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Abstract

Classic cake-cutting algorithms enable people with different preferences to divide among them a het-
erogeneous resource (“cake”), such that the resulting division is fair according to each agent’s individual
preferences. However, these algorithms either ignore the geometry of the resource altogether, or assume
it is one-dimensional. In practice, it is often required to divide multi-dimensional resources, such as land-
estates or advertisement spaces in print or electronic media. In such cases, the geometric shape of the
allotted piece is of crucial importance. For example, when building houses or designing advertisements,
in order to be useful, the allotments should be squares or rectangles with bounded aspect-ratio. We
thus introduce the problem of fair land division — fair division of a multi-dimensional resource wherein
the allocated piece must have a pre-specified geometric shape. We present constructive division algo-
rithms that satisfy the two most prominent fairness criteria, namely envy-freeness and proportionality.
In settings where proportionality cannot be achieved due to the geometric constraints, our algorithms
provide a partially-proportional division, guaranteeing that the fraction allocated to each agent be at
least a certain positive constant. We prove that in many natural settings the envy-freeness requirement
is compatible with the best attainable partial-proportionality.

Keywords: Fairness; Land Division; Cake Cutting ; Envy Free ; Two Dimensional ; Geometric constraints

History: A preliminary version of this paper appeared in the proceedings of AAAI 2015 (Segal-Halevi et al.,
2015), where its title was “Envy-free cake-cutting in two dimensions”. The main additions in the present
version are: (a) handling multi-dimensional resources of arbitrary shape rather than just rectangles, (b)
handling an arbitrary number n of agents rather than just 2 or 3, (c) rewriting most proofs in a simpler way.

1 Introduction

Fair division is an active field of research with various applications. A frequently-mentioned potential appli-
cation is division of land (e.g. Berliant and Raa (1988); Berliant et al. (1992); Legut et al. (1994); Chambers
(2005); Dall’Aglio and Maccheroni (2009); Hüsseinov (2011); Nicolò et al. (2012)). The basic setting consid-
ers a heterogeneous good, such as a land-estate, to be divided among several agents. The agents may have
different preferences over the possible pieces of the good, e.g. one agent prefers the forests while the other
prefers the sea shore. The goal is to divide the good among the agents in a way deemed “fair”. The common
fairness criterion in economics is Envy-freeness, which means that no agent prefers getting a piece allotted
to another agent.

Envy-freeness on its own is trivially satisfied by the empty allocation. The task becomes more interesting
when envy-freeness is combined with an efficiency criterion. The most common such criterion is Pareto
efficiency. Indeed, Weller (1985) has proved that, when the agents’ preferences are represented by non-
atomic measures over the good, there always exists a Pareto-efficient and envy-free allocation. However,
Weller’s allocation gives no guarantees about the geometric shape of the allotted pieces. A “piece” in his
allocation might even contain an infinite number of disconnected bits. So Weller’s positive result is valid
only when agents’ preferences ignore the geometry of their allotted pieces. While such preferences make
sense when dividing a pudding or an ice-cream, they are less sensible when dividing land.
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(a) (b) (c)

Figure 1: (Impossibility of a Pareto-efficient envy-free land division). A square land-estate has to be divided
between two people. The land-estate is mostly barren, except for three water-pools (discs). The agents have
the same preferences: each agent wants a square land-plot with as much water as possible. The squares must
not overlap. Hence:
(a) It is impossible to give both agents more than 1/3 of the water. Hence:
(b) An envy-free division must give each agent at most 1/3 of the water.
(c) But such a division cannot be Pareto-efficient since it is dominated by a division which gives one agent
1/3 and the other 2/3 of the water.

Many authors have noted the importance of imposing some geometric constraints on the pieces. The most
common constraint is connectivity — the good is assumed to be the one-dimensional interval [0, 1] and the al-
lotted pieces are sub-intervals (e.g. Stromquist (1980); Su (1999); Nicolò and Yu (2008); Azrieli and Shmaya
(2014)). This is usually justified by the reasoning that higher dimensional settings can always be projected
onto one dimension, and hence fairness in one dimension implies fairness in higher dimensions. However,
projecting back from the one dimension, the resulting two-dimensional plots are thin rectangular slivers, of
little use in most practical applications; it is hard to build a house on a 10×1, 000 meter plot even though its
area is a full hectare, and a thin 0.1-inch wide advertisement space would ill-serve most advertises regardless
of its height.

This paper studies the fair division of a multi-dimensional resource with geometric constraints on the
pieces. We call this problem fair land division, to differentiate it from the one-dimensional problem often
called fair cake-cutting (Steinhaus (1948); Dubins and Spanier (1961); Brams and Taylor (1996); Robertson and Webb
(1998); Procaccia (2015)). A remarkable feature of the land-division setting is that Pareto-efficient-envy-free
allocations might not exist even when there are two agents; see Figure 1 for a simple example.

Thus, to get an envy-free allocation among agents with geometric preferences, we must replace Pareto-
efficiency with a different efficiency criterion. A natural candidate is proportionality — every agent should re-
ceive at least 1/n of the total resource value. This was the first fairness criterion studied in the context of cake-
cutting (Steinhaus, 1948) and it is still very common in the cake-cutting literature (Robertson and Webb,
1998; Procaccia, 2015). With geometric preferences, a proportional division might not exist; see Figure 1
again for an example. Hence we relax the proportionality requirement and consider partial proportionality.
Partial proportionality means that each agent receives a piece worth at least a fraction p of the total value,
where p is a positive constant in [0, 1]. Obviously we would like p to be as large as possible. In a previous
paper (Segal-Halevi et al., 2017), we showed that partial-proportionality can be attained in various geomet-
ric settings. For example, in the setting of Figure 1 (square land and two agents who want square pieces),
each agent can be guaranteed at least a fraction 1/4 of the total value, and this is the largest fraction that
can be guaranteed. However, these results did not consider envy. The present paper (which can be read
independently of the previous one) studies3 the following question:

When each agent wants a plot of land with a given geometric shape, what is the largest fraction
of the total value that can be guaranteed to every agent in an envy-free allocation?

The following example shows that existing cake-cutting algorithms are insufficient for answering this question.

Example 1.1. You and a partner are going to divide a square land-estate. It is 100-by-100 square meters
and its western side is adjacent to the sea. Your desire is to build a house near the sea-shore. You decide
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Figure 2: Fatness of several 2-dimensional geometric shapes. The dashed square is the largest contained
cube; the dotted square is the smallest containing parallel cube. The shape is R-fat if the ratio of the
side-lengths of these squares is at most R.

to use the classic algorithm for envy-free cake-cutting: “You cut, I choose”. You let your partner divide the
land to two plots, knowing that you have the right to choose the plot that is more valuable according to your
personal preferences. Your partner makes a cut parallel to the shoreline at a distance of only 1 meter from
the sea. 1 Which of the two plots would you choose? The western plot contains a lot of sea shore, but it is so
narrow that it has no room for building anything. On the other hand, the eastern plot is large but does not
contain any shore land. Whichever plot you choose, the division is not proportional for you, because your
utility is far less than half the utility of the original land estate.

Of course the land could be cut in a more sensible way (e.g. by a line perpendicular to the sea), but
existing cake-cutting algorithms say nothing about how exactly to cut in each situation in order to guarantee
that the division is fair with respect to the geometric preferences. While the cut-and-choose algorithm still
guarantees envy-freeness, it does not guarantee partial-proportionality since it does not guarantee any positive
utility to agents who want square pieces.

This paper presents fair division algorithms that guarantee both envy-freeness and partial-proportionality.
Our algorithms focus on agents who want fat pieces — pieces with a bounded length/width ratio, such as
squares. The rationale is that a fat shape is more convenient to work with, build on, cultivate, etc.

1.1 Fatness.

We use the following formal definition of fatness, which is adapted from the computational geometry litera-
ture, e.g. Agarwal et al. (1995); Katz (1997):

Definition 1.2. Let R ≥ 1 be a real number. A d-dimensional piece is called R-fat, if it contains a d-
dimensional cube B− and is contained in a parallel d-dimensional cube B+, such that the ratio between the
side-lengths of the cubes is at most R: len(B+)/len(B−) ≤ R.

A 2-dimensional cube is a square. So, for example, the only 2-dimensional 1-fat shape is a square (it is
also 2-fat, 3-fat etc.). An L × 1 rectangle is L-fat; a right-angled isosceles triangle is 2-fat (but not 1-fat)
and a circle is

√
2-fat (see Figure 2).

Note that the fatness requirement is inherently multi-dimensional and cannot be reduced to a 1-dimensional
requirement. Hence it cannot be satisfied by methods developed for a 1-dimensional cake.2

1.2 Results.

We prove that envy-freeness and partial-proportionality are compatible in progressively more general geo-
metric settings. Our proofs are constructive: in every geometric setting (geometric shape of the land and
preferred shape of the pieces), we present an algorithm that divides the land with the following guarantees:

1The reason why your partner decided to cut this way is irrelevant since a fair division algorithm is expected to guarantee
that the division is fair for every agent playing by the rules, regardless of what the other agents do.

2In contrast, the simpler requirement that the pieces be rectangles with an arbitrary length/width ratio can easily be reduced
to a 1-dimensional requirement that the pieces are connected intervals. Such reduction is also possible for the requirements that
the pieces be simplices (Ichiishi and Idzik, 1999) or polytopes (Dall’Aglio and Maccheroni, 2009) with an unbounded aspect
ratio.
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• Envy-freeness : every agent weakly prefers his/her allotted piece over the piece given to any other agent.

• Partial-proportionality: every agent receives a piece worth for him/her at least a fraction p of the total
land value, where p is a positive constant that depends on the geometric requirements.

In the following theorems, the partial-proportionality guarantee p is given in parentheses.
The first theorem handles division between two agents.

Theorem 1.3. There is an algorithm for finding an envy-free and partially-proportional allocation of land
between two agents in the following cases:

(a) The land is square and the usable pieces are squares (p ≥ 1/4).
(b) The land is an R-fat rectangle and the usable pieces are R-fat rectangles with R ≥ 2 (p ≥ 1/3).
(c) The land is an arbitrary R-fat object and the usable pieces are 2R-fat, where R ≥ 1 (p ≥ 1/2).

Value-shape trade-off : Theorem 1.3 illustrates a multiple-way trade-off between value and shape.
Consider two agents who want to divide a square land-estate with no envy. They have the following options:

• By projecting a 1-dimensional division obtained by any classic cake-cutting algorithm, they can achieve
a proportional allocation (a value of at least 1/2) with rectangular pieces but with no bound on the
aspect ratio — the pieces might be arbitrarily thin.

• By (a), they can achieve an allocation with square pieces but only partial proportionality — the
proportionality might be as low as 1/4.

• By (b), they can achieve a proportionality of 1/3 with 2-fat rectangles, which is a compromise between
the previous two options.

• By (c), they can achieve an allocation that is both proportional and with 2-fat pieces, but the pieces
might be non rectangular.

The proportionality constants in Theorem 1.3 are tight in the following sense: it is not possible to
guarantee an allocation with a larger proportionality, even if envy is allowed. This means that envy-freeness
is compatible with the largest possible proportionality — we don’t have to compromise on proportionality
to prevent envy.

Moreover, whenever the pieces should be R-fat with R < 2, it might be impossible to guarantee more than
1/4-proportionality, and whenever the pieces should be R-fat with any finite R, it might be impossible to
guarantee more than 1/3-proportionality. This implies that 2-fat rectangles are a good practical compromise
between fatness and fairness: if we require fatter pieces (R < 2) then the proportionality guarantee drops
from 1/3 to 1/4, while if we allow thinner pieces (R > 2) the proportionality remains 1/3 for all R < ∞.

The second theorem handles division among any number of agents.

Theorem 1.4. There exists an envy-free and partially-proportional allocation of land among n agents in the
following cases:

(a) The land is square and the usable pieces are squares (p > 1/(4n2)).
(b) The land is an R-fat rectangle and the pieces are R-fat rectangles, where R ≥ 1 (p > 1/(4n2)).
(c) The land is a d-dimensional R-fat object and the pieces are ⌈n1/d⌉R-fat,3 where d ≥ 2 and R ≥ 1

(p ≥ 1/n).

Value-shape trade-off : Part (a) and part (c) are duals in the following sense:

• Part (a) guarantees an envy-free division with perfect pieces (squares) but compromises on the pro-
portionality level;

• Part (c) guarantees an envy-free division with perfect proportionality (1/n) but compromises on the
fatness of the pieces.

3⌈x⌉ denotes the ceiling of x — the smallest integer which is larger than x.
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The “magnitude” of the first compromise is 4n, since the proportionality drops from 1/n to 1/(4n2). We
do not know if this magnitude is tight: we know that it is possible to attain a division with square pieces
and a proportionality of 1/O(n) which is not necessarily envy-free Segal-Halevi et al. (2017), but we do not
know if a proportionality of 1/O(n) is compatible with envy-freeness.

The “magnitude” of the second compromise is ⌈n1/d⌉. This magnitude is asymptotically tight. We prove
that, in order to guarantee a proportional division of an R-fat land, with or without envy, we must allow
the pieces to be Ω(n1/d)R-fat.

1.3 Challenges and solutions.

The main challenge in land division is that utility functions depending on geometric shape are not additive.
For example, consider an agent who wants to build a square house the utility of which is determined by
its area. The utility of this agent from a 20 × 20 plot is 400, but if this plot is divided to two 20 × 10
plots, the utility from each plot is 100 and the sum of utilities is only 200. Most existing algorithms for
proportional cake-cutting assume that the valuations are additive, so they are not applicable in our case.
While there are some previous works on cake-cutting with non-additive utilities, they too cannot handle
geometric constraints:

• Berliant et al. (1992); Maccheroni and Marinacci (2003) focus on sub-additive, or concave, utility func-
tions, in which the sum of the utilities of the parts is more than the utility of the whole. These utility
functions are inapplicable in our scenario because, as illustrated in the previous paragraph, utility
functions that consider geometry are not necessarily sub-additive — the sum of the utilities of the
parts might be less than the utility of the whole.

• Dall’Aglio and Maccheroni (2009) do not explicitly require sub-additivity, but they require preference
for concentration: if an agent is indifferent between two pieces Z1 and Z2, then he prefers 100% of Z1

to 50% of Z1 plus 50% of Z2. This axiom may be incompatible with geometric constraints: the agent
in the above example is indifferent between the two 20 × 10 rectangles, but he prefers 50% of their
union (the 20 × 20 square) to 100% of a single rectangle.4

• Sagara and Vlach (2005); Hüsseinov and Sagara (2013) consider general non-additive utility functions
but provide only non-constructive existence proofs.

• Su (1999); Caragiannis et al. (2011); Mirchandani (2013) provide practical division algorithms for non-
additive utilities, but they crucially assume that the cake is a 1-dimensional interval and cannot handle
two-dimensional constraints.

