
Constant Approximation Algorithm for Non-Uniform

Capacitated Multi-Item Lot-Sizing via Strong Covering

Inequalities

Shi Li∗

Abstract

We study the non-uniform capacitated multi-item lot-sizing (CMILS) problem. In this problem,
there is a set of demands over a planning horizon of T time periods and all demands must be satisfied
on time. We can place an order at the beginning of each period s, incurring an ordering cost Ks. The
total quantity of all products ordered at time s can not exceed a given capacity Cs. On the other
hand, carrying inventory from time to time incurs inventory holding cost. The goal of the problem
is to find a feasible solution that minimizes the sum of ordering and holding costs.

Levi et al. (Levi, Lodi and Sviridenko, Mathmatics of Operations Research 33(2), 2008) gave a
2-approximation for the problem when the capacities Cs are the same. In this paper, we extend their
result to the case of non-uniform capacities. That is, we give a constant approximation algorithm
for the capacitated multi-item lot-sizing problem with general capacities.

The constant approximation is achieved by adding an exponentially large set of new covering in-
equalities to the natural facility-location type linear programming relaxation for the problem. Along
the way of our algorithm, we reduce the CMILS problem to two generalizations of the classic knapsack
covering problem. We give LP-based constant approximation algorithms for both generalizations,
via the iterative rounding technique.

∗Department of Computer Science and Engineering, University at Buffalo, 1 White Road, Buffalo, NY 14260.
shil@buffalo.edu. Supported in part by NSF grant CCF-1566356.

ar
X

iv
:1

61
0.

02
05

6v
1

 [
cs

.D
S]

 6
 O

ct
 2

01
6

1 Introduction

Since the seminal papers of Wagner and Whitin [15] and Manne [11] in late 1950’s, lot-sizing problems
has become one of the most important classes of problems in inventory management and production
planning ([14]). Given a sequence of time-varying demands for different products over a time horizon,
a lot-sizing problem asks for the time periods for which productions and orders take place and the
quantities of products to be produced and ordered, so as to minimize the total production, ordering and
inventory holding cost.

In many practical settings, due to the shortage of resources such as manpower, equipments and
budget, there are (possibly time-dependent) capacity constraints on the total units of products that
can be produced or ordered at a time. Thus, when modeling the lot-sizing problems, it is important
to take these capacity constraints into account. Often, the capacity constraints make the problems
computationally harder. There has been an immense amount of work on capacitated lot-sizing problems,
from the perspective of integer programming, heuristics, as well as tractability of special cases.

In this paper, we study the single-level capacitated multi-item lot-sizing (CMILS) problem, where
good decisions have to be made to balance two costs: ordering cost and inventory holding cost. Placing
an order at some time s incurs a time-dependent ordering cost Ks, making it too costly to place an
order at every time period. On the other hand, placing a few orders will result in holding products in
inventory to satisfy future demands, incurring high holding cost. When an order is placed at time s,
there is a capacity Cs on the total amount of products that can be ordered.

We study the CMILS problem from the perspective of approximation algorithms. When the capacities
are uniform, i.e, the capacities Cs for different time periods s are the same, Levi et al. [8] gave a 2-
approximation algorithm for the problem. They used the flow covering inequalities that were introduced
in [12], to reduce the unbounded integrality gap of the natural facility-location type LP relaxation for the
CMILS problem to 2. However, the flow-covering inequalities heavily used the uniform-capacity property;
it seems hard to extend them to the problem with non-uniform capacities.

In this paper, we give a 10-approximation algorithm for non-uniform capacitated multi-item lot-sizing
problem. Inspired by the “effective capacity” idea of the knapsack covering inequalities introduced by
Carr et al. [4], we introduce a set of covering inequalities that strengthen the natural facility-location type
LP relaxation. We believe our covering inequalities can be applied to many other problems with non-
uniform capacities. In the cutting-plane method for solving the integer programmings for capacitated
problems, our covering inequalities may be used to generate an initial solution that is provably good.
Along the way of our algorithm, we reduce the CMILS problem to two generalizations of the classic
knapsack covering problem, namely, the interval and laminar knapsack covering problems. We give an
iterative rounding algorithm for the laminar knapsack covering problem. The two generalizations and
the use of iterative rounding may be of independent interest.

Problem Definition In the capacitated multi-item lot-sizing (CMILS) problem, there is a finite time
horizon of T discrete time periods indexed by [T], and a set of N items indexed by [N]. For each item
i ∈ [N], we have a demand that di > 0 units of item i must be ordered by time ri ∈ [T]. For each
s ∈ [T], we can place an order at the beginning of period s, incurring an ordering cost Ks > 0. If an
order is placed at time s ∈ [T], we can order any subset of items. However, the quantity of total units
ordered for all items can not exceed a given capacity Cs > 0. Carrying inventory over periods incurs
holding costs. For every i ∈ [N], s ∈ [ri], we use hi(s) to denote the per-unit cost of holding one unit of
item i from period s to period ri. We assume that hi is non-increasing. Also, a unit of item i ordered
at the beginning of period ri can be used to satisfy the demand for item i immediately; thus we assume
hi(ri) = 0. The goal of the problem is to satisfy all the demands so as to minimize the sum of ordering
and holding costs.

The mixed integer programming for the problem is given in MIPCMILS, which is a facility-location
type programming. For every i ∈ [N] and s ∈ [ri], xs,i ∈ [0, 1] specifies the fraction of demand i that is
ordered at time s, and for every s ∈ [T], ys ∈ {0, 1} indicates whether we place an order at time s or
not. The goal of the MIP is to minimize the sum of the ordering cost

∑
s∈[T] ysKs and the holding cost∑

i∈[N] di
∑

s∈[ri] xs,ihi(s). Constraint (1) requires that the demand for every item i is fully satisfied,

Constraint (2) restricts that we can order an item at time s only if we placed an order at time s, and
Constraint (3) requires that the total amount of demand ordered at time s does not exceed ysCs. Notice

1

that in a feasible solution (x∗, y∗) to the CMILS problem, y∗ has to be integral, but x∗ can be fractional.

min
∑

s∈[T]

ysKs +
∑

i∈[N]

di
∑

s∈[ri]

xs,ihi(s) s.t. (MIPCMILS)

∑

s∈[ri]

xs,i = 1, ∀i ∈ [N]; (1)

xs,i ≤ ys, ∀i ∈ [N], s ∈ [ri]; (2)

∑

i∈[N]:ri≥s

xs,idi ≤ ysCs, ∀s ∈ [T]; (3)

xs,i ∈ [0, 1], ∀i ∈ [N], s ∈ [ri]; (4)

ys ∈ {0, 1}, ∀s ∈ [T]. (5)

In the traditional setting for multi-item lot-sizing, there is a demand of value ds,i for each item i at
each time period s, and the holding cost is linear for each item i: there will be a per-unit host cost h′i(s)
for carrying one unit of item i from period s to s + 1. The way we defined our holding cost functions
allows us to assume that there is only one demand for each item: if there are multiple demands for
an item at different periods, we can think of that the demands are for different items, by setting the
holding cost functions for these items correctly. This assumption simplifies our notation: instead of using
an (s, i)-pair to denote a demand, we can use a single index i. Thus, we do not distinguish between
demands and items: an element i ∈ [N] is both a demand and an item. In our setting, the traditional
single-item lot-sizing problem corresponds to the case where there is a function h′ : [T − 1]→ R≥0 such

that hi(s) =
∑ri−1

t=s h′(t) for every i ∈ [N] and s ∈ [ri].

Know Results For the single-item lot-sizing problem, the seminal paper of Wagner and Whitin [15]
gave an efficient dynamic programming algorithm for the uncapacitated version. Later, efficient DP
algorithms were also found for the single-item lot-sizing problem with uniform hard capacities ([6]) and
uniform soft capacities ([13]). When the capacities are non-uniform, the problem becomes weakly NP-
hard ([6]), but admits an FPTAS ([7]). Thus, we have a complete understanding of the status of the
single-item lot-sizing problem.

For the multi-item lot-sizing problem, the dynamic programming in [15] carries over if the problem
is uncapacitated. Levi et al. [8] showed that the uniform capacitated multi-item lot-sizing problem is
already strongly NP-hard, and gave a 2-approximation algorithm for the problem. Special cases of the
CMILS problem have been studied in the literature. Anily and Tzur [2] gave a dynamic programming
algorithm for the special case where the capacities and ordering costs are both uniform, and the number of
items is a constant. (In our model, this means that there is a family of O(1) functions h′ : [T −1]→ R≥0,

such that for every i ∈ [N], there is a function h′ from the family such that hi(s) =
∑ri−1

t=s h′(t) for every
s ∈ [ri].) Anily et al. [3] considered the CMILS problem with uniform capacities and the monotonicity
assumption for the holding cost functions. This assumption says that there is an ordering of items
according to their importance. For every time period s, the cost of holding an unit of item i from period
s to s+ 1, is higher than (or equal to) the cost of holding one unit of a less important item from period
s to s+ 1. [3] gave a small size linear programming formulation to solve this special case exactly. Later,
Even et al. [5] gave a dynamic programming for the problem when demands are polynomially bounded
and the holding cost functions satisfy the monotonicity assumption. The assumption of polynomially
bounded demands is necessary even with the monotonicity assumption, since otherwise the problem is
weakly NP-hard ([6]).

