
li

= argminxli
∈Xli
L(xt

1, . . . , x
t
li−1, xli , x

t
li+1, . . . , x

t
n;µ

t),

xt+1
j = xt

j , ∀ j ∈ {1, . . . , n}\{li},
µt+1 = µt.

End.

2) Dual update.

µ(k+1)n = µkn − β(
∑n

i=1 Aix
(k+1)n
i − b).

2.5 Bernoulli-Randomized ADMM

To implement randomly permuted ADMM, one needs to sample from all blocks without replacement.

To save the sampling time, we propose another algorithm which we call Bernoulli-randomized ADMM.

This algorithm is motivated by the proof of Theorem 1. This updating scheme can be applied to other

algorithms such as SGD and coordinate descent methods.

The new update order combines the well-known double-sweep order and Bernoulli-randomization.

The original double-sweep order is (1, 2, ..., n−1, n, n−1, n−2, ..., 1), meaning that x1, x2, . . . , xn−1, xn, xn−1, xn−2, . . . , x1

are updated sequentially in each “cycle”. It combines the normal cyclic order (1, 2, . . . , n) and a reverse

order (n, n− 1, . . . , 1). We propose the following updating scheme: add a check box to each block, and

in each cycle we perform the following operations.

1. Phase I: go through the blocks x1, x2, . . . , xn one by one sequentially as follows: for each block

xi, flip a fair coin and:

(a) if the outcome is “head”, update the block xi and check the check box;

(b) if the outcome is “tail”, do nothing about xi and uncheck the check box.

2. Phase II: go through the blocks xn, xn1 , . . . , x1 in the reverse order, and update xi if the box is

unchecked.

Note that in each cycle we go through each block twice but update each block exactly once so that

the number of totally updated blocks remains n. For example, when n = 5, (35421) is a possible update

order, as shown in the following diagram. Similarly, (13542) is also a possible update order. But (13524)

and (35412) are not possible. The set of all possible update orders is given by

ΓBR , {σ ∈ Γ | ∃ i ∈ {1, . . . , n− 1} such that σ(1) < σ(2) < · · · < σ(i) and σ(i+ 1) > · · · > σ(n)},
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1 2 3 4 5

Phase I begin skip → skip → 3 → skip → 5

↓
Phase II end 1 ← 2 ← skip ← 4 ← skip

where Γ is the set of permutations of {1, 2, . . . , n} as defined in (4). In other words, a sequence from

ΓBR is a concatenation of an increasing sequence and a decreasing sequence. Note that the permutation

(1, 2, ..., n) is in ΓBR since it can be viewed as the concatenation of an increasing sequence (1, 2, ..., n−1)

and a “decreasing sequence” (n), and we can let i = n − 1 in the above definition to cover this case.

Similarly, the permutation (n, n− 1, . . . , 1) is also in ΓBR as i = 1 will cover this case.

The algorithm Bernoulli-randomized ADMM (BR-ADMM) is formally described below. We skip

the epoch index k since otherwise the notation would be cumbersome.

Algorithm 4 n-block Bernoulli-Randomized ADMM (BR-ADMM)

Initialization: x0
i ∈ Rdi×1, i = 1, . . . , n; µ0 ∈ RN×1.

Round k (k = 0, 1, 2, . . . ):

1) Primal update.

Set ci = 0, i = 1, . . . , n.

Phase I.

For i = 1, 2, . . . , n:

Draw a random variable ξ ∼ Bernnolli(1/2), i.e. Pr(ξ = 1) = Pr(ξ = 0) = 1/2.

If ξ = 1: set ci = 1 and update xi by

xi ← arg min
xi∈Xi

L(x1, . . . , xi−1, xi, xi+1, . . . , xn;µ). (26)

Phase II.

For i = n, n− 1, . . . , 1: if ci = 0, update xi by (26).

2) Dual update. Update the dual variable by

µ← µ− β(

n
∑

i=1

Aixi − b). (27)

For solving linear systems of equations, the update formula is the same as (17), the update formula

of RP-ADMM. The difference is that for RP-ADMM σ can be an arbitrary permuation, while for

BR-ADMM there is some restriction on σ: it has to be a permuation in ΓBR.
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3 Main Results

3.1 Expected Convergence of RP-ADMM

Let σi denote the permutation used in round i of Algorithm 1, which is a uniform random variable

drawn from the set of permutations Γ. After round k, Algorithm 1 generates a random output yk+1,

which depends on the observed draw of the random variable

ξk = (σ0, σ1, . . . , σk). (28)

We will show that the expected iterate (the iterate yk is defined in (16))

φk = Eξk−1
(yk) (29)

converges to the primal-dual solution of the problem (7). Although the expected convergence does not

necessarily imply the convergence in a particular realization, it serves as an evidence of convergence.

Our proof seems much different from and more difficult than previous proofs for other randomized

methods, since random permutation, as well as spectral radius of non-symmetric matrices, are difficult

objects to deal with – not many existing mathematical tools are available to help 3. Note that the

extension of this result to the non-square full column-rank case is simple 4.

Theorem 1 Assume the coefficient matrix A = [A1, . . . , An] of the constraint in (7) is a non-singular

square matrix. Suppose Algorithm 1 is used to solve problem (7), then the expected output converges to

the unique primal-dual optimal solution to (7), i.e.

{φk}k→∞ −→
[

A−1b

0

]

. (30)

Since the update matrix does not depend on previous iterates, we claim (and prove in Section 4.1)

that Theorem 1 holds if the expected update matrix has a spectral radius less than 1, i.e. if the following

Theorem 2 holds.

Theorem 2 Suppose A = [A1, . . . , An] ∈ RN×N is non-singular, and L̄−1
σ , R̄σ are defined by (18) for

any permutation σ. Define

M , Eσ(L̄
−1
σ R̄σ) =

1

n!

∑

σ∈Γ

(L̄−1
σ R̄σ), (31)

where the expectation is taken over the uniform random distribution over Γ, the set of permutations of

{1, 2, . . . , n}. Then the spectral radius of M is smaller than 1, i.e.

ρ(M) < 1. (32)

3There has been some effort in using random matrix theory to tackle this problem but no progress has been reported

to our knowledge. This is partially due to the fact that the desired result seems to be rather tight such that even a small

relaxation can lead to failure.
4Suppose A is an m×n full column-rank matrix, where m ≥ n, and the system Ax = b is feasible. The update formula

is yk+1 = (I −L−1
σ ATA)yk, which is same as the update formula for solving a square system of equations Āx = b, where

Ā ∈ Rn×n is the square root matrix of the matrix ATA ∈ Rn×n. Now the matrix Ā is a square invertible matrix, thus

by applying the result for square system of equations, we can obtain the convergence of the sequence φk = E(yk).
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Remark 3.1 For the counterexample in Chen et al. [3] where A = [1, 1, 1; 1, 1, 2; 1, 2, 2], it is easy to

verify that ρ(Mσ) > 1.02 for any permutation σ of (1, 2, 3). Interestingly, Theorem 2 shows that even

if each Mσ is “bad” (with spectral radius larger than 1), the average of them is always “good” (with

spectral radius smaller than 1).

Theorem 2 is just a linear algebra result, and can be understood even without knowing the details

of the algorithm. However, the proof of Theorem 2 is rather non-trivial. This proof will be provided in

Section 4.2, and the technical results used in this proof will be proved in Section 5 and Section 6.

The convergence rate of RP-ADMM for solving linear systems of equations is closely related to

the convergence rate of RP-BCD (randomly permuted BCD) for solving quadratic problems. We will

discuss their relation and how our results in this paper improve our understanding for RP-BCD.

A similar convergence result holds for BR-ADMM proposed in Section 2.5, as presented below. The

proof is a simple modification of the proof of Theorem 1, and can be found in Section 6.4.

Proposition 1 Assume the coefficient matrix A = [A1, . . . , An] of the constraint in (7) is a non-

singular square matrix. Suppose Algorithm 4 is used to solve problem (7), then the expected output

converges to the unique primal-dual optimal solution to (7).

3.2 Expected Convergence Rate of RP-ADMM and RP-BCD

There is a close relation between RP-ADMM for solving linear systems and RP-CD for solving quadratic

problems (see Lemma 2). Thus it is not surprising that we need to understand RP-BCD before under-

standing RP-ADMM. We will first present an expected convergence rate of RP-BCD (in terms of the

expected iterates) for solving quadratic problems, which improves the best existing convergence rate

(one type of rates, to be precise) by a factor of n 5. The result is proved via establishing a weak version

of matrix AM-GM inequality. This result also establishes a large gap of O(n) between RP-BCD and

C-BCD (cyclic BCD). Second, built upon the result for RP-BCD, we establish a convergence rate of

RP-ADMM which is similar to RP-BCD and also n times better than that of C-BCD.

The first result is about the expected convergence rate of RP-BCD for the case AT
i Ai = I. This

assumption is made so that the expression is simple, and the case for general Ai is given in the next

result.

Theorem 3 (rate of RP-BCD for quadratic functions with identity diagonal blocks) Assume the coef-

ficient matrix A = [A1, . . . , An] is a non-singular square matrix, and AT
i Ai = I, ∀ i. Suppose RP-BCD

is used to solve problem (23), where xk denotes the variable after k epochs (each epoch represents one

cycle of updating all coordinates). Denote the unique optimal solution as x∗ = A−1b. Then

‖E(xk)− x∗‖ ≤ max

{

1− 1

n
λmin(AA

T ),
1

3

}k

‖x0 − x∗‖. (33)

To put this convergence rate result in the context, we consider the simple case that each di = 1,

i.e., each block consists of a single coordinate. In this case, every diagonal entry of ATA is 1, thus the

5Rigorously speaking, this is not a fair comparison as the complexity of C-CD is deterministic complexity.
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Table 1: Worst-case computation complexity comparison, using only κCD as parameter, for equal-

diagonal quadratic case (ignore O(log 1
ǫ ) factor), and consider the error in the expected iterates for

RP-CD
GD C-CD R-CD RP-CD (Theorem 3) RP-CD (conjectured)

Computation Complexity n3κCD n4κCD n2κCD n3κCD n2κCD

average eigenvalue of ATA is 1. Throughout the paper, we consider the total computation complexity
6; note that we assume the residual trick as described in 2.3 is always used for all methods.

Our Theorem 3 provides an expected computational complexity upper bound O(n3κCD log 1
ǫ ) for

RP-CD, since each epoch takesO(n2) time and it requiresO(n2 log 1
ǫ ) epochs to achieve error ǫ according

to (33). It is known that the computational complexity of R-CD (randomized coordinate descent) to

achieve relative accuracy ǫ 7 is O(n2κCD log 1
ǫ ), where κCD = λavg(A

TA)/λmin(A
TA) = 1/λmin(A

TA)

is the ratio of the average eigenvalue over the minimum eigenvalue. It was recently shown that in terms

of κCD and n only, the worst-case complexity of C-CD (cyclic CD) is O(n4κCD log 1
ǫ ), which is n2 times

worse than R-CD and n times worse than GD. This shows a large gap between C-CD and R-CD in the

worst case.

It was widely conjectured that RP-CD is at least as fast as R-CD, but this conjecture is considered to

be rather difficult to prove. For a special class of matrices, recent works [36,42] validated the conjecture.

However, to our knowledge, even for a general quadratic function with equal diagonal entries 1, the

previously best known convergence rate of RP-CD is almost the same as C-CD (see [35] [26]), which can

be n2 times worse than that of R-CD. Our Theorem 3 provides an expected computational complexity

upper bound O(n3κCD log 1
ǫ ) for RP-CD, which is n times faster than C-CD and n times slower than

R-CD. This improves the best existing rate by a factor of n 8. We summarize the comparison of the

complexity for C-CD, R-CD and RP-CD in Table 1.

The following proposition generalizes Theorem 3 to the non-identity-diagonal case, i.e., AT
i Ai does

not need to be an identity matrix.

Proposition 2 (rate of RP-BCD for quadratic functions, with non-identity blocks) Assume the

coefficient matrix A = [A1, . . . , An] is a non-singular square matrix. Suppose RP-BCD is used to

solve problem (23). Denote D = diag(AT
1 A1, . . . , A

T
nAn) as a block-diagonal matrix, and the norm

‖z‖D =
√
zTDz. Then

‖E(xk)− x∗‖D ≤ max

{

1− 1

n
λmin(D

1/2ATAD−1/2),
1

3

}k

‖x0 − x∗‖D. (34)

The proof of Proposition 2 is given in Section 4.4. One can easily transform the quantity λmin(D
1/2ATAD−1/2)

6The computation complexity equals the iteration complexity times the per-iteration cost. We do not present iteration

complexity since there may be confusion about whether “one iteration” means n coordinate updates or 1 coordinate

update. Presenting iteration complexity is better if one considers a general convex problem, but then one needs to discuss

the per-iteration cost. We are considering quadratic problems throughout the paper, so we feel it is more clear to stick

to computation complexity.
7Here, the relative accuracy ǫ means ‖E(xk)− x∗‖/‖x0 − x∗‖ or ‖E(f(xk)) − f∗‖/‖f(x0) − f∗‖.
8Note that this “improvement” is valid when the convergence rate is characterized by only κCD and n. It is common

to use other parameters such as the maximum eigenvalue to characterize the convergence rate (see [26] for a detailed

discussion), and our result here does not provide improvement for other kinds of convergence rate.
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to certain quantity that only depends on the eigenvalues of AT
i Ai and ATA. However, as noted in [26],

it is far from clear how tight the transformation is, thus we skip the transformation here. In fact, it is

related to some open question on the so-called Jacobi-preconditioning. We refer the interested readers

to [26] for a detailed discussion of the subtle issues in the non-identity-diagonal case.