• Berliant and Dunz (2004) study the division of a multi-dimensional good with geometric constraints.
Their results are mostly negative: when general value measures are combined with geometric prefer-
ences, a competitive-equilibrium might not exist. This is in contrast to the situation without geometric
constraints, in which a competitive equilibrium always exists (Weller, 1985; Segal-Halevi and Sziklai,
2018).

When envy-free division protocols are applied to agents with non-additive utility functions, the divi-
sion is still envy-free, but the utility per agent might be arbitrarily small. This is true for cut-and-
choose (as shown in Example 1.1 above) and it is also true for all other algorithms for envy-free divi-
sion that we are aware of (Stromquist (1980); Brams and Taylor (1995); Reijnierse and Potters (1998); Su
(1999); Barbanel and Brams (2004); Manabe and Okamoto (2010); Cohler et al. (2011); Deng et al. (2012);
Kurokawa et al. (2013); Chen et al. (2013); Aziz and Mackenzie (2016); Segal-Halevi et al. (2016)).

Our way to cope with this challenge is to explicitly handle the geometric constraints in the algorithms.
The main tool we use is the geometric knife function.

Moving-knife algorithms have been used for envy-free cake-cutting since its earliest years (Dubins and Spanier,
1961; Stromquist, 1980; Brams et al., 1997; Saberi and Wang, 2009). For example, consider the following
simple algorithm for envy-free division among two agents. A referee moves a knife slowly over the cake, from
left to right. Whenever an agent feels that the piece to the left of the knife is worth for him exactly half the

4We are grateful to Marco Dall’Aglio for his help in clarifying this issue.
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total cake value, he shouts ”stop!”. Then, the cake is cut at the current knife location, the shouter receives
the piece to its left and the non-shouter receives the piece to its right.

In this paper we formalize the notion of a knife and add geometric constraints guaranteeing that the final
pieces have a sufficiently high utility for agents who care about geometric shape.

1.4 Other related work.

The prominent model in the cake-cutting literature assumes that the cake is an interval. Several authors
diverge from the interval model by assuming a circular cake (e.g. Thomson (2007); Brams et al. (2008);
Barbanel et al. (2009)), but they still work in one dimension so the pieces are one-dimensional arcs corre-
sponding to thin wedge-like slivers.

The importance of the multi-dimensional geometric shape of the plots was noted by several authors.
Hill (1983); Beck (1987); Webb (1990); Berliant et al. (1992) study the problem of dividing a disputed

territory between several bordering countries, with the constraint that each country should get a piece that
is adjacent to its border.

Ichiishi and Idzik (1999); Dall’Aglio and Maccheroni (2009); Segal-Halevi (2018) require the plots to be
convex shapes such as multi-dimensional simplices or rectangles. However, the allocated pieces can be
arbitrarily thin — their methods cannot handle requirements that are inherently two-dimensional, such as
squareness.

Iyer and Huhns (2009) describe an algorithm for giving each agent a rectangular plot with an aspect ratio
determined by the agent. However, their algorithm is not guaranteed to succeed. If even a single rectangle
of Alice intersects two rectangles of George (for example), then the algorithm fails and no agent gets any
piece.

In a related paper Segal-Halevi et al. (2017), we considered the problem of partially-proportional division
when the pieces must be squares or fat rectangles. We presented an algorithm for dividing a square among n
agents such that each agent receives a square piece with a value of at least 1/(4n− 4). When all agents have
the same value function, the proportionality improves to 1/(2n). We also proved that the upper bound in
both cases is 1/(2n). The algorithms in the present paper use very different techniques, in order to guarantee
envy-freeness in addition to partial-proportionality. Their down-side is that their proportionality guarantee
(in the case of square pieces) is only 1/(4n2). Additionally, in the present paper we handle general fat objects
rather than just squares and rectangles. Some impossibility results from that paper are replicated here (in
Appendix B) so that each paper can be fully understood without reading the other one.

1.5 Paper layout.

The formal definitions and model are provided in Section 2. Section 3 introduces the core geometric concepts
and techniques. These geometric techniques are then applied in the construction of the envy-free division
algorithms for two agents (Section 4) and n agents (Section 5). Some directions for future work are presented
in Section 6.

Appendix A contains some of the more technical proofs related to continuity of knife-functions. Appendix
B contains negative results — upper bounds on attainable partial-proportionality in various cases. Appendix
C presents an alternative model in which the pieces should be convex in addition to being fat. Appendix
D presents an alternative model in which the proportionality of an allocation is measured relative to the
maximum attainable utility rather than the total land value.

2 Model

2.1 Land and Pieces.

The resource to be divided is called a land-estate or just land for short. It is denoted by C. It is assumed
to be a Borel subset of a Euclidean space Rd. In most of the paper d = 2. Pieces are Borel subsets of Rd.
Pieces of C are Borel subsets of C.

There is a family S of pieces that are considered usable. An S-piece is an element of S.

6



2.2 Agents and Utilities.

There are n ≥ 1 agents. Each agent i ∈ {1, ..., n} has a value-density function vi, which is an integrable,
non-negative and bounded function on C. It represents the quality of each land-spot in the eyes of the agent.
It may depend upon factors such as the fertility of soil, the probability of finding oil, the existence of trees,
etc.

The value of a piece Z to agent i is denoted by Vi(Z) and it is the integral of the value-density:

Vi(Z) =

∫

z∈Z

vi(z)dz

We assume that for all agents i, Vi(R
d) < ∞. Hence, each Vi is a finite measure which is absolutely-

continuous with respect to the Lebesgue measure. In particular, the boundary of a piece has a value of zero
to all agents.

In the standard cake-cutting model (Weller, 1985; Chambers, 2005; LiCalzi and Nicolò, 2009; Chen et al.,
2013), the utility function of an agent is identical to his/her value measure. The present paper diverges from
this model by considering agents whose utility functions depend both on value and on geometric shape. We
assume that an agent can derive utility only from an S-piece; when his allotted land-plot is not an S-piece,
he selects the most valuable S-piece contained therein and utilizes it. For each agent i, we define the S-value
function, which assigns to each piece Z ⊆ Rd the value of the most valuable usable piece contained therein:

V S
i (Z) = sup

Y ∈S , Y⊆Z
Vi(Y )

We assume that the utility of agent i is equal to his S-value function V S
i . In general, V S

i is not a measure
since it is not additive (it is not even sub-additive). Hence, cake-cutting algorithms that require additivity
are not applicable. Note that the two most common cake-cutting models are special cases of our model:

• The model in which each agent may receive an arbitrary Borel subset (Weller, 1985) is a special case
in which S is the set of all pieces.

• The model in which each agent must receive a connected piece (Stromquist, 1980) is a special case in
which C is an interval and S is the set of intervals.

2.3 Allocations and Fairness.

An allocation of C is a vector of n pieces of C, X = (X1, ..., Xn), such that the Xi are pairwise-disjoint5 and
their union is a subset of C. We express the latter two facts succinctly using the “disjoint union” operator,
⊔:

X1 ⊔ · · · ⊔Xn ⊆ C.

We assume free disposal — some of C may remain unallocated. This assumption is natural in division of
land: it is common to leave some land unallocated to make it available for public use.

An allocation is called envy-free if the utility of an agent from his allotment is at least as large as his
utility from every piece allocated to another agent:

∀i, j ∈ {1, ..., n} : V S
i (Xi) ≥ V S

i (Xj)

We call an allocation p-proportional, for some p ∈ [0, 1], if the utility of each agent from his allotment is at
least a fraction p of his total land value:

∀i ∈ {1, ..., n} : V S
i (Xi) ≥ p · Vi(C)

5 Throughout the paper, when we talk about “disjoint pieces”, we allow the pieces to intersect in their boundary. We can
ignore the question of which agent receives the boundary, since the value of the boundary is 0 for all agents.
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We call an allocation p-relative-proportional if the utility of each agent from his allotment is at least a fraction
p of his largest attainable utility:

∀i ∈ {1, ..., n} : V S
i (Xi) ≥ p · V S

i (C)

Since Vi(C) ≤ V S
i (C), every p-proportional allocation is also p-relative-proportional. The present paper

focuses on p-proportionality, so all positive results are valid for p-relative-proportionality as well. Moreover,
whenever C itself is an element of S, Vi(C) = V S

i (C), so p-proportionality and p-relative-proportionality are
equivalent. This is the case in all settings mentioned in our main theorems (1.3 and 1.4); therefore they are
valid and tight by both criteria.

However, when C 6∈ S, it may be possible to attain relative-proportionality that is higher than the
maximum attainable absolute-proportionality. Exploiting this possibility requires new techniques. Appendix
D presents some results in this direction, leaving a fuller treatment to future work.

2.4 Fairness Guarantees

Given the geometric shape of C and the family S, we would like to know what proportionality can be
guaranteed for any combination of agents, with and without the additional requirement of envy-freeness.
Formally:

Definition 2.1. Let C be a land-estate, S a family of usable shapes, and n ≥ 1 an integer.
(a) The proportionality guarantee for C, S and n, denoted Prop(C, S, n), is the largest fraction

p ∈ [0, 1] such that, for every n value measures (V1, ..., Vn), a p-proportional allocation exists.
(b) The envy-free proportionality guarantee of C, S and n, denoted PropEF(C, S, n), is the largest

fraction p ∈ [0, 1] such that, for every n value measures (V1, ..., Vn), an envy-free and p-proportional allocation
exists.

For example, classic cake-cutting results can be presented as:

∀C : Prop(C, AllP ieces, n) = PropEF(C, AllP ieces, n) = 1/n

Prop(Interval, Intervals, n) = PropEF(Interval, Intervals, n) = 1/n

and our results for two agents can be stated as:

Prop(Square, Squares, 2) = PropEF(Square, Squares, 2) = 1/4

∀R ≥ 2 : Prop(R fat rectangle, R fat rectangles, 2) =

= PropEF(R fat rectangle, R fat rectangles, 2) = 1/3

∀R ≥ 1 : Prop(R fat object, R fat objects, 2) =

= PropEF(R fat object, 2R fat objects, 2) = 1/2

2.5 Strategy considerations

In the present paper we ignore strategic considerations and assume that all agents act according to their
true value functions. In fact, even without geometric constraints, it is impossible to build a general division
protocol that is both fair and strategy-proof (Brânzei and Miltersen, 2015). Strategy-proof algorithms exist
only in very special cases, for example, when all agents have piecewise-uniform valuations (Chen et al., 2013;
Bei et al., 2017, 2018).

However, the guarantees of our algorithms are valid for any single agent who acts according to his own
value function. E.g, the algorithm of Theorem 1.4(c) guarantees that every agent acting according to his
true value function receives a piece with a utility of at least 1/n and at least as good as the other pieces,
regardless of what the other agents do.
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3.1 × 1 rectangle:

CoverNum(Z,squares)=4

L-shape:

CoverNum(Z,squares)=3

L-shape:

CoverNum(Z,rectangles)=2

Disc:

CoverNum(Z,squares)=∞

CoverNum(Z,rectangles)=∞

Figure 3: Cover numbers of several geometric shapes. In the first three figures, The dashed
squares/rectangles denote minimal covers. In the fourth figure, there is no finite cover, so the cover number
is defined as ∞.

3 Geometric Preliminaries

3.1 Covers and choosers.

The key feature of our geometric setting is that the utility of each agent i is given by V S
i rather than Vi.

Therefore, we would like to bound the ratio between V S
i and Vi. The key concept we will use is a cover.

Definition 3.1. (a) A cover of a piece Z ⊆ Rd is a set of pieces of Z whose union equals Z:

Z1 ∪ · · · ∪ Zm = Z

(b) An S-cover of Z is a cover in which all pieces are elements of S.
(c) The S-cover-number of Z, CoverNum(Z, S), is the smallest size of an S-cover of Z.

Some examples of cover-numbers are shown in Figure 3.
Consider a piece Z with an S-cover of size m. For any value-measure V , the sum of values of the m

S-pieces is at least V (Z). Therefore, the most valuable S-piece in the cover has a value of at least V (Z)/m:

max
i∈{1,...,m}

V (Zi) ≥ V (Z)/m. (1)

Using this simple fact we now prove that, in any cover of Z (not necessarily an S-cover), any agent can
choose a piece with a utility of at least 1/M the total value of Z, where M is the sum of cover-numbers of
the covering pieces:

Lemma 3.2 (Chooser Lemma). Let Z be a piece covered by m pieces Z1 ∪ · · · ∪ Zm = Z, and let M =
∑m

i=1 CoverNum(Zi, C). Then for every value measure V :

max
i∈{1,...,m}

V S(Zi) ≥ V (Z)/M.

Proof. Proof. For every i ∈ {1, . . . ,m}, denote mi := CoverNum(Zi, S). Suppose that we replace each Zi

in the cover of Z by mi S-pieces in a minimal S-cover of Zi, e.g, Zi,1, . . . , Zi,mi . We now have an S-cover
of Z with M S-pieces. By (1), at least one of these M pieces, say Zi,j , has a value of at least V (Z)/M . By
definition of V S , V S(Zi) ≥ V (Zi,j) = V (Z)/M .

As a simple corollary of the Chooser Lemma, we get:

Lemma 3.3 (Allocation Lemma). Given a land C and some integer m ≥ n, let (C1, . . . , Cm) be a cover of
C with a total cover-number of M , i.e.: M =

∑m
i=1 CoverNum(Zi, C). Suppose each agent i ∈ {1, . . . , n}

chooses a piece Ci that gives him a highest utility among the m pieces, and the n choices are pairwise-disjoint.
Then, the resulting allocation of C is envy-free and (1/M)-proportional.
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(a) C = [0, L] × [0, 1]

KC (t) = [0, Lt] × [0, 1]

KCoverNum(KC, Squares) = ∞

KCoverNum(KC,Rectangles) = 2

(b) C = [0, 1] × [0, 1]

KC(t) = [0, t] × [0, t] ∪ [1 − t, 1] × [1 − t, 1]

KCoverNum(KC,Rectangles) = 4

KCoverNum(KC,Squares) = 4

(c) C = ellipse with major axis

[0, 1] × {0}

KC(t) = C ∩ [0, t] × (−∞,∞)

KCoverNum(KC, convex objects) = 2

(d) C = [0, 2] × [0, 2]

KC(t) = [0, t] × [0, t]

KCoverNum(KC,Rectangles) = 3

KCoverNum(KC,Squares) = 4

(e) C = [0, 2] × [0, 2]

C1 := C \ [0, 1] × [0, 1]

KC (t) = C1 ∩ ([0, 2] × [0, t/2])

KCoverNum(KC, Rectangles) = 3

KCoverNum(KC,Squares) = ∞

(f) C = [0, 1] × [0, 1]

KC (t) = [0, t] × [0, 1] ∪ [1 − t, 1] × [0, 1]

KCoverNum(KC,Rectangles) = 3

KCoverNum(KC,Squares) = ∞

Figure 4: Several knife functions. The area filled with horizontal lines marks KC(t) in a certain intermediate
time t ∈ (0, 1). Dotted lines mark future knife locations.

