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Abstract. We propose simple polynomial-time algorithms for two linear conic feasibility
problems. For a matrix A € R"*", the kernel problem requires a positive vector in the kernel
of A, and the image problem requires a positive vector in the image of AT. Both algorithms
iterate between simple first-order steps and rescaling steps. These rescalings improve

January 23, 2020 natural geometric potentials. If Goffin’s condition measure p, is negative, then the kernel

. e roblem is feasible, and the worst-case complexity of the kernel algorithm is O((m%n +
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in time O(m*n?log p;!). We also extend the image algorithm to the oracle setting. We
address the degenerate case p4 = 0 by extending our algorithms to find maximum support
nonnegative vectors in the kernel of A and in the image of AT, In this case, the running time
bounds are expressed in the bit-size model of computation: for an input matrix A with
integer entries and total encoding length L, the maximum support kernel algorithm runs
in time O((m*n + mn?)L), whereas the maximum support image algorithm runs in time
O(m?n’L). The standard linear programming feasibility problem can be easily reduced to either
maximum support problems, yielding polynomial-time algorithms for linear programming.
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1. Introduction

We consider two fundamental linear conic feasibility problems for an m X n matrix A. In the kernel problem, the
goal is to find a positive vector in ker(A), whereas in the image problem, the goal is to find a positive vector in
im(AT). These can be formulated by the following feasibility problems:

Ax=0

0 (K.t ATy>0 (Les)
We present simple polynomial-time algorithms for the kernel problem (K.,) and the image problem (I,.). Both
algorithms combine a first-order method with a geometric rescaling, which improves natural volumetric
potentials.

The algorithms we propose fit into a line of research developed over the past 15 years (Basu [2], Belloni et al. [3],
Betke [4], Chubanov [7, 8, 9], Dunagan and Vempala [15], Li et al. [22], Pefia and Soheili [27, 28], Roos [30],
Végh and Zambelli [35]). These are polynomial algorithms for linear programming (LP) that combine simple
iterative updates, such as variants of the perceptron (Rosenblatt [31]) or of the relaxation method (Agmon [1],
Motzkin and Schoenberg [23]), with some form of geometric rescaling.

Problems (K;;) and (I;+) have the following natural geometric interpretations. Let ay,...,a, denote the
columns of the matrix A. A feasible solution to (K;,;) means that 0 is in the relative interior of the convex hull
of the columns a;, whereas a feasible solution to (I,.) gives a hyperplane that strictly separates 0 from the
convex hull. We measure the running time of algorithms for (K.,) and (I) in terms of Goffin’s [18] condition
measure pa, where |p4| is the distance of 0 from the relative boundary of the convex hull of the vectors a;/||ai|,
ie[n]. If pa <0, then (K,) is feasible; if ps >0, then (I.) is feasible.

In case pa =0, 0 falls on the relative boundary of the convex hull of the 4;’s, and both problems (K,.) and
(I++) are infeasible. We extend our kernel and image algorithms to finding maximum support nonnegative vectors
in ker(A) and in im(AT), respectively. Geometrically, these amount to identifying the face of the convex hull
that contains 0 in its relative interior. By strong duality, the two maximum supports are complementary to
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eachother. Themaximumsupport problems provide fine-grained structural information on LP and are crucial forexact LP
algorithms (see, e.g., Vavasis and Ye [34]). With either the maximum support kernel or maximum support image
algorithm, one can solve a general LP feasibility problem of the form Ax <b via simple homogenization.
Although LP feasibility (and thus LP optimization) can also be reduced either to (K;.) or to (I+) via standard
perturbation methods (see, e.g., Schrijver [32]), this is not desirable for numerical stability. Furthermore, we
recall that the reduction from LP optimization to feasibility creates degenerate (i.e., non-full-dimensional)
systems by construction, and hence in this sense, most “interesting” LP feasibility problems are degenerate.

1.1. Previous Work

We give a brief overview of geometric rescaling algorithms that combine first-order iterations and rescalings.
The first such algorithms were given by Betke [4] and Dunagan and Vempala [15]. Both papers address the
problem (I..). The deterministic algorithm of Betke [4] combines a variant of Wolfe’s [36] algorithm with a
rank 1 update to the matrix A. Progress is measured by showing that the spherical volume of the cone ATy > 0
increases by a constant factor at each rescaling. This approach was further improved by Pefia and Soheili [27]
using different first-order methods, in particular, a smoothed perceptron algorithm (Nesterov [25], Soheili and
Pena [33]). Dunagan and Vempala [15] give a randomized algorithm, combining two different first-order
methods. They also use a rank 1 update, but a different one from Betke [4], and can show progress directly in
terms of Goffin’s [18] condition measure ps. The problem (I,.) has been also studied in the more general oracle
setting (Belloni et al. [3], Chubanov [10], Pefia and Soheili [27, 28]).

For (K, ), as well as for the maximum support version, a rescaling algorithm was given by Chubanov [9] (see
also Li et al. [22], Roos [30]). A main iteration of the algorithm concludes that in the system Ax =0,0 < x <¢,
one can identify at least one index i such that x; <1/2 must hold for every solution. Hence, the rescaling
multiplies A from the right-hand side by a diagonal matrix. (This is in contrast to the above-mentioned
algorithms, where rescaling multiplies the matrix A from the left-hand side.) The first-order iterations are von
Neumann steps on the system defined by the projection matrix.

The algorithm by Chubanov [9] builds on previous work by Chubanov [6, 7] on binary integer programs
and linear feasibility (see also Basu [2]). A more efficient variant of this algorithm was given by Végh and
Zambelli [35]. These algorithms use a similar rescaling, but for a nonhomogeneous linear system, and the first-
order iterations are variants of the relaxation method.

1.2. Our Contributions

We introduce new algorithms for (K,.) and (I,), as well as for their maximum support versions, and improve
on the previous best geometric rescaling algorithm running time bounds in each of the settings. For the kernel
problem, that is, if ps <0, we present a simple new algorithm whose running time analysis is based on a new
volumetric potential that serves as a proxy for |pal. In contrast, Chubanov [9], in essence, reduces the problem
to the image setting. Using a direct volumetric argument enables us to obtain a better running time in
O((m*n + mn*)log|pal|™) arithmetic operations.

For the image problem, that is, if ps >0, our new algorithm is an enhanced version of Betke’s [4] and Pefia and
Soheili’s [27] algorithms. In contrast to rank 1 updates used in these papers, we use higher-rank updates. The
running time of our algorithm is O(m?n?logpy'). This can be improved to O(m3n\/10gn -log p;ll) using
smoothing techniques (Nesterov [25], Soheili and Pefia [33], Yu et al. [38]). We also present an extension of our
algorithm for the case where the interior of a cone ¥ expressed by a separation oracle; the algorithm requires
O(m®log py') oracle calls and O(m®log py') arithmetic operations, where py is the cone width. This oracle
variant was used by Dadush et al. [12] to develop new polynomial and strongly polynomial algorithms for
submodular function minimization.

We can obtain algorithms for the maximum support versions in both settings by repeatedly applying the full
support algorithm and observing the rescaled length of the column vectors. We show that if a column vector
becomes too long in the kernel setting (or too short in the image setting) after a number of rescalings, then it
cannot be contained in the maximum support. Thus, we can remove such vectors and restart the algorithm.
For the maximum support image problem, we obtain the first rescaling algorithm.

These algorithms offer a particularly simple approach for degenerate problems, even though these typically
require substantial additional effort compared with the full-dimensional setting. For example, in the ellipsoid
method, the simultaneous Diophantine approximation technique is used (Grotschel et al. [19]). For interior
point methods, degeneracy must be dealt with both in the initialization phase, to set up a full-dimensional
auxiliary system, and in the termination phase, to round to the optimal face.
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The full support algorithms can be implemented in the real model of computation (Blum et al. [5]), and the
algorithms do not require an estimation of the value of |p4|. In contrast, for the maximum support algorithms,
we need bounds on the bit complexity of the input to determine the threshold for removing columns. Thus, we
assume that the input matrix A is an integer of total encoding length L. In this setting, |p4| > 27°") whenever
pa # 0. This provides running time bounds O((m*n +mn?)-L) for the full support kernel algorithm and

O(m3n\/logn . L) for the full support image algorithm in the bit-complexity model. For the maximum support

variants, the above-described column elimination method requires n calls to the full support algorithm in the
kernel setting and m calls in the image setting. In Appendix A, we present improved versions for the
maximum support variants of both the kernel and image problems that can be implemented in the same
asymptotic complexity as the respective full support variants. A summary of running times is given in Table 1.

The full support kernel algorithm was first presented in the conference paper by Dadush et al. [11]. The
image algorithm and the maximum support variants for both the kernel and dual problems are new in this
paper. The full support image algorithm was also independently obtained by Hoberg and Rothvof [20].

The rest of this paper is structured as follows. Section 1.3 introduces notation and important concepts.
Section 1.4 briefly surveys relevant first-order methods. In Sections 2 and 3, we give the algorithms for the full
support problems (K.,) and (I,.), respectively. These are extended in Section 4 to the maximum support cases.
Variants with improved running times are given in Appendix A.

1.3. Notation and Preliminaries

For a natural number #, let [n] = {1,2,...,n}. For a subset X C [n], we let Ax € R"Xl denote the submatrix
formed by the columns of A indexed by X. For any nonzero vector v € R”, we denote by © the normal vector in
the direction of v; that is,

A def O
U =—.
lloll

- ~ def
By convention, we also define 0 = 0. We let A = [a1,...,4,]. Note that given v, w € R"\{0}, 9T is the cosine of
the angle between them. Given a vector x € R", the support of x is the subset of [n] defined by

def .
supp(x) = {i € [n]:x; # 0}.
Let R = {x e R" : x > 0} and R, = {x € R" : x>0} denote the set of nonnegative and positive vectors in R",

f f
respectively. For any set H C R", we let H, LHn R} and H,. LHn R”,. These notations will be used in

particular for the kernel and image spaces
ker(A) dZEf{x eR":Ax=0}, im(A") d:ef{ATy :y € R"}.

Clearly, im(AT) = ker(A)*. Using this notation, (K,.) is the problem of finding a point in ker(A),,, and (I;)
amounts to finding a point in im(AT), .. By strong duality, (K.,) is feasible if and only if im(AT), = {0}; that is,

ATy >0, ()

Table 1. Running times of geometric rescaling algorithms. In the oracle setting, SO is the complexity of a separation oracle call.