At last, we present a result on the expected convergence rate of RP-ADMM for solving linear systems,

under the assumption that AT
i Ai = I, ∀i. Very similar to Proposition 2, we can also generalize this

result to non-identity-diagonal case, i.e., AT
i Ai 6= I, but to save space we skip the generalization here.

The proof of Theorem 4 is given in Section 4.5.

Theorem 4 (Expected convergence rate of RP-ADMM for linear systems) Assume the coefficient

matrix A = [A1, . . . , An] of the constraint in (7) is a non-singular square matrix and AT
i Ai = Idi

.

Suppose Algorithm 1 is used to solve problem (7). Denote y∗ =

[

A−1b

0

]

as the unique primal-dual

optimal solution to the problem (7), then

‖E(yk)− y∗‖ ≤
(

1− 1

2n
λmin(AA

T )

)k

‖y0 − y∗‖. (35)

This result implies that similar to RP-CD for solving quadratic problems, the complexity of RP-

ADMM in terms of the expected iterates for solving linear systems is also at most

TRP-ADMM = O(n3κCD log(1/ǫ)).

In light of the fact that C-CD has been shown to only achieve a rate O(n4κCD log(1/ǫ)) [26], the rate

of RP-ADMM we obtain is already quite good. Nevertheless, we conjecture that this complexity upper

bound can be improved to O(n2κCD log(1/ǫ)), the same as the conjectured complexity for RP-CD. But

an improved rate of RP-ADMM leads to an improved rate of RP-BCD (this should be clear via the

comparison of (50) and (57)), thus proving this conjecture is an even more difficult problem than the

long-standing open question on RP-CD.

3.3 Matrix AM-GM Inequality

To analyze the convergence rate of randomly permuted algorithms, one major technical challenge is

matrix AM-GM (algebraic mean-geometric mean) inequality. The following conjecture of matrix AM-

GM inequality was proposed in [37]: for any positive semi-definite matrix A1, . . . , An ∈ Rn×n,

‖ 1
n!

∑

σ=(σ1,...,σn)∈Γ

Aσn
Aσn−1 . . . Aσ1‖ ≤

∥

∥

∥

∥

∥

(

1

n

∑

i

Ai

)n∥
∥

∥

∥

∥

. (36)

The original version is more general: the number of matrices does not need to be the same as the

dimension of the matrix. For simplicity, we just present a simpler version here.

The matrix AM-GM inequality is a generalization of the well-known AM-GM inequality: for non-

negative numbers a1, . . . , an, the geometric mean (a1a2 . . . an)
1/n is no more than the algebraic mean

1
n

∑n
i=1 ai. When extending this inequality to matrix domain, the non-commutative nature of matrix

multiplication makes the problem rather difficult to prove.
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We observe that we only need to prove a matrix AM-GM inequality for projection matrices. We

conjecture that the following matrix AM-GM inequality holds.

Conjecture 3.1 (matrix AM-GM inequality for projection matrices) Suppose Pi ∈ RN×N , i =

1, . . . , n are projection matrices, then

1

n!

∑

σ=(σ1,...,σn)∈Γ

Pσn
Pσn−1 . . . Pσ1 �

(

1

n

∑

i

Pi

)n

. (37)

Compared with (36), our conjecture makes a stronger claim on the relation, but it only applies to

projection matrices. We have found examples to show that (37) does not hold for general positive

semi-definite matrices, but it holds for projection matrices in all of our experiments.

We are not able to prove the new conjecture – that would solve the open question of the best

convergence rate of RP-CD for quadratic problem. Nevertheless, inspired by the new conjecture, we

prove a weaker version (see Lemma 3), which can lead to an improved convergence rate estimate for

RP-CD.

4 Proof of Main Results

4.1 Proof of Theorem 1

Denote σk as the permutation used in round k, and define ξk as in (28). Rewrite the update equation

(17) below (replacing σ by σk):

yk+1 = L̄−1
σk

R̄σk
yk + L̄−1

σk
b̄. (38)

We first prove (30) for the case b = 0. By (18) we have b̄ = 0, then (38) is simplified to yk+1 =

L̄−1
σk

R̄σk
yk. Taking the expectation of both sides of this equation in ξk (see its definition in (28)), and

note that yk is independent of σk, we get

φk+1 = Eξk(L̄
−1
σk

R̄σk
yk) = Eσk

(

Eξk−1
(L̄−1

σk
R̄σk

yk)
)

= Eσk
(L̄−1

σk
R̄σk

φk) = Mφk.

Since the spectral radius of M is less than 1 by Theorem 2, we have that {φk} → 0, i.e. (30).

We then prove (30) for general b. Let y∗ = [A−1b; 0] denote the optimal solution. Then it is easy to

verify that

y∗ = L̄−1
σk

R̄σk
y∗ + L̄−1

σk
b̄

for all σk ∈ Γ (i.e. the optimal solution is the fixed point of the update equation for any order). Compute

the difference between this equation and (38) and letting ŷk = yk − y∗ , we get ŷk+1 = L̄−1
σk

R̄σk
ŷk.

According to the proof for the case b = 0, we have E(ŷk) −→ 0, which implies E(yk) −→ y∗.

4.2 Proof of Theorem 2

The difficulty of proving Theorem 2 (bounding the spectral radius of M defined in (31)) is two-fold.

First, M is a non-symmetric matrix, and there are very few tools to bound the spectral radius of a
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non-symmetric matrix. In fact, spectral radius is neither subadditive nor submultiplicative (see, e.g.

Kittaneh [43]). Note that the spectral norm of M can be much larger than 1 (there are examples that

‖M‖ > 2), thus we cannot bound the spectral radius simply by the spectral norm. Second, although it

is possible to explicitly write each entry of M as a function of the entries of ATA, these functions are

very complicated (n-th order polynomials) and it is not clear how to utilize this explicit expression.

The proof outline of Theorem 2 and the main techniques are described below. In Step 0, we provide

an expression of the expected update matrix M . In Step 1, we establish the relationship between the

eigenvalues of M and the eigenvalues of a simple symmetric matrix AQAT , where Q is defined in (39).

As a consequence, the spectral radius of M is smaller than one iff the eigenvalues of AQAT lie in the

region (0, 4/3). This step partially resolves the first difficulty, i.e. how to deal with the spectral radius

of a non-symmetric matrix. In Step 2, we show that the eigenvalues of AQAT do lie in (0, 4/3) using

mathematical induction. The induction analysis circumvents the second difficulty, i.e. how to utilize

the relation between M and A.

Step 0: compute the expression of the expected update matrix M . Define

Q , Eσ(L
−1
σ ) =

1

n!

∑

σ∈Γ

L−1
σ . (39)

It is easy to prove that Q defined by (39) is symmetric. In fact, note that LT
σ = Lσ̄, ∀σ ∈ Γ, where σ̄ is

a reverse permutation of σ satisfying σ̄(i) = σ(n+1− i), ∀ i, thus Q = 1
n!

∑

σ Qσ = ( 1
n!

∑

σ Qσ̄)
T = QT ,

where the last step is because the sum of all Qσ̄ is the same as the sum of all Qσ.

Denote

Mσ , L̄−1
σ R̄σ = L̄−1

σ

[

Rσ AT

0 I

]

. (40)

Substituting the expression of L̄−1
σ into the above relation, and replacing Rσ by Lσ −ATA, we obtain

Mσ =

[

L−1
σ 0

−AL−1
σ I

][

Lσ −ATA AT

0 I

]

=

[

I − L−1
σ ATA L−1

σ AT

−A+AL−1
σ ATA I −AL−1

σ AT

]

. (41)

Since Mσ is linear in L−1
σ , we have

M = Eσ(Mσ) =

[

I − Eσ(L
−1
σ )ATA Eσ(L

−1
σ )AT

−A+AEσ(L
−1
σ )ATA I −AEσ(L

−1
σ )AT

]

=

[

I −QATA QAT

−A+AQATA I −AQAT

]

.

(42)

Step 1: relate M to a simple symmetric matrix. The main result of Step 1 is given below, and the

proof of this result is relegated to Section 5.

Lemma 1 Suppose A ∈ R
N×N is non-singular and Q ∈ R

N×N is an arbitrary matrix. Define

M ∈ R2N×2N as

M =

[

I −QATA QAT

−A+AQATA I −AQAT

]

. (43)

Then

λ ∈ eig(M)⇐⇒ (1− λ)2

1− 2λ
∈ eig(QATA). (44)
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Furthermore, when Q is symmetric, we have

ρ(M) < 1⇐⇒ eig(QATA) ⊆ (0,
4

3
). (45)

Remark: For our problem, the matrix Q as defined by (39) is symmetric (see the argument after

equation (39)), thus the relation (45) indeed holds according to Lemma 1. For a general non-symmetric

Q, (45) does not need to hold, but the first conclusion (44) still holds.

Step 2: Bound the eigenvalues of QATA. The main result of Step 2 is summarized in the following

Lemma 2. The proof of Lemma 2 is given in Section 6.

Lemma 2 Suppose A = [A1, . . . , An] ∈ R
N×N is non-singular. Define Q as

Q , Eσ(L
−1
σ ) =

1

n!

∑

σ∈Γ

L−1
σ , (46)

in which Lσ is defined by (21) and Γ is defined by (4). Then all eigenvalues of QATA lie in (0, 4/3),

i.e.

eig(QATA) ⊆ (0,
4

3
). (47)

Remark: The upper bound 4
3 in (47) is probably tight, since we have found numerical examples with

eig(QATA) > 1.3333. Now the expected convergence of RP-ADMM seems to be a pleasant coincidence:

Lemma 1 shows that to prove the expected convergence we need to prove supA eig(QATA), a quantity

that can be defined without knowing ADMM, is bounded by 4/3; Lemma 2 and numerical experiments

show that this quantity happens to be exactly 4/3 so that RP-ADMM can converge (in expectation).

Theorem 2 follows immediately from Lemma 1 and Lemma 2.

4.3 Proof of Theorem 3

We first describe the outline of the proof. The expected update matrix of RP-BCD is I −QATA, and

the eigenvalues of this matrix lie in (−1, 1). The expected convergence speed of RP-BCD depends on

the distance between the eigenvalues and the two extremes −1 and 1. Lemma 2 shows that the distance

to −1 is at least 1/3, which is a constant. We will show that the distance to 1 is at least λmin(A
TA)/n,

by proving a weaker version of matrix AM-GM inequality. Combining the two results, we obtain the

expected convergence speed of RP-BCD.

The formal proof is presented below.

According to (24), we have xk+1 − x∗ = (I − L−1
σ ATA)(xk − x∗), where σ is the randomly picked

permutation at the k-th epoch. Therefore, the expected update formula of RP-BCD for solving the

least squares problem is

E(xk+1)− x∗ = (I −QATA)(E(xk)− x∗). (48)

It implies

‖E(xk+1)− x∗‖ ≤ ρ(I −QATA)‖E(xk)− x∗‖. (49)
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Suppose the eigenvalues of QATA are η1 ≥ η2 ≥ · · · ≥ ηn, then according to Lemma 2,

4/3 > η1 > · · · > ηn > 0.

The eigenvalues of I −QATA are

−1

3
< 1− η1 ≤ · · · ≤ 1− ηn < 1,

thus the spectral radius of I −QATA is

ρ(I −QATA) = max{1− ηn, |1− η1|} ≤ max{1− ηn,
1

3
} = max{λmax(I −QATA),

1

3
}. (50)

An interesting phenomenon occurs here. The spectral radius is either 1 − ηn or |1 − η1|. In the latter

case, ρ(I − QATA) = |1 − η1| ≤ 1/3, implying that ‖E(xk) − x∗‖ ≤ 1
3k
‖E(x0) − x∗‖, or equivalently,

the relative error |E(xk) − x∗‖/|E(x0) − x∗‖ achieves ǫ in log 3 log(1/ǫ) epochs. We do not even need

to compute η1 since it will only affect the convergence speed when the speed is already very fast. From

a theoretical perspective, the improvement from log 3 to log(1/(1− |1− η1|)) is just an improvment in

the constant. Therefore, it is reasonable to ignore η1 and focus on the estimate of 1− ηn.

To estimate the maximum eigenvalue of I − QATA (or equivalently, that of I − AQAT ), we first

provide a useful identity that connects I −AQAT and projection matrices Pi = I −AiA
T
i .

Claim 4.1 Suppose A = [A1, . . . , An] is a non-singular square matrix, and AT
i Ai = I, ∀ i. For a

permutation σ = (σ1, . . . , σn) ∈ Γ, Lσ is defined as in (21), and Qσ = L−1
σ . Denote Pi = I − AiA

T
i ,

i = 1, . . . , n. Then we have

I −AQσA
T = Pσn

Pσn−1 . . . Pσ1 , (51a)

I −AQAT =
1

n!