3.2 Knife functions.

Moving-knives have been used in fair division procedures ever since the seminal paper of Dubins and Spanier
(1961). We generalize the concept of a moving knife to handle geometric shape constraints.

Definition 3.4. A knife function on a land C is a function KC from the real interval [0, 1] to Borel subsets
of C, with the following continuity property: for every ǫ > 0 there is a δ > 0 such that |t′ − t| < δ implies
Volume[KC(t′) ⊖KC(t)] < ǫ.6

KC is called increasing if t′ ≥ t =⇒ KC(t′) ⊇ KC(t), and decreasing if t′ ≥ t =⇒ KC(t′) ⊆ KC(t).
If KC(0) = Cstart and KC(1) = Cend, we say that KC is a knife function from Cstart to Cend.

Some examples of knife-functions are shown in Figure 4. In Appendix A.1 we show a general construction
of an increasing knife-function from Cstart to Cend — the growing-ball function.

The complement of KC is denoted KC and defined by KC(t) = C \ KC(t) ∀t ∈ [0, 1] . If KC is a
knife-function then KC is a knife-function too.

3.3 Continuity of utility covered by knife functions.

The value covered by a knife-function always changes continuously with time. Formally, we prove in Appendix
A.2 that:

Lemma 3.5. If KC is a knife-function and V is an absolutely-continuous measure, then V ◦ KC is a
uniformly-continuous real functions.

However, in our setting the agents care not about V but about V S . In general, the function V S ◦ KC

might be discontinuous. For example, let KC be the knife-function in Figure 4(f), V the area measure, and
S the family of rectangles. Then, the function V S ◦KC (the largest area of a rectangle covered by the knife)
is discontinuous — it is less than 1/2 when t < 1/2, and jumps to 1 when t ≥ 1/2.

To handle this issue we define two different properties of knife functions.

6 Volume[Z] denotes the Lebesgue measure of a piece Z in Rd.
The symbol ⊖ denotes the symmetric set difference: for two sets A and B, A⊖ B := (A \B) ∪ (B \A).
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1. S-continuity means (informally) that all S-pieces in KC(t) and KC(t) grow or shrink continuously;
no S-piece with a positive area is created or destroyed abruptly. See Appendix A.3 for a formal definition.
In Figure 4, all knives are square-continuous and rectangle-continuous except for knife (f). In Appendix A.3
we prove that:

Lemma 3.6. If KC is an S-continuous knife-function and V is an absolutely-continuous measure, then both
V S ◦KC and V S ◦KC are uniformly-continuous real functions.

In Appendix A.4 we show a general construction of an increasing S-continuous knife-function on C —
the sweeping-plane function (Figure 4(a,e) are special cases of this function).

2. S-smoothness means (informally) that KC(t) is a finite union of S-pieces that grow continuously and
KC(t) is a finite union of S-pieces that shrink continuously. To define it formally we need some preliminary
definitions:

• The union of two knife-functions, K1 and K2, is a knife-function K1 ∪K2 defined by:

(K1 ∪K2)(t) = K1(t) ∪K2(t) ∀t ∈ [0, 1]

• A knife-function K is an S-knife function if it is into S, i.e., K(t) ∈ S ∀t ∈ [0, 1] .

• An S-cover of a knife-function KC is a set of S-knife functions whose union equals KC .

Definition 3.7. A knife-function KC is called S-smooth if:

• KC has a finite S-cover K1 ∪ · · · ∪Km for some integer m ≥ 1.

• KC has a finite S-cover K
1 ∪ · · · ∪K

m′

for some integer m′ ≥ 1.

• For every j ∈ {1, . . . ,m}, Kj(1) = KC(1). I.e, the knives covering KC coincide at t = 1.7

If KC is S-smooth, then we define the cover number of KC , KCoverNum(KC , S), as the smallest sum
m + m′ of integers that satisfy the above definition.

Lemma 3.6 is not necessarily true for S-smooth knife functions — V S◦KC and V S◦KC are not necessarily
continuous. Therefore we define the following alternative functions (where V is any value-measure and the
Kj are the S-knife-functions covering KC):

V KC (t) :=
m

max
j=1

V (Kj(t)) V KC (t) :=
m′

max
j=1

V (K
j
(t)). (2)

Note that for all t, V KC (t) ≤ V S(KC(t)), since V KC considers a most valuable S-piece from a finite set of
S-pieces contained in KC(t), while V S considers a supremum over all S-pieces contained in KC(t), Similarly,

V KC (t) ≤ V S(KC(t)).

Lemma 3.8. If KC is an S-smooth knife-function and V is an absolutely-continuous measure, then both

V KC and V KC are uniformly-continuous real functions.

Proof. Proof. Each of these functions is a maximum over functions that are uniformly-continuous (by Lemma
3.5). The maximum of uniformly-continuous functions is uniformly-continuous.

7 The latter condition comes to guarantee that there are no jumps in the S-value at t = 1. It implies that KC(1) ∈ S.
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Examples (see Figure 4):
(a) Both KC(t) and its complement are rectangles and their areas are continuous functions of t. Therefore,

KC is rectangle-smooth with m = m′ = 1 and its rectangle-cover-number is 2. In contrast, KC(t) cannot be
presented as a union of a fixed finite number of squares. Therefore, KC is not square-smooth.

(b) KC(t) can be covered by two square-knife-functions: K1(t) = [0, t] × [0, t] and K2(t) = [1 − t, 1] ×
[1 − t, 1]. Its complement too can be covered by two square-knife-functions: K

1
(t) = [0, 1 − t] × [t, 1] and

K
2
(t) = [t, 1] × [0, 1 − t]. Therefore, KC is square-smooth with KCoverNum(KC , Squares) = 2 + 2 = 4.

KC is also rectangle-smooth with the same cover-number.
(c) C is an arbitrary convex object and S is the family of convex objects. Both KC(t) and its complement

are convex so KC is S-smooth with a cover-number of 2.
(d) This is a knife-function from ∅ to [0, 1] × [0, 1] = the bottom-left quarter of C. KC(t) is a square

that grows continuously. KC(t) is an L-shape, similar to the L-shapes in Figure 3, which can be covered by
a union of 3 squares that shrink continuously. Hence KC is square-smooth with m = 1 and m′ = 3 and its
square-cover-number is 4.

(e) This is a knife-function from ∅ to C \ [0, 1] × [0, 1]; it sweeps over this L-shape continuously from
bottom to top. It is square-continuous (see proof in Appendix A.4), but not square-smooth.

(f) KC(t) is a union of two rectangles that grow continuously and its complement is a rectangle that
shrinks continuously. It is rectangle-smooth with a cover number of 3, but not rectangle-continuous (see
proof in Appendix A.5).

Examples (e) and (f) show that S-continuity and S-smoothness are independent properties that do not
imply each other.

4 Envy-Free Division for Two Agents

In this section we use the tools developed in Section 3 to build complete land division algorithms.

4.1 Dividing squares.

Our first algorithm uses a single S-smooth knife-function and generalizes the classic cut-and-choose protocol.
It is presented in Algorithm 1. The following lemma proves that it is correct.

Lemma 4.1 (Correctness of Smooth Knife Algorithm). Let Cend be piece of C such that for each agent
i ∈ {1, 2}: V S

i (Cend) ≥ V S
i (C \ Cend). Let KC be an S-smooth knife-function from ∅ to Cend such that:

KCoverNum(KC , S) = M . Then, Algorithm 1 produces an envy-free and (1/M)-proportional allocation
between the two agents.

Proof. Proof. By Lemma 3.8, for all i ∈ {1, 2}, both V KC

i (t) and V KC

i (t) are continuous functions of t.

At t = 0, V KC

i (t) ≤ V KC

i (t),8 and at t = 1, V KC

i (t) ≥ V KC

i (t),9 so by the intermediate value theorem,
for some t∗ ∈ [0, 1] the two functions are equal. Therefore, agent 1 can indeed find a t∗ ∈ [0, 1] such that

V KC
1 (t∗) = V KC

1 (t∗), as required in step (1).
Now, in step (2), each agent i receives an S-piece that maximizes Vi from a covering of size m+m′ = M .

Hence, by the Allocation Lemma, the allocation is envy-free and 1/M -proportional.

Based on this lemma we can now prove our first sub-theorem:

Theorem (Theorem 1.3(a)). PropEF(Square, Squares, 2) ≥ 1/4

8 Since KC(0) = ∅, so for all j ∈ {1, . . . ,m}, Kj(0) = ∅, so V
KC
i

(0) = Vi(∅) = 0.
9 Since by definition 3.7, ∀j ∈ {1, . . . ,m}, Kj(1) = KC(1) = Cend, so Vi(K

j(1)) = V S
i (Kj(1)) = V S

i (Cend), so also

V
KC
i (1) = V S

i (Cend). On the other hand, ∀j ∈ {1, . . . ,m}, KC
j
(1) ⊆ KC(1) = C \ Cend. Since KC

j
(1) is an S-piece,

Vi(KC
j
(1)) ≤ V S

i (C \ Cend). Since this is true for all j ∈ {1, . . . ,m}, also V
KC
i (1) ≤ V S

i (C \ Cend). Now, by assumption,

V S
i (Cend) ≥ V S

i (C \ Cend).
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Algorithm 1 Smooth Knife Algorithm

INPUT:
(a) Cend — an S-piece contained in C such that for each agent i ∈ {1, 2}:

V S
i (Cend) ≥ V S

i (C \ Cend)

(b) KC — an S-smooth knife-function from ∅ to Cend such that, for some M ≥ 2:

KCoverNum(KC , S) = M

and the corresponding covers by S-knife-functions as in Definition 3.7, where m + m′ = M :

K1 ∪ · · · ∪Km = KC K
1 ∪ · · · ∪K

m′

= KC

OUTPUT:
An envy-free and (1/M)-proportional allocation of C between the two agents.
ALGORITHM:
(1) Agent 1 selects a time t∗ ∈ [0, 1] such that (where V KC

1 and V KC
1 are as defined in (2)):

V KC
1 (t∗) = V KC

1 (t∗)

(2) Agent 2 picks one of the following two options:
(2.1) Agent 2 picks an S-piece Kj(t∗) that maximizes V2 for j ∈ {1, . . . ,m}, and agent 1 picks an S-piece

K
j
(t∗) that maximizes V1 for j ∈ {1, . . . ,m′}.

(2.2) Agent 2 picks an S-piece K
j
(t∗) that maximizes V2 for j ∈ {1, . . . ,m′}, and agent 1 picks an S-piece

Kj(t∗) that maximizes V1 for j ∈ {1, . . . ,m}.

Proof. Proof. Given a square land C, apply the Single Knife Algorithm with Cend = C and KC the knife-
function shown in Figure 4/b. As explained in Subsection 3.2, this KC is square-smooth and KCoverNum(KC , Squares) =
4. Therefore, by Lemma 4.1, the resulting division is envy-free and (1/4)-proportional.

This lower bound is tight — it is not possible to guarantee both agents a larger utility even if envy is
allowed. See Appendix B, Lemma B.1.

4.2 Dividing cubes and archipelagos.

In many cases it is difficult to find a single S-smooth knife function that covers the entire land. To handle
such cases, we first present a subroutine (Algorithm 2) and then a division algorithm that uses this subroutine
(Algorithm 3).

Below we prove the correctness of the subroutine and then the correctness of the full algorithm.

Lemma 4.2 (Correctness of Continuous Knife Subroutine). Let Cend be piece of C such that for each agent
i ∈ {1, 2}: V S

i (Cend) ≥ V S
i (C \Cend). Let KC be an increasing S-continuous knife-function from ∅ to Cend.

Then, Algorithm 2 produces an envy-free allocation of C between the two agents such that the utility of agent
i is at least V S

i (C \ Cend).

Proof. Proof. By Lemma 3.6, for all i ∈ {1, 2}, both V S
i KC(t)) and V S

i (KC(t)) are continuous functions.
At t = 0 the first function is weakly smaller, since V S

i (KC(0)) = V S
i (∅) = 0.

At t = 1 the first function is weakly larger, since V S
i (KC(1)) = V S

i (Cend) ≥ V S
i (C \Cend) = V S

i (KC(1))
by assumption.

Therefore, by the intermediate value theorem, agent 1 can indeed pick a t∗ ∈ [0, 1] such that V S
1 (KC(t∗)) =

V S
1 (KC(t∗)), as required in step (1).

In step (2), agent 1 is indifferent between the two pieces and agent 2 picks a best piece, so the allocation
is envy-free.
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Algorithm 2 Continuous Knife Subroutine

INPUT:
(a) Cend — a piece of C such that for each agent i ∈ {1, 2}:

V S
i (Cend) ≥ V S

i (C \ Cend)

(b) KC — an increasing S-continuous knife-function from ∅ to Cend.
OUTPUT:
An envy-free allocation of C in which every agent i gets a utility of at least V S

i (C \ Cend).
ALGORITHM:
(1) Agent 1 selects a time t∗ ∈ [0, 1] such that:

V S
1 (KC(t∗)) = V S

1 (KC(t∗)).

(2) Agent 2 picks either KC(t∗) or KC(t∗); agent 1 receives the remaining piece.
(a) (b)

Figure 5: Knife functions for archipelagos of rectangles. Left: A land-estate made of a union of 3 disjoint
rectangles.
Right: Three knife functions, each having a cover number of 4, proving that PropEF(C, rectangles, 2) ≥
1/4.

Moreover, since KC is increasing, KC is decreasing, so KC(t∗) contains KC(1) = C \ Cend. Each agent
receives either KC(t∗) or a piece with a weakly larger utility. Therefore, the utility of each agent i is at least
V S
1 (C \ Cend).

Lemma 4.3 (Correctness of Single Partition Algorithm). If there exist a partition and knife-functions
satisfying the input requirements of Algorithm 3, then this algorithm produces an envy-free and (1/M)-
proportional allocation of C between the two agents.

Proof. Proof. The algorithm may end in step (1), (2), (3.1) or (3.2). We prove that in each of these cases
the resulting allocation is envy-free and (1/M)-proportional.

In steps (1) and (2), if the choices are different, then by the Allocation Lemma (3.3) and the condition
on input (a), each agent i receives an envy-free share with a utility of at least Vi(C)/M .

In step (3.1), we know that both agents prefer Cj over its complement Cj . Therefore, Cend = Cj satisfies
requirement (a) of Algorithm 1. The knife-function KCj is S-smooth with a cover number of at most M , so
it satisfies requirement (b). Hence, by Lemma 4.1, Algorithm 1 gives to each agent i an envy-free share with
a utility of at least Vi(C)/M .