Kernel problem

Full support Maximum support
O(n'8+3¢ . [12+2¢) (Basu [2], Chubanov [6]) O(n* - L) (Chubanov [9])
O([n®/logn] - L) (Végh and Zambelli [35]) O((m®n + mn2) - L) (this paper)

O(n* - L) (Chubanov [9])
O((m®n + mn?) - log |pal™") (this paper)

Image problem

Full support Full support oracle model Maximum support
O(m*n3 -log p;) (Betke [4]) O((SO - m® + m®)pzt) (Pefia and Soheili [27]) O(m3n1/logn . L) (this paper)
O(m*n logm - p;') (Dunagan and Vempala [15]) O((SO - m* + m®)pz') (Chubanov [10])

012 Togn - log ) (Pefia and Soheili [27]) O((SO - m? +mP)pg!) (this paper)

) (m3 ny/logn - log p;\l) (this paper)
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has no solution other than y € ker(AT). Similarly, (I,.) is feasible if and only if ker(A), = {0}; that is,

Ax =0,
x>0 &)
has no solution other than x = 0. Let us define

T4 déf{y eR": ATy > 0}
as the set of solutions to (I).

Let I; denote the d-dimensional identity matrix. Let ¢ denote the jth unit vector, and let ¢ denote the all-ones
vector of appropriate dimension (depending on the context). We denote by B the unit ball centered at the
origin in R?, and let v; = vol(BY).

Given any set C contained in R?, we denote by span(C) the linear subspace of R? spanned by the elements of
C. If C C R? has affine dimension r, we denote by vol,(C) the r-dimensional volume of C.

1.3.1. Projection Matrices. For any matrix A € R"*", we denote by IT, the orthogonal projection matrix to im(AT)
and by II§ the orthogonal projection matrix to ker(A). We recall that

I, = AT (AAT)+A, K =1, - AT (AAT)+A,

where (-)* denotes the Moore-Penrose pseudoinverse. Note that in order to compute I} and IT§, we do not
need to compute the pseudoinverse of AAT; instead, if we let B be a matrix comprised of rk(A) many linearly
independent rows of A, then I, = BT(BBT)~!B, which can be computed in O(n?m) arithmetic operations.

1.3.2. Scalar Products. We will often need to use scalar products and norms other than the Euclidean ones. Let
S4 and S7, be the sets of symmetric d x d positive semidefinite and positive definite matrices, respectively.
Given 1Q € S‘i Lowe denotle by Q% the ;quure root of Q, that is, the unique matrix in S‘i , such that Q = Q%Q%, and
by Q72 the inverse of 2. For Q € §¢, and two vectors v,w € R?, we let

def def
0w 0T Qu, Il ™ o, 0.

These define a scalar product and a norm over R?. We use || - ||; for the L'-norm and |||, for the Euclidean
norm. When there is no risk of confusion, we will simply write || - || for || - ||,. Furthermore, for any Q € §¢,, we
define the ellipsoid
def
EQ =z e R : |l <1},
and we recall that E(Q) = QB¢ and vol(E(Q)) = det(Q) v,.
We will use the following simple properties of matrix traces.

Lemma 1. Forany X € $¢,
a. det(l; + X) > 1 + tr(X).
b. det(X)V" < tr(X)/m.

Proof. Let Ay >A;>--->1;>0 denote the eigenvalues of X. (a) Then det(l;+X)=[]L,(1+A;)>1+
>4, A =1+ tr(X), where the equality is by the nonnegativity of the A; values. (b) By the inequality of arithmetic
and geometric means, det(X)"/" = ([T, A)V™ < 4, Ai/m = tr(X)/m. O

1.3.3. The Goffin Measure. The running times of our full support algorithms will depend on the following
condition measure introduced by Goffin [18]. Given A € R™", we define

def max mina . (1)

yeim(A\(0} jeln] !

We remark that, in the literature, A is typically assumed to have full row rank (i.e., rk(A) = m), in which case y
in the preceding definition ranges over all of R”. However, in some parts of this paper, it will be convenient
not to make such an assumption. The following lemma summarizes well-known properties of ps. The proof
will be given in Appendix B for completeness. For the matrix A, we let conv(A) denote the convex hull of the
column vectors of A.
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Lemma 2. For any A € R"™", |pa| equals the distance of O from the relative boundary of conv(A). Furthermore,

a. pa<0 if and only if O is in the relative interior of conv(A).

b. pa >0 if and only if O is outside conv(A). In this case, the Goffin measure pa equals the width of the image cone
Y4, that is, the radius of the largest ball in R™ centered on the surface of the unit sphere and inscribed in L.

The following quantities will be needed for bit complexity estimations. Assume that the m X n matrix A has
integer entries and encoding size L. Letting B = {B C [n]:|B| = rk(Ap)}, we define

1
Ay = I?e%sxg o] and 64 = A )

Lemma 3. Let A € Z"™" of total encoding length L. If pa # 0, then |pa| > 64 > 27

The proof can be found in Appendix B. Let us note that A4 and 64 can be efficiently computed. Indeed, the
value of A4 is the maximum weight base of a linear matroid and can be computed by the greedy algorithm in
O(m*n + nlogn) arithmetic operations because this amounts to sorting the columns of A according to their
length and then applying Gaussian elimination (which requires O(m?*1) operations).

1.4. First-Order Algorithms

Various first-order methods are known for finding nonzero solutions to (K) or to (I). Most algorithms assume either

the feasibility of (K;;) or the feasibility of (I,;). We outline the common update steps of these algorithms.
At every iteration, maintain a nonnegative, nonzero vector x € R", and let y = Ax. If y =0, then x is a

nonzero point in ker(A4),. If ATy >0, then ATy € im(A), . Otherwise, choose an index k € [n] such that a[y <0,

and update x and y as follows:

Y =ay + B, x’::ax+ie_}<, 3)
e

where a, >0 depend on the specific algorithm. Below we discuss various possible update choices.

1.4.1. Von Neumann Algorithm. The vector y is maintained throughout as a convex combination of 4y, ..., a,.
The parameters a, §>0 are chosen so that @ + f =1 and ||/|| is the smallest possible; that is, ¥ is the point of
minimum norm on the line segment joining y and 4. If we denote by y the vector at iteration ¢ and initialize
y' = & for an arbitrary k € [n], a simple argument shows that ||y < 1/V? (see Dantzig [14]). Epelman and
Freund [16] showed that if 0 is contained in the interior of the convex hull, that is, ps <0, then [|y/|| decreases by

a factor of /1 - p? in every iteration.

If 0 is outside the convex hull, that is, ps >0, then the algorithm terminates after at most 1/ pi iterations.
A recent result by Pefia et al. [29] gives a variant of the algorithm with a provable convergence guarantee in the
case pa =0, that is, if 0 is on the boundary of the convex hull.

Among the preceding geometric rescaling algorithms, variants of the von Neumann algorithm have been
used by Betke [4] for the case ps >0 and by Chubanov [9] for the case ps <0. We will use this method in our
image algorithm, that is, for ps >0.

We note that the von Neumann algorithm is the same as the Frank and Wolfe [17] conditional gradient
descent method with optimal step size for the quadratic program min ||Ax|[> subject to (s.t.) €'x =1,x > 0.

1.4.2. Perceptron Algorithm. The perceptron algorithm chooses a = =1 at every iteration. If p4 >0, then,
similarly to the von Neumann algorithm, the perceptron algorithm terminates with a solution to the system
(I++) after at most 1/p? iterations (see Novikoff [26]). The perceptron and von Neumann algorithms can be
interpreted as duals of each other (see Li and Terlaky [21]).

Soheili and Pefia [33] gave a smoothed variant of the perceptron update that guarantees termination in time
O(ylogn/|pa|) iterations. This was used in the polynomial-time rescaling algorithm (Pefia and Soheili [27]) for
pa>0. The same iteration bound O(+/logn/|pa|) was achieved by the Mirror Prox method of Yu et al. [38] by
adapting previous work of Nemirovski [24].

With a normalization to ¢'x = 1, the perceptron algorithm implements the Frank-Wolfe algorithm for the
same system, min [|Ax|?> s.t. €Tx = 1,x > 0, with step length 1/(k + 1) at iteration k. An alternative view is to
interpret the perceptron algorithm as a coordinate descent method for the system min||Ax|]* s.t. x > ¢, with
fixed step length 1 at every iteration.
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1.4.3. Dunagan and Vempala (DV) Algorithm. The first-order method used in Dunagan and Vempala [15] chooses
a=1landp = —(ﬁ,;ry). The choice of B is the one that makes ||y/’|| the smallest possible when a = 1. It follows that

ly'IP = 1yl + 28(@gy) + Bllal? =yl - 2@y)* + @{y)* = lylIP(1 - 3{7)?), and hence

Iyl = iyt = @3)> 4)

In particular, the norm of iy’ decreases at every iteration, and the larger the angle between a; and y, the larger is

the decrease. If ps <0, then |a[§| > |pal; therefore, this guarantees a decrease in the norm of at least /1 — p?.
This is a coordinate descent for the system min ||Ax|[? s.t. x > ¢ but with the optimal step length. One can also
interpret it as the Frank-Wolfe algorithm with the optimal step length for the same system.'
Whereas Dunagan and Vempala [15] used these updates for ps >0, we will use them in our kernel algorithm
for pa <0.

2. The Full Support Kernel Algorithm

The full support kernel algorithm (Algorithm 1) solves the full support problem (K., ); that is, it finds a point
in ker(A),,, assuming that ps <0 or, equivalently, ker(A),, # 0. We assume that the columns of input matrix A
are normalized; that is, A = A. However, this property does not hold throughout the algorithm because the
rescalings will modify the length of the columns. We use the parameter

def 1

&= T (5)

Algorithm 1 (Full Support Kernel Algorithm)
Input: A matrix A € R™" such that ps <0 and ||gj|| = 1 for all j € [n]
Output: A solution to the system (K,.)

1: Compute IT:=T1§ = I, - AT(AAT)*A

2: Set x;:=1 for all j € [n] and y:=Ax

3: while ITx#0 do

else
rescale A:= (I, + #i")A, y:=2y

4:  Let k::arge[n]lin@jTy
JEIN
5. if 4]y<—e then 1
‘ WY > AT \a
6: update x:=x — i 56, Y=Y — (@ y)ax
7- ak”
8:

return X =[x as a feasible solution to (K)

We use DV updates as the first-order method. We maintain a vector x € R”, initialized as x = e the co-
ordinates x; never decrease during the algorithm. We also maintain y = Ax, and a main quantity of interest is
the norm [ly||*. In each iteration of the algorithm, we check whether ¥ = Ix, the projection of x onto ker(A), is
strictly positive. If this happens, then X is returned as a feasible solution to (K..).

Every iteration performs either a DV update to x (line 6) or a rescaling of the matrix A (line 8). Because DV
updates are performed only for k € [n] satisfying 4]{< —¢, (4) ensures a substantial decrease in the norm,
namely

Iyl < IylIV1 = €. (6)

By contrast, rescalings are performed if ;z]Tg > —¢ for all j € [n], which implies that |p4] < €. In this case, we show
a substantial improvement in a volumetric potential. Let us define the polytope P4 as

Py def COHV(A) N (—COHV(A)). ()

The volume of P4 will be used as a proxy to |pa|. Indeed, from Lemma 2, [pa] is the radius of the largest ball
around the origin inscribed in conv(A), and this ball must be contained in Pj.
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Figure 1. Effect of rescaling. The dashed circles represent the points of norm 1. The shaded areas are P4 and Par.