1.1 Our Reults and Techniques

Our main result is a constant approximation algorithm for the capacitated multi-item lot-sizing problem.

Theorem 1.1. There is a 10-approximation algorithm for the multi-item lot-sizing problem with non-
uniform capacities.

We give an overview of our techniques used for proving Theorem 1.1. We start with the natural
facility-location type linear programming relaxation for the CMILS problem, which is obtained from
MIPCMILS by relaxing Constraint (5) to ys ∈ [0, 1],∀s ∈ [T]. Since Constraint (1) requires

∑
s∈[ri] xs,i = 1

2

for every i ∈ [N], {xs,i}s∈[ri] form a distribution over [ri]. We define the tail of the distribution to be
the set of some latest periods in [ri] that contributes a constant mass to the distribution.

For simplicity, let us first assume that the capacities for the orders are soft capacities. That is, we
are allowed to place multiple orders at each period s in our final solution, by paying a cost Ks for each
order. In this case, the integrality gap of the natural LP relaxation is O(1). In our rounding algorithm,
we scale up the y variables by a large constant. With the scaling, we require that each item i ∈ [N]
is only ordered in the tail of the distribution for i. In this way, the holding cost can be bounded by a
constant times the holding cost of the LP solution.

With these requirements, the remaining problem becomes an “interval knapsack covering” (Interval-
KC) problem, where we view each period s ∈ [T] as a knapsack of capacity Cs and cost Ks. If we place
an order at period s, then we select the knapsack s. For every a, b ∈ Z such that 0 ≤ a < b < T , we
require that the total capacity of selected knapsacks in (a, b] is at least Ra,b. The goal of the Interval-KC
problem is to select a set of knapsacks of the minimum cost that satisfies all the requirements. We give
a constant approximation algorithm for Interval-KC based on iterative rounding. Specifically, we first
reduce the Interval-KC instance to an instance of a more restricted problem, called “laminar knapsack
covering” (Laminar-KC) problem, in which the intervals (a, b] with positive Ra,b form a laminar family.
The laminar structure allows us to apply the iterative rounding technique to solve the problem: we
maintain an LP and in each iteration the LP is solved to obtain a vertex-point solution; as the algorithm
proceeds, more and more variables will become integral and finally the algorithm will terminate. Overall,
the LP solution to the CMILS instance leads to a good LP solution to the Interval-KC instance, which in
turn leads to a good LP solution to the Laminar-KC instance. Therefore, the final ordering cost can be
bounded.

However, when the capacities are hard capacities, the integrality gap of the natural LP becomes
unbounded. The issue with the above algorithm is that some ys might have value more than a constant,
and scaling it up will make it more than 1. So our final solution needs to include many orders at period s.
Indeed, the same issue occurs for many other problems such as knapsack covering and capacitated facility
location, for which the linear programming has O(1) integrality gap for the soft capacitated version but
unbounded gap for the hard capacitated version. For both problems, stronger LP relaxations are known
to overcome the gap instances ([1, 4]). Our idea behind the strengthened LP is similar to those in [4]
and [1]. If for some s ∈ [T], ys is larger than a constant, then we can afford to place an order at time
s. So, we break [T] into two sets: S+ contains the periods in which we already placed an order, and
[T] \ S+ contains the periods s with small ys value. We consider the residual instance obtained from
the input CMILS instance by pre-selecting the orders in S+. In this residual instance, all periods s other
than the ones with pre-selected orders have small ys values; thus we hope to run the algorithm for the
soft-capacitated multi-item lot-sizing problem. The challenge is that we can not remove S+ from the
residual instance since we do not know what items are assigned to the orders in S+. To overcome this
issue, we introduce a set of strong covering inequalities. These inequalities use the “effective capacity”
idea from the knapsack covering inequalities introduced in [4]: if we want to use some orders to satisfy
d units of demand, then the “effective capacity” of an order at time s is min {Cs, d}, instead of Cs.

2 Preliminaries

Notations Throughout this paper, C and K will always be vectors in RT
≥0. For any set S ⊆ [T], we

define C(S) :=
∑

s∈S Cs and K(S) :=
∑

s∈S Ks. For every set I ⊆ [N] of items, we use d(I) :=
∑

i∈I di
to denote the total demand for items in I. Since we shall use intervals of integers frequently, we use
(a, b), (a, b], [a, b), [a, b] to denote sets of integers in these intervals; the only exception is that [0, 1] will
still denote the set of real numbers between 0 and 1 (including 0 and 1). In particular, an interval over
[T] is some (a, b], for some integers a, b such that 0 ≤ a < b ≤ T .

Knapsack Covering Inequalities In the classic knapsack covering (KC) problem, we are given a set
[T] of knapsacks, where each knapsack s ∈ [T] has a capacity Cs > 0 and a cost Ks ≥ 0. The goal of
the problem is to select a subset S∗ ⊆ [T] with C(S∗) ≥ R, so as to minimize K(S∗). That is, we want
to select a set of knapsacks with total capacity at least R so as to minimize the total cost of selected
knapsacks. In the CMILS problem, if we only have one item 1 with demand d1 = R and r1 = T and the
holding cost is identically 0, then the problem is reduced to the KC problem.

3

It is well-known that the KC problem is weakly NP-hard and admits an FPTAS based on dynamic
programming. However, for many problems that involve capacity covering constraints, it is hard to
incorporate the dynamic programming technique. This motivates the study of LP relaxations for KC.
The naive LP relaxation, which is min

∑
s∈[T] ysKs subject to

∑
s∈[T] ysCs ≥ R and y ∈ [0, 1]T , has

unbounded integrality gap, even if we assume that Cs ≤ R for every s ∈ [T]. Consider the instance with
T = 2, C1 = R − 1, C2 = R,K1 = 0 and K2 = 1, where R is a very large number. The LP solution
(y1, y2) = (1, 1/R) has cost 1/R; however, the optimum solution to the problem has cost 1.

To overcome the above gap instance, Carr et al. [4] introduced a set of valid inequalities, that are
satisfied by all integral solutions to the given KC instance. The inequalities are called knapsack covering
(KC) inequalities, which are defined as follows:

∑

s∈[T]\S

min {Cs, R− C(S)} ys ≥ R− C(S), ∀S ⊆ [T] s.t. C(S) < R. (Knapsack Covering Inequality)

For each S ⊆ [T] with C(S) < R, the above inequality requires the selected knapsacks in [T] \ S to have
a total capacity at least R− C(S). In this residual problem, if the capacity of a knapsack s ∈ [T] \ S is
more than R−C(S), its “effective capacity” is only R−C(S). So the KC inequalities are valid. For the
above gap instance, the KC inequality for S = {1} requires min {C2, R− (R− 1)} y2 ≥ R− (R− 1), i.e,
y2 ≥ 1. Thus the KC inequalities can handle the gap instance. Indeed, it is shown in [4] that the LP
with all the KC inequalities has integrality gap 2.

Rounding Procedure That Detects Violated Inequalities Although the KC inequalities can
strengthen the LP for KC, the LP with all these inequalities can not be solved efficiently. This issue
can be circumvented by using a rounding algorithm that detects violated inequalities. Given a vector
y ∈ [0, 1]T , there is a rounding algorithm that either returns a feasible solution to the given KC instance,
whose cost is at most 2

∑
s∈[T] ysKs, or returns a knapsack covering inequality that is violated by y. This

rounding algorithm can be used as a separation oracle for the Ellipsoid method. We keep on running
the Ellipsoid method, as long as the rounding algorithm is returning a violated constraint. When the
algorithm fails to give a violated constraint, it returns a feasible solution whose cost is guaranteed to
be at most twice the cost of the optimum LP solution. This technique has been used in many previous
results, e.g. [1, 4, 8, 9, 10]. In particular, [8] used this technique to obtain their 2-approximation for the
uniform-capacitated multi-item lot-sizing problem. In this paper, we also apply the technique to obtain
our 10-approximation for the problem with non-uniform capacities.