In step (3.2), we know that both agents prefer Cj over its complement Cj . Therefore, Cend = Cj satisfies

requirement (a) of Algorithm 2. The knife-function KCj is increasing and S-continuous, so it satisfies
requirement (b). Hence, by Lemma 4.2, Algorithm 2 gives to each agent i an envy-free share with a utility
of at least V S

i (C \Cj) = V S
i (Cj). Now, in step (1) both agents chose Cj from a partition with a total cover

number of at most M . Therefore, by the Chooser Lemma (3.2), V S
i (Cj) ≥ Vi(C)/M .

Several applications of Algorithm 3 are presented below.
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Algorithm 3 Single Partition Algorithm

INPUT:
(a) a partition of C into m pieces, with a total cover number of at most M (for some integers M ≥ m ≥ 2):

m
⊔

j=1

Cj = C

m
∑

j=1

CoverNum(Cj , S) ≤ M

(b) For every j ∈ {1, . . . ,m}, an S-smooth knife function KCj from ∅ to Cj , such that:

∀j ∈ {1, . . . ,m} : KCoverNum(KCj , S) ≤ M

(c) For every j ∈ {1, . . . ,m}, an increasing S-continuous knife function KCj from ∅ to Cj := C \ Cj .
OUTPUT:
An envy-free and (1/M)-proportional allocation of C between the two agents.
ALGORITHM:
(1) From the input partition (a), each agent chooses the part Cj that gives him maximum utility. If the
choices are different then each agent receives his choice and we are done.
(2) If both agents choose the same part Cj , then ask each agent to choose either Cj or its complement Cj .
If the choices are different then each agent receives his choice and we are done.
If the choices are identical then there are two cases:
(3.1) Both agents chose Cj . Apply Algorithm 1 with Cend = Cj and the S-smooth knife-function KCj of
input (b).

(3.2) Both agents chose Cj . Apply Algorithm 2 with Cend = Cj and the S-continuous knife-function KCj of
input (c).

(a) Multi-dimensional cubes: PropEF(d dimensional cube, d dimensional cubes, 2) ≥ 1/2d. Proof :
C can be partitioned into 2d sub-cubes of equal side-length. The total cube-cover-number of this partition
is 2d, satisfying input condition (a). For each sub-cube Cj , there is an S-smooth knife function analogous
to Figure 4/d — a cube growing from the corner towards the center of C. The complement of the cube
can always be covered by a union of 2d − 1 cubes (possibly overlapping). Therefore this knife-function is
S-smooth with a cover-number of 2d, satisfying input condition (b). For each complement Cj , the sweeping-
plane knife-function on Cj (see subsection A.4 and Figure 4/e) is increasing and S-continuous, satisfying
condition (c).

(b) Rectangle archipelagos: Let C be an archipelago which is a union of m disjoint rectangular islands.
Then PropEF(C, Rectangles, 2) ≥ 1

m+1 . Proof : The total rectangle-cover-number of the partition of C
into m rectangles is obviously m < m+ 1, satisfying condition (a). For each part Cj , define a knife function
KCj based on a line sweeping from one side of the rectangle to the other side, similar to Figure 4/a. KCj(t)
is always a rectangle. Its complement is a union of m rectangles: the shrinking rectangle Cj \ KCj(t),
and the remaining m − 1 fixed rectangular islands. Hence, KCj is rectangle-smooth and its cover number
is 1 + 1 + m − 1 = m + 1, satisfying condition (b) (see Figure 5). For the complements, a sweeping-line
knife-function (as in Appendix A.4) satisfies condition (c).

(c) Square archipelagos: Let C be an archipelago which is a union of m disjoint square islands. Then
PropEF(C, Squares, 2) ≥ 1

m+3 . The proof is the same as in (b), the only difference being that each S-
smooth knife functions KCj is a union of two growing squares, similar to Figure 4(b). KCj is covered by
two square-knife-functions and its complement is covered by 2 + (m − 1) square-knife-functions, so KCj is
square-smooth with a cover number of 2 + 2 + m− 1 = m + 3.

All bounds proved above are tight. The tightness of part (a) can be proved analogously to Lemma
B.1 — a d-dimensional cube with a water-pool in each of its 2d corners. Part (b) is tight in the fol-
lowing sense: for every integer m there exists some C, which is a union of m disjoint rectangles, having
Prop(C, Rectangles, 2) ≤ 1

m+1 . See Lemma B.3. Part (c) is tight in a similar sense by a similar proof.
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(a)

Figure 6: A 2-fat rectangle is partitioned into two 2-fat rectangles. One of them is further partitioned to
two smaller 2-fat rectangles. On the bottom-left one, there is a knife-function with a cover number (relative
to the family of 2-fat rectangles) of at most 3. The partitions are knife-function are used in the proof of
Theorem 1.3(b).

4.3 Dividing fat rectangles.

To prove Theorem 1.3(b) we add a partition step, as shown in Algorithm 4. Note that steps (1) and (2) and
(3.2) of that algorithm are the same as in Algorithm 3; they are repeated for completeness. Step (3.1) is
refined.

Lemma 4.4 (Correctness of Multiple Partition Algorithm). If there exist partitions and knife-functions
satisfying the input requirements of Algorithm 4, then this algorithm produces an envy-free and (1/M)-
proportional allocation of C between the two agents.

Proof. Proof. Steps (1), (2) and (3.2) are the same as in Algorithm 3 and their correctness proof is the
same too. It remains to prove that, if the algorithm ends in one of the sub-steps of (3.1), then the resulting
allocation is envy-free and (1/M)-proportional.

In step (3.11), if the choices are different, then by the Allocation Lemma and the condition on input (b),
each agent i receives an envy-free share with a utility of at least Vi(C)/M .

In step (3.12), we know that both agents prefer Cj to its complement Cj (from the choice of step (3.1)).
Therefore, Cend = Cj and the S-continuous knife-function from input (d) satisfy the input requirements
of Algorithm 2. The algorithm gives each agent an envy-free share with utility at least V S

i (Cj). This Cj

contains all other parts of the main partition, including Cj′ . The fact that both agents chose Cj′ in the
refined partition proves, by the Chooser Lemma, that V S

i (Cj′ ) ≥ Vi(C)/M . Hence also V S
i (Cj) ≥ Vi(C)/M .

In step (3.13), if the choices are different, then by the Allocation Lemma and the condition on input (b),
each agent i receives an envy-free share worth at least Vi(C)/M .

In step (3.141), we know that both agents prefer Ck
j to its complement Ck

j . Therefore, Cend = Ck
j and the

S-smooth knife-function from input (c) satisfy the input requirements of Algorithm 1. The cover-number of
this knife-function is at most M . Hence, Algorithm 1 gives to each agent i an envy-free share with a utility
of at least Vi(C)/M .

In step (3.142), we know that both agents prefer Ck
j to its complement Ck

j . Therefore, Cend = Ck
j and

the S-continuous knife-function from input (d) satisfy the input requirements of Algorithm 2. Each agent

receives an envy-free share with utility at least V S
i (C \ Ck

j ) = V S
i (Ck

j ). Now, in step (3.13) both agents

chose Ck
j from a partition with a total cover number of at most M . Therefore, by the Chooser Lemma,

V S
i (Ck

j ) ≥ Vi(C)/M .

Based on this lemma we can now prove the second part of our first theorem:

Theorem (Theorem 1.3(b)). For every R ≥ 2:

PropEF(Rfat rectangle, R fat rectangles, 2) ≥ 1/3

Proof. Proof. Let C be an R-fat rectangle. We divide C using Algorithm 4 with M = 3, in the following
way (see Figure 6).

The main partition (input (a)) is a partition of C into two halves in the middle of its longer side. Since
R ≥ 2, the two halves are R-fat too so the total cover number of the partition is 1 + 1 < 3.
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Algorithm 4 Multiple Partition Algorithm

INPUT:
(a) a partition of C into m pieces, with a total cover number of at most M :

m
⊔

j=1

Cj = C

m
∑

j=1

CoverNum(Cj , S) ≤ M

(b) For every part Cj , a partition such that, if Cj is replaced with its partition, then the total cover number
of the resulting partition of C is at most M , i.e. for every j there exist C1

j , . . . , C
mj

j with:

mj
⊔

k=1

Ck
j = Cj

∑

j′ 6=j

CoverNum(Cj′ , S) +

mj
∑

k=1

CoverNum(Ck
j , S) ≤ M

(c) For every j ∈ {1, . . . ,m} and k ∈ {1, . . . ,mj}, an S-smooth knife function KCk
j

from ∅ to Ck
j , with a

cover number of at most M :

∀j : KCoverNum(KCk
j
, S) ≤ M

(d) For every j ∈ {1, . . . ,m} and k ∈ {1, . . . ,mj}, an increasing S-continuous knife function from ∅ to Cj

and to Cj and to Ck
j .

OUTPUT:
An envy-free and (1/M)-proportional allocation of C between the two agents.
ALGORITHM:
(1) From the input partition (a), each agent chooses the part Cj that gives him maximum utility. If the
choices are different then each agent receives his choice and we are done.
(2) If both agents choose the same part Cj , then ask each agent to choose either Cj or its complement Cj .
If the choices are different then each agent receives his choice and we are done.
If the choices are identical then there are two cases, denoted below by (3.1) and (3.2):

(3.1) Both agents chose Cj . Refine the partition of C by replacing Cj with its sub-partition:

(
⊔

j′ 6=j

Cj′ ) ⊔ (

mj
⊔

k=1

Ck
j ) = C

Let each agent choose a best part from this refined partition.

• (3.11) If the choices are different then each agent receives his choice and we are done.

• (3.12) If both agents chose the same part from the main partition, e.g. Cj′ for some j′ 6= j, then
apply Algorithm 2 with Cend = Cj [where Cj is the piece chosen by both agents in step (3.1)] and the
S-continuous knife-function from ∅ to Cj of input (d).

• (3.13) If both agents chose the same part from the sub-partition, e.g. Ck
j for some k, then ask each

agent to choose either Ck
j or Ck

j (where Ck
j := C \ Ck

j ). If the choices are different, then each agent
receives his choice and we are done.

If the choices are identical then there are two sub-cases:

• (3.141) Both agents chose Ck
j . Apply Algorithm 1 with Cend = Ck

j and the S-smooth knife-function of
input (c).

• (3.142) Both agents chose Ck
j . Apply Algorithm 2 with Cend = Ck

j and the S-continuous knife-function

from ∅ to Ck
j of input (d).

(3.2) Both agents chose Cj . Apply Algorithm 2 with Cend = Cj and the S-continuous knife-function from
∅ to Cj of input (d). 17



(a)

C
B−

(b)

C1 C2

(c) (d)

Figure 7: Dividing a general R-fat land-estate between two people.
(a) The R-fat land C and its largest contained square B− (the smallest containing square B+ is not shown).
(b) The parts C1 and C2 (solid), the two rectangles B1 and B2 (dotted) and their largest contained squares
(dashed).
(c) The knife function on C1 in t ∈ [0, 12 ].
(d) The knife function on C1 in t ∈ [ 12 , 1].

The sub-partitions (input (b)) are again partitions of each half to two quarters in the middle of its longer
side. When a part is replaced by its sub-partition, the resulting partition contains three R-fat rectangles so
its total cover number is 3.

The S-smooth knife-functions on the quarters (input (c)) are rectangles growing from the corner towards
the center, as in Figure 6. KC is a single R-fat rectangle and its complement can always be covered by two
R-fat rectangles, so the cover number of these knife-functions is at most 3.

The increasing S-continuous knife-functions (input (d)) are sweeping-lines (see subsection A.4 and Figure
4/e).

All input conditions are satisfied so the resulting division is envy-free and 1/3-proportional.

The fraction 1/3 is tight; see Lemma B.2.
Algorithm 4 can be further refined by adding more sub-partition steps. For example, by adding a third

sub-partition step we can prove that if C is an archipelago of m disjoint R-fat rectangles (with R ≥ 2) then:

PropEF(C, R-fat rectangles, 2) ≥ 1

m + 2

and this bound is tight. We omit the proof details as the proof is analogous to examples (b) and (c) after
Lemma 4.3.

4.4 Dividing fat lands of arbitrary shape.

Our most general result involves land-estates that are arbitrary Borel sets. The result is proved for any
number of dimensions; Figure 7 illustrates the proof for d = 2 dimensions.

Theorem (Theorem 1.3(c)). For every R ≥ 1, If C is R-fat and S is the family of 2R-fat pieces then:

PropEF(C, S, 2) = Prop(C, S, 2) = 1/2

Proof. Proof. The proof uses Algorithm 3 (the Single Partition Algorithm). We show a partition of C into
two parts and a knife-function on each part.

Scale, rotate and translate C such that the largest cube contained in C is B− = [−1, 1]d (Figure 7/a). By
definition of fatness (see Subsection 1.1), C is now contained in a cube B+ of side-length at most 2R. Using
the hyperplane x = 0, bisect the cube B− into two boxes B1 = [−1, 0]×[−1, 1]d−1 and B2 = [0, 1]×[−1, 1]d−1.
This hyperplane also bisects C into two parts, C1 and C2 (Figure 7/b). Every Cj contains Bj which contains
a cube with a side-length of 1. Every Cj is of course still contained in B+ which is cube with a side-length
of 2R. Hence every Cj is 2R-fat. Hence the total cover number of the partition C = C1 ⊔ C2, w.r.t. the
family of 2R-fat objects, is 2, satisfying input condition (a).

For every j ∈ {1, 2}, define the following knife function KCj on Cj (see Figure 7/c,d):
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• For t ∈ [0, 1
2 ], KCj(t) = (Bj)

2t, i.e., the box Bj dilated by a factor of 2t. Hence KCj(0) = ∅ and
KCj(12 ) = Bj .

• For t ∈ [ 12 , 1], KCj(t) is any knife-function from Bj to Cj , for example, the growing-ball function of
Appendix A.1.

KCj(t) is always 2R-fat, since in [0, 12 ] it is a scaled-down version of the box Bj (which is 2-fat) and

in [ 12 , 1] it contains Bj and is contained in the cube B+. Also KCj(t) is 2R-fat, since it contains the box
B3−j and is contained in B+. Hence, KCj is an S-smooth knife-function with a cover number of 1 + 1 = 2,
satisfying input condition (b).

For the complements we can use, for example, the sweeping-plane knife-function of Appendix A.4, satis-
fying input condition (c).

By Lemma 4.3, Algorithm 3 finds an envy-free and (1/2)-proportional division.

Theorem 1.3(c) implies that we can satisfy the two main fairness requirements: proportionality and envy-
freeness, while keeping the allocated pieces sufficiently fat. The fatness guarantee means that each allotted
piece: (a) contains a sufficiently large square, (b) is contained in a sufficiently small square. In the context
of land division, these guarantees can be interpreted as follows: (a) Each land-plot has sufficient room for
building a large house having a convenient shape (square); (b) The parts of the land that are valuable to
the agent are close together, since they are bounded in a sufficiently small square.