The condition 4§ > —¢ for all j € [1n] implies that P4 is contained in a “narrow strip” of width 2¢, namely
PyC{zeR": —e <§Tz< e} If we replace A with the matrix A’ :=(I +79)")A, then Lemma 5 implies that
vol(Pa/) = %2vol(P,). Geometrically, A is obtained by applying to the columns of A the linear transformation
that “stretches” them by a factor of 2 in the direction of j (see Figure 1).

Thus, at every iteration, we either have a substantial decrease in the length of the current y, or we have a
constant factor increase in the volume of Pa.

The volume of P4 is bounded by the volume of the unit ball in R™ and initially contains a ball of radius |p4|
around the origin. Consequently, the number of rescalings cannot exceed mlog; , lpal™.

The norm |[ly|| changes as follows. In every iteration where the DV update is applied, the norm of |[y||
decreases by a factor of V1 — &2 according to (6). At every rescaling, the norm of ||y|| increases by a factor of 2.
Lemma 6 shows that once [|y|| <|pal| for the an initial value of |p4|, the algorithm terminates with x = ITx > 0. We

will prove the following running time bounds.

Theorem 1. For any input matrix A € R"™" such that ps <0 and ||aj|| = 1 for all j € [n], Algorithm 1 finds a feasible
solution of (Ky+) in O(m*logn +m3log|pal™') DV updates. The number of arithmetic operations is O(m*nlogn +
(mn + mn?)log |pal™).

Using Lemma 3, we obtain a running time bound in terms of bit complexity.

Corollary 1. Let A be an m x n matrix with integer entries and encoding size L. If ps <0, then Algorithm 1 applied to A
finds a feasible solution of (Ky4) in O((m>n + mn?)L) arithmetic operations.

2.1. Coordinate Descent with Finite Convergence

Before proceeding to the proof of Theorem 1, let us consider a modification of Algorithm 1 without any
rescaling. That is, at every iteration we perform a DV update (even if a{ > —¢ for all j € [n]) until [T§x > 0. We
claim that if ps <0, then the total number of DV steps is bounded by O(log(n/|pal)/p?3)-

This is in contrast to the von Neumann algorithm, which does not have finite convergence for p4 <0; this
aspect is discussed by Li and Terlaky [21]. Dantzig [13] proposed a finitely converging variant of the von
Neumann algorithm, but this involves running the algorithm m + 1 times, as well as an explicit lower bound
on the parameter |[ps|. Our algorithm does not incur a running time increase compared with the original
variant and does not require such a bound.

Let us now verify the running time bound of our variant. Again, let us assume that [laj]| = 1 for all j € [n] for

the input. It follows by (6) that the norm |[|y|| decreases by at least a factor of /1 — p} in every DV update.

Initially, |ly|| <7, and as shown in Lemma 6, the algorithm terminates with a solution IT§x >0 as soon as
llyll <|pal- This yields the bound O(log(1/|pal)/p%) on the number of DV steps.
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2.2. Analysis
We will use the following technical lemma.

Lemmad. Let X € R be a random variable supported on the interval [—¢, n], where 0 < ¢ < 1, satisfying E[X] = u. Then,
for any ¢ > 0, we have that E[V1 + cX2] < /1 + cne + [u)).

Proof. Letl(x) = Z%: V1 +ce? + e /1 + cn? denote the unique affine interpolation of V1 + cx? through the points

{-¢,n}. By the convexity of V1+cx?, we have that I(x) > V1+cx? for all xe[-¢n]. It follows
that E[V1 + ¢X?] < E[I(X)] = [(E[X]) = I(1), where the first equality holds because [ is affine. From here, we

get that
77 H 2 Hte ]
I(u) = 1+ce +’7+ 1+ cn?

\/1 + c(n B2y unz) (by concavity of Vx)

17+€ n+e

= \/1 +c(ne+(n—eu) < \/1 +on(e +|ul)  (because ¢ <n),

as needed. O

The crucial part of the analysis is to bound the volume increase of P4 at every rescaling iteration.
Lemma 5. Let A€ R™", and let r = rk(A). For some 0<e <1/(11r), let ve R™, ||v|| =1, such that a AT —&
forall j € [n]. Let T = (I +vo"), and let A’ = TA. Then

a. TPy C (1+3¢)Py.

b. If v € im(A), then vol,(Pa’) > %2vol,(Py).

Proof. (a) The statement is trivial if P4 = (; thus, we assume that P4 # (. Consider an arbitrary point z € P4. By
symmetry, it suffices to show that Tz € (1 + 3¢)conv(A’). By definition, there exists A € R} such that Z 1Aj=1and

z = Xj.y Ajilj. Note that
-—ZA,/1+3(U a2 .

Because Pa # 0, it follows that 0 € conv(A’); thus, it suffices to show that 2l Ay 1+3(0a)? <1+ 3e.
This express1on is of the form E[V1+3X2], where X is a random variable supported on [-¢,1], and [E[X]| =
|Z]:1/\ v a]| =|o"z|. Note that [v'z| <& because both z and -z are in P4. Hence, by Lemma 4,

n
D A1 +3(073)? < V1 +3(26) <1+ 3e.
=

(b) Note that vol,(TP,) = 2vol,(P4) as det(T) = 2. Thus, we obtain vol,(Pa) > 2vol,(P4)/(1 + 3¢)" > 32vol,(P4)
because (1 +3¢)" < (1+3/(11m)) </ <%, O

TZ—Z/\Ta] Z(

]_

Lemma 6. Let A € R™" with ||aj|| = 1 for all j € [n]. Given x € R" such that x > ¢, if |Ax|| <|pa,-a)l, then [Kx>0. In
particular, if pa <0, then TT§x >0 whenever ||Ax|| <|pal-

Proof. LetII:=TIX, and define 6 o minyepy [[(AAT) "] Observe that if || Ax|| < §, then ITx > 0. Indeed, for j € [n],
(Mx); = x; - aT(AAT)+y >1-[[(AAT)*aj|| ||[Ax||>1 - 6716 = 0, as required.

Thus it sufﬁces to show that 0 > |p4,-4)|- Let k:= arg maxje(,) [[(AAT)*ajl|, define z:= =(AA")*a;, and note that
|lzI]l = 1/6. Note that p(4 -4y <0; thus,

|P(A,—A>| = ~P@A-4A) =

v o) Jy| = max|” 2l = 61,“ax| Xl <6,

where the last inequality follows from the fact that |I1;] <1 for all i,j € [n]. The last part of the statement
follows from the fact that |pa| <|p,-a)l ©

Lemma 7. Let v € R", |[v|| = 1. For any y, i € R™ such that y = (I + vo")i, we have ||| < |lyll.
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Proof. We have [lyl* = [l + (@"7)olP = [7I* + 2(0"9)* + @"§)*[lol* > lI7IP. ©

Proof of Theorem 1. We use A for the input matrix and A for the current matrix during the algorithm so that, after
k rescalings, A = (I +v10]) -+ (I + v4v] )A for some vectors vy,..., v € im(A) with ||v;]| = 1 for i € [n].

Letp:=|psland IT:= Hg. Note that ker(A) = ker(A), and hence, TT§ =TT throughout the algorithm. The matrix I'l
needs to be computed only once, requiring O(n*m) arithmetic operations, which is clearly dominated by the stated
running time of the algorithm.

Let xand y = Ax be the vectors computed in every iteration, and define i/ := Ax and ¥ = ITx. Lemma 7 implies that
7l < |lyll; thus, it follows from Lemma 6 that ¥ >0 whenever ||y|| < p. This shows that the algorithm terminates with
the X to (Ki4) as soon as |ly|| < p.

As discussed previously, Lemma 5 implies that the number K of rescalings cannot exceed ntlog,, |p|™". At
every rescaling, |[y|| increases by a factor of 2. In every iteration where the DV update is applied, [|y|| decreases
by a factor of V1 — £2 according to (6). Initially, y = Aé; therefore, ||y|| < n because all columns of A have unit norm.
This shows that the number of DV iterations is bounded by x, where « is the smallest integer such that
n*(1 — 2)*4K < p2. Taking the logarithm on both sides and using the fact that log(1 — ¢2) < —¢?2, it follows that
x € O(m*(logn + K + log|p|™)) = O(m?logn + m>log |p[™}).

We can implement every DV update in O(n) time, at a cost of an O(n?) time preprocessing at every rescaling, as
explained next. After every rescaling, we compute the matrix F:= ATA and the norms of the columns of A.
Computing the norms requires O(nm) processing time. The matrix F is updated as F:= AT(I+#)")? A=AAT +
3(AT§)TA)=F+32z" /||ly|[?>, which requires O(n?) processing time.

Furthermore, at every DV update, we maintain the vectors z = ATy and X = I'lx. Using the vector z, we can
compute arg minje(, ﬁ]T}} = arg mine[, zj/|lajl| in time O(n) at any DV update. We also need to recompute y, z, and
x. Using F = [f1,...,fu], these can be obtained as y:=y — (fzgy)fzk, z:=z —fk(fz,Iy)/Hakll, and x:=x — Ik, y)/|laxll,
where IT; denotes the kth column of IT. These updates altogether take O(n) processing time.

Therefore, the number of arithmetic operations is O(n) times the number of DV updates plus O(n?) times the
number of rescalings. The overall running time estimate follows. O

3. The Full Support Image Algorithm
The image algorithm maintains a positive definite matrix Q, initialized as Q = I,,. We use the von Neumann
algorithm (Algorithm 2) as the first-order method, with the scalar product (:, -)o. Within O(m?) iterations, the
von Neumann algorithm obtains a vector y € conv(ai/||a1llg, - - -, au/llasllp) with ||y||Q < ¢. Then we update the
matrix Q using the coefficients of the convex combination.