∑

σ=(σ1,...,σn)∈Γ

Pσn
Pσn−1 . . . Pσ1 . (51b)

The proof of Claim 4.1 is given at the end of this subsection. Claim 4.1 states that I − AQAT

is exactly equal to 1
n!

∑

σ=(σ1,...,σn)∈Γ Pσn
Pσn−1 . . . Pσ1 , thus we only need to estimate the maximal

eigenvalue of the latter expression. This is achieved by the following lemma (the proof is given in

Section 7.3).

Lemma 3 (weak matrix AM-GM inequality) Suppose Pi ∈ RN×N , i = 1, . . . , n are projection matri-

ces, then
1

n!

∑

σ=(σ1,...,σn)∈Γ

Pσn
Pσn−1 . . . Pσ1 �

1

n

∑

i

Pi. (52)

The above Lemma 3 and Claim 4.1 immediately lead to the following corollary.

Corollary 4.1 Suppose A = [A1, . . . , An] is a non-singular square matrix, and AT
i Ai = I, ∀ i. Suppose

Pi = I −AiA
T
i , ∀ i. Lσ is defined as in (21), and Q = Eσ(L

−1
σ ). Then

I −AQAT � 1

n

∑

i

Pi. (53)
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Note that 1
n

∑

i Pi =
1
n (nI −

∑

iAiA
T
i ) = I − 1

nAA
T , thus (53) implies

I −AQAT � I − 1

n
AAT ,

which implies

λmax(I −AQAT ) ≤ 1− 1

n
λmin(AA

T ). (54)

Substituting into (50), we get

ρ(I −QATA) ≤ max{λmax(I −QATA),
1

3
} ≤ max{1− 1

n
λmin(AA

T ), 1/3}.

Substituting this relation into (49), we obatain

‖E(xk+1)− x∗‖ ≤ max{1− 1

n
λmin(AA

T ),
1

3
}‖E(xk)− x∗‖.

Q.E.D.

Remark: There is a coefficient 1/n in front of λmin(AA
T ) in (54), and this is why the complexity of

RP-CD we establish is n times worse than the conjectured one in Table 1. If Conjecture 3.1 holds, then

this factor of 1/n would be removed and the conjectured (expected) complexity of RP-CD in Table 1

would hold.

4.3.1 Proof of Claim 4.1

We prove (51a) by induction on n. Without loss of generality, we can assume σ = (1, 2, . . . , n), then

Lσ =













AT
1 A1 0 . . . 0

AT
2 A1 AT

2 A2 . . . 0
...

...
. . .

...

AT
nA1 AT

nA2 . . . AT
nAn













. In this case, (51a) becomes

I −AL−1
σ AT = PnPn−1 . . . P1.

The expression obviously holds for n = 1. Suppose the expression holds for n − 1, i.e., for Â =

[A1, . . . , An−1], we have

Ẑ , I − ÂL̂−1
σ̂ ÂT = Pn−1 . . . P2P1, (55)

where σ̂ = (1, 2, . . . , n− 1) is a permutation of n− 1 elements and L̂σ̂ is the counterpart of Lσ for n− 1

blocks defined as

L̂σ̂ =













AT
1 A1 0 . . . 0

AT
2 A1 AT

2 A2 . . . 0
...

...
. . .

...

AT
n−1A1 AT

n−1A2 . . . AT
n−1An−1













.

The two matrices Lσ and L̂σ′ are related by

Lσ =

[

L̂σ̂ 0

AT
n Â I

]

,
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which implies

L−1
σ =

[

L̂−1
σ̂ 0

−AT
n ÂL̂−1

σ̂ I

]

.

Therefore we have

AL−1
σ AT = [Â, An]

[

L̂−1
σ̂ 0

−AT
n ÂL̂

−1
σ̂ I

]

[Â, An]
T = ÂL̂−1

σ̂ ÂT −AnA
T
n ÂL̂

−1
σ̂ ÂT +AnA

T
n

= Ẑ −AnA
T
n Ẑ +AnA

T
n

= I − (I −AnA
T
n )(I − Ẑ)

= I − PnPn−1 . . . P1,

where in the last step we use the induction hypothesis (55). Thus we have proved (51a). Summing up

(51a) for all possible permutations σ and divide by n!, we obtain (51b). ✷

4.4 Proof of Proposition 2

According to (48), the (expected) update equation of RP-BCD is given by E(xk+1) − x∗ = (I −
QATA)(E(xk)− x∗) = Z(E(xk)− x∗), where Z = I −QATA = I − E(L−1

σ ATA).

Consider a new coefficient matrix Ã = [Ã1, . . . , Ãn] where Ãi = Ai(A
T
i Ai)

− 1
2 . Clearly ÃT

i Ãi = Idi
.

Denote the corresponding matrices as L̃σ, Z̃. Define Λ , Diag((AT
1 A1)

1
2 , . . . , (AT

nAn)
1
2 ) = D1/2. When

σ = (1, 2, . . . , n), we have

Lσ =













AT
1 A1 0 . . . 0

AT
2 A1 AT

2 A2 . . . 0
...

...
. . .

...

AT
nA1 AT

nA2 . . . AT
nAn













, L̃σ =













ÃT
1 Ã1 0 . . . 0

ÃT
2 Ã1 ÃT

2 Ã2 . . . 0
...

...
. . .

...

ÃT
n Ã1 ÃT

n Ã2 . . . ÃT
n Ãn













= Λ−1LσΛ
−1.

It is not hard to verify that the above relation L̃σ = Λ−1LσΛ
−1 is true for any σ. Similarly, we have

ÃT Ã = Λ−1ATAΛ−1, thus

L̃−1
σ ÃT Ã = ΛL−1

σ ΛΛ−1ATAΛ−1 = ΛL−1
σ ATAΛ−1.

This implies

Z̃ = E(I − L̃−1
σ ÃT Ã) = Λ(I − E(L−1

σ ATA))Λ−1 = ΛZΛ−1.

Consider a sequence x̃k = Λxk and define x̃∗ = Λx∗. Then from the original update equation we have

Λ−1(E(x̃k+1)− x̃∗) = ZΛ−1(E(x̃k)− x̃∗), i.e.,

E(x̃k+1)− x̃∗ = ΛZΛ−1(E(x̃k)− x̃∗) = Z̃(E(x̃k)− x̃∗).

According to Theorem 3, we have

‖E(x̃k)− x̃∗‖ ≤
{

1− 1

n
λmin(Ã

T Ã),
1

3

}k

‖x̃0 − x̃∗‖. (56)

Note that ‖E(x̃k) − x̃∗‖ = ‖Λ(E(xk) − x∗)‖ =
√

(E(xk)− x∗)TΛ2E(xk)− x∗ = ‖E(xk) − x∗‖D, and

ÃT Ã = Λ−1ATAΛ−1 = D−1/2AT ÃD−1/2. Substituting into (56), we obtain the desired inequality.
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4.5 Proof of Theorem 4

Now we consider the expected convergence rate of RP-ADMM. The difference with the analysis for

RP-BCD is that here we need to consider the distance between the eigenvalues of I−AQAT with −1/3
while for RP-BCD what matters is the distance between the eigenvalues of I −AQAT and −1 which is

at least 2/3 and thus can be ignored.

Claim 4.2 Suppose the minimum and maximum eigenvalues of QATA are 0 < τmin ≤ τmax < 4/3.

Then

ρ(M) = max
{

√

(1− τmin)+, (τmax − 1)+ +
√

τmax(τmax − 1)+

}

,

where z+ = max{z, 0}. Furthermore, we have

ρ(M) ≤ max

{

1− 3

4
(4− 3τmax), 1− 1

2
τmin

}

. (57)

The proof of Claim 4.2 is given in Section 7.1. The next lemma provides a universal estimate of the

maximum eigenvalules of QATA.

Lemma 4 The maximum eigenvalues of QATA is at most 4
3 − 4

9
1

n+1 , i.e.,

τmax = λmax(QATA) ≤ 4

3
− 4

9

1

n+ 1
. (58)

The proof of Lemma 4 is given in Section 7.2

According to (54), which is established in the proof of the expected convergence rate of RP-BCD,

we have

τmin = λmin(QATA) ≥ 1

n
λmin(A

TA). (59)

Substituting the bounds (58) and (59) into (57), we obtain

ρ(M) ≤ max

{

1− 3

4
(4− 3τmax), 1− 1

2
τmin

}

= max

{

1− 1

n+ 1
, 1− 1

2n
λmin(A

TA)

}

. (60)

Since λmin(A
TA) ≤ 1, 1

2n ≤ 1
n+1 , this bound can be simplified to

ρ(M) ≤ 1− 1

2n
λmin(A

TA). Q.E.D.

Remark: The eigenvalues of QATA lie in the region (0, 4/3), which guarantees the expected con-

vergence of RP-ADMM. To obtain the expected convergence rate, we need to know the distance of

the spectrum to the two extremes 0 and 4/3. We conjecture that the bound can be improved to

ρ(M) ≤ 1 − 1
2λmin(A

TA). This requires more effort than the conjecture of RP-CD: besides showing

τmin ≥ O(λmin(A
TA)), we also need to show τmax ≤ 4

3 −O(λmin(A
TA)). This is left as future work.
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5 Proof of Lemma 1

The proof of Lemma 1 relies on two simple techniques. The first technique, as elaborated in the Step

1 below, is to factorize M and rearrange the factors. The second technique, as elaborated in the Step

2 below, is to reduce the dimension by eliminating a variable from the eigenvalue equation.

Step 1: Factorizing M and rearranging the order of multiplication. The following observation is

crucial: the matrix M defined by (43) can be factorized as

M =

[

I 0

−A I

] [

QAT I

I A

] [

−A I

I 0

]

.

Switching the order of the products by moving the first component to the last, we get a new matrix

M ′ ,

[

QAT I

I A

][

−A I

I 0

][

I 0

−A I

]

=

[

QAT I

I A

] [

−2A I

I 0

]

=

[

I − 2QATA QAT

−A I

]

. (61)

Note that eig(XY ) = eig(Y X) for any two square matrices, thus

eig(M) = eig(M ′).

To prove (44), we only need to prove

λ ∈ eig(M ′)⇐⇒ (1− λ)2

1− 2λ
∈ eig(QATA). (62)

Step 2: Relate the eigenvalues of M ′ to the eigenvalues of QATA, i.e. prove (62). This step is

simple as we only use the definition of eigenvalues. However, note that, without Step 1, just applying

the definition of eigenvalues of the original matrix M may not lead to a simple relationship as (62).

We first prove one direction of (62):

λ ∈ eig(M ′) =⇒ (1 − λ)2

1− 2λ
∈ eig(QATA). (63)

Suppose v ∈ C
2N×1\{0} is an eigenvector of M ′ corresponding to the eigenvalue λ, i.e.

M ′v = λv.

Partition v as v =

[

v1

v0

]

, where v1, v0 ∈ CN×1. Using the expression of M ′ in (61), we can write the

above equation as
[

I − 2QATA QAT

−A I

][

v1

v0

]

= λ

[

v1

v0

]

,

which implies

(I − 2QATA)v1 +QAT v0 = λv1, (64a)

−Av1 + v0 = λv0. (64b)

We claim that (63) holds when v1 = 0. In fact, in this case we must have v0 6= 0 (otherwise

v = 0 cannot be an eigenvector). By (64b) we have λv0 = v0, thus λ = 1. By (64a) we have

0 = QAT v0 = QATA(A−1v0), which implies (1−λ)2

1−2λ = 0 ∈ eig(QATA), therefore (63) holds in this case.
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We then prove (63) for the case

v1 6= 0. (65)

The equation (64b) implies (1 − λ)v0 = Av1. Multiplying both sides of (64a) by (1 − λ) and invoking

this equation, we get

(1 − λ)(I − 2QATA)v1 +QATAv1 = (1− λ)λv1.

This relation can be simplified to

(1− 2λ)QATAv1 = (1− λ)2v1. (66)

We must have λ 6= 1
2 ; otherwise, the above relation implies v1 = 0, which contradicts (65). Then (66)

becomes

QATAv1 =
(1 − λ)2

1− 2λ
v1. (67)

Therefore, (1−λ)2

1−2λ is an eigenvalue of QATA, with the corresponding eigenvector v1 6= 0, which finishes

the proof of (63).

The other direction 9

λ ∈ eig(M)⇐= (1− λ)2

1− 2λ
∈ eig(QATA) (68)

is easy to prove. Suppose (1−λ)2

1−2λ ∈ eig(QATA). We consider two cases.

Case 1: (1−λ)2

1−2λ = 0. In this case λ = 1. Since 0 = (1−λ)2

1−2λ ∈ eig(QATA), there exists v0 ∈ CN\{0}
such that QATAv0 = 0 and Let v1 = (0, . . . , 0)T ∈ C

N×1, then v0, v1 and λ = 1 satisfy (64). Thus

v =

[

v1

v0

]

∈ C2N\{0} satisfies Mv = λv, which implies λ = 1 ∈ eig(M).