Laminar and Interval Knapsack Covering Along the way of our algorithm, we introduce two gen-
eralizations of the knapsack covering problem. In the laminar knapsack covering (Laminar-KC) problem,
we are given a set [T] of knapsacks, each s ∈ [T] with a capacity Cs > 0 and a cost Ks ≥ 0. We are also
given a laminar family S of intervals of [T]. That is, for every two distinct intervals (a, b], (a′, b′] ∈ S, we
have either (a, b] ∩ (a′, b′] = ∅, or (a, b] ((a′, b′], or (a′, b′] ((a, b]. For each (a, b] ∈ S, we are given a
requirement Ra,b > 0. The goal of the problem is to find a set S∗ ⊆ [T] such that C(S∗ ∩ (a, b]) ≥ Ra,b

for every (a, b] ∈ S, so as to minimize K(S∗). W.l.o.g we assume that [T] ∈ S. We use (T,C,K,S, R) to
denote a Laminar-KC instance.

The interval knapsack covering (Interval-KC) problem is a more general problem, in which we are still
given a set [T] of knapsacks, each s ∈ [T] with a capacity Cs > 0 and a cost Ks ≥ 0. However now we
have a requirement Ra,b ≥ 0 for every interval (a, b] over T . The goal of the problem is to select a set S∗

of knapsacks with the minimum cost, such that C(S∗ ∩ (a, b]) ≥ Ra,b, for every interval (a, b] over [T].
We use (T,C,K,R) to denote an Interval-KC instance.

We remark that the dynamic programming for KC can be easily extended to give an FPTAS for the
Laminar-KC problem. However, we do not know how it can be applied to the more general Interval-KC
problem, as well as the CMILS problem. Our algorithm for CMILS heavily uses the LP technique. We
reduce the CMILS problem to the Interval-KC problem, which will be further reduced to the Laminar-KC
problem. Both reductions require the use of linear programming. After the reductions, we obtain a
fractional solution to some LP relaxation for the Laminar-KC and round it to an integral solution. We
now state the two main theorems for the two problems, that will be used in our algorithm for CMILS.

4

Theorem 2.1 (Main Theorem for Laminar-KC). Let (T,C,K,S, R) be a Laminar-KC instance and

y ∈ [0, 1]T . Let S+ = {s ∈ [T] : ys = 1} and R̃a,b := max {Ra,b − C(S+ ∩ (a, b]), 0} for every (a, b] ∈ S.

Suppose for every (a, b] ∈ S with R̃a,b > 0, we have

either
∑

s∈(a,b]\S+

min
{
Cs, R̃a,b

}
ys ≥ 2R̃a,b, (6)

or
∑

s∈(a,b]\S+:Cs≥R̃a,b

ys ≥ 1. (7)

Then, we can efficiently find a feasible solution S∗ ⊇ S+ to the instance such that K(S∗) ≤∑s∈[T] ysKs.

Theorem 2.2 (Main Theorem for Interval-KC). Let (T,C,K,R) be an Interval-KC instance and

y ∈ [0, 1]T . Let S+ = {s ∈ [T] : ys = 1} and R̃a,b := max {Ra,b − C(S+ ∩ (a, b]), 0} for every interval

(a, b] over [T]. Suppose for every interval (a, b] with R̃a,b > 0, we have

either
∑

s∈(a,b]\S+

min
{
Cs, R̃a,b

}
ys ≥ 10R̃a,b, (8)

or
∑

s∈(a,b]\S+:Cs≥R̃a,b

ys ≥ 6. (9)

Then, we can efficiently find a feasible solution S∗ ⊇ S+ to the instance such that K(S∗) ≤∑s∈[T] ysKs.

In both theorems, we are given a fractional vector y ∈ [0, 1]T to the given instance. S+ is the set

of knapsacks with y values being 1 and thus can be included in our final solution S∗. R̃a,b can be
viewed as the residual requirement for the interval (a, b] after we selected knapsacks in S+. Notice
that Inequality (6) (resp. Inequality (8)) is the knapsack covering inequality with ground set (a, b],
S1 = (a, b] ∩ S+, and the right side multiplied by 2 (resp. 10).

With Theorem 2.2, we can give an LP-based 10-approximation for the Interval-KC problem. The
rounding algorithm takes a vector y ∈ [0, 1]T as input. We let ŷs = min {10ys, 1} for every s ∈ [T],

S+ = {s ∈ [T] : ŷs = 1} and R̃a,b = max {Ra,b − C((a, b] ∩ S+), 0} for every interval (a, b]. Focus on

every interval (a, b] with R̃a,b > 0. If the KC inequality is satisfied for the ground set (a, b] and S1 =
S+ ∩ (a, b], then Inequality (8) with y replaced by ŷ holds for this (a, b]; otherwise, we return this KC
inequality. Then, we can apply Theorem 2.2 to obtain a feasible solution S∗ whose cost is at most∑

s∈[T] ŷsKs ≤ 10
∑

s∈[T] ysKs; this gives us a 10-approximation algorithm for the Interval-KC problem.

Corollary 2.3. There is a 10-approximation algorithm for the Interval-KC problem.

Organization The remaining part of the paper is organized as follows. In Section 3, we give our algo-
rithm for the CMILS problem, using Theorem 2.2 as a black box. In Section 4, we describe our iterative
rounding algorithm for Laminar-KC, which proves Theorem 2.1. In Appendix A, we use Theorem 2.1 to
prove Theorem 2.2, by reducing the given Interval-KC instance to a Laminar-KC instance.

3 Approximation Algorithm for Capacitated Multi-Item Lot-
Sizing

In this section, we describe our 10-approximation algorithm for the CMILS problem, using Theorem 2.2
as a black box. We first present our LP relaxation with strong covering inequalities. Then we define an
Interval-KC instance, where knapsacks correspond to orders in the CMILS problem. Any feasible solution
to Interval-KC instance gives a set of orders, for which there is a way to satisfy the demands with small
holding cost. Finally, we obtain a small-cost solution to the Interval-KC instance, using Theorem 2.2;
this leads a solution to the CMILS instance, with small holding and ordering costs.

The LP obtained from MIPCMILS by replacing Constraint (5) with ys ∈ [0, 1],∀s ∈ [T] has unbounded
integrality gap, which can be derived from the gap instance for KC. To overcome this integrality gap,

5

min
∑

s∈[T]

ysKs +
∑

i∈[N]

di
∑

s∈[ri]

xs,ihi(s) s.t. (LPnew)

∑

s∈[ri]

xs,i = 1,∀i ∈ [N]; (10) xs,i ∈ [0, 1],∀i ∈ [N], s ∈ [ri]; (11) ys ∈ [0, 1],∀s ∈ [T]; (12)

C(S1) +
∑

s∈S2

min {Cs, d(I)− C(S1)} ys +
∑

i∈I
x[T]\(S1∪S2),idi ≥ d(I),

∀S1, S2 ⊆ [T], I ⊆ [N] s.t. S1 ∩ S2 = ∅, C(S1) < d(I). (13)

we introduce a set of new inequalities. The inequalities are described in Constraint (13), where for
convenience, we define xs,i = 0 if s > ri and let xS,i =

∑
s∈S xs,i for every S ⊆ [T] and i ∈ [N].

We now show the validity of Constraint (13); focus on some sets S1, S2 ⊆ [T] and I ⊆ [N] such
that S1 ∩ S2 = ∅ and C(S1) < d(I). We break [T] into three sets: S1, S2 and [T] \ (S1 ∪ S2), and
consider the quantities for the units of demands in I that are satisfied by each of the 3 sets. Orders in
S1 satisfies at most C(S1) units of demand, orders in S2 satisfies at most

∑
s∈S2

Csys units, and orders
in [T] \ (S1 ∪ S2) satisfy exactly

∑
i∈I x[T]\(S1∪S2),idi units. Then, Constraint (13) is valid if we replace

min{Cs, d(I)−C(S1)} by Cs. In an integral solution we have ys ∈ {0, 1} for every s ∈ S2. If some s ∈ S2

has ys = 1 and Cs > d(I)−C(S1), then Constraint (13) already holds. Thus, even if we replace Cs with
min {Cs, d(I)− C(S1)}, the constraint still holds. In other words, we use orders in S2 to cover at most
d(I)−C(S1) units of demands; an order at time s ∈ S2 has “effective capacity” min {Cs, d(I)− C(S1)}.
Indeed, it is the threshold that gives the power of Constraint (13); without it, Constraint (13) is implied
by the constraints in the natural LP relaxation, and thus does not strengthen the LP.

If we let S1 = ∅, S2 = {s} and I = {i} for some s ∈ [T], i ∈ [N], then Constraint (13) be-
comes min {Cs, di} ys + x[T]\{s},idi ≥ di. Since x[T],i = 1 by Constraint (10), the inequality im-

plies min {Cs, di} ys ≥ xs,idi. Thus, xs,i ≤ min{Cs,di}
di

ys ≤ ys, implying Constraint (2). If we let
S = ∅, S2 = {s} and I = [N] for some s ∈ [T], then Constraint (13) becomes min {Cs, d([N])} ys +∑

i∈[N] x[T]\{s},idi ≥ d([N]). Since x[T],i = 1 for every i by Constraint (10), the inequality implies

min {Cs, d([N])} ys ≥
∑

i∈[N] xs,idi, which implies Constraint (3). Thus, in our strengthened LP, we do

not need Constraints (2) and (3). Our final strengthened LP is LPnew.