Algorithm 2 is same as von Neumann’s algorithm as described by Dantzig [14], with the standard scalar
product replaced by (,-), for a matrix Q € S, and using the normalized columns 4;/l[a;[|o. We remark that
running the algorithm with (-, -),, is the same as running it for the standard scalar product for the unit vectors

Ql/zﬂi/”Ql/zﬂi“z-

Algorithm 2 (The von Neumann Algorithm)
Input: A matrix A € R™", a positive definite matrix Q € R™, and an ¢ >0
Output: Vectors x € R", y € R™ such that y = X, xia;/llail|o, ¢Tx=1,x >0, and either ATQy>0 or ||y||Q <e
1: Set x:=&1, y:=a1/|lmllg
2: while ||y||Q>e do
3. if (a,),>0 for all i € [n] then return x and y satisfying ATQy>0
4: Terminate
5: else Select k € [1] such that (ay, y}QS 0

(v~ a/llaello, ),

6: Let A:=

lly = ae/llaellolly .
7: update x:=(1-A)x+ A, y:=(1-A)y+A——
8: return the vectors (x,y) llaxll

Lemma8. Fora given ¢ >0, the von Neumann algorithm terminates in at most [1/&*] updates. Each iteration requires
O(n) arithmetic operations, provided that the matrix ATQA has been precomputed

Proof. The [1/£2] bound on the number of iterations is due to Dantzig [14]. If we maintain the vector z:= ATQy,
then checking whether (ui, y> 0> 0 for alli € [n] amounts to checking whether z > 0, which can be performed in time
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O(n). Recomputing x’":= (1 — A)x + A& and v’ := (1 — A)y + Aay/ llaxllg requires time O(n). Recomputing z’ =ATQy
requires computing z’":=(1 — A)z + AATQa;/ llaxllo, which can also be done in time O(n) provided that ATQA has
been precomputed. O

Algorithm 3 shows the full support image algorithm. We set the same ¢ = 11 as in the kernel algorithm. Without
loss of generality, we can assume that the matrix A has full row rank; that is, im(A) = R™.

Algorithm 3 (Full Support Image Algorithm)
Input: A matrix A € R™" such that rk(A) = m and (I;,) is feasible
Output: A feasible solution to ()

1: Set Q:=1,, R:=1,; call von NEumANN(4, Q, €) to obtain (x,y)

2: while ATQy # 0 do

3:  rescale

Ri= 1 R+Zn]—xi aal|; Q=R
C l+e iy ™) ST

i=1
4: Call von NEumAaNN(A, Q, €) to obtain (x,y)
return The feasible solution j:=Qy to (I+4)

Theorem 2. For any input matrix A € R™" such that tk(A) = m and (I;) is feasible, Algorithm 3 finds a feasible
solution to (I..) by performing O(m>log p,') von Neumann iterations. The total number of arithmetic operations is
O(m*n?log p,').

This will be proved in Section 3.1. Using Lemma 3, we obtain the running time in terms of the encoding
length L.

Corollary 2. Let A € Z"" be an integer matrix of encoding size L. If tk(A) = m and (I..) is feasible, then Algorithm 3 finds
a feasible solution of (I.+) in O(m*n*L) arithmetic operations.

In this framework, the only important property of the von Neumann algorithm is that it delivers a vector
y € conv(ai/|laillg, - .., an/llanllg) with [lyl| < O(1/m) in time polynomial in 7 and n. This can be also achieved
using other first-order methods, such as the perceptron algorithm, the DV updates, or Wolfe’s [36] nearest-
point algorithm. The best running times can be obtained using the smoothed perceptron algorithm of Soheili
and Pena [33] or the Mirror Prox for feasibility problems by Yu et al. [38].

Theorem 3. For any input matrix A € R"™" such that rk(A) = m and (IL,) is feasible, Algorithm 3 with the smoothed
perceptron of Soheili and Peria [33] or the Mirror Prox method of Yu et al. [38] finds a feasible solution to (I,.,) by performing
O (mlelog n-log pgl) iterations. The number of arithmetic operations is O(m3n\/10g n-log pgl). If A € Z™" is an integer
with encoding length L, then the running time is O(m3n logn - L).

The main difference between Algorithm 3 and the algorithms by Betke [4] and Pefia and Soheili [27] is the
use of a multirank rescaling, as opposed to rank 1 updates. The multirank rescaling allows for a factor of n
improvement in the overall number of iterations. Although we use a similar volumetric potential, the

multirank update guarantees a constant factor decrease in potential (Lemma 11) whenever in the algorithm
||]/||Q € O(1/m), whereas the rank 1 update provides the same guarantee only when ||y||Q € O(1/(m~/n)).

3.1. Analysis
It is easy to see that the matrix R remains positive semidefinite throughout the algorithm and admits the
following decomposition.

Lemma 9. At any stage of the algorithm, we can write the matrix R in the form
n
R = Oélm + Z )/iflifl;r,
i=1
where a=1/(1+¢)" for the total number of rescalings t performed thus far, and y;>0. The trace is tr(R) =am+ X, ;.
Recall that we denote by L4 = {y € R" : ATy > 0} the image cone. Let us define the set
Fo=XsNDB". (8)
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The ellipsoid E(R) = {z € R™ : ||z]| < 1} plays a key role in the analysis because of the following properties.
Lemma 10. Throughout Algorithm 3, F4 C E(R) holds.

Proof. The proof is by induction on the number of rescalings. At initialization, F4 € E(I,,) = B™ is trivial. Assume
that F4 C E(R), and we rescale R to R’. We show that F4 C E(R’). Consider an arbitrary point z € F4; then aiTz > 0 for
all i € [n] and, by the induction hypothesis, ||z|[4 < 1 because z € E(R).

For the vector x returned by the von Neumann algorithm, the algorithm sets

1+e( S )

Recall that in the algorithm, the vector y = 3L, x; ”;‘_—l"b satisfies [[yll < ¢. By the Cauchy-Schwartz inequality, we
have y'z = yTQY2Q "2z < |lyllyllzllx < € and, similarly, a/z < |laillglizllg < llaillg for every i€ [m]. We then have

1 1ox 1 t(alz )2 1+y'z

2 T T 2

, =—2Z R+§ ia |z=—1|z Ex < Ex = <1,
R™1+¢ ( = llaill ' ’) 1+€(” i + l(||a||Q ) 1+e ( "lla ||Q) 1+¢

where the first inequality follows from the fact that |lz|lg <1, x>0, and 0 < a/z < llaill for all i € [n], whereas
the second follows from y'z < e. Consequently, z € E(R’), completing the proof 0

2l

Lemma 11. At every rescaling, det(R) increases by a factor of at least 16/9.

Proof. Let R and R’ denote the matrix before and after the rescaling. Let X = 31, x4 aT/ |lail[3; hence, R’ =
(R+ X)/(1 + ¢). The ratio of the two determinants is

det(R’)  det(R+X) _ det(l, + R"/2XR™'?)
det(R) (1 + &) det(R) 1+ eym

Now R712 = Q2 and QY2XQ'? is a positive semidefinite matrix. The determinant can be lower bounded
using Lemma 1(a) and the linearity of the trace:

N1 125 01/2
cjlitt((lj{))> +tr<(1Q+ s)mQ - Z|| 5 QU%TQM))/ e

Finally, tr(Q"?a:a] Q') = tr(af Qa;) = ||ai|l}y. Therefore, we conclude that

det(R") S 1+X5x 2
detR) = (1+e&)m  (1+e)m’

The claim follows using that ¢ = . O

We now present the proofs of Theorems 2 and 3 based on these lemmas.

Proof of Theorem 2. By Lemma 2, Y4 contains a ball B of radius p4 centered on the surface of the unit sphere.
Consequently, BCXaN(1+pa)B" =(14+pa)Fa. In particular, F4 contains a ball of radius pa/(1+pa); therefore,
vOl(Fa)>(pa/(1+pa))"vol(B™) > (pa/2)"vol(B™). By contrast, because vol(E(R))=det(R)~/>vol(B"), Lemma 11 im-
plies that vol(E(R)) decreases at least by a factor of 2/3 at every rescaling. Lemma 10 ensures that vol(E(R)) > vol(Fx).
Consequently, the total number of rescalings during the entire course of the algorithm provides the bound O(mlogp;').

By Lemma 8, the von Neumann algorithm performs O(m?) iterations between two consecutive rescalings,
where each von Neumann iteration can be implemented in time O(n) assuming that we compute the matrix
ATQA at the beginning and after every rescaling. Thus, the total number of arithmetic operations required by
the von Neumann iterations between two rescalings is O(m?n). To compute ATQA, provided that we have
computed Q, requires time O(n?m). Updating the matrix R requires time O(m?n) because we need time O(m?)
to compute each of the n terms x;aa! /||ail[%, i € [1]. The inverse Q of R can be computed in time O(m%). Hence,
the overall number of arithmetic operations needed between two rescalings is O(n%*m). This gives an overall
complexity of O(n?m?log p3!) arithmetic operations. O
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We note that the higher running time compared with Algorithm 1 is due to the time required to update
ATQA. This has to be recomputed from scratch, whereas the corresponding update to ATA in the kernel case
was done in O(n?) because a rank 1 rescaling was used.

Proof of Theorem 3. Both the smoothed perceptron of Soheili and Pefia [33] and the Mirror Prox method of Yu
et al. [38] terminate in O(v/logn/¢) iterations with output x € R} and y € R™ such that [|x||; = 1,y = X}, xiai/llaillq,
and either ATQy >0 or lIlyllg < . For both methods, each iteration requires O(mn) arithmetic operations. As before,
R and Q can be recomputed in time O(m?n). Thus, the overall number of operations required between rescalings is
O(m*n+/log n). As before, the total number of rescalings is O(m log p;'). These together give the claimed bound. ©

3.2. Oracle Model for Strict Conic Feasibility

Observe that Algorithm 3 does not require explicit knowledge of the matrix A. In particular, Algorithm 3 can
be easily adapted to an oracle model. Here the purpose is to find a point in the interior of a full-dimensional
cone defined as £ = {y € R":aly > 0 Va; € I}, where [ is a set (possibly infinite) indexing vectors a; € R", i € L.
We assume that we have access to a strict separation oracle (SO), where for each v € R” the call SO(v) returns
“YES” if v € int(X) (i.e., if a]v>0 for all i € I), or it returns a; for some k € I such that a/v < 0.

Below we present Algorithm 5 to determine a point in the interior of X. The algorithm is nearly identical to
Algorithm 3, and it uses an oracle version of the von Neumann algorithm (Algorithm 4). The running time is
expressed in terms of the Goffin measure py of a full-dimensional cone X, which is the radius of the largest ball
contained in X centered on the surface of the unit sphere:

P dzefsup{r:IB%m(p, r) ST 3IpeR" st pll =1},

Algorithm 4 (Oracle von Neumann Algorithm)

Input: A positive definite matrix Q € R and an ¢>0

Output: Vectors {a;:i€ N} for NCI, xeRY, y such that y = Zieinai/llaillQ, SienXi=1, and either Qy € int(X) or ||y||Q <e
1: Call SO(0) to obtain a. Set N:={k}, xc:=1, y:=ar/llallo
2: while ||y||Q>s do

if SO(Qy) returns “YES,” then return {a;:i € N}, x, y

4: Terminate

5:  else let a, k € I, be the output of SO(Qy)

(v~ ai/llaellg, v),

SN

Let A:=

lly — a/llaxllo Il
7 update x;:=(1 — A)x; for all i € N\{k}, xp:=(1 — A)xx + A.
8: y:=(1- e
llallo’

9: return {a;,:i € N}, x, v
Note that in line 7 of Algorithm 4, for notational convenience we consider x; to be 0 if k¢ N.