Case 2: (1−λ)2

1−2λ 6= 0, then λ 6= 1. Let v1 be the eigenvector corresponding to (1−λ)2

1−2λ (i.e. pick v1 that

satisfies (67)), and define v0 = v1/(1− λ). It is easy to verify that v =

[

v1

v0

]

satisfies Mv = λv, which

implies λ ∈ eig(M).

Step 3: When Q is symmetric, prove (45) by simple algebraic computation.

Since Q is symmetric, we know that eig(QATA) = eig(AQAT ) ⊆ R. Suppose τ ∈ R is an eigenvalue

of QATA, then any λ satisfying (1−λ)2

1−2λ = τ is an eigenvalue of M . This relation can be rewritten as

λ2 + 2(τ − 1)λ+ (1− τ) = 0, which, as a real-coefficient quadratic equation in λ, has two roots

λ1 = 1− τ +
√

τ(τ − 1), λ2 = 1− τ −
√

τ(τ − 1). (69)

Note that when τ(τ − 1) < 0, the expression
√

τ(τ − 1) denotes a complex number i
√

τ(1 − τ), where

i is the imaginary unit. To prove (45), we only need to prove

max{|λ1|, |λ2|} < 1⇐⇒ 0 < τ <
4

3
. (70)

Consider three cases.

Case 1: τ < 0. Then τ(τ − 1) = |τ |(|τ | + 1) > 0. In this case, λ1 = 1 + |τ |+
√

|τ |(|τ | + 1) > 1.

9For the purpose of proving Theorem 2, we do not need to prove this direction. Here we present the proof since it is

quite straightforward and makes the result more comprehensive.
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Case 2: 0 < τ < 1. Then τ(τ − 1) < 0, and (69) can be rewritten as

λ1,2 = 1− τ ± i
√

τ(1− τ),

which implies |λ1| = |λ2| =
√

(1 − τ)2 + τ(1 − τ) =
√
1− τ < 1.

Case 3: τ > 1. Then τ(τ − 1) > 0. According to (69), it is easy to verify λ1 > 0 > λ2 and

|λ2| = τ − 1 +
√

τ(τ − 1) > 1− τ +
√

τ(τ − 1) = |λ1|.

Then we have

max{|λ1|, |λ2|} < 1⇐⇒ |λ2| = τ − 1 +
√

τ(τ − 1) < 1⇐⇒ 1 < τ <
4

3
.

Combining the conclusions of the three cases immediately leads to (70).

6 Proof of Lemma 2

This section is devoted to the proof of Lemma 2. We first give a proof overview in Section 6.1. The

formal proof of Lemma 2 is given in Section 6.2. The proofs of the technical results involved in the

proof are given in the subsequent subsections.

Without loss of generality, we can assume

AT
i Ai = Idi×di

, i = 1, . . . , n.

To show this, let us write Mσ,M as Mσ(A1, . . . , An) and M(A1, . . . , An) respectively, i.e. functions of

the coefficient matrix (A1, . . . , An). Define Ãi = Ai(A
T
i Ai)

− 1
2 and

D , Diag((AT
1 A1)

− 1
2 , . . . , (AT

nAn)
− 1

2 , IN×N ).

It is easy to verify that Mσ(A1, . . . , An) = D−1Mσ(Ã1, . . . , Ãn)D, which implies

M(A1, . . . , An) = D−1M(Ã1, . . . , Ãn)D.

Thus ρ(M(A1, . . . , An)) = ρ(M(Ã1, . . . , Ãn)). In other words, normalizing Ai to Ãi, which satisfies

ÃT
i Ãi = Idi×di

, does not change the spectral radius of M .

6.1 Proof Overview

In the proof overview, we discuss a few issues one may encounter when proving the result, and how we

resolve these issues.

The simulations show that ‖QATA‖ < 4
3 ≪ ‖Q‖‖ATA‖, thus we cannot relax ‖QATA‖ to the

product of ‖Q‖ and ‖ATA‖, and have to treat QATA as a single subject. However, each entry of QATA

is a complicated function (in fact, a high order polynomial) of the entries of ATA. In other words, Q is

like a black box. To open the “black box”, we use a simple expression of Z = I−AQAT proved in Claim
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4.1, i.e., Z = Eσ(Pσ1 . . . , Pσn
), where Pi = I − AiA

T
i is directly related to Ai. The problem becomes

how to connect the eigenvalues of Eσ(Pσ1 . . . , Pσn
) with those of AAT =

∑

i AiA
T
i = n−∑i Pi.

Although this is a clear linear algebra problem, it is not easy to obtain a lower bound ofEσ(Pσ1 . . . , Pσn
).

In fact, even though we know the eigenvalues of Z = Eσ(Pσ1 . . . , Pσn
) are lower bounded by −1 be-

cause RP-CD converges, it is not clear how to prove this lower bound directly from a linear algebra

perspective.

In our solution, we apply two tricks. The first trick is to view Eσ(Pσ1 . . . , Pσn
) as an induction

formula that connects it and its lower dimensional analogs. This is based on a simple observation that

any permutation (σ1σ2 . . . σn) can be written as the concatenation of (σ1σ2 . . . σn−1) and σn, thus the

expression of Z = Eσ(Pσ1 . . . , Pσn
) can be decomposed accordingly. We then reduce the problem to

bounding the eigenvalues of a Jordan product PnẐ + ẐPn, where Pn is a projection matrix and Ẑ is

the lower dimensional analog of Z. The second trick is to apply a formula on the eigenvalues of Jordan

product developed by Strang in 1962 [44]. Somewhat surprisingly, his formula exactly leads to the

desired lower bound of −1/3.

6.2 Proof of Lemma 2

The proof can be divided into three steps: first provide an alternative expression of AQAT , then prove

an induction formula, and finally apply Strang’s formula to perform mathematical induction. This

subsection contains the major part of the proof, and the intermediate technical results will be proved

in later subsections.

Step 0: Expression of I − AQAT . As proved in Claim 4.1, we have a simple expression of the

update matrix I −AQAT

I −AQAT =
1

n!

∑

σ=(σ1,...,σn)∈Γ

Pσn
Pσn−1 . . . Pσ1 .

Step 1: Induction formula.

For any k ∈ [n], define

Γk , {σ′ | σ′ is a permutation of [n]\{k}}. (71)

For any σ′ ∈ Γk, we define Lσ′ ∈ R
(N−dk)×(N−dk) as a (n− 1)× (n− 1) block-partitioned matrix, with

the (σ′(i), σ′(j))-th block being

Lσ′ [σ′(i), σ′(j)] ,







AT
σ′(i)Aσ′(j) i ≥ j,

0 i < j,
(72)

We then define Q̂k ∈ R
(N−dk)×(N−dk) by

Q̂k ,
1

|Γk|
∑

σ′∈Γk

L−1
σ′ , k = 1, . . . , n. (73)

Define Wk as the k-th block-column of ATA excluding the block AT
kAk, i.e.

Wk = [AT
k A1, . . . , A

T
kAk−1, A

T
k Ak+1, . . . , A

T
kAn]

T , ∀k ∈ [n]. (74)
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Based on the expression of I −AQAT presented before, we build a connection between the update

matrix I−AQAT and its lower dimensional analogs. The proof of Proposition 3 is given in Section 6.3.

Proposition 3 Define

Z = I −AQAT , Ẑk = I − ÂkQ̂kÂ
T
k ,

where Q is defined as in (39), Âk = [A1, . . . , Ak−1, Ak+1, . . . , An], and Q̂k is defined in (73), and

Pk = I −AkA
T
k . Then we have

Z =
1

2n

n
∑

k=1

(PkẐk + ẐkPk). (75)

Step 2: Applying Strang’s result on Jordan product to perform mathematical induction.

It is obvious that the product of two symmetric matrices is not necessarily symmetric, so it is

common to encounter the symmetrized product XY + Y X , which is called Jordan product of two

matrices X and Y . Our induction formula basically states that Z is the average of the Jordan product

of the lower dimensional analog and Pk.

The eigenvalues of the Jordan product of two matrices have been studied before. The following

result is proved in Strang [44].

Lemma 5 ( [44, Theorem 1]; eigenvalues of Jordan product) Suppose two symmetric positive-semidefinite

matrices X and Y satisfy

α1I � X � αnI, β1I � Y � βnI,

then the maximal (resp. minimal) eigenvalue of the Jordan product XY + Y X are the largest (resp.

smallest) of the set

{

2αiβj , i, j ∈ {1, n},
16α1αnβ1βn − (β1 − βn)

2(α1 − αn)
2

4(α1 + αn)(β1 + βn)

}

. (76)

Let us come back to the proof of Lemma 2. We use mathematical induction to prove Lemma 2. For

the basis of the induction (n = 1), Lemma 2 holds since QATA = Id1×d1 . Assume Lemma 2 holds for

n− 1, we will prove Lemma 2 for n.

Consider one term of (75) PkẐk + ẐkPk. Note that Pk = I −AkA
T
k is a projection matrix, since we

have assumed AT
k Ak = I. Combining with the induction hypothesis, we have

0 � Pk � I, −1

3
I ≺ Ẑk ≺ I.

Let α1 = 0, αn = 1, β1 = −1/3, βn = 1, then the set (76) becomes (keep the repeated values)

{0, 0,−2/3, 2,−2/3}.

Then by Lemma 5 we have

−1

3
I � 1

2
(PkẐk + ẐkPk) � I.
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Note that since by the induction hypothesis the eigenvalues of Ẑk cannot achieve the extreme values of

region (−1/3, 1), the eigenvalues of 1
2 (PkẐk + ẐkPk) also cannot 10. So we have

−1

3
I ≺ 1

2
(PkẐk + ẐkPk) ≺ I.

Thus according to (75) we have

−1

3
I ≺ Z ≺ I.

This finishes the induction step. Q.E.D.

Remark: Where does the magical number −1/3 come from? It is actually the strange and compli-

cated term
16α1αnβ1βn−(β1−βn)

2(α1−α2
n)

4(α1+αn)(β1+βn)
in Strang’s result (76), which occurs due to the special structure

of the Jordan product.

6.3 Proof of Proposition 3 (the induction formula)

It is easy to build an induction formula from the expression (51b). For example, when n = 3, the matrix
∑

σ Pσ1Pσ2Pσ3 can be decomposed as the sum of P1(P2P3 + P3P2) + (P2P3 + P3P2)P1 and two other

similar terms (changing the outside part P1 to P2, P3 and the inside part P2P3+P3P2 correspondingly).

The inside part P2P3 + P3P2 only involves two matrices, thus is a lower-dimensional analog. To make

this even easier to see, denote X = P1, Y = P2, Z = P3, then

2
∑

permutateX,Y,Z

XY Z = [X(Y Z + ZY ) + (Y Z + ZY )X ] + [Y (XZ + ZX) + (XZ + ZX)Y ]

+[Z(XY + Y X) + (XY + Y X)Z].

A rigorous argument based on the above intuition is given as follows. Applying the formula (51b)

to the matrix P1, . . . , Pk−1, Pk+1, . . . , Pn, and by the definition Âk = [A1, . . . , Ak−1, Ak+1, . . . , An] and

the definition of Q̂k in (73), we have

I − ÂkQ̂kÂk =
1

(n− 1)!

∑

σ=(σ1,...,σn−1)∈Γk

Pσn−1Pσn−1 . . . Pσ1 .

We then have

2(I −AQAT ) =
2

n!

∑

σ=(σ1,...,σn)∈Γ

Pσn
Pσn−1 . . . Pσ1

=
1

n

1

(n− 1)!

n
∑

k=1

∑

σ=(σ1,...,σn−1)∈Γk

(PkPσn−1Pσn−1 . . . Pσ1 + Pσn−1Pσn−1 . . . Pσ1Pk)

=
1

n

n
∑

k=1

(Pk(I − ÂkQ̂kÂ
T
k ) + (I − ÂkQ̂kÂk)Pk),

which is the desired formula.

10A more detailed argument is as follows. Since −I/3 � Ẑk, we can let β1 = −1/3 + ǫ for a sufficiently small positive

number ǫ, while keeping α1 = 0, αn = 1, βn = 1. The set (76) now becomes {0, 0,−2/3+2ǫ, 2,−
(4/3−ǫ)2

4(2/3+ǫ)
}. Both −2/3+2ǫ

and −
(4/3−ǫ)2

4(2/3+ǫ)
are strictly larger than 2/3, thus the extreme value −2/3 cannot be achieved. By a similar argument the

other extreme value 2 also cannot be achieved.
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6.4 Proof of Proposition 1

We provide the proof of the expected convergence of BR-ADMM here, as this proof is a slightly smaller

subset of the proof of Theorem 1. We will just describe the necessary modifications.

We only need to prove a similar version of Theorem 2, i.e., the spectral radius of the expected

update matrix of BR-ADMM is less than 1. Throughout the proof, we need to change the matrix

Q = 1
|Γ|
∑

σ∈Γ Qσ to another one defined as

QBR ,
1

|ΓBR|
∑

σ∈ΓBR

Qσ, (77)

where ΓBR denotes the set of all possible permutations according to the Bernoulli randomization rule.