Finally we note that a different technique leads to a version of Theorem 1.3(c) which guarantees that
the pieces are not only 2R-fat but also convex (if the original land is convex); hence an agent can walk in a
straight line from his square house to his valuable spots without having to enter or circumvent the neighbor’s
fields. See Appendix C for details.

4.5 Between envy-freeness end proportionality.

For all lands C and families of usable pieces S studied in this section, we proved that there exists a
positive constant p such that PropEF(C, S, 2) ≥ p and Prop(C, S, 2) ≤ p. Since PropEF(C, S, 2) ≤
PropEF(C, S, 2) always, we get that for all settings studied here:

PropEF(C, S, 2) = Prop(C, S, 2)

In other words, in these cases, envy-freeness is compatible with the best possible proportionality guarantee.
It is an open question whether this equality holds for every combination of lands C and families S.

What can we say about the relation between proportionality and envy-freeness for arbitrary C and S? In
addition to the trivial upper bound PropEF(C, S, 2) ≤ Prop(C, S, 2), we have the following lower bound:

Lemma 4.5. For every C and S:

PropEF(C, S, 2) ≥ pS · Prop(C, S, 2)

where pS := infZ∈S PropEF(Z, S, 2).

Proof. Proof. Let pC = Prop(C, S, 2). The following meta-algorithm yields an envy-free allocation of C in
which the utility of each agent i is at least pS · pC · Vi(C).

By the definition of Prop(C, S, 2), there exists an allocation of C, say X = (X1, X2), with a partial-
proportionality of at least pC , i.e, for each agent i, V S

i (Xi) ≥ pC · Vi(C). This means that, for each i, the
piece Xi contains an S-piece Zi with Vi(Zi) ≥ pC · Vi(C).

Ask each agent whether he prefers Z1 or Z2 and proceed accordingly.
(a) If each agent i prefers Zi, then the allocation (Z1, Z2) is envy-free. Both the value and the utility of

each agent i are at least pC · Vi(C), which is at least pS · pC · Vi(C) (since pS ≤ 1).
(b) If each agent i prefers Z3−i, then the allocation (Z2, Z1) is envy-free. Both the value and the utility

of each agent i are now even more than pC · Vi(C).
(c) The remaining case is that both agents prefer the same piece, say Z2. So for each agent i, Vi(Z2) ≥

pC ·Vi(C). By the assumptions of the lemma, since Z2 ∈ S, PropEF(Z2, S, 2) ≥ pS . Therefore, there exists
an envy-free allocation of Z2 in which the utility of each agent i is at least pS ·Vi(Z2) ≥ pS ·pC ·Vi(C).
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Figure 8: An illustration of the Simmons-Su algorithm for n = 3 agents, A B and C.
(1) A triangulation of the simplex of partitions in which each vertex is assigned to an agent.
(2,3) Each vertex is labeled with the index of the piece preferred by its assigned agent. The fully-labeled
triangle is starred.
(4) The process is repeated with a finer triangulation of the original simplex.

So by previous results we have the following bounds for every C:

• Prop(C, Squares, 2) ≥ PropEF(C, Squares, 2) ≥ 1
4 Prop(C, Squares, 2)

• Prop(C, R fat rects, 2) ≥ PropEF(C, R fat rects, 2) ≥ 1
3 Prop(C, R fat rects, 2) (for R ≥ 2)

• Prop(C, Rectangles, 2) ≥ PropEF(C, Rectangles, 2) ≥ 1
2 Prop(C, Rectangles, 2)

5 Envy-Free Division for Many Agents

5.1 The one-dimensional algorithm.

Existence of envy-free allocations in one dimension was first proved by Stromquist (1980). Later, Su (1999)
presented an algorithm, attributed to Simmons, for generating an infinite sequence of allocations that con-
verges to an envy-free allocation. In this section we generalize their algorithm to handle geometric constraints.
We briefly describe the 1-dimensional algorithm below.

C is a 1-dimensional interval [0, 1] and S is the family of intervals. A partition of C to n intervals can be
described by a vector of length n whose coordinates are the lengths of the intervals. The sum of all lengths
in a partition is 1, so the set of all partitions is equivalent to ∆n−1 — the standard (n − 1)-dimensional
simplex in Rn. The algorithm proceeds as follows (see Figure 8):

(1) Preparation. Triangulate the simplex of partitions to a collection of (n−1)-dimensional sub-simplices.
Assign each vertex of the triangulation to one of the n agents, such that in each sub-simplex, all n agents
are represented. Su shows that there always exists such a triangulation.

(2) Evaluation. For each vertex v of the triangulation, ask its assigned agent: “if C is partitioned as
prescribed by the coordinates of v, which piece would you prefer?”. The answer is an integer j ∈ {1, . . . , n};
label that vertex with j.

(3) Selection. The labeling created in step (2) satisfies Sperner’s boundary condition: in every face of the
simplex, every vertex is labeled with one of the labels on the endpoints of that face, since the other labels
correspond to empty pieces (See Figure 8/b, where the three vertices of the large triangle are labeled by 1,
2 and 3). By Sperner’s lemma, there exists a fully-labeled sub-simplex — a sub-simplex in which all vertices
are labeled differently.

(4) Refinement. Steps (1), (2), (3) can be repeated again and again, each time with a finer triangulation.
This yields an infinite sequence of fully-labeled simplices. By compactness of the simplex, there is a subse-
quence that converges to a single point. By the continuity of the agents’ valuations, this point corresponds
to a partition in which each of the n agents prefers a different piece. By definition, this partition is envy-free.

Note that the above algorithm is infinite — the envy-free partition is found only at the limit of an infinite
sequence. In fact, Stromquist (2008) proved that when n ≥ 3, an envy-free partition among n agents with
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connected pieces cannot be found by a finite algorithm. Therefore, Simmons’ infinite algorithm is the best
that can be hoped for.

5.2 Knife tuples.

Both Stromquist’s existence proof and the Simmons–Su algorithm do not work directly on C — they work
on the unit simplex, each point of which represents a partition of C. Therefore, we can extend these results
to multiple dimensions if we find an appropriate way to map each point of the unit simplex to a partition of
a multi-dimensional land.

Our main tool is a knife-tuple — a generalization of the knife-function defined in Definition 3.4.

Definition 5.1. An n-knife-tuple on C is a vector of n functions (K1, . . . ,Kn) from ∆n−1 to pieces of C,
such that:

• To every t ∈ ∆n−1, the tuple assigns a partition of C, so that K1(t) ⊔ · · · ⊔Kn(t) = C.

• For every ℓ ∈ {1, . . . , n} and every t ∈ ∆n−1 such that tℓ = 0, Kℓ(t) = ∅.

• Continuity: for every ǫ > 0 there is a δ > 0 such that |t′ − t| < δ implies:
∀ℓ ∈ {1, . . . , n} : Volume[Kℓ(t

′) ⊖Kℓ(t)] < ǫ,
where |t− t′| denotes the distance

∑n
ℓ=1 |tℓ − t′ℓ.

The definitions of S-continuity and S-smoothness can be easily generalized from knife-functions to knife-
tuples. For the present paper it is sufficient to generalize S-smoothness (definition 3.7):

Definition 5.2. A knife-tuple (K1, . . . ,Kn) is S-smooth if, for every ℓ ∈ {1, . . . , n}, the function Kℓ has a
finite S-cover K1

ℓ ∪ · · · ∪Kmℓ

ℓ for some integer mℓ ≥ 1.
If a knife-tuple K is S-smooth, then we define its cover number, KCoverNum(K,S), as the smallest

sum
∑n

ℓ=1 mℓ of integers that satisfy the above definition.

Given an S-smooth knife-tuple (K1, . . . ,Kn) and an absolutely-continuous measure V , define the function
V Kℓ (analogously to (2)) as the maximum value of an S-piece in the given cover of Kℓ(t):

∀ℓ ∈ {1, . . . ,m} : V Kℓ(t) :=
mℓ

max
j=1

V (Kj
ℓ (t)).

Lemma 3.8 can be generalized as follows:

Lemma 5.3. If (K1, . . . ,Kn) is an S-smooth knife-tuple and V is an absolutely-continuous measure, then
for every ℓ ∈ {1, . . . , n}, V Kℓ is a uniformly-continuous real function.

The proof is the same — the maximum of uniformly-continuous functions is uniformly-continuous.

5.3 Constructing knife-tuples.

Knife-tuples can be constructed from knife-functions.

Lemma 5.4. Let K be a knife-function from ∅ to C, and let K1,K2 be the following functions from ∆1 to
pieces of C:

K1(t1, t2) := K(t1)

K2(t1, t2) := C \K(1 − t2)

Then, (K1,K2) is a 2-knife-tuple on C.
Moreover, if the knife-function KC is S-smooth and its cover-number is M , then the knife-tuple (K1,K2)

is S-smooth and its cover-number is M too.

Proof. Proof. We prove that (K1,K2) satisfies the conditions of Definition 5.1.

• For every t ∈ ∆1, 1 − t2 = t1. Hence, K2(t) = C \ K(1 − t2) = C \ K(t1) = C \ K1(t). Hence
K1(t),K2(t) is indeed a partition of C.

21



• If t1 = 0 then K1(t) = K(0) = ∅; if t2 = 0 then K2(t) = C \K(1) = C \ C = ∅.

• For every ǫ > 0, since K is a knife-function, there exists a δ > 0 such that |t1 − t′1| < δ implies
Volume[K(t1) ⊖K(t′1)] < ǫ. For every t, t′ ∈ ∆1, |t− t′| = |t1 − t′1| + |t2 − t′2| = |t1 − t′1| + |(1 − t1) −
(1 − t′1)| = 2|t1 − t′1|. If |t − t′| < δ then |t1 − t′1| < δ/2 < δ, so Volume[K1(t) ⊖ K1(t′)] < ǫ and
Volume[K2(t) ⊖K2(t′)] < ǫ.

Now, if K is S-smooth, then K can be covered by m1 S-knife-functions and K can be covered by m2 S-
knife-functions (for some integers m1,m2 ≥ 1), so K1 and K2 can be covered by the same S-knife-functions,
so (K1,K2) is S-smooth with the same cover-number.

For example, from the knife-function in Figure 4/b — a growing pair of squares — we get the following
2-knife-tuple:

K1(t) = [0, t1] × [0, t1] ∪ [1 − t1, 1] × [1 − t1, 1] (3)

K2(t) = [0, t2] × [1 − t2, 1] ∪ [1 − t2, 1] × [0, t2]

It is square-smooth with a square-cover-number of 4.
Longer knife-tuples can be constructed by splitting existing knife-tuples. Let (K1, . . . ,Kn) be an n-

knife-tuple on C. Suppose that for some ℓ ∈ {1, . . . , n}, for every t ∈ ∆n−1 for which tℓ > 0, we have a
knife-function Kt from ∅ to Kℓ(t).

We create a new tuple by replacing the index ℓ with two indices ℓ1 and ℓ2 and replacing the function Kℓ

with two complementary functions K ′
ℓ1 and K ′

ℓ2, split by the knife-function Kt. This gives a new vector of
n + 1 functions (K ′

1, . . . ,K
′
ℓ1,K

′
ℓ2, . . . ,K

′
n) from ∆n to partitions of C:

K ′ℓ1(t1, . . . , tℓ1, tℓ2, . . . , tn) :=







Kt1,...,tℓ1+tℓ2,...,tn

(

tℓ1
tℓ1+tℓ2

)

[tℓ1 + tℓ2 > 0]

∅ [tℓ1 = tℓ2 = 0]

K ′ℓ2(t1, . . . , tℓ1, tℓ2, . . . , tn) :=















Kℓ(t1, . . . , tℓ1 + tℓ2, . . . , tn)\
Kt1,...,tℓ1+tℓ2,...,tn

(

tℓ1
tℓ1+tℓ2

)

[tℓ1 + tℓ2 > 0]

∅ [tℓ1 = tℓ2 = 0]

∀j 6= ℓ : K ′j(t1, . . . , tℓ1, tℓ2, . . . , tn) := Kj(t1, . . . , tℓ1 + tℓ2, . . . , tn)

It is easy to see that, to every t ∈ ∆n, the new tuple indeed assigns a partition of C, and that whenever
one of the new n+ 1 time variables is 0 the corresponding part of the knife-tuple returns an empty set. The
continuity or smoothness of the new knife-tuple does not follow automatically from the construction — it
has to be verified separately.

As an example we apply the above construction with n = 2, the 2-knife-tuple (K1,K2) of (3), and ℓ = 2.
For every (t1, t2) ∈ ∆1, we have to define a knife-function Kt1,t2 from ∅ to K2(t1, t2). Recall that

K2(t1, t2) is a union of two squares. For each such square, we create a square-pair knife-function analogous
to Figure 4(b) — two squares growing from opposite corners. We define Kt1,t2 as the union of these two
square-pairs; see Figure 9. The above construction yields the following three functions:

K ′
1(t1, t2, t3) = K1(t1, t2 + t3) = [0, t1] × [0, t1] ∪ [1 − t1, 1] × [1 − t1, 1]

K ′
2(t1, t2, t3) = [0, t2] × [1 − t2 − t3, 1 − t3] ∪ [t3, t2 + t3] × [1 − t2, 1]

∪ [1 − t2 − t3, 1 − t3] × [0, t2] ∪ [1 − t2, 1] × [t3, t2 + t3]

K ′
3(t1, t2, t3) = [0, t3] × [1 − t3, 1] ∪ [t2, t2 + t3] × [1 − t2 − t3, 1 − t2]

∪ [1 − t2 − t3, 1 − t2] × [t2, t2 + t3] ∪ [1 − t3, 1] × [0, t3]

It can be verified that (K ′
1,K

′
2,K

′
3) is indeed a 3-knife-tuple: for every t ∈ ∆2 it returns a partition of

C, whenever tℓ = 0 the corresponding K ′
ℓ is empty, and for every ℓ ∈ {1, 2, 3}, the function Kℓ(t) satisfies

the continuity requirement of Definition 5.1 (since it is a union of squares whose boundaries are continuous
functions of t).

22



Moreover, K ′
1 is covered by two square-knife-functions while each of K ′

2,K
′
3 is covered by four square-

knife-functions, so (K ′
1,K

′
2,K

′
3) is square-smooth and its cover number is 2 + 4 + 4 = 10.

In exactly the same manner, we can replace K ′
1 — the growing square-pair — with two growing square-

quadruplets. This yields a new 4-knife-tuple that is square-smooth with a cover-number of 4+4+4+4 = 16.

5.4 Land division using knife-tuples

Using knife-tuples, Lemma 4.1 can be generalized as follows:

Lemma 5.5. Let C be a land and S a family of pieces. If there is an S-smooth n-knife-tuple on C with a
cover number of at most M , then there exists an envy-free and 1/M -proportional division of C among the n
agents.

Proof. Proof. The proof generalizes the infinite algorithm of Simmons-Su (Subsection 5.1).10

(1) The preparation step is entirely the same: triangulate the standard simplex ∆n−1 and assign each
triangulation vertex to an agent such that in each sub-simplex, all agents are represented.