Algorithm 5 (Strict Conic Feasibility Algorithm)

Output: A point in the interior of a full-dimensional cone L given via a separation oracle SO
1: Set Q:=1I,, R:=1,; call OracLe voN NEumMANN(Q, €) to obtain {a;:i€ N}, x € RN, y € R™
2: while Qy ¢ int(X) do
3: rescale

1+¢( ZH ”2 ”T); Q:=R""

ieN
4: Call OractLe voN NEUMANN(Q, €) to obtain {a;:i € N}, x, y
5: return y:=Qy

Theorem 4. For any full-dimensional cone L expressed by a separation oracle, Algorithm 5 finds a point in int(X) by
performing O(m®log ps') von Neumann iterations. The total number of oracle calls is O(m®log pz'), whereas the total
number of arithmetic operations is O(m°log pz').
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Proof. The analysis is nearly identical to that of Theorem 2. As before, Algorithm 4 terminates in at most [1/¢] €
O(m?) iterations, and the number of rescalings in Algorithm 5 is O(m log pz!). Thus, we perform O(m? log p5') von
Neumann iterations, each requiring one oracle call. For the number of arithmetic operations, we observe first that
the set N computed by Algorithm 4 has size at most [1/¢] € O(m?) because |N| increases by at most one at every
iteration. In every von Neumann iteration, recomputing x requires O(|N|) = O(m?) arithmetic operations,
recomputing y requires O(m) operations, and recomputing Qy requires O(m?) operations; thus, overall, these
computations require O(m’ log p3') arithmetic operations. Recomputing R during rescalings requires O(m?|N|) =
O(m*) operations, whereas recomputing Q = R™! requires O(1m°) operations, for a total of O(m° log ps!) arithmetic
operations over all rescalings. O

4. Maximum Support Algorithms
In the case ps =0, the volumetric arguments of the previous sections fail: both sets P4 and F4 are lower
dimensional and therefore have volume 0. In what follows, we show how both algorithms naturally extend to
this scenario.

Given any linear subspace H, we denote by supp(H,) the maximum support of H,, that is, the unique
inclusion-wise maximal element of the family {supp(x):x € H.}. Note that because H. is closed under
summation, it follows that supp(H,) = {i € [n]:3x € H, x;>0}. We let

Sy def supp(ker(4),), T, 4 supp (im(AT)+)' ©)

When clear from the context, we will use the simpler notation S* and T". Because ker(A) and im(AT) are
orthogonal to each other, it is immediate that S"N T" = 0. Furthermore, the strong duality theorem implies that
SUT =[n].

The maximum support kernel algorithm (Section 4.1) finds a solution x to (K) with supp(x) = S’, and the
maximum support image algorithm (Section 4.2) finds a solution y to (I) with supp(ATy) = T". In this section,
we show that these algorithms can be directly obtained using the full support algorithms by repeatedly
removing vectors from the support based on their lengths after a sequence of rescalings. With this direct
implementation, however, the maximum support algorithm runs the corresponding full support algorithm »
times in the kernel case and m times in the image case, leading to an increase in running time.

With small modifications, both maximum support algorithms can be implemented in essentially the same
asymptotic running time as their full support counterparts. We defer these variants to Appendix A because the
amortized analyses are somewhat technical. Still, they offer some interesting insights for degenerate linear
programs. In particular, they show how to bound the degradation of an ellipsoidal outer approximation of the
feasible region when moving to a lower-dimensional space, which we believe to be of mdependent interest.

We will need to argue about lower dimensional ellipsoids and their volumes. Let Q € S?,. For a linear

subspace H C RY, we let EH(Q) E(Q) N H. Furthermore, we define the projected determmant of Qon H as

det(Q) det(WTQW)

where W is any matrix whose columns form an orthonormal basis of H. Note that the definition is independent
of the choice of the basis W. Indeed, if H has dimension r, then

vol,(Ex(Q)) = T(Q) (10)
Vdety

4.1. The Maximum Support Kernel Algorithm
We start with an easy observation; the proof is deferred to Appendix B.

Lemma 12. Let A€ R™" and S’ = S,. Then span(P4) = im(Ag), and P = Pa_.

In this section, we observe that if Algorithm 1 is applied to a matrix A with ps >0 (i.e., (K4) is infeasible),
then, after a certain number of iterations, based on the encoding size of A, we can establish a column of A that
cannot be contained in S,. This is based on the observation contained in the next lemma that columns in S},
need to remain “short” throughout the execution of Algorithm 1.
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Lemma 13. Let A € R™" such that ||a;|| = 1 for all i € [n]. Let H = im(A). After t rescalings in Algorithm 1 with A as
input, let A’ be the current matrix. Let M € R™™ be the matrix obtained by combining all t rescalings so that A’ = MA, and
define Q = (1 + 3¢) *M'M. The following hold:

a. P4 C E(Q).

b. |laillg < lpa,|™ for every i€ S

. If = maxe g, then (47 - Ipea,-B" N H C Ex(Q).

d. At every rescaling, the relative volume of Ex(Q) decreases by a factor of at least 2/3.

Proof. (a) At initialization, Q =1,, so P4 C E(Q) = B". After t rescalings, by Lemma 5 applied ¢ times,
MP4 C(1+3¢)'P4. Recall that, by definition, Pas CB™; thus, P4 C (1+3¢)'M™'B" =E(Q).

(b) Lemma 12 shows that P4 = P4_.. Hence, by Lemma 2 and the fact that ||a;||, = 1 for all i € [n], it follows that
lpa.lai € P4 for all i € S From (a), |pa,la; € E(Q), which 1mpl1es that |pa|lladlp < 1.

(c) By definition, u~'a; € E(Q); therefore, En(Q) contains u! - conv(A4, A) Note that p(4 -4 < 0; hence, Lemma 2
implies that |p4-4)/B™ N H C conv(A, —A). This implies that (u™! - p(a-4))B™ N H C E(Q) as needed.

(d) Let r = rk(A). Rescaling corresponds to replacing M by M’ = (I,, + §jij " )M, where y = A’x is the current point
computed by the algorithm. Accordingly, matrix Q is replaced by Q" = (1 + 3¢)"2M"M. Because y € H, the function
z — (L, + ")z is the identity over H*, and it is an automorphlsm over H. This implies that Eg(Q’) = (1 + 3¢)(I,, +
#97)'En(Q) and that vol,(Ex(Q’)) = (1 +3¢) det(I,, + #)7)"'vol,(En(Q)). The statement follows from the fact that
(143¢) <4/3 and det(l,, + ") =2. O

4.1.1. Basic Maximum Support Kernel Algorithm. Based on the preceding lemma, we can immediately describe
an algorithm for the maximum support kernel problem for a matrix A € Z"™" of encoding size L. Let 0:= 04 as
defined in (2), recalling that 6 > 27*. Let §":=S),. Observe that by Lemma 3 we have |pa.| > 6 if S # 0 and
|p(as,~aq)| = O for any 0 # S C [n] (indeed, note that AA > Apg = Aag,-45) by definition).

We start with initial guess S = [n] for the support S”. To get a maximum support solution, we will iteratively
run a slightly modified version of Algorlthm 1 on the matrix As, which will return either a full support
solution Asx = 0, x>0, or an index k € S\S". In the former case, we return x with zeros on the components in
[7]\ S as a maximum support solution. In the latter case, we replace S:=S\ {k} and rerun the modified
Algorithm 1 on As. We continue this process until either S = () or a solution is found.

For the modified Algorithm 1 on As, the only change is a step that recognizes when an index in S is not in
the support S”. For this purpose, we maintain the vector lengths |||, as in Lemma 13 applied to As. After each
rescaling, which updates Q, we simply check whether there is an index k € § such that ||a|, > 07! (here 4
refers the normalized column of the original matrix A), and if so, we return it as an index not in S". Note that
this assertion is justified by Lemma 13(b). Let us note that if A’ is the current matrix in Algorithm 1 on As after
t rescalings, then [|allq = [laj|l/(1 + 3¢)". Therefore, we do not need to maintain the matrix Q explicitly.

We now bound the running time of the modified Algorithm 1 at every call. Let S 2 S’ be the current support,
H = im(As), and r:= rk(As) < m. Note that as long as we have not identified a column to remove, which would
end the current call on Ag, by part (c) of Lemma 13 we have that 6°B" N H C Ex(Q); hence, vol,(Ex(Q)) > 6%v,.
Because initially vol(Eg(Q)), = v, by part (d) of Lemma 13 we conclude that the number K of rescalings is
bounded by O(log(6%)); hence, K € O(mL) (because r < m). By Lemma 6, the call to Algorithm 1 terminates as
soon as the current vector y has norm less than 0 <|p4,-a,)|; hence, the number of DV iterations can be
bounded exactly as in the proof of Theorem 1 by O(m*(n + K + log(67!))) = O(m°L). The proof of Theorem 1
also shows that each DV update can be performed in time O(n) and that each rescaling can be computed in
time O(n?). Hence, each call to Algorithm 1 requires O((m®n + mn®)L) arithmetic operations, so the overall
number of operations to compute a maximum support solution is O((m3n* + mn®)L).

4.2. The Maximum Support Image Algorithm

In this section, we show that if Algorithm 3 is applied to a matrix A with ps <0 (i.e., (I++) is infeasible), then,

after a certain number of iterations, based on the encoding size of A, we can pinpoint an index k € [n]\T),.
The following will be a key concept in the analysis. Given a convex set X C R? and a vector a € R?, we define

the width of X along a as

widthy(a) &' max{a'z:z € X}. (11)
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Lemma 14. Given Re 1,

let E:=E(R). For any a € R, widthg(a) = ||a||g-:.

Proof. For every z€E, a'z=a"R"V2RY2z < ||a|lg1|zllg < llallg-1, where the first inequality follows from the
Cauchy-Schwarz inequality and the second from z € E. By contrast, if we define z = R™'a/||a||z1, it follows that
ze€Eand a'z = |jal[ga. O
Let us introduce
wa & rnin widthg, (4@;). (12)
€T,

The quantity w, is related to p4, as illustrated by the next claim, whose straightforward proof can be found in
Appendix B. We recall that 04 was defined in (2).

Claim 1. If T, = [n], then wa > pa. If T, # 0 and A has integer entries, then wa > 6.

The next lemma provides the main tools to detect columns k ¢ T, in the full support image algorithm. We
recall that F, is as defined in (8).

Lemma 15. Let R € S?, such that Fx C E(R), and let Q = R™'. For k € [n], if |lagllo < wa, then k ¢ T,.