It is easy to see that |ΓBR| = 2n. Other matrices such as M should be changed accordingly.

The proof of Theorem 2 mainly consists of Lemma 1 and Lemma 2. Since Lemma 1 has nothing

to do with the specific expression of Q, so we only need to prove Lemma 2 for BR-ADMM, i.e., the

matrix AQBRAT has all eigenvalues in the region (0, 4/3). Following the proof of Lemma 2, we divide

the proof into three steps.

Step 0: Expression of ZBR , I −AQBRAT . In Claim 4.1, we have prove the expression (51a) that

I −AQσA
T = Pσn

Pσn−1 . . . Pσ1 for any permutation σ, which implies

ZBR = I −AQBRAT (77)
=

1

2n

∑

σ∈ΓBR

Pσn
Pσn−1 . . . Pσ1 .

Step 1: Induction formula. Notice that a characteristic of the Bernoulli randomization rule is: the

first block is either updated first or updated last. For instance, when n = 4, (1, 3, 4, 2) is a feasible

permutation in ΓBR and (3, 4, 2, 1) is also a feasible permutation, but (3, 1, 4, 2) is not feasible. After

removing the first block, the rest n − 1 blocks form a permutation in Γ̂BR, where Γ̂BR is the set of

all permutation of 2, 3, . . . , n according to the Bernoulli randomization rule. In other words, we have

ΓBR = {(1, σ̂), (σ̂, 1), where σ̂ ∈ Γ̂BR}. Thus we have an induction formula

ZBR =
1

2n

∑

σ=(σ1,...,σn−1)∈Γ̂BR

(P1Pσn−1 . . . Pσ1 + Pσn−1 . . . Pσ1P1) =
1

2
(P1Ẑ

BR + ẐBRP1), (78)

where ẐBR is the lower dimensional analog of ZBR for the rest n − 1 blocks (after removing the first

block).

Step 2: Applying mathematical induction. This step is almost the same as Step 2 of the proof of

Lemma 2. More specifically, combining the induction hypothesis that eig(ẐBR) ∈ (−1/3, 1), Strang’s
result Lemma 5 and (78), we obtain the desired result eig(ZBR) ∈ (−1/3, 1). This finishes the proof.

7 Proof of Technical Results for Expected Convergence Rates

7.1 Proof of Claim 4.2

Suppose all the distinct eigenvalues of I − QATA are 0 < τN ′ < · · · < τ1 < 4/3, where 1 ≤ N ′ ≤ N .

Denote τmin = τN ′ , τmax = τ1. According to Lemma 1, the expected update matrix of RP-ADMM M
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has 2N ′ distinct eigenvalues λk,1, λk,2 given by

λk,1 = 1− τk +
√

τk(τk − 1), λk,2 = 1− τk −
√

τk(τk − 1), k = 1, . . . , N ′.

Suppose the integer m ∈ [1, N ′ + 1] satisfies τm ≤ 1 < τm−1. When m = 1, every τk ≤ 1; when

m = N ′ + 1, every τk > 1.

For N ′ ≥ k ≥ m, i.e., τk ≤ 1, we have τk(τk − 1) ≤ 0, thus the two corresponding eigenvalues of M

are

λk,1 = 1− τ ± i
√

τ(1 − τ), λk,2 = 1− τ ± i
√

τ(1− τ),

which implies |λk,1| = |λk,2| =
√

(1− τk)2 + τk(1 − τk) =
√
1− τk. Thus ρ1 = maxN ′≥k≥m{|λk,1|, |λk,2|} =√

1− τN ′ =
√
1− τmin if such k exists; when such k does not exist, i.e., τk > 1 ∀ k we denote ρ1 = 0

which equals
√

(1 − τmin)+. In summary, we have ρ1 =
√

(1− τmin)+.

For m− 1 ≥ k ≥ 1, i.e., τk > 1, we have τk(τk − 1) > 0. It is easy to verify λk,1 > 0 > λk,2 and

|λk,2| = τk − 1 +
√

τk(τk − 1) > 1− τk +
√

τk(τk − 1) = |λk,1|.

Denote ρ2 = maxm−1≥k≥1{|λk,1|, |λk,2|}, then ρ2 = maxm−1≥k≥1{|λk,2|} = maxm−1≥k≥1{τk − 1 +
√

τk(τk − 1)} = τmax−1+
√

τmax(τmax − 1) if such k exists; when such k does not exist, i.e., τk ≤ 1 ∀ k,
we denote ρ2 = 0 which equals (τmax − 1)+ +

√

τmax((τmax − 1)+).

Combining the two scenarios, we have ρ(M) = maxN ′≥k≥1{|λk,1|, |λk,2|} = max{ρ1, ρ2} = max{
√

(1− τmin)+, (τmax−
1)+ +

√

τmax((τmax − 1)+)}.

Next, we prove

(τmax − 1)+ +
√

τmax(τmax − 1)+ ≤ max

{

1− 3

4
(4 − 3τmax), 0

}

,

√

(1− τmin)+ ≤ 1− 1

2
τmin.

(79)

In fact, when 4/3 ≥ τ ≥ 1, we have 1 − (τ − 1 +
√

τ(τ − 1)) = 2 − τ −
√

τ(τ − 1) = (2−τ)2−τ(τ−1)

2−τ+
√

τ(τ−1)
=

3−4τ

2−τ+
√

τ(τ−1)
≥ 3

4 (3−4τ), thus τ−1+
√

τ(τ − 1) ≤ 1− 3
4 (3−4τ).When τ < 1, clearly τ−1+

√

τ(τ − 1) =

0. Thus (τ − 1)+ +
√

τ(τ − 1)+ ≤ max{0, 1 − 3
4 (4 − 3τ)}. For the second relation, if 0 ≤ τ < 1 then√

1− τ = 1− τ
1+

√
1−τ
≤ 1− τ

2 ; if 1 ≤ τ ≤ 4/3 then
√

(1− τ)+ = 0 < 1− 1
2τ. Thus

√

(1− τ)+ ≤ 1− 1
2τ

holds for any τ ∈ [0, 4/3].

Substituting (79) into the expression of ρ(M), we obtain the desired inequality

ρ(M) ≤ max

{

1− 3

4
(4− 3τmax), 1− 1

2
τmin

}

.

7.2 Proof of Lemma 4

This is one of the two main lemmas of proving the expected convergence rate of RP-ADMM (the other

is the expected convergence rate of RP-CD).

The proof outline of Lemma 4 and the main techniques are described below. The previous proof for

the expected convergence of RP-ADMM in Section 6 is not strong enough to prove a convergence rate.
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We have to obtain a more refined estimate of the spectral radius of AQAT . To do so, we transform the

induction formula in Proposition 3 to a “dual” form: instead of AQAT , we consider a similar matrix

QATA. We then apply the two simple techniques used in the proof of Lemma 1: factorize and rearrange,

and reduce the dimension by eliminating a variable from the eigenvalue equation. We obtain a somewhat

complicated inequality relating λmax(QATA) and its lower-dimensional analog λmax(Q̂ÂT Â). Finally,

we perform a detailed analysis of the inequality to prove the desired bound.

7.2.1 Step 1: Mathematical Induction and Induction Formula

Define a sequence {αk}∞k=1 such that

α1 = 1/3, αk+1 = h(αk) ,
αk

8

16− 3αk

2 + 3αk
. (80)

It is easy to verify that 0 < αk+1 < αk ≤ 1/3 for all k. The following claim provides a bound of αk

(the proof will be given in Section 7.2.4).

Claim 7.1 Suppose the sequence {αk}∞k=1 satisfies (80), then αk ≥ 4
9(k+1) , ∀ k ≥ 1.

According to this claim, to prove the desired result λmax(AQAT ) ≤ 4
3 − 4

9(k+1) , we only need to

prove the following result:

eig(AQAT ) ⊆ (0,
4

3
− αn]. (81)

We prove this result by mathematical induction. When n = 1, since ATA = AT
1 A1 = I, we have

λmin(AQAT ) = λmax(AQAT ) = 1 = 4
3 − α1.

Suppose the result holds for n − 1, i.e., for a problem with n − 1 blocks, the eigenvalues of the

corresponding matrix ÂQ̂ÂT lie in the region (0, 43 − αn−1).

Next, we build the induction formula, which is the dual form of the one we derived before. According

to (75), we have

2(I −AQAT ) =
1

n

n
∑

k=1

(Pk(I − ÂkQ̂kÂk) + (I − ÂkQ̂kÂk)Pk),

which can be rewritten as

AQAT =
1

n

n
∑

k=1

[

I − 1

2
Pk(I − ÂkQ̂kÂk)−

1

2
(I − ÂkQ̂kÂk)Pk

]

(82)

Note that

I − Pk(I − ÂkQ̂kÂk) = I − (I −AkA
T
k )(I − ÂkQ̂kÂ

T
k )

= AkA
T
k + ÂkQ̂kÂ

T
k −AkA

T
k ÂkQ̂kÂ

T
k

= [Âk, Ak]

[

Q̂k 0

−AT
k ÂkQ̂k I

]

[Âk, Ak]
T
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Thus the symmetrized version

I − 1

2
Pk(I − ÂkQ̂kÂk)−

1

2
(I − ÂkQ̂kÂk)Pk (83)

= [Âk, Ak]

[

Q̂k − 1
2 Q̂

T
k Â

T
kAk

− 1
2A

T
k ÂkQ̂k I

]

[Âk, Ak]
T (84)

= ĀkQkĀ
T
k , (85)

where in the last step we use the definitions

Āk , [Âk, Ak], Qk ,

[

Q̂k − 1
2 Q̂kWk

− 1
2W

T
k Q̂k Idk×dk

]

(86)

Sum up (85) for k = 1, . . . , n and applying (82), we have

AQAT =
1

n

n
∑

k=1

ĀkQkĀ
T
k . (87)

Consequently,

1

n

n
∑

k=1

λmin(ĀkQkĀ
T
k ) ≤ λmin(AQAT ) ≤ λmax(AQAT ) ≤ 1

n

n
∑

k=1

λmax(ĀkQkĀ
T
k ). (88)

To prove eig(AQAT ) ⊆ (0, 4
3 − αn], we only need to prove for any k = 1, . . . , n,

eig(ĀkQkĀ
T
k ) ⊆ (0,

4

3
− αn). (89)

Note that Q̂k only depends on the entries of ÂT
k Âk ∈ R(N−dk)×(N−dk) which has (n− 1)× (n− 1)

blocks, thus by the induction hypothesis, we have

eig(Q̂kÂ
T
k Âk) ⊆ (0,

4

3
− αn−1]. (90)

Proposition 4 Suppose A = [Ân, An] ∈ RN×N is a non-singular matrix, where Ân ∈ RN×(N−dn),

and An ∈ RN×dn satisfies AT
nAn = Idn×dn

. Suppose Q̂n ∈ R(N−dn)×(N−dn) is symmetric, satisfying

eig(AQ̂nA
T ) ⊆ (0,

4

3
− αn−1], (91)

where {αk} is defined in (80). Define

Wn , ÂT
nAn ∈ R

(N−dn)×dn , Qn ,

[

Q̂n − 1
2 Q̂nWn

− 1
2W

T
n Q̂n Idn×dn

]

. (92)

Then eig(AQnA
T ) ⊆ (0, 4

3 − αn].

The proof of Proposition 4 will be divided into two parts, and given in Section 7.2.2 and Section 7.2.3.

We claim that (89) follows from the induction hypothesis (90) and the expressions of Āk and Qk in

(86). In fact, the above proposition directly proves (89) for k = n. If we replace A, Ân, An, Q̂n, Qn by

Āk, Âk, Ak, Q̂k, Qk respectively in the following proposition, we will obtain (89) for any k. Finally, as

mentioned earlier, the desired result eig(AQAT ) ⊆ (0, 34 − αn] in Lemma 2 follows immediately from

(89) and (88).
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7.2.2 Step 2: Relation Between λmax(AnQAT
n ) and its analog

In this subsection, we provide a proof of a weaker result eig(AQnA
T ) ⊆ (0, 4

3 ) under the conditions

of Prop. 4; the proof of the desired result eig(AQnA
T ) ⊆ (0, 4

3 − αn] will be provided in the next

subsection.

For simplicity, throughout this proof, we denote

W , Wn ∈ R
(N−dn)×dn , Q̂ , Q̂n ∈ R

(N−dn)×(N−dn), Â , Ân ∈ R
N×(N−dn).

According to the assumption of Prop. 4, we have

λ̂ , λmax(AQ̂AT ) ∈ (0,
4

3
− αn−1]. (93)

We first prove

0 � Θ , WT Q̂W ≺ 4

3
I. (94)

Since eig(Q̂ÂT Â) ⊆ (0,∞) and Â is non-singular, thus Q̂ ≻ 0. Then we have Θ = WT Q̂W � 0, which

proves the first relation of (94). By the definition W = ÂTAn we have

ρ(Θ) = ρ(AT
n ÂQ̂ÂTAn) = max

v∈Rdn×1,‖v‖=1
vTAT

n ÂQ̂ÂTAnv

≤ ρ(ÂQ̂ÂT ) max
v∈Rdn×1,‖v‖=1

‖Anv‖2 = ρ(ÂQ̂ÂT )‖An‖2 = ρ(ÂQ̂ÂT ) <
4

3
,

(95)

where the last equality is due to the assumption AT
nAn = I, and the last inequality is due to the

assumption (91). By (95) we have Θ ≺ 4
3I, thus (94) is proved.