(2) The evaluation step is different: for each vertex t = (t1, . . . , tn) of the triangulation, a partition of C
is defined by the given n-knife-tuple: K1(t), . . . ,Kn(t). Each part Kℓ(t) in this partition is covered by mℓ

S-pieces. Ask the owner of vertex t (e.g. agent i) to calculate, for each ℓ ∈ {1, . . . , n}, the value of V Kℓ

i (t),
i.e, the most valuable S-piece from the set of mℓ S-pieces covering Kℓ(t). Then, find the maximum of these
n maxima:

arg max
ℓ∈{1,...,n}

V Kℓ
j (t),

and label the vertex t with the result.
(3) By the definition of a knife-tuple, whenever tℓ = 0, Kℓ(t) = ∅, so for every agent i, V Kℓ

i (t) = 0.
Hence, any agent asked to label vertex t, will never label it with ℓ. Hence, the resulting labeling satisfies
Sperner’s labeling condition, so in the selection step, a fully-labeled sub-simplex exists.

(4) By repeating steps (1), (2), (3) infinitely many times with finer and finer triangulations, we get a
sequence of smaller and smaller fully-labeled simplices. This sequence has a subsequence that converges to
a single point t∗. Because the knife-tuple is S-smooth, by Lemma 5.3, all agents’ utilities are continuous
functions of t. Therefore, in the partition corresponding to the limit point, K1(t∗), . . . ,Kn(t∗), each agent
is allocated a different S-piece with a maximum value.

The cover number of the knife-tuple is at most M . Therefore, by the Allocation Lemma (3.3), this
allocation is envy-free and 1/M -proportional.

5.5 Dividing squares and rectangles.

We apply Lemma 5.5 to prove our second theorem.

Theorem (Theorem 1.4(a)). For every n ≥ 1:

PropEF(Square, Squares, n) ≥ 1

22⌈log2n⌉
>

1

4n2

Proof. Proof. We first consider the case in which n is a power of 2. We construct an n-knife-tuple
(K1, . . . ,Kn), in which for every t ∈ ∆n−1, and for every ℓ ∈ {1, . . . , n}, Kℓ(t) is a union of at most n
squares. Hence, the cover number of the n-knife-tuple (K1, . . . ,Kn) is at most n · n = n2.

The construction is recursive. The base is n = 2. Take the knife-function in Figure 4/b — a union of two
corner-squares growing towards the center. By Lemma 5.4, this knife-function defines a 2-knife-tuple which
we denote by (K1,K2). For each t1 and t2, K1(t1, t2) and K2(t1, t2) are square-pairs — unions of 2 squares.

Consider next the case n = 4. In every square-pair in the above 2-knife-tuple, define a knife-function as
shown in Figure 9 — a union of four squares growing from opposite corners towards the center. This yields a
4-knife-tuple (K ′

1,K
′
2,K

′
3,K

′
4). For each ℓ ∈ {1, 2, 3, 4} and for each t ∈ ∆3, K ′

ℓ(t) is a union of four squares.

10 When n = 3, the three-knives algorithm of Stromquist (1980) can be used instead of Simmons’ algorithm. See the
conference version (Segal-Halevi et al., 2015) for details.
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t1 = 0.3, t2 = 0.1, t3 = 0.6 t1 = 0.3, t2 = 0.6, t3 = 0.1 t1 = 0.6, t2 = 0.1, t3 = 0.3 t1 = 0.6, t2 = 0.3, t3 = 0.1

Figure 9: A 3-knife-tuple on a square cake. Four partitions induced by the 3-knife-tuple (K ′
1,K

′
2,K

′
3) in

different points (t1, t2, t3) of the unit-simplex. K ′
1(·) is filled with horizontal blue lines, K ′

2(·) is filled with
vertical green lines and K ′

3(·) is blank.

After k steps, we have a 2k-knife-tuple in which each component is a union of 2k squares. We split
each component using a knife-function made of a union of 2k square-pairs — a square-pair for each of the
2k squares in the cover.11 This gives a new, 2k+1-knife-tuple in which each component is a union of 2k+1

squares. After log2 n steps, we get an n-knife-tuple. It is square-smooth since each element of the tuple can
be covered by n square-knife-functions — n squares changing continuously with t. Its square-cover-number
is therefore at most n2.

Applying Lemma 5.5 with this knife-tuple implies that there exists an envy-free and (1/n2)-proportional
division of C among the n agents.

Now, suppose n is not a power of two. Define n′ = 2⌈log2n⌉ =the smallest power of two larger than n.
Add n′ − n dummy agents and apply the proof of the first case. There exists an envy-free and (1/n′2)-
proportional division of C among the n′ agents. Since free disposal is assumed, the pieces allocated to the
n′ − n dummy agents can be discarded. We remain with an envy-free division with a proportionality of at
least 1/22⌈log2n⌉ > 1/4n2.

The second part of the second theorem is a simple corollary of the first part:

Theorem (Theorem 1.4(b)). If C is an R-fat rectangle and S the family of R-fat rectangles then:

PropEF(C, S, n) ≥ 1

22⌈log2n⌉
>

1

4n2

Proof. Proof. Rescale the axes such that C becomes a square. By Theorem 1.4(a), there exists an allocation
in which each agent i receives a piece that contains a square Zi with a value of at least Vi(C)/22⌈log2n⌉.
Rescale the axes back. Now, each Zi is an R-fat rectangle.

We do not know if the 1/(4n2) lower bound is asymptotically tight. The best upper bound currently
known (Segal-Halevi et al., 2017) is Prop(Square, squares, n) ≤ 1/(2n). Moreover, there is an algorithm for
non-envy-free division that proves Prop(Square, squares, n) ≥ 1/(4n− 4). We do not know if it is possible
to attain an envy-free division with a proportionality of 1/O(n).

5.6 Dividing fat objects of arbitrary shape.

In this subsection we show that it is possible to attain an envy-free and proportional division for every n, in
return to a compromise on the fatness of the pieces.

Theorem (Theorem 1.4(c)). Let C be a d-dimensional R-fat land and n ≥ 2 an integer. Let S be the family
of mR-fat pieces, where m be the smallest integer such that n ≤ md (i.e. m = ⌈n1/d⌉). Then:

PropEF(C, S, n) = 1/n

11 In each square-pair, the two squares should grow from opposite corners of the square in the cover. It does not matter
which pair of opposite corners is used.
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t1 ∈ (0, 13 ) t1 = 1
3 t1 ∈ (13 ,

2
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3 t1 ∈ (23 , 1)

t2 = 0

B1 B2

B3 B4

t2 ∈ (0, 13 )

t2 = 1
3

t2 ∈ (13 ,
2
3 )

t2 = 2
3

t2 ∈ (23 , 1)

Figure 10: Dividing a general R-fat cake to n = 3 people. K1 is filled with horizontal lines, K2 is filled with
vertical lines and K3 is white. Note that each of these three pieces is 2R-fat, where R is the fatness of the
original cake.
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Proof. Proof. The proof is illustrated in Figure 10 for the case of d = 2 dimensions. Let C be an R-fat
d-dimensional land. By definition of fatness it contains a cube B− of side-length x and it is contained in a
parallel cube B+ of side-length R · x, for some x > 0.

Partition the cube B− to a grid of md sub-cubes, B1, ..., Bmd , each of side-length x
m . For every i ∈

{1, . . . , n− 1}, denote by B>i the union of the md − i squares with indices larger than i, i.e:

B>i :=
⋃

j>i

Bj

Denote by B− the land outside the enclosed cube, i.e:

B− := C \B−

Define the following knife function K from ∅ to C:

• For t ∈ [0, 1
3 ]: K(t) = (B1)3t, i.e., the cube B1 dilated by a factor of 3t. Hence K(0) = ∅ and

K(13 ) = B1.

• For t ∈ [ 13 ,
2
3 ]: K(t) is any knife-function from B1 to C \ B>1, such as the growing-ball function of

Appendix A.1.

• For t ∈ [ 23 , 1]: K(t) is C \ [(B>1)3(1−t)], i.e., the land not yet covered by the knife is B>1 dilated by a
factor proportional to the remaining time. Hence K(1) = C.

By Lemma 5.4, K induces a 2-knife-tuple (K1,K2). For every t1, t2 with t1 + t2 = 1, K1(t1, t2) is mR-fat:

• When t1 ∈ [0, 1
3 ], K1 it is a cube, which is 1-fat.

• When t1 ∈ [ 13 , 1], K1 contains the cube B1, whose side-length is x/m, and is contained in the cube B+,
whose side-length is x · R.

K2(t1, t2) is mR-fat too:

• When t1 ∈ [0, 23 ], K2 contains e.g. the cube Bn, whose side-length is x/m, and is contained in the
larger cube B+, whose side-length is x ·R.

• When t1 ∈ [ 23 , 1], K2 contains a dilated Bn and it is contained in a dilated B−; since they are dilated
by the same factor, the ratio between their side-lengths remains m, so K2(t) is m-fat.

Therefore, (K1,K2) is an S-smooth 2-knife-tuple with a cover number of 2.
For every t1, t2 with t1 + t2 = 1, we now define a knife-function from ∅ to K2(t1, t2). Kt1,t2 is analogous

to K but uses the sub-cube B2. This is possible because:

• When t1 ∈ [0, 2
3 ], K2 contains the cube B2 itself;

• When t1 ∈ (23 , 1], K2 contains a dilated B2, which is contained in a dilated B−.

The function Kt1,t2 is defined as follows:

• For t ∈ [0, 13 ]: Kt1,t2(t) = (B2)3t.

• For t ∈ [ 13 ,
2
3 ]: Kt1,t2(t) is any knife-function from B2 to K2(t1, t2)\B>2 (e.g. the growing-ball function

of Subsection A.1).

• For t ∈ [ 23 , 1]: Kt1,t2(t) is K2(t1, t2) \ [(B>2)3(1−t)].

This process induces a 3-knife-tuple (K ′
1,K

′
2,K

′
3); see Figure 10.

To define an n-knife-tuple, proceed in a similar way for the pieces B3, . . . , Bn. All components in the
knife-tuple are mR-fat. Therefore, the knife-tuple is S-smooth with a cover-number of n. By Lemma 5.5,
there is an envy-free and 1/n-proportional division of C with mR-fat pieces.
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Length = 1

Length = R

V = n− 1 + ǫ V = 1 − ǫ

Figure 11: A fat land-estate in which every proportional division must use slim pieces. See Lemma 5.6.

Figure 10 shows an example of the construction for d = 2 dimensions and n = 3 agents. Here m =
⌈
√

3⌉ = 2 so each agent receives an envy-free 2R-fat land-plot with a utility of at least 1/3.
Theorem 1.4(c) implies that we can guarantee the highest possible level of proportionality (1/n) by

compromising on the fatness of the pieces — allowing the pieces to be thinner than the original land by a
factor of ⌈n1/d⌉. This factor is asymptotically optimal even when envy is allowed:

Lemma 5.6. For every R ≥ 1, there is an (R + 1)-fat land C for which, for every m′ ≤ (n− 1)1/d:

PropEF(C, m′Rfat objects, n) ≤ Prop(C, m′Rfat objects, n) < 1/n

Proof. Proof. Let δ, ǫ be small positive constants. Let C be a land with the following two components:

• The left component is a cube with all sides of length 1;

• The right component is a box with one side of length R and the other sides of length δ.

See Figure 11 for an illustration for d = 2. C is contained in a cube of side-length R + 1 and it contains a
cube of side-length 1, so it is (R + 1)-fat.

C represents a desert with the following water sources:

• The left cube contains n− 1 + ǫ water units;

• A small disc at the end of the right box contains 1 − ǫ water units.

C has to be divided among n agents whose value measures are equal to the amount of water. To get a
proportional division, each agent must receive exactly 1 unit of water. This means that at least one piece,
e.g. Xi, must overlap both the right pool and the left pool.

The smallest cube containing Xi has a side-length of at least R. For the largest cube contained in Xi,
there are two options:

• If the largest contained cube is in the left side, then its side-length must be at most

(

1
n−1+ǫ

)1/d

, since

it must contain at most 1 unit of water.

• If the largest contained cube is in the right side, then its side-length must be at most δ.

If δ is sufficiently small (in particular, δ <

(

1
n−1

)1/d

), then the piece Xi is not m′R-fat for every m′ ≤

(n− 1)1/d. This means that, if all pieces must be m′R-fat, a proportional division is impossible.
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6 Conclusion and future work.

Fair division algorithms hold a great promise for resolving material disputes between people. But to realize
this promise, these algorithms must consider practical requirements such as the geometry of the pieces. The
present paper contributed to this objective by presenting several algorithms for envy-free division considering
geometric constraints. For two agents, the algorithms have the best possible partial-proportionality guaran-
tees in various geometric settings. For n agents, the algorithms guarantee a positive partial-proportionality,
and it is an open question whether this guarantee can be improved.

The tools developed in this paper are generic and can work for various geometric shapes. In fact, these
tools reduce the envy-free division problem to a geometric problem — the problem of finding appropriate
knife functions. Some topics not covered in the present paper are:

• Utility functions that take into account both the value contained in the best usable piece and the total
value of the piece, e.g.: U(Z) = w · V S(Z) + (1 − w) · V (Z), where w is some constant.

• Absolute size constraints on the usable pieces instead of the relative fatness constraints studied here,
e.g. let S be the family of all rectangles with length and width of at least 10 meters.

• Personal geometric preferences — letting each agent i specify a different family Si of pieces.

A Knife-functions: existence and continuity

This appendix fills in some technical details related to Subsection 3.2.

A.1 Existence of increasing knife-functions.

Given two bounded Borel subsets of Rd, Cstart and Cend, does there always exist an increasing knife function
K from Cstart to Cend?

Since K should be increasing, a necessary condition is that Cstart ⊂ Cend. Below we show that this
condition is also sufficient.12 We denote by D(r) be the open d-dimensional ball of radius r around the
origin.

Definition A.1. Let Cstart and Cend be two bounded Borel subsets of Rd, with Cstart ( Cend. Let rend be a
radius of a ball that contains Cend (it exists because Cend is bounded). Let D∗(t) := D(t · rend). The growing
ball from Cstart to Cend is the following function from [0, 1] to Borel subsets of Cend:

K(t) := [Cstart ∪D∗(t)] ∩ Cend

Lemma A.2. If Cstart and Cend are two bounded Borel subsets of Rd with Cstart ( Cend, then the growing
ball from Cstart to Cend is an increasing knife-function from Cstart to Cend.