Proof. From Lemma 14 and F4 C E(R), we have |[a|lq = widthgg)(ax) > widthg, (3) > wa. O

Lemma 11 shows that in Algorithm 3, det(R) increases at least by a factor 16/9 in every rescaling. The
following lemma bounds ming, [|dxllg in terms of det(R).

Lemma 16. At any stage of Algorithm 3 applied to A € R™", if det(R) > 1, then there exists k € [n] such that ||| <
(det(R)Y/m —1)71/2,

Proof. Let k = arg min;er [|/]|o. Let us use the decomposition of R as in Lemma 9. Then
n n n n
lalley > i < > villadlly = > (] Qa) = tr (Q > Viﬁi&;r) =tr(QR - alw)) = tr(ly — aQ) = m — atr(Q) <m. (13)
i=1 i=1 i=1 i=1

The third equality used the decomposition of R, the fourth used QR =1,, and the final inequality holds
because Q is positive definite.

The fact that tr(R) = am + X, y; < m + X, y; and Lemma 1(b) imply that X7, y; > tr(R) —m > m(det(R)/™ —1).
Note that the latter term is positive because det(R)>1; therefore, the statement follows from (13). O

4.2.1. Basic Maximum Support Image Algorithm. In light of the preceding lemmas, we can extend the full
support image algorithm (Algorithm 3) to the maximum support case for a matrix A € Z™" of encoding size L
as follows. Let us assume that rk(A) = m. We again use 0,4 as in (2) and observe that by Claim 1, wa > 04
whenever T" # 0. We run Algorithm 3 until either we can find y such that ATQy >0 or we find an index k such
that ”&k”Q <04.

Lemmas 11 and 16 guarantee that either outcome is reached within O(mL) rescalings. In the first case, we
terminate with the maximum support solution Qy. Lemma 15 guarantees that in the second case, k¢ T".

Once an index k¢ T" is identified, we must have a]y = 0 for every solution y to (I). Hence, the necessary
update is to project the columns of A onto the subspace a;-. Formally, we compute an orthonormal basis
W € R™m=1) of gl and replace the matrix A by A’ obtained from WTA by removing the zero columns. Then we
recursively apply the same algorithm to A’ instead of A. Assume that we obtain y’ as the output from the
recursive call such that A’"y is a maximum support vector in im(A’"),. Then we output the vector y = Wy’ for
the original matrix A.

To verify the correctness of this recursive call, we need to show that the maximum support solutions to A
and A’ are in one-to-one correspondence. Furthermore, we need to provide a lower bound on wy in terms of L.
We show that wa > w4, and therefore, 0 := 04 remains a valid lower bound. These claims are formally verified
in Lemma 17.

To estimate the running time of the algorithm, we recall that a new column outside T" can be identified
within O(mL) rescalings, and there are at most m recursive calls because every call decreases the rank of the
matrix A. As in the full support algorithm, we can implement the iterations between two rescalings in O(n?m)
arithmetic operations. Furthermore, we need to compute orthonormal bases at every recursive call, which can
be done in time O(r?) for the current rank r. Thus, we obtain a total running time O(n?*m>L).
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Lemma 17. Let A € R™", and let H CR™ be an r-dimensional subspace such that Lo C H. Let U € R™ be an
orthornormal basis of H, and let A’ be the matrix obtained from U A after removing all 0 columns. The following hold:
a. FA = UFAI.
b. For ve R", w = U"v, we have widthr,(v) = widthg,, (w) and widthr, (9) < widthg, (@).
C. wa S wgpr.

Proof. (a) Take x € UF4 and y € F4 such that x = Uy. First, ||x|| = [[Uy|| = |lyl| < 1 because y € Fa.. Fori € [n], note
that if U'a; =0, then a]x = (U'a;)Ty = 0, and if not, a; appears as a column of A’, and hence a]x = (U'a;)y >0
because y € Fa.. Thus, x € F4. For x € Fa, because F4 C H, we can write x = Uy for y € R". Applying the previous
argument in reverse, we conclude that y € F4,, and hence x € UF .. Thus, F4 = UF 4 as needed.

(b) The equality follows directly from part (a) because

widthg, (v) = widthyr,, (v) = widthg,, (UTv) = widthg,, (w).

We prove the inequality. By positive homogeneity of width, if either v or w equals 0, we clearly have
0 = widthr,(?) = widthg, (@), and the statement follows. So we may assume that both v,w # 0. Because U is
orthonormal, we see that 0<|lw||=||U"v||<|[v||. Because 0€F4, by homogeneity, we have that
0 < widthg,(9) = ﬁwidthp () = ﬁwidthp/‘, (w) < ﬁwidthp/\,(w) = widthr, (@),
as needed.

(c) First, note that the set TZ, comprises the indices of the columns U "a; for which i € T;‘ ; that is, widthr,, (a;) > 0.
The inequality follows from the last statement in part (b). O

5. Conclusions

We have given polynomial-time algorithms for the full support and maximum support versions of the kernel
and image problems. These methods give new insights on how to leverage the underlying geometry of linear
(and, more generally, conic) programs.

There is an important conceptual difference between the full support and maximum support variants. The
running times of the full support kernel and image algorithms depend on log|pa| ™. However, the algorithms
do not require explicit knowledge of pa; this parameter shows up only in the running time analysis. These
algorithms can be implemented in the real model of computation.

By contrast, the maximum support variants rely on bit complexity estimations. The algorithms require an
integer input matrix and use 04, computed from the Hadamard bound, as a threshold for removing columns
from the support. Given the duality between maximum support versions of (K,;) and (I;+), the most natural
goal would be to find a complementary pair of maximum support solutions to (K) and (I) because such solutions
are self-certifying (i.e., each would certify that the other is indeed a maximum support solution). Developing a
rescaling algorithm that solves this problem directly using natural geometric potentials, as opposed to the bit
complexity arguments presented earlier, is an interesting open problem.

We note that the interior point methods of Vavasis and Ye [34] and Ye [37] provides a complementary pair
in the real model of computation, based on certain condition measures (one of them being related to our w4). However,
these condition measures do not improve over the course of the algorithm. Our goal would be to find an algorithm that
finds a rescaling of the problem that simultaneously approximates both kernel and image geometries.
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Appendix A. Faster Algorithms for the Maximum Support Problems

This appendix exhibits improved versions of the maximum support kernel and image algorithms described in Section 4.
The key idea to the amortized analyses is bounding the possible increase in the volume of the ellipsoidal approximation when
moving to a lower-dimensional subspace. The following lemma will be useful in computing the projected determinant.

Lemma A.1. Consider a matrix R € S,. For a vector a € R?, ||a|| = 1, let H = {x:a"x = 0}. Then det(R) = det(R)||a|[%-..
H

Proof. Let W € R™@-1 be a matrix whose columns form an orthonormal basis of H. Because (W|a) is an orthonormal basis of
R?, we have

~ WT . (WTRWWTRa) _ . . o Nt
det(R) = det(( o )R(Wla)) = det( T RWllE ) = det(WTRW) (||u||R aTRW(W RW) WTRa),
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where the last equality follows from the determinant identity for the Schur complement. Observe that |a||% -
aTRW(WTRW)~'WTRa = ||g|[?, where q is the orthogonal projection of the vector v:= Ria onto the ortho%onal complement of
the hyperplane R:H. The orthogonal complement of this hyperplane is the line generated by p:=R~a. Thus, ||g]| = pTv =
(a"R72Ra)/||R2al| = 1/||allz+ because |jal| = 1. Therefore, dety(R) = det(WTRW) = det(R)[lal%.,, as required. O

LemmaA.2. Let E c R? be an ellipsoid and H an r-dimensional subspace of R%. Givena € H, |ja|| = 1, let H' = {x € H:a"x = 0}. Then

vol,(Ex) YV
widthg(a) v, *

vol, 1(Ex) =

Proof. We can assume that H =R’, so E = Ey. Let Re S, such that E = E(R). The volume of E can be written as
vol,(E) = v,/~/det(R), and using (10), we get vol,_1(Ex) = v,—1/+/dety (R). The statement follows from Lemmas A.1 and 14. O

A.1. Amortized Maximum Support Kernel Algorithm
To describe the algorithm, it is more convenient to work with the scalar products defined by Q than with the rescaled
matrix A’ = MA. Consider a vector iy’ = A’x = MAx in any iteration of Algorithm 1, and let y = Ax. Note that y’ = My, so

: ATy ATy — [ 9 Y
when computing "', we have a;'§’ = <“”/_”Q, o
PO

corresponding update of the scalar product consists of replacing M with (I, + 7’#'T)M and recomputing Q. Noting that
ly'll, = IMyll, = (1 + 36)t||y||Q, the update can be written in terms of Q and y as

, 1 y/er y/y/T) 1 3Q]/]/TQ
=—— ML, + Ly + M= Q+ ) (A1)
(1 43¢ ( ||y'||§) ( () (1+3e) [yl

We define the procedure RescaLe(Q,y), which, given Q and y, replaces Q with the matrix Q" defined in (A.1).

In this section, we show that we can improve the running time estimate of the basic maximum support kernel algorithm
(Section 4.1) by a factor n by adopting two ideas:

1. Instead of removing a column ay, k € T, from A every time we identify one, we maintain as before a set S C [n] with
the property that S" C S, as well as a set T C S of indices that we have determined not to belong to S* (i.e., TNS =0
throughout the algorithm). Whenever we conclude that i ¢ S* for an index i based on Lemma 13(b), we add i to T. Columns
indexed by T are removed from S only when doing so decreases the rank of the matrix As.

2. After removing columns from A, instead of restarting from Q = I,,, we restart from the same Q we had at the last iteration.
If in a given iteration we remove columns from S, thus obtaining a set S’ C S, it may happen that the relative volume of
E(Q) Nim(Ag) is larger than the relative volume of E(Q) Nim(Ag), but Lemma A.3 ensures that the increase in volume is not
too large.

>Q. Rescaling in Algorithm 1 replaces A’ by (I, + '/’ T)A’; therefore, the

Algorithm A.1 (Maximum Support Kernel Algorithm)
Input: A matrix A € Z"™"
Output: A maximum support solution to the system (K)
1: Compute 0:=0,4 as in (2)
: Compute IT:=IT§ A
: Set x;:=1 for all j € [n], and y:= Ax
:Set S:=[n], T:=0, Q:=1,
: while (S # 0) and (IIx#0) do
Let k:= argrsrlm(ui, y>Q/||a,-||Q
1€,

NOO U WN

if (ak,y>Q < —g||ak|<|Q||y||>Q, then o)

. e WY)WV
8: update x:=x ”ﬂk”é e, Y=y ||llk||é X
9:  else RescaLe(Q,y)

10: T:=TU{keS\T:|lallo>0"}
11: if rk(Ag 1) <rk(As), then Remove(T)

12: if ITx >0, then

13:  Define X; € R" by X;:=(Ilx);/|aill, if i€ S, X;:=0if i ¢ S return x
14: if S = (, then return x =0

Algorithm A.2 (Column Deletion)
1: procedure Remove(T)
2: S§:=S\T,T:=0
3: Resetxj:=1foralljes, y:= Asx
4:  Recompute IT:= Hﬁs



Dadush, Végh, and Zambelli: Rescaling Algorithms for Linear Conic Feasibility
Mathematics of Operations Research, 2020, vol. 45, no. 2, pp. 732-754, © 2020 INFORMS 749

Algorithm A.1 terminates either with a solution x € ker(A), with supp(X) = S, in which case we may conclude S = S’, or
when S = 0 is reached, in which case we may conclude that X =0 is a maximum support solution.