We apply a trick that we have previously used: factorize Qn and change the order of multiplication.

To be specific, Qn defined in (92) can be factorized as

Qn =

[

I 0

− 1
2W

T I

][

Q̂ 0

0 I − 1
4W

T Q̂W

][

I − 1
2W

0 I

]

= J

[

Q̂ 0

0 C

]

JT , (96)

where J ,

[

I 0

− 1
2W

T I

]

, I in the upper left block denotes the (N − dn)-dimensional identity matrix,

I in the lower right block denotes the dn-dim identity matrix, and

C , I − 1

4
WT Q̂W ∈ R

dn×dn . (97)

It is easy to prove

eig(AQnA
T ) ⊆ (0,∞). (98)

In fact, we only need to prove Qn ≻ 0. According to (96), we only need to prove

[

Q̂ 0

0 C

]

≻ 0. This

follows from Q̂ ≻ 0 and the fact C = I − 1
4W

T Q̂W
(94)
≻ I − 1

3I ≻ 0. Thus (98) is proved.

It remains to prove

ρ(AQnA
T ) <

4

3
. (99)
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Denote B̂ , ÂT Â ∈ R(N−dn)×(N−dn), then we can write ATA as

ATA =

[

B̂ W

WT I

]

. (100)

We simplify the expression of ρ(AQnA
T ) as follows:

ρ(AQnA
T ) = ρ

(

AJ

[

Q̂ 0

0 C

]

JTAT

)

= ρ

([

Q̂ 0

0 C

]

JTATAJ

)

. (101)

By algebraic computation, we have

JTATAJ =

[

I − 1
2W

0 I

] [

B̂ W

WT I

][

I 0

− 1
2W

T I

]

=

[

I − 1
2W

0 I

] [

B̂ − 1
2WWT W

1
2W

T I

]

=

[

B̂ − 3
4WWT 1

2W
1
2W

T I

]

,

(102)

thus

Y ,

[

Q̂ 0

0 C

]

JTATAJ =

[

Q̂ 0

0 C

][

B̂ − 3
4WWT 1

2W
1
2W

T I

]

=

[

Q̂B̂ − 3
4 Q̂WWT 1

2 Q̂W
1
2CWT C

]

. (103)

Suppose λ > 0 is the maximal eigenvalue of Y . According to (101) that ρ(AQnA
T ) = ρ(Y ), we also

have λ = λmax(AQnA
T ). To prove (99), we only need to prove

λ <
4

3
. (104)

Suppose v ∈ RN×1\{0} is the eigenvector corresponding to λ, i.e. Zv = λv. Partition v into

v =

[

v1

v0

]

, where v1 ∈ RN−dn , v0 ∈ Rdn . According to the expression of Z in (103), Zv = λv implies

(Q̂B̂ − 3

4
Q̂WWT )v1 +

1

2
Q̂Wv0 = λv1, (105a)

1

2
CWT v1 + Cv0 = λv0. (105b)

If λI − C is singular, i.e. λ is an eigenvalue of C, then by (94) we have 2
3I ≺ C = 1 − 1

4Θ � I, which

implies λ ≤ 1, thus (104) holds. In the following, we assume

λI − C is non-singular. (106)

An immediate consequence is

v1 6= 0,

since otherwise (105b) implies Cv0 = λv0, which combined with (106) leads to v0 = 0 and thus v = 0,

a contradiction.

By (105b) we get

v0 =
1

2
(λI − C)−1CWT v1.
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Plugging into (105a), we obtain

λv1 = (Q̂B̂ − 3

4
Q̂WWT )v1 +

1

2
Q̂W

1

2
(λI − C)−1CWT v1 = (Q̂B̂ + Q̂WΦWT )v1, (107)

where

Φ , −3

4
I +

1

4
(λI − C)−1C = −I + 1

4
[I + (λI − C)−1C]

= −I + λ

4
(λI − C)−1 = −I + λ[(4λ− 4)I +Θ]−1.

(108)

Here we have used the definition C = I − 1
4W

T Q̂W = I − 1
4Θ. Since Θ is a symmetric matrix, Φ is

also a symmetric matrix.

Define

H̃ , Q̂WΦWT ∈ R
(N−dn)×(N−dn), , H , WT Q̂WΦ = ΘΦ ∈ R

dn×dn . (109)

As a well-known linear algebra result, H̃ and H have the same non-zero eigenvalues. Note that

λmax(H) may not be equal to λmax(H̃) due to the possible zero eigenvalues. Nevertheless, we can

define λ+
max(X) , max{λmax(X), 0}, and then we have

λ+
max(H̃) = λ+

max(H).

According to (109) and (108), we know

H = ΘΦ = Θ(−I + λ[(4λ − 4)I +Θ]−1)

= −Θ+ λΘ[(4λ− 4)I +Θ]−1

= −Θ+ λ(I − (4λ− 4)([(4λ− 4)I +Θ]−1))

= −Θ+ λI − λ(4λ− 4)[(4λ− 4)I +Θ]−1.

It is well-known that if αI +Θ is invertible, then Θ has an eigenvalue θ iff (αI +Θ)−1 has an eigevalue

(α + θ)−1, and the corresponding eigen-vectors are the same. Similarly, since we already assumed

(4λ− 4)I + Θ is invertible, θ is an eigenvalue of Θ iff H = −Θ+ λI − λ(4λ − 4)[(4λ− 4)I + Θ]−1 has

an eigenvalue −θ + λ− λ(4λ − 4)[(4λ− 4) + θ]−1. Recall that Θ = WT Q̂W satisfies 0 � Θ � λ̂I, thus

any eigenvalue θ satisfies 0 ≤ θ ≤ λ̂. Therefore

λmax(H) ≤ max
θ∈[0,λ̂]

{−θ + λ− λ(4λ− 4)

(4λ− 4) + θ
} , g(θ). (110)

Since v1 6= 0, without loss of generality, we can assume ‖v1‖ = 1. We have

λ = vT1 Q̂B̂v1 + vT1 H̃v1 ≤ λ̂+ vT1 H̃v1 ≤ λ̂+ λ+
max(H̃) = λ̂+ λ+

max(H)

≤ λ̂+max{0, max
θ∈[0,λ̂]

{−θ + λ− λ(4λ− 4)

(4λ− 4) + θ
}},

(111)

where the first equality is due to (107), the first inequality is due to the induction hypothesis, the second

inequality uses the obvious relation λmax(H̃) ≤ λ+
max(H̃), and the last inequality is due to (110).

To prove (104), we consider two cases.

Case 1: maxθ∈[0,λ̂] g(θ) ≤ 0. In this case, λ ≤ λ̂ < 4/3, where the first inequality is due to (111),

and the second inequality is due to the induction hypothesis. Thus in Case 1 (104) holds.
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Case 2: maxθ∈[0,λ̂] g(θ) > 0. Then there exists some θ ≥ 0 such that g(θ) > 0. Note that g(θ) can

also be expressed as g(θ) = θ(−1 + λ
(4λ−4)+θ ), thus

− 1 +
λ

(4λ− 4) + θ
> 0. (112)

If λ < 1, then (104) already holds; so we can assume λ > 1. Thus (112) implies 1 < λ
(4λ−4)+θ ≤ λ

4λ−4 ,

which leads to λ < 4
3 . Thus in Case 2 (104) also holds. This finishes the proof of (104).

Remark: The proof of this subsection can lead to an alternative proof of Lemma 2. In particular,

the induction step (Step 2) of Section 6.2 can be replaced by the proof here. The proof presented

here is more complicated and less intuitive than the one in Section 6.2 (which is just a straightforward

application of Strang’s result Lemma 5, but the benefit is that it can help establish a stronger bound

of λ, as done in the next subsection.

7.2.3 Step 3: More Precise Bound of λ

We will continue the proof in Section 7.2.2, to further prove

λ = λmax(AQnA
T ) ≤ 4/3− αn. (113)

We rewrite (111) as follows:

λ ≤ λ̂+max{0, max
θ∈[0,λ̂]

g(θ)}, where g(θ) = λ− λ(4λ− 4)

4λ− 4 + θ
− θ. (114)

If λ < 1, then we are done since 1 ≤ 4/3− αn. Assume 1 ≤ λ < 4/3 from now on.

We first analyze the function g(θ). Taking the derivative of g, we get

g′(θ) =
λ(4λ− 4)

(4λ− 4 + θ)2
− 1 =

(
√

λ(4λ− 4) + 4λ− 4 + θ)(
√

λ(4λ− 4)− 4λ+ 4− θ)

(4λ− 4 + θ)2
.

Since λ > 1 and θ ≥ 0, the term in the first bracket in the numerator is positive. Define

θ∗ =
√

λ(4λ− 4)− 4λ+ 4 > 0,

where the inequality holds due to λ < 4/3. Then we have

g′(θ)







≥ 0, θ ≤ θ∗;

≤ 0, θ > θ∗.

Therefore, g(θ) is increasing in [0, θ∗] and decreasing in [θ∗,∞). This implies

g(θ) ≤ g(θ∗), ∀θ ≥ 0. (115)

According to 0 < λ < 4/3, we have λ >
√

λ(4λ− 4) = 4λ− 4 + θ∗ ⇒ −1 + λ
4λ−4+θ∗ > 0 ⇒ g(θ∗) > 0.

Together with (115) we obtain max{0,maxθ∈[0,λ̂] g(θ)} ≤ g(θ∗). Substituting into (114), we obtain

λ ≤ λ̂+ g(θ∗).
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We will derive an inequality on λ and λ̂ from the above relation as below. Substituting the expression

of g(·) into the relation, we obtain

λ ≤ λ̂+ λ− λ(4λ− 4)

4λ− 4 + θ∗
− θ∗ =⇒ λ̂ ≥ λ(4λ− 4)

4λ− 4 + θ∗
+ θ∗ =

√

λ(4λ− 4) + θ∗ = 2
√

λ(4λ− 4)− 4λ+ 4.

This implies

λ̂2 + (4λ− 4)2 + 2λ̂(4λ− 4) ≥ 4λ(4λ− 4)

⇐⇒ λ̂2 − λ2 + 2(λ̂− λ)(4λ − 4) + (λ− (4λ− 4))2 ≥ 0

⇐⇒ (λ̂ − λ)(λ̂+ λ) + 2(λ̂− λ)(4λ − 4) + (4− 3λ)2 ≥ 0. (116a)

Define

δ = 4/3− λ ∈ (0, 1/3), δ̂ = 4/3− λ̂ ∈ (0, 4/3). (117)

Substituting into (116a), we obtain

(δ − δ̂)(8/3− δ − δ̂) + (δ − δ̂)(8/3− 8δ) + 9δ2 ≥ 0

⇐⇒ (δ − δ̂)(16/3− 9δ − δ̂) + 9δ2 ≥ 0

⇐⇒ 16

3
δ − 16

3
δ̂ + 8δ̂δ + δ̂2 ≥ 0

⇐⇒ δ ≥ δ̂(16− 3δ̂)

8(2 + 3δ̂)
= h(δ̂).

It is easy to verify that h(t) is increasing in t ∈ [0, 4/3]; in fact, h′(t) = 36
(2+3t)2 −1 = (8+3t)(4−3t)

(2+3t)2 ≥ 0

for t ∈ [0, 4/3]. According to (93), we have δ̂ = 4/3 − λ̂ ≥ αn−1. Applying the monotonicity of h, we

have

δ ≥ h(δ̂) ≥ h(αn−1) = αn,

which combined with (117) leads to (113). This finishes the proof of Proposition 4.

7.2.4 Proof of Claim 7.1

Define another sequence as ωk = 16
3αk
− 9k. Then αk = 16

3
1

9k+ωk
and ω1 = 7, ω2 = 38/5. We then derive

the recurrence equation of ωk. According to (80), we have

16

3

1

9k + 9 + ωk+1
=

2

3

1

9k + ωk

16− 16/(9k + ωk)

2 + 16/(9k + ωk)
=

2

3

1

9k + ωk

16(9k + ωk − 1)

2(9k + ωk + 8)

=⇒9k + 9 + ωk+1 =
(9k + ωk)(9k + ωk + 8)

9k + ωk − 1

=⇒ωk+1 = ωk +
1

9k + ωk − 1
[(9k + ωk)(9k + ωk + 8)− (9k + ωk − 1)(9k + 9 + ωk)]

=⇒ωk+1 = ωk +
9

9k + ωk − 1
.

It is easy to see that ωk > 0⇒ ωk+1 > ωk > 0, thus

ωk > ω1 = 7, ∀ k.
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Furthermore, ωk+1 = ωk +
9

9k+ωk−1 ≤ ωk +
1
k , thus

ωk ≤ ω1 +

k−1
∑

j=1

1

j
≤ 8 + log(k − 1).