Rounding a Fractional Solution to LPnew Let (x, y) be a fixed fractional solution satisfying Con-
straints (10) to (12). We give a rounding algorithm that returns either an inequality of form (13)
that is violated by y, or a feasible solution (x∗, y∗) to the CMILS instance whose cost is at most

10
(∑

s∈[T] ysKs +
∑

i∈[N] di
∑

s∈[ri] xs,ihi(s)
)

.

We define hcost(x′) :=
∑

i∈[N] di
∑

s∈[ri] x
′
s,ihi(s), for every x′ ∈ [0, 1][T]×[N] to be the holding cost of

any fractional solution (x′, y′). We now define the requirement vector R for our Interval-KC instance. If
all the requirements are satisfied, then the demands can be satisfied at a small holding cost. Indeed, the
approximation ratio for the holding cost is only 5

2 , better than the ratio 10 for the ordering cost. For
every interval (a, b] over [T], the requirement Ra,b is defined as:

Ra,b :=
∑

i∈[N]:ri∈(a,b]

max

{
1− 5

2
x[a],i, 0

}
di. (14)

Lemma 3.1. Let y∗ ∈ {0, 1}T and S∗ = {s ∈ [T] : y∗s = 1}. If for every interval (a, b] over [T], we have
C(S∗ ∩ (a, b]) ≥ Ra,b, then there is an x∗ such that (x∗, y∗) is a feasible solution to the CMILS instance
and hcost(x∗) ≤ 5

2hcost(x).

The lemma says that if all the requirements are satisfied, then we have an x∗ with small hcost(x∗).
In the proof, we reduce the problem of finding a good x∗ to the problem of finding a perfect matching
in a fractional b-matching instance. We show that the perfect matching exists if all the requirements are
satisfied. We defer the proof of the lemma to Appendix B.

Now, our goal becomes to find a set S∗ ⊆ [T] satisfying all the requirements. This is exactly an
Interval-KC instance, and we shall apply Theorem 2.2 to solve the instance. To guarantee the conditions

6

of Theorem 2.2, it suffices to guarantee that a small number of inequalities in Constraint (13) are satisfied
for (x, y).

Lemma 3.2. Let (a, b] be an interval with Ra,b > 0, and I =
{
i ∈ [N] : ri ∈ (a, b], x[a],i <

2
5

}
. Let

(S1, S2) be an arbitrary partition of (a, b] into two parts such that C(S1) < Ra,b. If Constraint (13) is
satisfied for S1, S2 and I, then we have

either
∑

s∈S2

min {Cs, Ra,b − C(S1)} ys ≥ Ra,b − C(S1), (15)

or
∑

s∈S2:Cs≥Ra,b−C(S1)

ys ≥
3

5
. (16)

Proof. Notice that Ra,b =
∑

i∈[N]:ri∈(a,b] max
{

1− 5
2x[a],i, 0

}
di =

∑
i∈I
(
1 − 5

2x[a],i
)
di. Since x[ri],i = 1

and xs,i = 0 for every i ∈ I, s > ri, we have x(a,b],i = 1− x[a],i for every i ∈ I. Constraint (13) for S1, S2

and I implies
∑

s∈S2

min {Cs, d(I)− C(S1)} ys ≥
∑

i∈I
xS1∪S2,idi − C(S1) =

∑

i∈I

(
1− x[a],i

)
di − C(S1). (17)

If Inequality (16) holds then we are done. Thus, we assume Inequality (16) does not hold. We
consider the decrease of the sum on the left-side of Inequality (17) after we change d(I) to Ra,b =∑

i∈I
(
1 − 5

2x[a],i
)
di. For each s ∈ S2, if Cs ≥ Ra,b − C(S1), then the decrease of the coefficient of

ys is at most d(I) − Ra,b = 5
2

∑
i∈I x[a],idi. Otherwise Cs < Ra,b − C(S1) and there is no decrease

for the coefficient of ys. Since Inequality (16) does not hold, the decrease of the left side is at most∑
s∈S2:Cs≥Ra,b−C(S1)

ys × 5
2

∑
i∈I x[a],idi ≤ 3

5 × 5
2

∑
i∈I x[a],idi = 3

2

∑
i∈I x[a],idi. So, we have

∑

s∈S2

min {Cs, Ra,b − C(S1)} ys ≥
∑

i∈I

(
1− x[a],i

)
di − C(S1)− 3

2

∑

i∈I
x[a],idi

=
∑

i∈I

(
1− 5

2
x[a],i

)
di − C(S1) = Ra,b − C(S1),

which is exactly Inequality (15).

Let ŷs = min {10ys, 1} for every s ∈ [T] and S+ = {s ∈ [T], ŷs = 1} = {s ∈ [T] : ys ≥ 1/10} be the set

of elements with y values at least 1/10. For every interval (a, b], define R̃a,b = max {Ra,b − C((a, b] ∩ S+), 0}
to be the residual requirement for the interval (a, b], as in Theorem 2.2. For every interval (a, b] with

R̃a,b > 0, we define I =
{
i ∈ [N] : ri ∈ (a, b], x[a],i <

2
5

}
as in Lemma 3.2. Let S1 = (a, b] ∩ S+ and

S2 = (a, b] \S+. Since C(S1) < Ra,b, we can check if Constraint (13) is satisfied for I, S1 and S2. If not,
we return this violated constraint. So, we assume the condition is satisfied. Then by Lemma 3.2, we
have either Inequality (15) or (16). Notice that ys < 1/10 and ŷs = 10ys for every s ∈ S2. Multiplying

the two inequalities by 10, and replacing Ra,b − C(S1) with R̃a,b and S2 with (a, b] \ S+, we have

either
∑

s∈(a,b]\S+

min
{
Cs, R̃a,b

}
ŷs ≥ 10R̃a,b,

or
∑

s∈(a,b]\S+:Cs≥R̃a,b

ŷs ≥ 6.

The above property holds for every time interval (a, b] such that R̃a,b > 0. Since there are only O(T 2)
intervals and for each interval (a, b] we only need to check one constraint of form (13), our algorithm
runs in polynomial time.

Thus, the Interval-KC instance (T,C,K,R) and the vector ŷ ∈ [0, 1]T satisfy the condition of The-
orem 2.2. We can apply the theorem to find a set S∗ ⊇ S+ such that K(S∗) ≤ ∑

s∈[T] ŷsKs ≤
10
∑

s∈[T] ysKs and C
(
[a, b) ∩ S∗

)
≥ Ra,b for every interval (a, b]. Let y∗ ∈ {0, 1}T be the indicator

vector for S∗; by Lemma 3.1 there is an x∗ such that (x∗, y∗) is a feasible solution to the CMILS instance
and hcost(x∗) ≤ 5

2hcost(x). Thus, we obtain a feasible solution (x∗, y∗) to the CMILS instance whose
cost is at most 10

∑
s∈[T] ysKs + 5

2hcost(x); this finishes the proof of Theorem 1.1.

7

4 Approximation Algorithm for Laminar Knapsack Covering
via Iterative Rounding

This section is dedicated to the proof of Theorem 2.1, by describing our iterative rounding algorithm.
Recall that we are given a Laminar-KC instance (T,C,K,S, R), a vector y ∈ [0, 1]T and set S+ =

{s ∈ [T] : ys = 1}. Let R̃a,b := max {Ra,b − C((a, b] ∩ S+), 0} for every (a, b] ∈ S. For every (a, b] ∈ S
with R̃a,b > 0, either Inequality (6) or Inequality (7) holds.

We now give an overview of the rounding algorithm. We maintain a set S∗ ⊆ [T] of knapsacks that
we already selected, and a set S◦ ⊆ [T] of knapsacks we discarded. There is a sub-family S1 ∪S2 ⊆ S of
“active” intervals from the laminar family S, where S1 ∩ S2 = ∅. Each set (a, b] ∈ S1 ∪ S2 has positive

residual requirement R̂a,b, after we selected knapsacks in S∗; that is, R̂a,b := Ra,b − C
(
S∗ ∩ (a, b]

)
> 0.

We maintain an LP relaxation (LPIterRound) in the rounding algorithm, in which we have a constraint for
every interval (a, b] ∈ S1 ∪ S2. We maintain a feasible solution y to the LP. In each iteration of the
rounding algorithm, we update y to be an optimum vertex-point solution of LPIterRound. Then, we show
that there must be some knapsack s /∈ S◦ ∪ S∗ such that ys ∈ {0, 1}. Depending on whether ys = 0 or
ys = 1, we discard or select s, by adding s to S◦ or S∗. Then we can update S1,S2 and the residual
requirement vector R̂ accordingly. To analyze the algorithm, we prove two key lemmas. First, we show
that the feasibility of y is maintained, after we update S◦, S∗,S1,S2 and R̂. Second, we show that the
algorithm makes progress in each iteration: some new knapsack s is added to S◦ or S∗.