Theorem A.1.  Let A € Z"™". Algorithm A.1 finds a solution of Ax =0, x > 0 of maximum support in O((m*n + mn*)L) arithmetic
operations.
The proof of Theorem A.1 requires the following lemma, which gives a bound on the volume increase of the relevant

ellipsoid at a column removal step.

LemmaA.3. Consider astage of Algorithm A.1 in which Remove(T) is called. Let r = tk(As), ' = rk(Ag\r), and let E := Eiya,)(Q) and
E":= Eim(aq)(Q), where S, T are as in line 11. Then

vol. (E’) v 2\
vol,(E) ~ v, (62)

Proof. Let T’ denote the state of T in the previous iteration, that is, before the update at line 10. Because Remove was not called

in the previous iteration, we have that r = rk(As) = rk(Ag ) > rk(Ag\r) = 1. Because rank can only decrease by one after the

removal of a column, we can construct a sequence of sets S\ T:=S5, CSyyq C---CS,:=S\ T such that rk(Ag,) =k for

ke{r,...,r}. To prove the desired statement, it suffices to show that for ke {r' +1,...,7},

VOlk (Ek) - Vi

vOlg1(Ex-1) _ Vi (2 )
02)’

where E;:= Eim(ASI)(Q), le{r,...,r}. This follows by induction, recalling that E, = E’ and E =E, (because im(As,) =
im(As\v) = im(As)).

Letke{r +1,...,r}, H1 :=im(As, ,), and Hy :=im(Asg,). Let v € Hy be the vector orthogonal to Hy_; such that |[v||, = 1. By
Lemma A.2,

vol(Ex) v

voli_1(Exq) = widths, () ve ’

and hence it suffices to show that widthg, (a) > %2.

Because at every rescaling the Q-norm of the columns of As\’]‘/ increases by at most a factor of 2, and because in the previous
iteration the columns had Q-norm at most 6! (otherwise they would have been added to T”), their Q-norm during the current
iteration is at most 2071. In particular, because Sy C S\ T’, we have il < 26071 for all i € S. From here, we have that

widthg, (v) = max{v'z:|lzllo < 1, z € Hy} > maleTﬁi| 0 min_max [§74] = 8| | > o
B = e =S =S adlg T 2 vemao) e, Y il =3P Al = 5

where the last inequality follows from [p(a,,,-a,)| = 0. O

Proof of Theorem A.1. If the algorithm terminates with ITx > 0, then it correctly outputs a solution to (K. ). Next, we observe
that throughout the algorithm, S 2 S’, which implies that the solution returned at the end is always a maximum support
solution. To prove this, we need to show only that T C T" throughout. New elements are added to T in line 10 that are in T" by
Lemma 13 and the fact that pag 2 04 if S#0.

We need to argue that the algorithm terminates in the claimed number of iterations. Recall that by Lemma 12, we have
Py =Py, = PAs* throughout the algorithm because s'cs.

A round of the algorithm consists of the iterations that take place between two consecutive calls of Remove. Because
Remove(T) is called only when rk(Ag r) <rk(As), the number of rounds is at most rk(A) < m. We want to bound the total
number of rescalings performed by the algorithm.

Claim A.1. The total number K of rescalings throughout the algorithm is O(mlog(671)).

Proof. In any given round, let E := Ein4,)(Q) and r = rk(As). We first show that at every rescaling within the round, except
for the last, the invariant

vol,(E) > v,0% (A2)

is maintained. Indeed, by Lemma 13(a), P4 CE throughout. Because ||Ezj||Q < 07! for all jeS\T, it follows that E2
Oconv(Ag\t, —As\7). Because at every rescaling except for the last one of the round we have rk(Ag\r) = r, it follows by Lemma 2
that conv(As\T, —AS\T) contains an r-dimensional ball of radius |p(4;,-as,)| = 6. This implies (A.2).

At the first iteration, Q = I,,, S = 0, and E = B, N im(A); therefore, initially, vol,(E) < v,. By Lemma 13(c), at every rescaling in
which we do not remove any column, vol,(E) decreases by at least 2/3; Lemma A.3 bounds the increase in vol,(E) at column



Dadush, Végh, and Zambelli: Rescaling Algorithms for Linear Conic Feasibility
750 Mathematics of Operations Research, 2020, vol. 45, no. 2, pp. 732-754, © 2020 INFORMS

removals. Combined with the lower bound (A.2), we obtain that the total number of rescalings is at most m plus the smallest

number K satisfying
K m
b ) <o

By Lemma 6, the algorithm is guaranteed to terminate when |[yll, <|pa,-a4), 50, in particular, ||y|l, > 6 throughout the
algorithm because 6 < |p(a,,-4,)|- By Lemma 7, after t rescalings, [lyll, < [lyllo(1 + 3¢)'. Hence, the algorithm is guaranteed to
terminate if [|yll, < 0/(1 +3¢)~.

At the beginning of each round, we reinitialize x so that x; =1 for all j€S. In particular, y = Asx satisfies Illg <
|S|0~! < nO~! because II&J-IIQ < 67! forallj€S. At every rescaling within the same round, llyllq increases by 2/(1 + 3¢), and in
every DV update, it decreases by at least a factor of V1 —¢2. Let R be the number of rounds, and let Kj, ..., Kg be the
number of rescalings within rounds 1,...,R.

It follows that, at the ith round, the number of DV updates is at most the smallest number x; such that

The claimed bound on K follows. O

n6~' (1 — e2)122K < /(1 + 3¢)K.

Taking the logarithm on both sides and recalling that log(1 —¢%) < —¢? and log(1 + 3¢) > 3¢, it follows from our choice of
¢ that k; € O(m?)K; + O(m)K. Because K = K; + -+ + Kz and R < m, this implies that the total number of DV updates is
O(m?)K. Using Claim A.1, the total number of DV updates is O(m°log(67!)). As explained in the Proof of Theorem 1, we
can perform each DV update in O(n) arithmetic operations, provided that at each rescaling we recompute F = ATQAs,
which, as we showed, can be done in O(n?) arithmetic operations. Observe also that ||aj||é is the jth diagonal entry of F.
Because 071 < 24 by Lemma 3, the total number of arithmetic operations performed for DV updates and rescalings is
within the stated bound.

Every time a new column is added to T at line 10, we need to then test at line 11 whether rk(Ag\r) <rk(Ag). This can be
done in O(m*n) operations via Gaussian elimination. Because new columns are added to T at most n times, and because
n < L, the total number of arithmetic operations required to test rank is O(m?nL), which is within the stated running time
bound.

Finally, at the beginning of each round, we need to recompute the projection matrix. Computing each projection matrix
requires time O(n%m), and the total number of rounds is at most m. Because n < L, the total number of arithmetic operations
performed to recompute the projection matrices is O(m?nL), which is within the stated bound. O

A.2. Amortized Maximum Support Image Algorithm

Analogously to the kernel setting, we now improve the running time of the basic maximum support image algorithm
(Section 4.2) by a factor of m. The maximum support image algorithm (Algorithm A.3) maintains a set T of indices with the
property T" C T. The set T is initialized as T = [1], and we remove an index a; once we conclude that k ¢ T". The algorithm
terminates with a solution i such that a]j>0 for all i € T and a]yy =0 for all i ¢ T, verifying T =T  at termination. We
maintain r as the number of rows of A throughout the algorithm. As in the full support case, we assume that initially the
matrix has full row rank; this will be preserved throughout the reduction steps.

Algorithm A.3 (Maximum Support Image Algorithm)
Input: A matrix A € R™" with rk(A) = m
Output: A solution i € R to (I) satisfying the maximum number of strict inequalities
1: Compute 0:=0,4 as in (2)
2:Set Q:=1I,, R:=1,,, U:=1,, T:=[n], r:=m
3: while T # 0 do
4:  Call von NEumMANN(A, Q, €) to obtain (x, )
5: if ATQy>0, then return i = UQy Terminate
6: else rescale

1 X;
R:= R+> " gal|l; Q=R
1+e( 2 als” )
7:  while Fk € T such that (||a]lp <6) do
8: Remove(k)

return y =0
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Algorithm A.4 (Column Deletion)
1: procedure Remove(k)
2 Select W € R™(-1) whose columns form an orthonormal basis of ag

3:  Set A:=WTA, delete all 0 columns, and remove the corresponding indices from T
4:  Set R:==WT'RW, U:=UW, and r:=r — 1; recompute Q = R™!

Theorem A.2. Let the matrix A € Z'"™" have rk(A) = m and encoding length L. Algorithm A.3 finds a maximum support solution
to ATy > 0 in O(m*n? - L) arithmetic operations. Using the smoothed perceptron of Soheili and Pefia [33] or the Mirror Prox method of
Yu et al. [38] instead of the von Neumann algorithm requires O(m>n/logn - L) arithmetic operations.

We need the following stronger version of Lemma 9, with explicit bounds on the coefficients. Note that the dimension m
is replaced by the actual dimension r and the set of columns [r] by T.

Lemma A.4. At any stage of the algorithm, the matrix R is positive definite and can be written in the form
R=al, + Z yi&,-iziT,
i€T
where y; <2/0%, forallie T; a=1/(1+¢)! for the total number of rescalings t performed thus far; and y; > 0. The trace is
tr(R) = ar + Sier yi. Furthermore, for any v € R” with |[v|| = 1, we have |[v]lq 2 0/v2(n + 1).

Proof. Clearly, any matrix of this form is positive definite. The proof is by induction. The formula and bound are valid at
initialization when R = I,, and y; = 0 for all i € [n]. LetR = al, + Yjer yiﬁ[ﬁiT denote the current decomposition, where y; < 2/ 62.
We show that the required form and bounds hold for the next update.