The lower bound and upper bound on ωk imply upper and lower bounds on αk:

16

3

1

9k + 7
≥ αk ≥

16

3

1

9k + 8 + log(k − 1)
. (118)

As a side comment, this implies that limk→∞ αk = 16
27k ≈ 0.59

k . For our purpose, we need a universal

lower bound on αk. When k ≥ 3, we have 3k ≥ 8 + log(k − 1), thus 12k ≥ 9k + 8 + log(k − 1), which

further implies
16

3

1

9k + 8 + log(k − 1)
≥ 4

9k
, ∀k ≥ 3.

Combining with the bound (118), we obtain

αk ≥
4

9k
>

4

9(k + 1)
, ∀ k ≥ 3.

Notice that α1 = 1
3 > 4

9 · 12 , and α2 = 5
24 > 4

9 · 13 , we have αk > 4
9(k+1) for any k ≥ 1. This finishes the

proof of the claim.

7.3 Proof of Lemma 3

We rewrite the lemma statement below. Suppose Pi ∈ RN×N , i = 1, . . . , n are projection matrices, then

the lemma claims that
1

n!

∑

σ=(σ1,...,σn)∈Γ

Pσn
Pσn−1 . . . Pσ1 �

1

n

∑

i

Pi. (119)

We first prove the case n = 2, n = 3 and n = 4, then prove the general case n = 2k and n = 2k + 1

separately.

When n = 2, (119) reduces to P1P2 + P2P1 � P1 + P2. Notice that Pi = P 2
i since Pi is a projection

matrix, we have P1+P2−P1P2+P2P1 = P 2
1 +P 2

2 −P1P2+P2P1 = (P1−P2)
2 = (P1−P2)

T (P1−P2) � 0.

When n = 3, (119) reduces to 1
6

∑

i,j,k are distinct PiPjPk � 1
3 (P1 + P2 + P3). Note that (Pi −

Pk)Pj(Pi − Pk) � 0, thus

PiPjPi + PkPjPk � PiPjPk + PkPjPi.

Summing up the above inequality for all possible triples (i, j, k), we get

∑

i6=j

PiPjPi �
∑

i,j,k are distinct

PiPjPk. (120)

We then need to bound the left-hand-side of the above inequality. Since I − Pj � 0, we have

Pi(I − Pj)Pi � 0, which implies Pi � PiPjPi. Summing up this inequality for all pairs i 6= j, we

obtain 1
6

∑

i6=j PiPjPi � 1
3 (P1 + P2 + P3). Combining with (120), we obtain the desired inequality

1
6

∑

i,j,k are distinct PiPjPk � 1
3 (P1 + P2 + P3).
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The proof for n = 4 illustrates partially the gist of a general proof, so we present this proof. When

n = 4, (119) reduces to 1
24

∑

i,j,k,l are distinct PiPjPkPl � 1
4 (P1 + P2 + P3 + P4). Similar to (120) in the

n = 3 case, we first prove

1

24

∑

i,j,k,l are distinct

PiPjPkPl ≤
1

12

∑

i6=j

PiPjPi. (121)

To prove this inequality, we need the following two basic inequalities:

(Pi − Pl)(Pj + Pk)
2(Pi − Pl) � 0,

(Pi + Pl)(Pj − Pk)
2(Pi + Pl) � 0.

Summing up these two inequalities, we can eliminate terms like PiPjPkPi (with three distinct sub-

scripts) and keep the terms like PiPjPi (with two distinct subscripts) and PiPjPkPl (with four distinct

subscripts), to obtain

PiPjPi + PiPkPi + PlPjPl + PlPkPl � PiPjPkPl + PiPkPjPl + PlPjPkPi + PlPkPjPi.

Summing up this inequality for all possible (i, j, k, l) that are distinct, we obtain (121). Similar to the

proof of n = 3 case, we have 1
12

∑

i6=j PiPjPi ≤ 1
4 (P1 + P2 + P3 + P4), thus combining with (121) we

obtain the desired result.

We next prove the case n = 2k, where k ≥ 2 is a positive integer. We will prove that

Eσ∈Γ(Pσn
Pσn−1 . . . Pσ1) � Eπ∈Γk

(Pπ1 . . . Pπk−1
Pπk

Pπk−1
. . . Pπ1), (122)

where Γk is the set of k-permutations of 1, 2, . . . , n (here, a k-permutation is a permutation of k dis-

tinct numbers chosen from 1, 2, . . . , n), and Eσ∈Γ and Eπ∈Γk
denote the expectation over a uniform

distribution on Γ and Γk respectively.

To prove (122), we need the following fact: for any ǫ = (ǫ1, . . . , ǫk) ∈ {1,−1}k, we have

Gσ,ǫ , (Pσn
+ ǫ1Pσ1 )(Pσn−1 + ǫ2Pσ2) . . . (Pσk+1

+ ǫkPσk
)(Pσk+1

+ ǫkPσk
) . . . (Pσn

+ ǫ1Pσ1) � 0. (123)

This relation holds because for any positive-semidefinite matrix X and any symmetric matrix Y , we

have Y XY = Y TXY � 0. Applying this fact k times leads to (123).

The expression of Gσ,ǫ in (123) involves 2k terms in the form of Pi1Pi2 . . . Pin . To prove (122), only

two terms are of interest to us. The strategy is to pick ǫi’s properly so that summing up a bunch of

relations of the form (123) will eliminate all but the two desired terms. We elaborate this strategy

below.

Define

Λk , {(ǫ1, . . . , ǫk) ∈ {1,−1}k | the number of − 1 in ǫ1, . . . , ǫk is odd},
Λc
k = {(ǫ1, . . . , ǫk) ∈ {1,−1}k | the number of − 1 in ǫ1, . . . , ǫk is even}.

For example, when k = 3, Λ3 = {(−1, 1, 1), (1,−1, 1), (1, 1,−1), (−1,−1,−1)}, and the complement

Λc
3 = {(1, 1, 1), (−1,−1, 1), (−1, 1,−1), (1,−1,−1)}. As a well-known fact,

|Λc
k| − |Λk| =

∑

i is even ,0≤i≤n,

(

n

i

)

−
∑

i is odd ,0≤i≤n

(

n

i

)

= (1 − 1)k = 0, (124)
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This matrix Gσ,ǫ can be expressed as the sum of 2k terms, and each term is of the form ±Pπ1 . . . Pπn
,

where πi ∈ {σi, σn+1−i}. For the fixed permutation σ, define a set

Ω(σ) = {(π1, . . . , πn) | πi ∈ {σi, σn+1−i}, ∀i}

We partition the set into three subsets:

Ω0(σ) = {(π1, . . . , πn) ∈ Ω | πi = πn+1−i, ∀i},
Ω1(σ) = {(π1, . . . , πn) ∈ Ω | πi 6= πn+1−i, ∀i},
Ω2(σ) = Ω\(Ω0 ∩ Ω1).

For most of the proof, we will use the abbreviation Ωt = Ωt(σ), t = 0, 1, 2. For any π = (π1, . . . , πn) ∈ Ω,

define an indicator vector of π as δ(π) = (δ1, . . . , δk), where each δi is determined by

δi = I(πi − πn+1−i) =







0, πi = πn+1−i,

1, πi 6= πn+1−i,
(125)

where I(z) equals 0 if z = 0 and equals 1 if z 6= 0, For example, when n = 6 and π = (σ1, σ2, σ3, σ4, σ2, σ6),

the corresponding indicator vector is (0, 0, 1); when π = (σ1, σ2, σ3, σ3, σ2, σ1), the indicator vector is

(0, 0, 0). Clearly, we have

δ(π) = (0, 0, . . . , 0), ∀π ∈ Ω0; δ(π) = (1, 1, . . . , 1), ∀π ∈ Ω1; δ(π) /∈ {0k, 1k}, ∀π ∈ Ω2. (126)

In the expression of Gσ,ǫ, half of the terms have coefficient 1 and the other half have coefficient

−1. To understand which terms have coefficient 1 and which have coefficient −1, consider a special

ǫ = (−1, 1, . . . , 1), i.e., ǫ1 = −1 and all other ǫi = 1. A term with coefficient −1 has the form

Pσ1Pπ2 . . . Pπn−1Pσn
or Pσn

Pπ2 . . . Pπn−1Pσ1 , i.e., with an indicator vector whose first element δ1 = 1,

and a term with coefficient 1 has the form Pσ1Pπn−1 . . . Pπ2Pσ1 or Pσn
Pπn−1 . . . Pπ2Pσn

, i.e., with an

indicator vector whose first element δ1 = 0. We can see that the coefficient is in fact ǫδ11 . For general

ǫ ∈ Λ and π ∈ Ω, the coefficient of Pπn
Pπn−1 . . . Pπ2Pπ1 in Gσ,ǫ is (ǫ1)

δ1 . . . (ǫk)
δk , where δ = δ(π) is

defined as in (125). We can then write the expression of Gσ,ǫ as

Gσ,ǫ =
∑

π∈Ω

ǫδ11 . . . ǫδkk Pπn
Pπn−1 . . . Pπ1 .

Summing up this relation for all ǫ in Λk, we have

∑

ǫ∈Λk

Gσ,ǫ =
∑

ǫ∈Λk

∑

π∈Ω

ǫδ11 . . . ǫδkk Pπn
Pπn−1 . . . Pπ1 =

∑

π∈Ω

Pπn
Pπn−1 . . . Pπ1

(

∑

ǫ∈Λk

ǫδ11 . . . ǫδkk

)

. (127)

Note that in this expression, δ1, . . . , δk depend on π.

Denote 0k = (0, 0, . . . , 0) ∈ Rk, 1k = (1, . . . , 1) ∈ Rk. Define

gk(δ) ,
∑

ǫ∈Λk

ǫδ11 . . . ǫδkk , hk(δ) ,
∑

ǫ∈Λc
k

ǫδ11 . . . ǫδkk .

For any δ 6= 0k, we have gk(δ) + hk(δ) =
∑

ǫ∈{1,−1}k ǫ
δ1
1 . . . ǫδkk = (1δ1 + (−1)δ1) . . . (1δk + (−1)δk) = 0,

thus

hk(δ) = −gk(δ), ∀δ 6= 0k. (128)
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It is easy to see that

1

|Λk|
gk(δ) =







1, δ = (0, 0, . . . , 0),

−1, δ = (1, 1, . . . , 1).
(129)

We will prove: for any δ /∈ {0k, 1k},

gk(δ) =
∑

ǫ∈Λk

ǫδ11 . . . ǫδkk = 0, (130)

We prove (130) by induction on k. When k = 2, Λ2 = {(−1, 1), (1,−1)}, we have:

when δ = (0, 1), g2(δ) = (−1)011 + 10(−1)1 = 1− 1 = 0,

when δ = (1, 0), g2(δ) = (−1)110 + 11(−1)0 = −1 + 1 = 0.

Assume (130) holds for k − 1, i.e.,

gk−1(δ̂) = 0, ∀ δ̂ ∈ {0, 1}k−1\{0k−1, 1k−1}. (131)

According to (128), we have

hk−1(δ̂) = 0, ∀ δ̂ ∈ {0, 1}k−1\{0k−1, 1k−1}. (132)

Now consider k. Since δ 6= 0k, there must exist some j such that δj = 1; without loss of generality, we

assume

δk = 1. (133)

Partition Γk into two sets:

Λk,1 , {ǫ ∈ Λk | ǫk = 1}, Λk,2 , {ǫ ∈ Λk | ǫk = −1}. (134)

If ǫ contains an odd number of −1 and the last element ǫk = 1 (or ǫk = −1), then the first k−1 elements

contain an odd (or even) number of −1. Thus

Λk,1 = {(ǫ̂, 1) | ǫ̂ ∈ Λk−1}, Λk,2 = {(ǫ̂,−1) | ǫ̂ ∈ Λc
k−1}.

Split gk(δ) into two parts gk(δ) = gk,1(δ) + gk,2(δ), where

gk,1(δ) =
∑

ǫ∈Λk,1

ǫδ11 . . . ǫδkk , gk,2(δ) =
∑

ǫ∈Λk,2

ǫδ11 . . . ǫδkk .

Denote δ̂ = (δ1, . . . , δk−1). We already assume δ 6= 1k and δk = 1, so we know

δ̂ 6= 1k−1. (135)

But it is possible that δ̂ = 0k−1. Consider two cases.

Case 1: δ̂ = 0k−1, i.e., δ = (0k−1, 1).

In this case

gk,1(δ) =
∑

ǫ∈Λk,1

ǫδ11 . . . ǫδkk =
∑

ǫ∈Λk,1

ǫ01 . . . ǫ
0
k−1ǫ

1
k =

∑

ǫ∈Λk,1

ǫ1k =
∑

ǫ∈Λk,1

11 = |Λk,1| = |Λk−1|,

gk,2(δ) =
∑

ǫ∈Λk,2

ǫδ11 . . . ǫδkk =
∑

ǫ∈Λk,2

ǫ01 . . . ǫ
0
k−1ǫ

1
k =

∑

ǫ∈Λk,2

ǫ1k =
∑

ǫ∈Λk,2

(−1)1 = −|Λk,2| = −|Λc
k−1|,
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Thus

gk(δ) = gk,1(δ) + gk,2(δ) = |Λk−1| − |Λc
k−1| = 0,

where the last step is due to (124).