Proof. Proof. Clearly, K(0) = Cstart, K(1) = Cend and K is increasing. It remains to show that K satisfies
the continuity property of a knife-function. For every two times t, t′:

K(t) ⊖K(t′) = [D∗(t) ⊖D∗(t′)] ∩ [Cend \ Cstart]

So:

Volume[K(t) ⊖K(t′)] ≤ Volume[D∗(t) ⊖D∗(t′)] = |Volume[D∗(t)] −Volume[D∗(t′)]|

Since D∗(t) is a ball whose radius is a uniformly-continuous function of t, for every ǫ > 0 there exists a δ > 0
such that |t− t′| < δ implies that the right-hand side is smaller than ǫ.

Remark A.3. The growing-ball function is not necessarily a “nice” knife-function. For example, it may
return disconnected pieces. It is useful mainly as a proof of existence.

12 Based on an answer by Christopher Fish here: http://math.stackexchange.com/a/1015267/29780
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A.2 Continuity of value covered by knife

Theorem (Lemma 3.5). If K is a knife-function and V is an absolutely-continuous measure, then V ◦K is
a uniformly-continuous real functions.

Proof. Proof. We have to prove that for every ǫ′ > 0 there exists δ > 0 such that |t − t′| < δ implies
|V (K(t)) − V (K(t′))| < ǫ′.

Indeed, for every ǫ′ > 0, by the absolute-continuity of V , there is an ǫ > 0 such that Volume[Z] < ǫ
implies V (Z) < ǫ′. Given that ǫ, by the definition of a knife-function, there is a δ > 0 such that |t′− t| < δ
implies Volume[K(t′) ⊖K(t)] < ǫ, which implies V (K(t′) ⊖K(t)) < ǫ′.

By the additivity of V , for every two Borel sets A,B, V (A) − V (B) ≤ V (A \B). Therefore:

|V (K(t′)) − V (K(t))| = max
(

V (K(t′)) − V (K(t)) , V (K(t)) − V (K(t′))
)

≤ max
(

V (K(t′) \K(t)) , V (K(t) \K(t′))
)

≤ V (K(t′) \K(t)) + V (K(t) \K(t′))

= V ((K(t′) \K(t)) ∪ (K(t) \K(t′)))

= V (K(t′) ⊖K(t))

< ǫ′.

So V ◦K is a uniformly-continuous real function.

A.3 S-continuity of knife-functions.

In Subsection 3.2 we informally defined a knife-function as S-continuous if “all S-pieces in KC(t) and KC(t)
grow or shrink continuously; no S-piece with a positive area is created or destroyed abruptly.” Below we
define this property formally.

Definition A.4. A piece Z is called an ǫ-predecessor of a piece Z ′ if Z ⊆ Z ′ and Volume[Z ′ \ Z] < ǫ.

Definition A.5. Let S be a family of pieces. A knife function K(t) is called S-continuous if for every ǫ > 0
there exists δ > 0 such that, for all t and t′ having |t′ − t| < δ:

(a) Every S-piece Zt′ ⊆ K(t′) has an ǫ-predecessor S-piece Zt ⊆ K(t).
(b) Every S-piece Zt′ ⊆ K(t′) has an ǫ-predecessor S-piece Zt ⊆ K(t).

We now prove that S-continuity implies continuity of utility:

Theorem (Lemma 3.6). If KC is an S-continuous knife-function and V is an absolutely-continuous measure,
then both V S ◦KC and V S ◦KC are uniformly-continuous real functions.

Proof. Proof. Given ǫ′ > 0, we show the existence of δ > 0 such that, for every t, t′, if |t′ − t| < δ then
|V S(K(t′)) − V S(K(t))| < ǫ′.

Given ǫ′, by the absolute-continuity of V , there is an ǫ > 0 such that:

Volume[Z] < ǫ =⇒ V (Z) < ǫ′ (4)

Given that ǫ, by the S-continuity of K there is a δ > 0 such that, if |t′ − t| < δ, then every S-piece
Zt′ ⊆ K(t′) has an ǫ-predecessor S-piece Zt ⊆ K(t). This means that Zt ⊆ Zt′ and:

Volume[Zt′ \ Zt] < ǫ

which by (4) implies

V (Zt′ \ Zt) < ǫ′

which by additivity of V implies

V (Zt) > V (Zt′) − ǫ′
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t t + δ

Figure 12: Square-continuity of the knife-function defined in Lemma A.7.
The solid line describes the knife location at time t; the dotted line describes its location at time t + δ.
The dotted squares are squares contained in H(t + δ); the solid squares are their predecessors in H(t).
At the bottom, the side-length of the solid square Zt is smaller than the dotted square Zt+δ by exactly δ.
At the top, the side-length of the solid square Zt is smaller than the dotted square Zt+δ by less than δ.

The latter inequality is true for every S-piece Zt′ ⊆ K(t′), so it is also true for the supremum:

V (Zt) > sup
Zt′∈S,Zt′⊆K(t′)

V (Zt′) − ǫ′

By definition, the S-value is the supremum, so:

V (Zt) > V S(K(t′)) − ǫ′

Since Zt is an S-piece in K(t), By definition of V S , V S(K(t) ≥ V (Zt). Therefore:

V S(K(t)) > V S(K(t′)) − ǫ′

By symmetric arguments (replacing the roles of t and t′), V S(K(t′)) > V S(K(t)) − ǫ′. Hence |V S(K(t′)) −
V S(K(t))| < ǫ′ as we wanted to prove.

An analogous proof applies to the function V S ◦K.

A.4 Existence of S-continuous knife-functions.

We show below how S-continuous knife-functions can be constructed. We denote by H(r) the open half-space
of Rd defined by: x < r.

Definition A.6. Let C a bounded d-dimensional polytope in Rd. Let x0 < x1 be real numbers such that C
lies entirely to the right of the hyperplane x = x0 and to the left of x = x1 (they exist since C is bounded).
Define H∗(t) = H(x0 + t · (x1 − x0)).

The sweeping-plane function on C is the following function from [0, 1] to Borel subsets of C:

K(t) = C ∩H∗(t)

Lemma A.7. Let C be a bounded d-dimensional object in Rd. Let S be the family of d-dimensional cubes.
The sweeping-plane function on C is an S-continuous increasing knife-function from ∅ to C.

Proof. Proof. Clearly, K(0) = ∅, K(1) = C and K is increasing. The continuity of K can be proved exactly
as in Lemma A.2. It remains to prove that K is S-continuous. To simplify the proof, we scale and translate
C such that it is contained in the unit cube [0, 1]d. In this case we can take x0 = 0 and x1 = 1 so that
H∗(t) ≡ H(t).

The proof of S-continuity is based on the following geometric fact: for every cube Zt′ contained in the
half-space H(t + δ), there exists a cube Zt ⊆ Zt′ contained in the half-space H(t), such that the side-length
of Zt is smaller than that of Zt′ by at most δ (it is smaller by exactly δ when Zt′ is adjacent to the rightmost
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side of H(t + δ) and parallel to the axes; see Figure 12 for an illustration of the two-dimensional case).
Suppose Zt′ is also contained in C. Since C is contained in the unit cube, the side-length of Zt′ is at most
1. Therefore, the volume of Zt is smaller than that of Zt′ by at most 1 − (1 − δ)d ≤ d · δ.

Consider now the definition of S-continuity. For every ǫ > 0, take δ := ǫ/d, let t′ = t + δ and let Zt′ be
an S-piece contained in K(t′). By definition of K, Zt′ is contained in both C and H(t′). By the geometric
fact, Zt′ has an ǫ-predecessor Zt that is contained in H(t). Since Zt ⊆ Zt′ , it is also contained in C. Hence,
it is contained in K(t).

The S-continuity of K can be proved analogously.

Using similar arguments, it is possible to prove that the sweeping-plane function on C is S-continuous
also when S is the family of d-dimensional boxes or fat boxes.

A.5 Existence of non-S-continuous knife-functions.

We show below how to prove that a knife-function is not S-continuous.

Lemma A.8. Let C := [0, 1] × [0, 1] and KC be the following knife-function on C (Figure 4(f)):

KC(t) = [0, t] × [0, 1] ∪ [1 − t, 1] × [0, 1]

Then KC is not square-continuous.

Proof. Proof. Intuitively, a square of side-length 1 is created at time t = 0.5, when the two components of
KC(t) meet. Formally, let ǫ = 0.75 and let’s prove that there does not exist any δ satisfying the requirements
of square-continuity.

For every δ > 0, select t = 0.5 − δ
3 and t′ = 0.5 + δ

3 . Then KC(t′) contains the square Z ′ = [0, 1] × [0, 1],
but all squares Z ⊆ KC(t) have a side-length of less than 0.5, hence Volume[Z ′ \ Z] > 0.75 = ǫ.

B Upper bounds on proportionality.

To complement the positive results presented in Section 4, we present here some negative results — upper
bounds on the attainable proportionality.

The proof technique is explained in more detail in Segal-Halevi et al. (2017). Assume that C is a desert
with M water-pools. Consider two agents whose value measure is proportional to the amount of water in
their land-plot. Suppose it is possible to give each agent an S-piece containing a single water pool, but
impossible to give both agents more than one pool since there is room for at most a single S-piece touching
two pools. Therefore, at least one agent has at most one pool and a utility of at most 1/M . The arrangements
of pools and corresponding upper bounds are presented below.

Lemma B.1. Prop(Square, Squares, 2) ≤ 1/4. Proof:

The same impossibility holds if we replace “Square” with “R-fat rectangle” for any R < 2.
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Lemma B.2. For any real R, Prop(R fat rectangle, Rfat rectangles, 2) ≤ 1/3. Proof:

Lemma B.3. Prop(3 rectangles, Rectangles, 2) ≤ 1/4. Proof:
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Figure 13: Dividing a convex fat land into two convex fat pieces.
Left: a knife-function from ∅ to C where both sides are convex necessarily makes at least one piece arbitrarily
slim.
Right: A rotating-knife function yields two pieces that are both convex and fat. This is a convex variant of
Figure 7.

C Convex Lands and Rotating Knives

Theorem 1.3(c) allows the pieces to be arbitrary fat objects. Often, land-plots are required to be convex in
addition to being fat. To see why the convexity requirement is challenging, suppose that C is an ellipse and
we want to divide it using a knife-function from ∅ to C, like the knife-functions we used in Section 4. If both
pieces have to be convex, then they must be separated by a straight line. But then, when t approaches 0,
KC(t) approaches ∅, so KC(t) might be unboundedly slim (see Figure 13/Left).

To handle this challenge we define a new property of a knife-function:13

Definition C.1. A knife-function KC on a land C is called rotating if for every t ∈ [0, 1
2 ], KC(t+ 1

2 ) = KC(t)
(which is defined as C \KC(t)).

The definition implies that KC(1) = KC(0). At time 0, the knife divides C to two pieces, e.g, “top”
and “bottom”; at time 1/2, the knife has made half a round, so the piece that was previously “top” is now
“bottom” and vice versa; at time 1 the knife has completed a full round so the “top” and “bottom” pieces
are as in time 0.

The Smooth Knife Algorithm (Algorithm 1) can be used with a rotating-knife-function. We replace the
input requirements (a) and (b) of Algorithm 1 with the following input requirement:

(a’) KC — an S-smooth rotating-knife-function on C such that, for some M ≥ 2:

KCoverNum(KC , S) = M

We prove the following analogue of Lemma 4.1.

Lemma C.2 (Rotating Knife Algorithm). LetKC be rotating-knife function on C with KCoverNum(KC , S) =
M . Then, Algorithm 1 produces an envy-free and (1/M)-proportional allocation between the two agents.

Proof. Proof. We have to prove that, for every absolutely-continuous value-measure V1, it is possible to

select a time t∗ ∈ [0, 1] such that: V KC
1 (t∗) = V KC

1 (t∗).

Suppose that V KC
1 (0) ≤ V KC

1 (0) By definition of rotating-knife, KC(12 ) = KC(0) and KC(0) = KC(12 ),

so V KC
1 (12 ) = V KC

1 (0) and V KC
1 (12 ) = V KC

1 (0), so V KC
1 (12 ) ≥ V KC

1 (12 ).

By Lemma 3.8, both V KC and V KC are continuous real functions. Therefore, by the intermediate value

theorem, there exists some t∗ ∈ [0, 1
2 ] such that V KC

1 (t∗) = V KC
1 (t∗).

The case V KC
1 (0) ≥ V KC

1 (0) is analogous.
From here, the proof is exactly the same as Lemma 4.1.

Now we can prove the convex analogue of Theorem 1.3(c).

13 The rotating-knife technique was introduced by Robertson and Webb (1998)[pages 77-78] as a tool for envy-free division
among 3 agents without geometric constraints.
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Theorem C.3. For every R ≥ 1, If C is an R-fat 2-dimensional convex figure and S is the family of convex
2R-fat pieces, then:

PropEF(C, S, 2) = 1/2

Proof. Proof. Scale, rotate and translate C such that the largest square contained in C is B− = [−1, 1] ×
[−1, 1]. By definition of fatness, C is now contained in a square B+ of side-length at most 2R. For every
t ∈ [0, 1], consider the line passing through the origin at angle 2πt from the x axis, and let KC(t) be the
part of C at the right-hand side of this line (see Figure 13/Right). This is a rotating-knife function, since
for every t ∈ [0, 12 ], KC(t + 1

2 ) is the part of C to the left-hand side of the same line.
This line cuts the contained square B− into two quadrangles, each of which contains a square with side-

length 1. Because C is convex, this line also cuts the boundary of C at exactly two points, splitting C into
two convex pieces. Each of these two pieces is 2R-fat since it contains a square with side-length 1 and it is
contained in B+ whose side-length is 2R. Therefore, KC is S-smooth with KCoverNum(KC , S) = 2.

By Lemma C.2, Algorithm 1 yields an envy-free and 1/2-proportional allocation.

Generalizing the rotating-knife technique to n agents is an interesting topic for future work.

D Relative Proportionality

Throughout the paper our goal was to attain a p-proportional allocation — in which the utility of each agent
i is at least p · Vi(C). In this appendix our goal is to attain a p-relative-proportional allocation — in which
the utility of each agent i is at least p · V S

i (C).
Since Vi(C) ≤ V S

i (C), a p-proportional allocation is always p-relative-proportional, so all our positive
results for p-proportionality are valid here too. However, in many cases p-proportional allocations might not
exist for any positive p. As an example, suppose C is a disc and S is the family of squares. The value-measure
of an agent might be concentrated in a arbitrarily thin ring around the perimeter of C; then every square
contains only an arbitrarily small fraction of Vi(C). In such cases, relative-proportionality may be a more
appropriate goal.

Analogously to Definition 2.1, we define:

Definition D.1. Let C be a land-estate, S a family of usable shapes, and n ≥ 1 an integer.
(a) The relative proportionality guarantee for C, S and n, denoted RelProp(C, S, n), is the largest

fraction p ∈ [0, 1] such that, for every n value measures (V1, ..., Vn), a p-relative-proportional allocation exists
(where for each agent i, V S

i (Xi) ≥ p · V S
i (C)).