Now we describe the LP relaxation LPIterRound used in the iterative rounding. In the LP, ys indicates
whether s is included in the final solution. Thus, we require ys = 0 for every s ∈ S◦ (Constraint (20))
and ys = 1 for every s ∈ S∗ (Constraint (21)). For a set (a, b] ∈ S1, we require Constraint (18) to hold;
for a set (a, b] ∈ S2, we require Constraint (19) to hold. Notice that the two constraints are respectively

Inequality (6) and Inequality (7), with S+ replaced by S∗ and R̃ replaced by R̂.

min
∑

s∈[T]

ysKs s.t. (LPIterRound)

∑

s∈(a,b]\S∗
min

{
Cs, R̂a,b

}
ys ≥ 2R̂a,b, ∀(a, b] ∈ S1; (18)

∑

s∈(a,b]\S∗:Cs≥R̂a,b

ys ≥ 1, ∀(a, b] ∈ S2; (19)

ys = 0, ∀s ∈ S◦; (20)

ys = 1, ∀s ∈ S∗; (21)

ys ∈ [0, 1], ∀s /∈ S◦ ∪ S∗. (22)

The pseudo-code for the rounding algorithm is given in Algorithm 1. We initialize S∗, S◦, R̂,S1 and
S2 in Statements 1 to 3. In each iteration of the outer loop (the loop beginning with Statement 4),
we first repeatedly remove intervals (a, b] from S1 ∪ S2 if the requirement for (a, b] is implied by the
requirement for some other interval (a′, b′] ∈ S1 ∪S2 (Statements 5 and 6). Then, we solve LPIterRound to
obtain an optimum vertex point solution y (Statement 7). Some knapsacks s ∈ [T]\S◦ may have ys = 0,
in which case we permanently discard s by adding s to S◦ (Statement 8); some knapsacks s ∈ [T] \ S∗
may have ys = 1, in which case we add s to our final solution S∗ (Statement 10). With S∗ updated,

we shall update R̂, S1 and S2 accordingly (Statements 11 to 14). In particular, we remove intervals
(a, b] from S1 ∪ S2 if the requirement for (a, b] is already satisfied by S∗ (Statement 13). We move sets
(a, b] from S1 to S2 if (a, b] satisfies Constraint (19) (Statement 14). The algorithm terminates when
S1 ∪ S2 = ∅.

Since we removed intervals from S1 ∪ S2 in Statements 5, 6 and Statement 13, the requirements for
intervals (a, b] in S \ (S1 ∪ S2) are irrelevant. For such an interval (a, b], either C(S∗ ∩ (a, b]) ≥ Ra,b,

or there exists some set (a′, b′] ∈ S1 ∪ S2 such that (a′, b′] \ (S◦ ∪ S∗) = (a, b] \ (S◦ ∪ S∗) and R̂a′,b′ =
Ra′,b′ − C(S∗ ∩ (a′, b′]) ≥ Ra,b − C(S∗ ∩ (a, b]). In the former case, the requirement for (a, b] is already
satisfied; in the later case, the requirement for (a, b] is implied by the requirement for some interval
(a′, b′] ∈ S1 ∪ S2, conditioned on that we must choose knapsacks in S∗ and not choose knapsacks in S◦.
So, when S1 ∪ S2 = ∅ becomes empty, the requirements for all sets in S are satisfied.

8

Algorithm 1 Iterative Rounding Algorithm for the Proof of Theorem 2.1.

Input: (T,C,K,S, R), y, S+ and
(
R̃a,b

)
(a,b]∈S

as in Theorem 2.1.

Output: a feasible solution S∗ ⊆ [T] to the instance with K
(
S∗
)
≤∑s∈[T] ysKs.

1: let S◦ ← ∅, S∗ ← S+, R̂a,b ← R̃a,b for every (a, b] ∈ S
2: let S2 ←

{
(a, b] ∈ S : R̂a,b > 0,Constraint (19) is satisfied for (a, b]

}

3: let S1 ←
{

(a, b] ∈ S : R̂a,b > 0
}
\ S2

4: while S1 ∪ S2 6= ∅ do (outer loop)
5: while there exist two distinct intervals (a, b], (a′, b′] ∈ S1 ∪ S2

s.t. (a, b] \ (S◦ ∪ S∗) = (a′, b′] \ (S◦ ∪ S∗) and R̂a′,b′ ≥ R̂a,b do
6: S1 ← S1 \ {(a, b]},S2 ← S2 \ {(a, b]}
7: let y to be an optimal vertex point solution of LPIterRound

8: while there exists s ∈ [T] \ S◦ such that ys = 0 do: add s to S◦

9: while there exists s ∈ [T] \ S∗ such that ys = 1 do (middle loop)
10: add s to S∗

11: for every (a, b] ∈ S1 ∪ S2 such that s ∈ (a, b] do (inner loop)

12: R̂a,b ← R̂a,b − Cs

13: if R̂a,b ≤ 0 then S1 ← S1 \ {(a, b]},S2 ← S2 \ {(a, b]}
14: if (a, b] ∈ S1 and Constraint (19) holds for (a, b] then S1 ← S1 \ {(a, b]},S2 ← S2 ∪ {(a, b]}

Before formally proving the two key lemmas we need to prove Theorem 2.1, we make some simple
observations about Algorithm 1, assuming Statement 7 always finds a feasible solution y.

Observation 4.1. (4.1a) After the initialization of S◦ and S∗ in Statement 1, we always have ys = 0
for every s ∈ S◦ and ys = 1 for every s ∈ S∗.

(4.1b) After the initialization of S1 and S2 in Statements 2 and 3, we always have S1 ∩ S2 = ∅.
(4.1c) At the beginning of each iteration of the outer loop, we have R̂a,b = Ra,b −C(S∗ ∩ (a, b]) > 0 for

every (a, b] ∈ S1 ∪ S2.

Observation (4.1a) holds since we add s to S◦ only if ys = 0, to S∗ only if ys = 1. In LPIterRound,
we have Constraints (20) and (21). Thus the two constraints hold when we update y in Statement 7.
After Statement 3, S1 ∩ S2 = ∅. The only place we add an interval to either S1 or S2 is State-
ment 14, in which we move the interval from S1 to S2. Thus Observation (4.1b) holds. After State-

ment 3, we have that for every interval (a, b] ∈ S1 ∪ S2, R̂a,b = R̃a,b = max {Ra,b − C(S+ ∩ (a, b]), 0} =

max {Ra,b − C(S∗ ∩ (a, b]), 0} > 0. Thus, R̂a,b = Ra,b − C(S∗ ∩ (a, b]) > 0. Every time we add a knap-

sack s to S∗ in Statement 10, for every (a, b] ∈ S1 ∪ S2 such that s ∈ (a, b], we decrease R̂a,b by Cs in

Statement 12. Then if R̂a,b ≤ 0 after the decrease, we remove (a, b] from S1 ∪S2 in Statement 13. Thus,
Observation (4.1c) holds.

The first key lemma is Lemma 4.2. The heart of the proof of the lemma is in the proof of Lemma 4.3.
We prove Lemma 4.3 now, while deferring the proof of Lemma 4.2 to Appendix B.

Lemma 4.2. At the beginning of each iteration of the outer loop, y is a feasible solution to LPIterRound.

Lemma 4.3. If y is a feasible solution to LPIterRound at the beginning of an iteration of the middle loop
(the loop beginning with Statement 9), then it is also feasible at the end of the iteration.

Proof. For notational purposes, we use s∗ to denote the knapsack that will be added to S∗ in this iteration.
After this iteration, Constraint (20) is unaffected, and Constraints (21) and (22) remain satisfied since
ys∗ = 1. Thus, we only need to focus on Constraints (18) and (19). If some (a, b] ∈ S1 ∪ S2 does not

contain s∗, then (a, b] \ S∗ and R̂a,b do not change in the iteration. Thus the constraint for (a, b] (either
Constraint (18) or Constraint (19)) is unaffected. Thus, we can focus on an interval (a, b] ∈ S1 ∪S2 that
contains s∗. In the iteration of the inner loop (the loop beginning with Statement 11) for this interval

(a, b], Statement 12 decreases R̂a,b by Cs∗ , Statement 13 removes (a, b] from S1 ∪ S2 if R̂a,b becomes at
most 0, and Statement 14 moves (a, b] from S1 to S2 if (a, b] satisfies Constraint (19).

9

To the end of this proof, S∗ will refer to the set S∗ before we add s∗, R̂a,b will refer to the value of

R̂a,b before we run Statement 12 and R̂new
a,b = R̂a,b − Cs∗ will be the value of R̂a,b after Statement 12. If

R̂new
a,b ≤ 0, then (a, b] will be removed from S1∪S2 and there will be no Constraint for (a, b] in LPIterRound.