Case 2: δ̂ 6= 0k−1. Together with (135), we have

δ̂ /∈ {0k−1, 1k−1}.

which enables us to apply the induction hypothesis (131) and its corollary (132). In fact,

gk,1(δ) =
∑

ǫ∈Λk,1

ǫδ11 . . . ǫδkk
(133),(134)

=
∑

ǫ∈Λk,1

ǫδ11 . . . ǫ
δk−1

k−1 1
1 =

∑

ǫ̂∈Λk−1

ǫ̂δ11 . . . ǫ̂
δk−1

k−1 = gk−1(δ̂)
(131)
= 0,

gk,2(δ) =
∑

ǫ∈Λk,2

ǫδ11 . . . ǫδkk
(133),(134)

=
∑

ǫ∈Λk,2

ǫδ11 . . . ǫ
δk−1

k−1 (−1)1 = −
∑

ǫ̂∈Λc
k−1

ǫ̂δ11 . . . ǫ̂
δk−1

k−1 = hk−1(δ̂)
(132)
= 0.

Thus gk(δ) = gk,1(δ) + gk,2(δ) = 0.

In both cases, we have proved gk(δ) = 0, which finishes the induction step. Therefore (130) holds

for any k.

Next, we analyze the sum
∑

ǫ∈Λk
Gσ,ǫ. According to (127), we have

∑

ǫ∈Λk

Gσ,ǫ =
∑

π∈Ω

Pπn
Pπn−1 . . . Pπ1

(

∑

ǫ∈Λk

ǫδ11 . . . ǫδkk

)

=
∑

π∈Ω

Pπn
Pπn−1 . . . Pπ1gk(δ(π))

(i)
=
∑

π∈Ω0

Pπn
Pπn−1 . . . Pπ1 · gk(0k) +

∑

π∈Ω1

Pπn
Pπn−1 . . . Pπ1 · gk(1k) +

∑

π∈Ω2

Pπn
Pπn−1 . . . Pπ1 · gk(δ(π))

(ii)
=
∑

π∈Ω0

Pπn
Pπn−1 . . . Pπ1 · |Γk|+

∑

π∈Ω1

Pπn
Pπn−1 . . . Pπ1 · (−1)|Γk|+

∑

π∈Ω2

Pπn
Pπn−1 . . . Pπ1 · 0

= |Γk|
(

∑

π∈Ω0

Pπn
Pπn−1 . . . Pπ1 −

∑

π∈Ω1

Pπn
Pπn−1 . . . Pπ1

)

.

where (i) is due to (126) and (ii) is due to (129), (130). According to (123), any Gσ,ǫ � 0, thus the

above relation implies the following important relation

∑

π∈Ω0

Pπn
Pπn−1 . . . Pπ1 �

∑

π∈Ω1

Pπn
Pπn−1 . . . Pπ1 (136)

Note that this relation holds for a fixed permutation σ and the corresponding set Ω0 = Ω(σ) and Ω1(σ).

Each π ∈ Ω0 corresponds to a k-permutation χ of (12 . . . n) determined by π = (χ1 . . . χk−1χkχkχk−1 . . . χ1)

and each π ∈ Ω1 corresponds to a permutation of (12 . . . n). We rewrite (136) as

∑

π∈Ω0(σ)

Pπn
Pπn−1 . . . Pπ1 �

∑

π∈Ω1(σ)

Pπn
Pπn−1 . . . Pπ1

and summing up this relation for all possible permutations σ ∈ Γ leads to

Eχ∈Γk
(Pχ1 . . . Pχk−1

Pχk
Pχk

Pχk−1
. . . Pχ1) � Eσ∈Γ(Pσn

Pσn−1 . . . Pσ1 ),
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which is exactly (122).

It remains to prove

Eχ∈Γk
(Pχ1 . . . Pχk−1

Pχk
Pχk−1

. . . Pπ1) �
1

n

∑

i

Pi. (137)

In fact, for any positive-semidefinite matrix X and any symmetric matrix Y , we have Y XY = Y TXY �
0. Applying this fact k − 1 times leads to (137).

Combining (122) and (137), we immediately obtain the desired result (119) for the case n = 2k.

The case that n = 2k − 1 is an odd number is almost the same, except that the key quantity Gσ,ǫ

is now defined as

Gσ,ǫ , (Pσn
+ ǫ1Pσ1) . . . (Pσk+1

+ ǫk−1Pσk−1
)Pσk

(Pσk+1
+ ǫk−1Pσk−1

) . . . (Pσn
+ ǫ1Pσ1 ). (138)

In words, we pair Pσi
with Pσn+1−i

for i = 1, . . . , k − 1 and leave Pσk
alone (following the same rule it

would have been paired with itself). The rest of the proof is almost the same as the even case, so we

skip it. Q.E.D.

8 Numerical Experiments

In this section, we test the performance of cyclic ADMM and RP-ADMM for solving various kinds

of linear systems. As a benchmark, we also test the gradient descent method (GD) with a constant

stepsize α = 1/λmax(A
′A) for solving the least square problem minx∈RN ‖Ax− b‖2/2. Of course there

are many other advanced algorithms for solving the least square problem such as the conjugate gradient

method, but we do not consider them since our focus is on testing the two ADMM algorithms. These

two ADMM algorithms can be used to solve far more general problems than just linear systems, and

we believe that the performance comparison for solving linear systems can shed light on more general

scenarios.

In the numerical experiments, we set b = 0, thus the unique optimal solution is x∗ = 0. The

coefficient matrix A will be generated according to one of the random distributions below:

• Gauss: independent Gaussian entries Ai,j ∼ N (0, 1).

• Log-normal: independent log-normal entries Ai,j ∼ exp(N (0, 1)).

• Uniform: each entry is drawn independently from a uniform distribution on [0, 1].

• Circulant Hankel: circulant Hankel matrix with independent standard Gaussian entries. More

specifically, generate δ1, δ2, . . . , δN ∼ N (0, 1) and let Ai,j = δi+j−1 (define δk = δk−N if k > N).

Note that the entries of the circulant Hankel matrix are not independent since one δi can appear

in multiple positions.

For the two ADMM algorithms, we only consider the n-coordinate versions, i.e. each block consists

of only one coordinate. We let the three tested algorithms start from the same random initial point
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y0 = [x0;λ0] (GD will start from x0). To measure the performance, we define the epoch complexity k

to be the minimum k so that the relative error

‖Axk − b‖/‖Ax0 − b‖ < ǫ,

where ǫ is a desired accuracy (we consider 10−2 and 10−311). For the two ADMM algorithms, one

epoch refers to one round of primal and dual steps; for GD, one epoch refers to one gradient step. The

total computation time should be proportional to the epoch complexity since GD and the two ADMM

variants have similar per-epoch cost12: a gradient descent step xk+1 = xk − αAT (Ax − b) contains

two matrix-vector multiplications and thus takes time 2N2 + O(N), and an ADMM round also takes

time 2N2 + O(N) (the primal update step of ADMM takes time 2N2 + O(N) and the dual update

step of ADMM takes time O(N)). We test 1000 random instances for N ∈ {3, 10} and 300 random

instances for N = 100, and record the geometric mean of the number of epochs. In the table, “Diverg.

Ratio” represents the percentage of tested instances for which cyclic ADMM diverges and “CycADMM”

represents “cyclic ADMM” (note that RP-ADMM converges in all instances we tested, so its divergence

ratio is 0). Note that for cyclic ADMM we only report the epoch complexity when it converges, while

for RPADMM and GD we report the epoch complexity in all tested instances. If restricting to the

successful instances of cyclic ADMM, we find that the epoch complexity of RPADMM does not change

too much, while the epoch complexity of GD will be reduced (significantly in some settings).

The simulation results are summarized in Table 2. The main observations from the simulation are:

• For all random distributions of A we tested, cyclic ADMM does not always converge even when

N is fixed to be 3. For N = 100 and many random distributions, cyclic ADMM diverges with

probability 1. This means that the divergence of cyclic ADMM is not merely a “worst-case”

phenomenon, but actually quite common. When the dimension increases, the divergence ratio

will increase.

• For standard Gaussian entries, cyclic ADMM converges with high probability. When cyclic

ADMM converges, it converges faster than RP-ADMM and sometimes much faster.

• RPADMM typically converges faster than the basic gradient descent method and sometimes more

than 10 times faster.

We have also tested BR-ADMM for solving the same problems, though the simulation results are

not listed in the above table. As expected, BR-ADMM also always converges for solving these linear

systems. The convergence speed is usually slower than RP-ADMM. Nevertheless, BR-ADMM can save

some sampling time compared to RP-ADMM, and may be more favorable if random permutation is

not available due to system architecture constraint. The detailed comparison of BR-ADMM and RP-

ADMM, and the design of other randomized schemes or even deterministic schemes that outperform

RP schemes are left as future work.

11For high accuracy such as ǫ = 10−6, it takes too many epochs for the algorithms to converge when n = 100 as most

matrices we generated are highly ill-conditioned, so we do not report the results. Based on the limited experiments for

high accuracy, similar gaps between RP-ADMM and GD are observed.
12In matlab simulations each epoch of GD takes much less time than a round of ADMM because matlab implements

matrix operations much faster than a “for” loop. For a more fair CPU time comparison, one should use other programming

languages such as C.
13For cyclic ADMM, only record the iteration complexity in convergent instances.
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Table 2: Results of Solving Linear Systems by Cyclic ADMM, RP-ADMM and GD. For the two

ADMM variants, one epoch refers to one round of primal and dual steps; for GD, one epoch refers to

one gradient step.

N Diverg. Ratio
Epochs for ǫ = 0.01 Epochs for ǫ = 0.001

CycADMM13 RPADMM GD CycADMM RPADMM GD

Gaussian

3 0.7% 1.4e01 3.4e01 5.0e01 3.2e01 8.8e01 1.4e02

10 1.1% 4.1e01 1.8e02 2.0e02 1.2e02 1.1e03 1.5e03

100 3% 1.7e02 4.3e02 3.6e02 1.0e03 7.4e03 6.5e03

Log-normal

3 0.8% 1.5e01 3.7e01 5.7e01 3.3e01 9.6e01 1.7e02

10 39.2% 1.2e02 3.4e02 6.4e02 3.2e02 2.4e03 6.3e03

100 100% N/A 5.5e02 5.4e03 N/A 8.8e03 1.0e05

Uniform

3 3.2% 2.8e01 7.4e01 1.5e02 7.0e01 2.6e02 6.0e02

10 83.0% 2.1e02 4.1e02 1.2e03 5.2e02 3.0e03 9.1e03

100 100% N/A 9.1e02 1.4e04 N/A 1.4e04 9.7e04

Circulant Hankel

3 5.6% 1.2e01 1.7e01 1.5e01 1.7e01 2.8e01 2.6e01

10 54.3% 4.2e01 6.0e01 6.5e01 7.5e01 1.3e02 1.7e02

100 100% N/A 1.3e02 1.7e02 N/A 2.9e02 6.5e02
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9 Concluding Remarks

In this paper, we prove the expected convergence of randomly permuted ADMM (RP-ADMM) for

solving a non-singular square system of equations (extension to non-square systems is straightforward).

We also prove a bound on the expected convergence rate of RP-ADMM for solving linear systems and

the expected convergence rate of RP-BCD for solving quadratic problems. The motivation is to resolve

the divergence issue of cyclic multi-block ADMM. Our result shows that RP-ADMM may serve as a

simple remedy, and we expect RP-ADMM to be one of the important solvers in large-scale optimization.

One interesting finding along the path is that the update matrix of RP-BCD has spectrum lying in

(−1/3, 1) instead of the commonly seen (−1, 1).

Randomly permutation is widely known to be empirically better than independently randomized

versions, but little was known about its theoretical properties in general. Note that most existing

analyses of BCD (e.g. [33–35]) are applicable to both the cyclic update rule and the random permutation

update rule. However, in light of a recent study which established an up to O(n2) gap between cyclic

CD and R-CD [26], it is unlikely that RP-CD will have the same rate as cyclic CD. Our result in this

paper established, for the first time, an O(n) gap between RP-CD and cyclic-CD for general quadratic

problems, making some progress towards the conjecture that RP-CD is faster than R-CD.

We emphasize that the convergence speed analysis of large-scale optimization has mostly been limited

to independently randomized update order in the past decade. Going beyond independent randomized

order is an important topic for enlarging the scope of large-scale optimization. Not only the analysis of

random permutation is quite challenging, even the analysis of the most classical cyclic order is highly

nontrivial [26]. There are quite a few open questions regarding the convergence rate of non-independent-

randomized order. Regarding the random permutation order, a very interesting open question is the

worst-case convergence rate of RP-BCD for quadratic problems. Due to the close relation with matrix

AM-GM inequality, this problem seems to be a quite fundamental problem. Moving to ADMM, the

similar questions about the convergence rate of various variants of ADMM, including RP-ADMM and

BR-ADMM, are also open.
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