(b) The envy-free relative proportionality guarantee of C, S and n, denoted RelPropEF(C, S, n),
is the largest fraction p ∈ [0, 1] such that, for every n value measures (V1, ..., Vn), an envy-free and p-relative-
proportional allocation exists.

This appendix provides some initial results regarding relative-proportionality, focusing on the case of
n = 2 agents and rectangular or square pieces.

D.1 Dividing archipelagos

As a warm-up, we consider the case that C is an “archipelago” — a union of m pairwise-disjoint “islands”
of a simple shape. Recall the following proportionality guarantees from Subsections 4.2 and 4.3:

PropEF(m disjoint rectangles, Rectangles, 2) = 1/(m + 1)

PropEF(m disjoint R fat rectangles, R fat Rectangles, 2) = 1/(m + 2) (for R ≥ 2)

PropEF(m disjoint squares, Squares, 2) = 1/(m + 3)

In contrast, the relative-proportionality guarantees are higher and independent of m:
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Algorithm 5 Relative-proportional division of an archipelago between 2 agents

INPUT:
An algorithm for finding an envy-free and p-proportional allocation of an S-piece between two agents who
want S-pieces.
OUTPUT:
An envy-free and p-relative-proportional allocation of C — an archipelago of m S-pieces.
ALGORITHM:
For each agent i, let Zi be the most valuable S-piece contained in C — the S-piece for which V S

i (C) = Vi(Zi).
Since the m islands comprising C are disjoint, Zi must be one of these islands. There are two cases.

• Case A: Z1 6= Z2. Give each Zi to agent i. The allocation is envy-free and 1-relative-proportional since
the utility of each agent is 1 · Vi(Zi).

• Case B: Z1 = Z2. Divide this island between the agents using the algorithm of input (b). The resulting
allocation is envy-free and p-relative-proportional since the utility of each agent is p·Vi(Zi) = p·V S

i (C).

Theorem D.2. For every m ≥ 1:

RelPropEF(m disjoint rectangles, Rectangles, 2) = 1/2

RelPropEF(m disjoint R fat rectangles, R fat Rectangles, 2) = 1/3 (for R ≥ 2)

RelPropEF(m disjoint squares, Squares, 2) = 1/4

Proof. Proof. The lower bound can be attained using Algorithm 5. It asks each agent to specify his most
valuable island. If they specify different islands then each agent gets his favorite island and we are done; if
they specify the same island then it is divided between them using existing algorithms for dividing S-pieces
to S-pieces. By the results of Section 4, this gives each agent a utility of at least V S

i (C)/2 for rectangles,
V S
i (C)/3 for R-fat rectangles with R ≥ 2, and V S

i (C)/4 for squares.
The matching upper bound is proved by taking m = 1 and using the corresponding upper bound for a

rectangle or fat-rectangle or square land (see Appendix B).

D.2 Dividing general lands

In general lands, in addition to the two cases in Algorithm 5, there is a more challenging case in which
the agents’ best S-pieces, Z1 and Z2, are different but overlapping. Coping with this challenge requires a
different technique that is presented as Algorithm 6.

The algorithm requires each agent i to specify a set of pairwise-disjoint S-pieces with the same value —
a constant fraction p of the value of his best piece Vi(Zi). In general, some S-pieces of agent 1 might overlap
some S-pieces of agent 2. A crucial precondition of the algorithm is that from any two sets specified by the
agents, it is possible to select one S-piece per agent such that the selected S-pieces are disjoint.

In the following subsections we present several cases in which this precondition is satisfied.

D.3 Dividing general lands to axis-parallel rectangles

When dividing urban lands, it is natural to require that the pieces be not only rectangular but also parallel
to some pre-specified axes. With this assumption, a relative-proportional division always exists.

Theorem D.3. For any land C:

RelPropEF(C, axes parallel rectangles, 2) = 1/2

Proof. Proof. Let Zi be an axis-parallel rectangle in C that agent i finds the most valuable.14 Ask each
agent i to divide Zi into two axis-parallel rectangles with a value of Vi(Zi)/2, using a horizontal line (See

14 A compactness assumption is needed to ensure that the supremum defining V S
i (C) is indeed attained by some square

Zi ⊆ C. This requires to define a metric space of pieces. Appendix C of Segal-Halevi et al. (2017) presents a detailed way to
do this.
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Algorithm 6 Relative-proportional division of a general land between 2 agents

INPUT:
For each agent i, a set of m ≥ 2 pairwise-disjoint S-pieces, each with utility exactly p · V S

i (C).
PRECONDITION:
There must be at least one S-piece of agent 1 and one S-pieces of agent 2 that are disjoint.
OUTPUT:
An envy-free and p-relative-proportional allocation of C between the two agents.
ALGORITHM:
Ask each agent to specify a most valuable S-piece of the 2m S-pieces provided as input.

• Case A: agent 1 prefers one of the m S-pieces of agent 2. Give agent 1 his preferred S-piece and give
agent 2 one of his m− 1 remaining S-pieces. Agent 1 does not envy since he got his best S-piece. His
utility is larger than the utility of each of his own m S-pieces, which is p · V S

1 (C). Agent 2 does not
envy since he is indifferent between all his m S-pieces. His utility is exactly p · V S

2 (C).

• Case B: agent 2 prefers one of the m S-pieces of agent 1. This is analogous to Case A.

• Case C: each agent prefers his own m S-pieces to the m S-pieces of the other agent. By the precondition,
there is a pair of disjoint S-pieces, one per agent. Give each agent a disjoint S-piece. Both agents feel
no envy and their utility is at least p · V S

i (C).

Figure 14).
Since the division lines are parallel, one of them is above the other: if agent 1’s line is above agent 2’s

line, then the top part of Z1 and the bottom part of Z2 are disjoint; otherwise, the top part of Z2 and the
bottom part of Z1 are disjoint.

Therefore, the precondition to Algorithm 6 is satisfied and we can apply it with p = 1/2 and get an
envy-free and 1/2-relative-proportional division.

D.4 Dividing general lands to rotated rectangles

When the Zi are not parallel to the axes, we must work harder in order to satisfy the preconditions of
Algorithm 6. We need a geometric definition and a lemma.

Define a 2x2-partition of a rectangle as a partition to four sub-rectangles using one guillotine cut parallel
to its longer side and two cuts parallel to its shorter side, as in Figure 15/Left.

Lemma D.4. For every two rectangles — red and blue, and for every 2x2-partitions of these rectangles,
there exists a pair of disjoint sub-rectangles — one red and one blue.

Proof. Proof. 15 Rotate and scale the coordinate system such that the long cut of the red rectangle is at
x = 0, and its two short cuts are at y = ±1 (as in Figure 15/Right).

Suppose by contradiction that all blue sub-rectangles overlap all red sub-rectangles. Consider one such
blue sub-rectangle B. This B must have a point (x, y) with x < 0, y < −1 and another point with x <
0, y > −1, therefore by convexity it must have a point with x < 0, y = −1. Similarly it must have a point
with x > 0, y = 1. Therefore by convexity it must have a point with x = 0, y ∈ (−1, 1). In other words, B
must overlap a point of the red central segment — the segment x = 0, y ∈ [−1, 1] connecting the two red
short cuts. The same is true for all blue sub-rectangles. This means that the red central segment must pass
through all blue sub-rectangles.

By analogous arguments, the blue central segment must pass through all red sub-rectangles. So this
segment must have a point (x, y) with x > 0, y > 1 and a point with x < 0, y < −1. Hence, the projection
of the blue central segment on the y axis must strictly contain the red central segment x = 0, y ∈ [−1, 1]. In
particular, this projection must be longer than the red central segment.

15 The proof is based on an answer by alcana in https://math.stackexchange.com/a/2884696/29780.
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Z1

Z2

Figure 14: Dividing a general land-estate (for example, an ellipse) where the pieces have to be axis-parallel
rectangles. Each agent i divides his best rectangle Zi to two parts of equal value by a horizontal line. Here,
agent 1 (blue-dashed) receives the bottom part of Z1 and agent 2 (red-dotted) receives the top part of Z2.

Figure 15: Left: a 2x2-partition of a rectangle. Right: 2x2-partitions of two rectangles, red-dashed and
blue-dotted. They are rotated and scaled as in the proof of Lemma D.4. The black dot denotes the origin.
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Z1

Z2

Figure 16: A land in which each agent i can get less than 1/2 of the value of his best rectangle Zi. Left:
the land C (thick black) and the two best rectangles Z1, Z2 (thin blue/red). Middle: for each agent i, a
representative rectangle with a value of V S

i (C)/2. The rectangle of agent 1 is dotted-blue and the rectangle
of agent 2 is dashed-red. Each such rectangle must touch the center of C (the black dot). Therefore, each
such rectangle of agent 1 overlaps all such rectangles of agent 2. Right: for each agent i, a rectangle with
a value of 0.46V S

i (C). Note that agent 2’s rectangle is larger, but the area of its intersection with Z2 is the
same as agent 1’s rectangle intersection with Z1.

By analogous arguments, the projection of the red central segment on the blue central segment must be
longer than the blue central segment. But the two latter facts are in contradiction.

Using this lemma, we can prove:

Theorem D.5. For any land C:

RelPropEF(C, rectangles, 2) ≥ 1/4

Proof. Proof. Ask each agent i to make a 2x2-partition of his best rectangle Zi such that the value of each
sub-rectangle is exactly Vi(Zi)/4.

By Lemma D.4, there is a pair of disjoint sub-rectangles — one per agent. Therefore, we can apply
Algorithm 6 with p = 1/4.

To complement this positive result, we show that, in contrast to the axis-parallel case, with rotated
rectangles it may be impossible to guarantee a relative-proportionality of 1/2.

Theorem D.6. There exist lands C for which

RelProp(C, rectangles, 2) < 1/2

Proof. Proof. Consider the scenario illustrated in Figure 16. The land C (denoted by a thick black line) is a
polygon with 16 sides — a union of two overlapping squares. The value-measure of agent 1 is uniform inside
the axis-parallel square Z1 (blue) and the value-measure of agent 2 is uniform inside the rotated square Z2

(red).
In order to give an agent a utility of Vi(Zi)/2, we must give a rectangle that touches the center of C

(the black dot). However, each such rectangle of agent 1 overlaps all such rectangles of agent 2 (see Figure
16/Middle). Therefore, in any division, the utility of at least one agent i will be less than Vi(Zi)/2.

Remark D.7. In the above scenario, the largest utility that we managed to give to both agents simultaneously
is 0.46 (see Figure 16/Right). Therefore we conjecture that RelProp(C, rectangles, 2) ≤ 0.46. However,
proving this formally requires geometric analysis that is beyond the scope of the present appendix. Our current
results thus leave a gap between the lower bound of 1/4 and the upper bound of less-than-1/2.
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D.5 Dividing general lands to axis-parallel squares

Suppose the pieces have to be axis-parallel squares. We need two lemmas in order to guarantee that the
preconditions of Algorithm 6 can be satisfied.

Lemma D.8. Given three red pairwise-disjoint axis-parallel squares and three blue pairwise-disjoint axis-
parallel squares, there always exists a pair of disjoint squares, one red and one blue.

Proof. Proof. 16 Since the red squares are pairwise-disjoint and convex, we can rotate the plane such that
Red1 is entirely to the left of Red2.

Suppose by contradiction that every red square overlaps all blue squares (and vice-versa). Then:
(a) Since all blue squares overlap both Red1 and Red2, the projections of all blue squares on the x-axis

must contain the interval between the rightmost x-coordinate of Red1 and the leftmost x-coordinate of Red2.
(b) Since the blue squares are pairwise-disjoint, convex and axis-parallel, they must by (a) lie one above

the other.
(c) Since all red squares overlap each blue square, the projection of all red squares on the y axis must

properly contain the projection of the middle blue square.
(d) Since the red squares are pairwise-disjoint, convex and axis-parallel, they must by (c) lie one to the

left of the other.
(e) Since all blue squares overlap each red square, the projection of all blue squares on the x axis must

properly contain the projection of the middle red square.
By (c), the middle red square must be larger than the middle blue square. By (e), the middle blue square

is larger. This is a contradiction.

Lemma D.9. There is an algorithm that, for every integer k ≥ 2 and every value-measure V on an axis-
parallel square Z, returns k pairwise-disjoint axis-parallel squares inside Z, such that the value of each square
is at least V (Z)/(2k). The factor 1/(2k) is the maximum factor that can be guaranteed.

Proof. Proof. The algorithm is presented in subsection 5.5 of Segal-Halevi et al. (2017).

Using these lemmas we can prove:

Theorem D.10. For any land C:

RelPropEF(C, axes parallel squares, 2) ≥ 1/6

Proof. Proof of Theorem D.10. Ask each agent i to apply Lemma D.9 to his most valuable square Zi, with
k = 3. So each agent i finds inside Zi three axis-parallel squares with a value of at least Vi(Zi)/6. Shrink
these squares such that their value is exactly Vi(Zi)/6.

By Lemma D.8, there are at least two disjoint squares, one per agent. Therefore, we can apply Algorithm
6 with p = 1/6 and get an envy-free and 1/6-relative-proportional division.

The upper bound of 1/4 from Lemma B.1 is of course valid here too, since C may be a square. But if C
is even slightly more complicated than a square (e.g, a convex hexagon), the upper bound is tighter.

Theorem D.11. There exist lands C for which

RelProp(C, axes parallel squares, 2) ≤ 1/5

Proof. Proof. Consider the scenario illustrated in Figure 17. The land C is a hexagon (denoted by a thick
black line).

The value-measure of agent 1 is 1 in each of the 5 small blue discs and 0 elsewhere. All these discs are
contained in the square Z1. Therefore V S

1 (C) = V1(Z1) = 5.
The value-measure of agent 2 is 1 in each of the 5 small red boxes and 0 elsewhere. All these boxes are

contained in the square Z2. Therefore V S
2 (C) = V2(Z2) = 5.

It is easy to give each agent a utility of 1. To give each agent a utility of more than 1, we must give agent
1 a square touching two blue discs and agent 2 a square touching two red boxes. By checking all possibilities

16 The proof is based on an answer by Abel in https://math.stackexchange.com/a/412881/29780.
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Z1

Z2

Figure 17: A land in which each agent i can get at most 1/5 of the value of his best axis-parallel square Zi.
Left: the land C (thick black), the two best squares Z1, Z2 (thin blue/red), and the value-measures (blue
discs / red boxes). Right: for each agent, a representative sample of 3 squares with a value of more than 1.
Agent 1’s squares are dotted-blue and agent 2’s squares are dashed-red. Each square of one agent overlaps
all 3 squares of the other agent.

(see Figure 17/Right), we see that each such square of agent 1 overlaps all such squares of agent 2, so it is
impossible to give both agents a utility of more than 1.

Our current results leave a gap between the lower bound of 1/6 and the upper bound of 1/5.
Moreover, we currently do not have results for general (rotated) squares and for R-fat rectangles. We

believe such results can be obtained by proving variants of the geometric lemmas D.4 and D.8.
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