Thus, we can assume R̂new
a,b > 0.

Consider the first case where we have (a, b] ∈ S1 at the beginning of the iteration of the middle
loop. If

∑
s∈(a,b]\S∗\{s∗}:Cs≥R̂new

a,b
ys ≥ 1, then (a, b] will be moved to S2 and Constraint (19) for (a, b] will

be satisfied. So, we can assume that
∑

s∈(a,b]\S∗\{s∗}:Cs≥R̂new
a,b
ys < 1. (a, b] will remain in S1 after the

iteration. We consider how Constraint (18) for (a, b] is affected by adding s∗ to S∗ and changing R̂a,b to

R̂new
a,b . The right side of the inequality is decreased by exactly 2

(
R̂a,b−R̂new

a,b

)
= 2Cs∗ . We now consider the

decrease of the left side. First, adding s∗ to S∗ will decrease the left side by ys∗ min
{
Cs∗ , R̂a,b

}
= Cs∗

since ys∗ = 1 and Cs∗ < R̂a,b. Second, some knapsack s ∈ (a, b] \ S∗ \ {s∗} will have min
{
Cs, R̂

new
a,b

}
<

min
{
Cs, R̂a,b

}
. This happens only if Cs ≥ R̂new

a,b . Moreover, if this happens, the decrease of the left-side

due to this s is at most ys(R̂a,b−R̂new
a,b) = ysCs∗ . Since we have

∑
s∈(a,b]\S∗\{s∗}:Cs≥R̂new

a,b
ys < 1, the overall

decrease of the left-side of Constraint (18) for (a, b] is at most Cs∗+
∑

s∈(a,b]\S∗\{s∗}:Cs≥R̂new
a,b
ysCs∗ < 2Cs∗ ,

which is the decrease of its right-side. Thus, the constraint for (a, b] remains satisfied at the end of the
iteration for the middle loop.

Then assume that (a, b] ∈ S2 at the beginning of the iteration of the inner loop. Notice that we have

assumed that R̂new
a,b > 0, which implies Cs∗ < R̂a,b. The left-side of Constraint (19) can only increase: (i)

though we will add the knapsack s∗ to S∗, we have Cs∗ < R̂a,b and thus it does not contribute to the
left-side at the beginning of the iteration of the middle loop; (ii) for a knapsack s ∈ (a, b] \ S∗ \ {s∗},
Cs ≥ R̂a,b implies that Cs ≥ R̂new

a,b . Thus, Constraint (19) for (a, b] remains true at the end of the
iteration of the middle loop. This finishes the proof of the lemma.

We defer the proof of the second key lemma to Appendix B. The proof uses the fact that S is a
laminar family and the properties of vertex-point solutions to LPIterRound.

Lemma 4.4. The outer loop will terminate in at most T iterations.

With the two key lemmas, we can complete the proof of Theorem 2.1. By Observation (4.1a), ys = 1
for every s ∈ S∗. So, we always have K(S∗) ≤ ∑s∈[T] ysKs. The only statement that changes y is
Statement 7. Since y is a feasible solution to LPIterRound before running the statement, and the LP tries
to minimize

∑
s∈[T] ysKs, we have that

∑
s∈[T] ysKs can only decrease over the course of the algorithm.

Thus the returned solution S∗ has cost at most
∑

s∈[T] ysKs, for the initial y-vector.

It remains to show that S∗ is a feasible solution to the instance (T,C,K,S, R). Notice that we remove
intervals (a, b] from S1 ∪ S2 in Statement 6 and Statement 13. Assume towards the contradiction that
S∗ is not a feasible solution. Let (a, b] ∈ S be an interval with C((a, b] ∩ S∗) < Ra,b; if there are many
such intervals (a, b], we choose the one that is removed from S1∪S2 the latest. If we removed (a, b] from
S1 ∪ S2 in Statement 13, then at that time we already have C((a, b] ∩ S∗) ≥ Ra,b. Thus (a, b] can only

be removed from S1 ∪ S2 in Statement 6. By Observation (4.1c), R̂a′,b′ = Ra′,b′ − C((a′, b′] ∩ S∗) > 0
for every (a′, b′] ∈ S1 ∪ S2, at the beginning of an iteration of the outer loop. At the time of the
removal there exists some other (a′, b′] ∈ S1 ∪ S2 such that (a, b] \ (S◦ ∪ S∗) = (a′, b′] \ (S◦ ∪ S∗) and
Ra′,b′ − C((a′, b′] ∩ S∗) ≥ Ra,b − C((a, b] ∩ S∗). The inequality remains true as the algorithm proceeds
since whenever we add a new knapsack s /∈ S◦∪S∗ to S∗, s ∈ (a, b] if and only if s ∈ (a′, b′]. By our choice
of (a, b], at the end of the algorithm we have C((a′, b′]∩S∗) ≥ Ra′,b′ , implying that C((a, b]∩S∗) ≥ Ra,b,
a contradiction. Thus, S∗ is a feasible solution and we proved Theorem 2.1.

10

References

[1] Hyung-Chan An, Mohit Singh, and Ola Svensson. LP-based algorithms for capacitated facility
location. In Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2014.

[2] Shoshana Anily and Michal Tzur. Shipping multiple items by capacitated vehicles: An optimal
dynamic programming approach. Transportation Science, 39(2):233–248, May 2005.

[3] Shoshana Anily, Michal Tzur, and Laurence A. Wolsey. Multi-item lot-sizing with joint set-up costs.
Mathematical Programming, 119(1):79–94, 2009.

[4] Robert D. Carr, Lisa K. Fleischer, Vitus J. Leung, and Cynthia A. Phillips. Strengthening integrality
gaps for capacitated network design and covering problems. In Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’00, pages 106–115, Philadelphia, PA, USA,
2000. Society for Industrial and Applied Mathematics.

[5] Guy Even, Retsef Levi, Dror Rawitz, Baruch Schieber, Shimon (Moni) Shahar, and Maxim Sviri-
denko. Algorithms for capacitated rectangle stabbing and lot sizing with joint set-up costs. ACM
Trans. Algorithms, 4(3):34:1–34:17, July 2008.

[6] M. Florian, J. K. Lenstra, and A. H. G. Rinnooy Kan. Deterministic production planning: Algo-
rithms and complexity. Manage. Sci., 26(7):669–679, July 1980.

[7] C. P. M. van Hoesel and A. P. M. Wagelmans. Fully polynomial approximation schemes for single-
item capacitated economic lot-sizing problems. Mathematics of Operations Research, 26:339–357,
2001.

[8] R. Levi, A. Lodi, and M. Sviridenko. Approximation algorithms for the capacitated multi-item
lot-sizing problem via flow-cover inequalities. Mathematics of Operations Research, 33(2):461–474,
2008.

[9] Shi Li. On uniform capacitated k-median beyond the natural LP relaxation. In Proceedings of the
26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2015).

[10] Shi Li. Approximating capacitated k -median with (1 + ε)k open facilities. In Proceedings of the
27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pages 786–796, 2016.

[11] A.S. Manne. Programming of economic lot sizes. Management Science, 4(2):115–135, 1958.

[12] Y Pochet, T. J. V. Roy, and L. A. Wolsey. Valid linear inequalities for fixed charge problems.
Operations Research, 33(4):842–861, 1985.

[13] Y Pochet and L. A. Wolsey. Lot-sizing with constant batches: Formulation and valid inequalities.
Mathematics of Operations Research, 18(4):767–785, 1993.

[14] Yves Pochet and Laurence A. Wolsey. Production planning by mixed integer programming. Springer
series in operations research and financial engineering. Springer, New York, Berlin, 2006.

[15] H. M. Wagner and T. M. Whitin. Dynamic version of the economic lot size model. Manage. Sci.,
5(1):89–96, October 1958.

A Reduction of Interval Knapsack Covering to Laminar Knap-
sack Covering

In this section, we prove Theorem 2.2 via a reduction of the given Interval-KC instance to a Laminar-KC
instance. Recall the given Interval-KC instance is (T,C,K,R). We are also given a vector y ∈ [0, 1][T]

and S+ = {s ∈ [T] : ys = 1}. For every interval (a, b], we have R̃a,b = max {Ra,b − C((a, b] ∩ S+), 0}; if

R̃a,b > 0, then either Inequality (8) or Inequality (9) holds.

11

We start by defining the requirement function for the Laminar-KC instance. For every interval (a, b],
we define

R̃′a,b := sup



W ≥ 0 :

∑

s∈(a,b]\S+

min {Cs,W} ys ≥ 2W, or
∑

s∈(a,b]\S+:Cs≥W

ys ≥ 1



 . (23)

That is, R̃′a,b is the largest possible value that makes either Inequality (6) or Inequality (7) hold for
the interval (a, b]. To construct a laminar family S of intervals for the Laminar-KC instance, we run a
simple recursive procedure: let S ← ∅ initially and then we call construct-laminar-family(0, T).