Assume that we rescale in the current iteration. Let R and Q denote the matrices before, and R” and Q’ after, the rescaling.
For i € [n], using Lemma 14, we see that

R ) . R R 1
||11,-||2Q = w1dth%(R)(ai) = rnax{(a,v-rx)2 sallx|? + Z 7/]-( }rx)zs 1,xe R’} <—.

jeT i

Now let x be the convex combination returned by the von Neumann algorithm in line 4. By the rescaling formula in line 6,
the matrix R is updated to R’, satisfying

= 1+e( %;nnz ):i__( ’+2;@’|uw)”7)

Hence, recalling that [|;]|o > 6 for every i € T at the beginning of every iteration, each y; is updated to y;, satisfying
, 1 . Xi < 2 < 2
Ve M) il S 02

Consider now a step where some columns are eliminated. Then the matrices A and R are updated to A’ and R’, where A’ is
obtained by removing the zero columns from WTA and R” = WTRW. We denote by T” C T the index set of columns of A’. Thus,

.
R = aWTW+ Sy WIaaTW = al,y + 3y WTa P
ieT” i€T” ” ”2
where the last equality follows from WTW = I,_; and the fact that WTa; = 0 for all i € T\T". Setting & = a and ¥/ = y,||W'a,|]?
for i € ' gives the desired decomposition of R’. Next, because ||[W'a/|| < [|a;]| < 1, we get that y} <y; <2/6?, for all i € T".
We now prove the last part, lower bounding |[v]| for any unit vector v € R". First, for any x € R’, the Cauchy-Schwarz
inequality gives

Id?,

x"Rx = allx|? + > yilaiTx)? < (a + > 71l

i€T i€T

and hence E(R) contains a Euclidean ball of radius at least 1/+y/a + X1 y;. Therefore, for any unit vector v € R’, using
Lemma 14, we get

0
V1 +2[T|/ 62 = V2 + 1)

1
9|lp = max{v"x: x € E(R)} > >
lollg { (R)} NeED e

as needed. O
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The next lemma gives a lower bound on the decrease in det(R) for column removal steps.

LemmaA.5. Assume that at a given iteration, F4 C E(R), and consider an indexk € T\ T". Let W € RV be a matrix whose columns
form an orthonormal basis of at. Let A’ be the matrix obtained by removing all zero columns from WTA, and let R = WTRW. Then
Fa C E(R') and det(R’) > det(R)6%/(2(n + 1)).

Proof. The first part of the statement follows from the fact that Fs C E;: (R). Furthermore, Lemma 17(a) implies that
Fa = WTWFu = WTFa. Thus, Far = WTF4 € WTE,:(R) = WTWE(R') = E(R’). For the second part, note that det(R’) = det,: (R) =
det(R)||ak||2 using Lemma A.1. To obtain the desired bound, we use the estimate ||ak||2 > 02/(2(n + 1)) from Lemma A 4, ‘which
holds because dr is a unit vector. O

We now prove Theorem A.2 based on these lemmas and the results proved in Section 3.1.

Proof of Theorem A.2. We first argue the correctness of the algorithm. Let A be the input matrix, and let A" be the current
matrix during any stage of the algorithm. For the current matrix R, Lemmas 10 and A.5 ensure that F4- C E(R). Therefore,
Lemma 15 implies that T 2 T" throughout the algorithm, so L4 is contained in the subspace H:= {x € R": a/x = 0Vi € [n]\T}. By
construction, the columns of U are an orthonormal basis of H, and A’ is obtained from the matrix UTA by removing the 0
columns.

We next show that the solution ¥ returned by the algorithm is a solution to (I) satisfying the maximum number of strict
inequalities. If T = () at termination, then i = 0 is indeed a maximum support solution. Assume that the algorithm terminated at
hne 5 with 7 = UQy. Then, for every k€T, we have aly =a]UQy = (a;)"Qy>0, whereas for every k¢ T, we have
aly = afUQy = 0, because U'a; = 0 by construction.

We now prove that the algorithm terminates in the claimed number of iterations. Lemma 16 remains valid; the proof uses
Lemma A.4 in place of Lemma 9. By Lemmas 16 and 17(c), whenever det(R) > (1 + 072)", we can find k € T such that llallp < 6;
thus, we remove at least one column at line 8. The potential det(R) is initially 1; by Lemma 11, it increases by at least a factor of
16/9 at every rescaling, and by Lemma A.5, it decreases by at most a factor of 5,7 +1 after elimination of a column. Because rk(A)
decreases by 1 every time we remove a column, the algorithm performs at most m column removals. Consequently, within
O(mlog(n0~1)) = O(mL) rescalings, all columns outside T are removed, and the algorithm terminates.

As in the Proof of Theorem 2, the iterations between two rescalings can be implemented in time O(n?n1), whereas recomputing
R and Q when rescaling requires O(m*1) operations. This contributes O(m?n%L) to the overall running time. When removing a
column, computing W requires computing an orthonormal basis of a; in R”, which can be done by closed-form formula in O(1?)
arithmetic operations; computing WA and WRW requires O(m?*n) and O(m®), respectively; recomputing the inverse Q or R
requires O(m?) operations. Hence, the total number of arithmetic operations needed for the O(11) column removals is O(m’n).
This implies the stated running time bound.

From the preceding, following the Proof of Theorem 3, we obtain the running time bound for the smoothed perceptron of
Soheili and Pefia [33] or the Mirror Prox method of Yu et al. [38]. O

Appendix B. Missing Proofs
Proof of Lemma 2. Note that ps = 7,4 as defined in Lemma B.1, which shows that |p4] is the distance of 0 from the relative
boundary of conv(A). (a) By Lemma B.1(b), ps < 0if and only if 0 is in the relative interior of conv(A), which is the case if and only
if there exists x>0 such that Ax = 0.

(b) For any i € L4, ||yl| = 1, the distance between i and the hyperplane {y : a]Ty =0} (je[n])is ﬁ/Ty; therefore, minje[,) ajTy is the
distance of i from the boundary of X4, that is, the radius of the largest ball centered at iy and contained in X,4. The statement
then follows from the definition of ps. O

Lemma B.1. Let A € R™". Let p be a point of minimum norm in the relative boundary of conv(A). Define

def . Tr
TA = max min z'y.

yeim(A)\{0} zeconv(A)

a. If 0 ¢ conv(A), then ||p|l = T4 = minje(, a]-Tfa.
b. If 0 is in the relative interior of conv(A), then p is in the relative interior of some facet of conv(A), and ||p|| = —Ta = maXje(y f?

Proof. (a) Assume that 0 ¢ conv(A). Then p is a point of minimum norm in conv(A). It follows that p'z > ||p|* for every
z € conv(A), implying that [[p|]| < 74a. We now show that 74 < [[p||. If not, then there exists y € im(A) such that |[y|| =1 and
mineg,) u}ry> llpll. In particular, this implies that every point in conv(A) has distance greater than |[[p|| from the origin, con-
tradicting our choice of p € conv(A).

(b) Assume that 0 is in the relative interior of conv(A). By our choice of p, for any y € im(A), ||yl = 1, we have z := —||p|ly €
conv(A) and z'y = —||p||, which implies that T4 < —||p||. For the other direction, consider any facet F of conv(A) containing p, let H
be the affine hyperplane of im(A) containing F, and let 4 be the minimum norm point in H. Because p € F C H, by definition,
llgll < |lpll- Because F is a facet, q"z < ||g|]? is a defining inequality for F (i.e., it is verified by all z € conv(A) and satisfied as equality
by all z € F). If we let y = —g, this shows that T4 > mincconv(a) §z = —lIgll = —|lpl|. This shows that p =g and 74 = —||p||. In
particular, F must be the only facet containing p; therefore, p is in the relative interior of F. O
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Claim B.1. Let A€ Z"™" If T, # 0, then

SR TN 2
Proof. LetS :=S, and T :=T),. Let (y',s") € R*" be an optimal basic solution of the following linear program:

min éTs

Aly>¢
A}y = O, (Bl)
s—y >0,
S+y =
This linear program is feasible by the definition of T", and the optimal value equals ||y’||;. Note that for every square
submatrix A" of A, |det(A’)| < Ax < Ay, where the first inequality follows from Hadamard’s bound and the second from

the fact that the entries of A are integer. From this fact, a straightforward application of Cramer’s rule implies that s] <mAp
for all j € [n], so |ly'l; < m*Aa. Because, by construction, y* € £4\{0}, the statement follows from the fact that

v 1 1 1
SRV

mina;
jeT” J

1

Proof of Lemma 3. Let a:= maX; [|a;]|. Note that |pa| > |Tal/a, where T4 is defined as in Lemma B.1. Because a < Ay, it
suffices to show that |t4| > 1/(m?A4).

If 0 ¢ conv(A), then T" = [n], and we observe that T4 = maXyer,\ {0} MiNje[y) a i} = ———, where the inequality follows from

1
m AA
Claim B.1. Assume now that 0 is in the relative interior of conv(A). Let p be a point of minimum norm in the relative boundary of
conv(A). According to Lemma B.1, |[t4| = ||p|l, and p is contained in the relative interior of a facet F of conv(A). Let A’ be the
submatrix of A comprised of the columns that are contained in F. In particular, conv(A’) = F; therefore, 0 ¢ conv(A’), which
implies that 74 > 0. By the previous argument, 74 > 1/(m?Aa) > 1/(m?A4). Because p is the point of minimum norm in F, it
follows from Lemma B.1 that 74 = |jp||. It follows that |ta| = T4 > 1/(m?Aa/).

Finally, because A4 < 2L (see, e.g., Grotschel et al. [19, lemma 1.3.3]) and m < L, it follows that 1/(m?A%) > 274, O

Proof of Lemma 12. We first show that Py=Py,. The inclusion Py, CPyis obvious. For the reverse inclusion, consider
y € P4, and let x, z € R” such that & Tx=¢Tz=1 andy Ax = —Az. Then A(x +2) =0, x +z > 0, which implies x; = z; = 0 for all
i € [n]\S", which shows that y € Pa..

We show span(P4) = im(Ag-). It suffices to show that span(Pa_.) = im(Ag) because P4 = P4.. The inclusion span(P4.) €
im(Ag) is obvious. For the reverse inclusion, it suffices to show that for every i € S, there ex1sts a # 0 such that ag; € Py,
Consider A € RHl such that A¢-A = 0, and assume without loss of generality that sy A; = 1. Then =iy = e\ iy Al Wthh
implies that —A;d; € Py.. O

Proof of Claim 1. First, observe that

WA = min max ﬂ/y > max mma y T]A
JET" yeXa\{0} yeXa\{0} jeT"

Note that if T" = [n], then 74 = pa, which proves the first part of the statement. For the second part of the statement, assume
that A has integer entries and that T" # 0. Letting « := maxcr [|ai]|, we have

nA >a! max mma 7> =0,,

yer,\{0} jeT* m2AZ

where the last inequality follows from a@ < A4 and Claim B.1. ©

Endnote

! The Frank-Wolfe method is originally described for a compact set, but the set here is unbounded. Nevertheless, one can easily modify the
method by moving along an unbounded recession direction.
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