Algorithm 2 construct-laminar-family(a, b)

1: add (a, b] to S
2: if a+ 1 < b then

3: find the c ∈ (a, b) that maximizes min
{
R̃′a,c, R̃

′
c,b

}

4: construct-laminar-family(a, c)
5: construct-laminar-family(c, b)

The S we constructed naturally defines a laminar tree, in which every non-leaf interval (a, b] has
exactly two children (a, c] and (c, b], for some c ∈ (a, b); for every leaf (a, b] in the tree, we have b−a = 1.

The next lemma shows that the R̃′-requirements for intervals in S will capture the R̃-requirements for
all intervals.

Lemma A.1. For every interval (a, b] such that R̃a,b > 0, there exist an interval (a′, b′] ∈ S such that

(a′, b′] ⊆ (a, b] and R̃′a′,b′ ≥ R̃a,b.

a bâ b̂c

a c

a c

b′ = ca′

ã a′

â

a c

ã a′

Figure 1: Illustration for the Proof of Lemma A.1.

Proof. We first give the high-level idea behind the proof; see Figure 1 for illustration. We consider
the inclusive-minimal interval (â, b̂] ∈ S that contains (a, b]. Let (â, c] and (c, b̂] be the two child-

intervals of (â, b̂]. Then, c ∈ (a, b) by our choice of (â, b̂). One of the two intervals in (a, c] and
(c, b] must contain enough total capacity. Assume this interval is (a, c] ⊆ (â, c). Then, we start from
(ã, c] = (â, c]; if the right-child interval (a′, c] of (ã, c] is a superset of (a, c], then we let (ã, c] = (a′, c]
and repeat. So, eventually, we can find an interval (ã, c] in the tree, and its right child (a′, c], such that
(ã, c] ⊇ (a, c]) (a′, c]. Then, we can show that the interval (a′, b′] = (a′, c] satisfies the requirement of
the lemma.

Now we prove the lemma formally. We consider the first case in which we have Inequality (8) for

(a, b]. Then 10R̃a,b ≤
∑

s∈(a,b]\S+ min
{
Cs, R̃a,b

}
ys ≤

∑
s∈(a,b]\S+ R̃a,b · ys. Since R̃a,b > 0 and ys ≤ 1

for every s ∈ (a, b] \ S+, we have b− a ≥ 10.

Consider the laminar tree defined by S. Let
(
â, b̂
]

be the inclusive-minimal set in S such that

(a, b] ⊆
(
â, b̂
]
. Such a set exists since [T] ∈ S. Since b̂− â ≥ b− a ≥ 10, there will be two children (â, c]

and (c, b̂] of
(
â, b̂
]

in the laminar tree. By our choice of
(
â, b̂
]
, neither

(
â, c
]

nor
(
c, b̂
]

is a superset of

12

(a, b]. Thus, a < c < b. By Inequality (8), we have
∑

s∈(a,b]\S+ min
{
Cs, R̃a,b

}
ys ≥ 10R̃a,b. Thus, we

have either
∑

s∈(a,c]\S+ min
{
Cs, R̃a,b

}
ys ≥ 5R̃a,b or

∑
s=(c,b]\S+ min

{
Cs, R̃a,b

}
ys ≥ 5R̃a,b. Without

loss of generality, we assume the first inequality holds; this implies that c− a ≥ 5.
We run the following procedure to find two sets

(
ã, c
]
,
(
a′, c

]
∈ S. Let ã = â initially; thus

(
ã, c
]
∈ S

and
(
ã, c
]
⊇
(
a, c
]
. While the right child

(
a′, c

]
of
(
ã, c
]

is a superset of (a, c], we let ã = a′ and
repeat. At the end of the process, we find a set (ã, c] ∈ S and its right child (a′, c] ∈ S such that(
ã, c
]
⊇ (a, c])

(
a′, c

]
. (Notice that the right child of

(
ã, c
]

always exists during the procedure since

c − a ≥ 5). Notice that
∑

s∈(ã,c]\S+ min
{
Cs, R̃a,b

}
ys ≥ 5R̃a,b and min

{
Cs, R̃a,b

}
ys ≤ R̃a,b for every

s ∈ (ã, c] \ S+. There is a number ` ∈ (ã, c) such that
∑

s∈(ã,`]\S+ min
{
Cs, R̃a,b

}
ys ≥ 2R̃a,b and

∑
s∈(`,c]\S+ min

{
Cs, R̃a,b

}
ys ≥ 2R̃a,b. Thus, R̃′ã,` ≥ R̃a,b and R̃′`,c ≥ R̃a,b, by the definition of R̃′ in

Equation (23). By the way we choose c in Statement 3 of Algorithm 2, we have that min
{
R̃′ã,a′ , R̃

′
a′,c

}
≥

min
{
R̃′ã,`, R̃

′
`,c

}
≥ R̃a,b. In particular, R̃′a′,c ≥ R̃a,b. Let b′ = c; then (a′, b′] = (a′, c] ⊆ (a, c] ⊆ (a, b] and

R̃′a′,b′ = R̃′a′,c ≥ R̃a,b. This finishes the proof of the Lemma if Inequality (8) is satisfied for (a, b].
We now consider the second case in which Inequality (9) is satisfied for (a, b]. The proof for this case

is very similar to the previous case and thus we only give a sketch. Let
(
â, b̂
]

be the inclusive-minimal

set in S that contains (a, b]. Similarly, we can prove b̂ − â ≥ b − a ≥ 6 and (â, b̂] has two children

(â, c] and (c, b̂] in the laminar tree. By the way we choose (â, b̂], we have a < c < b. Inequality (9)
implies

∑
s∈(a,b]\S+:Cs≥R̃a,b

ys ≥ 6. Thus, either
∑

s∈(a,c]\S+:Cs≥R̃a,b
ys ≥ 3 or

∑
s∈(c,b]\S+:Cs≥R̃a,b

ys ≥ 3.

W.l.o.g, we assume the first case happens. We find a set (ã, c] ∈ S and its right child (a′, c] ∈ S as in
the previous case. So,

(
ã, c
]
⊇ (a, c])

(
a′, c

]
. Since

∑
s∈(ã,c]\S+:Cs≥R̃a,b

ys ≥ 3 and ys ≤ 1 for every

s ∈ (ã, c] \ S+, there is an ` ∈ (ã, c) such that
∑

s∈(ã,`]\S+:Cs≥R̃a,b
ys ≥ 1 and

∑
s∈(`,c]\S+:Cs≥R̃a,b

ys ≥ 1.

By the definition of R̃′ in Equation (23), we have R̃′ã,` ≥ R̃a,b and R̃′`,c ≥ R̃a,b. By the way we select c

in Statement 3 of Algorithm 2, we have that min
{
R̃′ã,a′ , R̃

′
a′,c

}
≥ min

{
R̃′ã,`, R̃

′
`,c

}
≥ R̃a,b. Let b′ = c;

then (a′, b′] = (a′, c] ⊆ (a, c] ⊆ (a, b] and R̃′a′,b′ = R̃′a′,c ≥ R̃a,b. This finishes the proof of the lemma for
the second case.

With Lemma A.1, we can define our Laminar-KC instance. Let R′a,b = R̃′a,b +C
(
(a, b]∩S+

)
for every

(a, b] ∈ S; thus R̃′a,b = R′a,b−C
(
(a, b]∩S+

)
. Then the Laminar-KC instance we focus on is (T,C,K,S, R′).

By the definition of R̃′a,b, we have

either
∑

s∈(a,b]\S+

min
{
Cs, R̃

′
a,b

}
ys ≥ 2R̃′a,b,

or
∑

s∈(a,b]\S+:Cs≥R̃′a,b

ys ≥ 1.

Thus, we can use Theorem 2.1 for the instance (T,C,K,S, R′) and y to obtain a set S∗ ⊇ S+ such
that K(S∗) ≤∑s∈[T] ysKs and C((a′, b′] ∩ S∗) ≥ R′a′,b′ for every set (a′, b′] ∈ S.

Now, focus on any interval (a, b] over [T]. If R̃a,b = 0, then C((a, b]∩S+) ≥ Ra,b and the requirement

for (a, b] is satisfied; thus we can assume R̃a,b > 0. Then by Lemma A.1, we have a set [a′, b′) ∈ S such

that [a′, b′) ⊆ (a, b] and R̃′a′,b′ ≥ R̃a,b. Thus, we have that C
(
S∗ ∩ (a, b]

)
− C

(
S∗ ∩

(
(a, a′] ∪ (b′, b]

))
=

C
(
S∗ ∩ (a′, b′]

)
≥ R′a′,b′ = R̃′a′,b′ + C

(
(a′, b′] ∩ S+

)
≥ R̃a,b + C

(
(a′, b′] ∩ S+

)
. So C

(
S∗ ∩ (a, b]

)
≥

R̃a,b +C
(
(a′, b′]∩S+

)
+C

(
S∗∩

(
(a, a′]∪ (b′, b]

))
≥ R̃a,b +C

(
(a, b]∩S+

)
= Ra,b, where the last inequality

used the fact that S∗ ⊇ S+. This finishes the proof of Theorem 2.2.

13

B Omitted Proofs

B.1 Proof of Lemma 3.1

Proof. For every i ∈ [N], and for every s from 1 to ri, let x′s,i = min
{

5
2xs,i, 1− x′[s−1],i

}
. By this

definition, we have that x′[t],i = min
{

5
2x[t],i, 1

}
for every i ∈ [N], t ∈ [ri]. We shall first show that if

x∗[t],i ≤ x′[t],i = min
{

5
2x[t],i, 1

}
for every i ∈ [N] and t ∈ [ri], then hcost(x∗) ≤ 5

2 · hcost(x).

hcost(x∗) =
∑

i∈[N]

di
∑

s∈[ri]

x∗s,ihi(s) =
∑

i∈[N]

di
∑

s∈[ri]

x∗s,i

ri−1∑

t=s

(hi(t)− hi(t+ 1)) since hi(ri) = 0,∀i ∈ [N]

=
∑

i∈[N]

di

ri−1∑

t=1

(hi(t)− hi(t+ 1))
∑

s∈[t]

x∗s,i

≤ 5

2

∑

i∈[N]

di

ri−1∑

t=1

(hi(t)− hi(t+ 1))
∑

s∈[t]

xs,i =
5

2
· hcost(x).

Thus, it suffices to find an x∗ ∈ [0, 1][T]×[N] such that
∑

s∈[T] x
∗
s,i = 1 for every i ∈ [N], x∗s,i = 0 if

s /∈ S∗ or s > ri,
∑

i∈[N] xs,idi ≤ Cs for every s ∈ S∗, and x∗[t],i ≤ x′[t],i for every i ∈ [N] and t ∈ [ri]. This

x∗ can be found by solving the following fractional b-matching instance on the bipartite graph (A∪B,E),
where A = {us,i : i ∈ [N], s ∈ [ri]} and B = {vs′ : s′ ∈ S∗}. We assign the di units of demand for item i
to vertices in {us,i : s ∈ [ri]} according to x′: us,i is assigned x′s,idi units of demand. In order to guarantee
that x∗[t],i ≤ x′[t],i for every t ∈ [ri], we guarantee that the x′s,idi units of demand assigned to us,i can

only be satisfied by orders in [s, ri]. Thus, we define E as follows: for every us,i ∈ A and vs′ ∈ B such
that s′ ∈ [s, ri], we have an edge (us,i, vs′) ∈ E. The goal of the fractional b-matching problem is to find
a vector z ∈ RE

≥0 such that
∑

e incident to us,i
ze = x′s,idi for every us,i ∈ A, and

∑
e incident to vs′

ze ≤ Cs′

for every vs′ ∈ B.
It is well-known that the above fractional b-matching instance is feasible if and only if for every

A′ ⊆ A, we have that C({s′ : vs′ ∈ B is adjacent to some vertex in A′}) ≥ ∑us,i∈A′ x
′
s,idi. That is,

C
(⋃

us,i∈A′ [s, ri]
)
≥∑us,i∈A′ x

′
s,idi. If us,i ∈ A′, then we can assume that for every s′ ∈ (s, ri], we also

have us′,i ∈ A′; this does not change the left-side of the inequality but increases the right-side and makes
the inequality harder to satisfy. So, we can assume there is a set I ⊆ [N], t ∈ [0, T)I such that ti ∈ [0, ri)
for every i ∈ I and A′ = {us,i : i ∈ I, s ∈ (ti, ri]}. Then the neighbors of A′ is

{
vs′ : s′ ∈ ⋃i∈I(ti, ri]

}
.

Thus, to guarantee the existence of x∗, it suffices to guarantee that for every such I and t, we have
∑

i∈I
x′(ti,ri],idi ≤

∑

s′∈
⋃

i∈I(ti,ri]

y∗s′Cs′ . (24)

We can further assume
⋃

i∈I(ti, ri] is a time interval; otherwise, we can break I into two sets I ′ and
I ′′ such that

⋃
i∈I′(ti, ri] and

⋃
i∈I′′(ti, ri] are disjoint. Inequality (24) with I replaced with I ′, and the

inequality with I replaced with I ′′, implies the Inequality (24). If
⋃

i∈I(ti, ri] = (a, b], then the right side
of Inequality (24) is

∑
s∈(a,b] y

∗
sCs = C(S∗∩(a, b]); we want to find the (I, t) pair with

∑
i∈I(ti, ri] = (a, b]

that maximize the left side. If some i has ri > b or ri ≤ a then i /∈ I. Otherwise, we can let i ∈ I; and
ti = a will maximize x′(ti,ri],i. So, the maximum possible value of the left side of Inequality (24) is

∑

i∈[N]:ri∈(a,b]

x′(a,ri],idi =
∑

i∈[N]:ri∈(a,b]

(
1− x′[a],i

)
di =

∑

i∈[N]:ri∈(a,b]

max

{
1− 5

2
x[a],i, 0

}
di = Ra,b.

Thus, to guarantee the existence of x∗, it suffices to guarantee that for every interval (a, b], we have
C(S∗ ∩ (a, b]) ≥ Ra,b.

B.2 Proof of Lemma 4.2

Proof. We prove the lemma by induction. Suppose we are at the beginning of first iteration of the outer
loop. By the initialization of S◦ and S∗ in Statement 1, and the fact that ys = 1 for every s ∈ S+,

14

Constraints (20) to (22) are satisfied. The statement also sets the initial R̂ to be R̃. By Inequality (6)

and Inequality (7), for every (a, b] ∈ S with R̂a,b > 0, either Constraint (18) or Constraint (19) is
satisfied. Thus, after Statement 3, Constraints (18) and (19) are satisfied. So, the lemma holds for the
first iteration of the outer loop.

Now, we assume that y is a feasible solution to LPIterRound at the beginning of some iteration of the
outer loop; we prove that it is also feasible at the beginning the next iteration, if it exists. We run
Algorithm 1 from the beginning of this iteration. Since Statements 5 and 6 only remove sets from S1
and S2, they do not destroy the feasibility of y. So, y is a feasible solution to LPIterRound before running
Statement 7. Then, the statement will always find a feasible solution y to LPIterRound. Statement 8 only
adds knapsacks with ys = 0 to S◦ and does not destroy the feasibility of y. Lemma 4.3 says that running
an iteration of the middle loop does not destroy the feasibility of y. Thus, y is a feasible solution at the
beginning of the next iteration of the outer loop. This finishes the proof of Lemma 4.2.

B.3 Proof of Lemma 4.4

Proof. We show that in each iteration of the outer loop, we either have added some new knapsack to S◦

in Statement 8, or have added some new knapsack to S∗ in Statement 10. This proves that the algorithm
will terminate in at most T iterations since there are only T knapsacks and S◦ ∩ S∗ = ∅.

Let us run the algorithm from the beginning of an iteration of the outer loop, at which time we have
S1 ∪ S2 6= ∅. Statements 5 and 6 remove a set from S1 ∪ S2 only if S1 ∪ S2 contains at least two sets.
Thus after Statement 6 we still have S1 ∪S2 6= ∅. So before Statement 7, there must be some constraint
of form (18) or (19) in the LP. Thus, S◦ ∪ S∗ 6= [T] since otherwise y can not satisfy the constraint due
to Observations (4.1a) and (4.1c), contradicting Lemma 4.2.

Then we run Statement 7 to find a vertex-point solution y to LPIterRound. We assume towards the
contradiction that we have S◦ = {s ∈ [T] : ys = 0} and S∗ = {s ∈ [T] : ys = 1}; otherwise we will add
some knapsack to S◦ or S∗ later. We choose a set of T linearly independent tight constraints that
defines y. We require that this set contains all tight constraints of the form (20), (21) and (22) (these
tight constraints are linearly independent). The number of tight constraints of form (18) and (19) in the
independent set is exactly T − |S◦| − |S∗| =

∣∣[T] \ (S◦ ∪ S∗)
∣∣ ≥ 1. Let S ′ ⊆ S1 ∪ S2 be the family of

intervals that corresponds to these tight constraints; so |S ′| =
∣∣[T] \ (S◦ ∪ S∗)

∣∣ ≥ 1.
If we have two sets (a, b], (a′, b′] ∈ S ′ ⊆ S1 ∪ S2 such that (a′, b′] ((a, b], then Statements 5 and 6

guaranteed that (a′, b′] \ (S◦ ∪S∗) ((a′, b′] \ (S◦ ∪S∗). Otherwise (a′, b′] \ (S◦ ∪S∗) = (a′, b′] \ (S◦ ∪S∗)
and Statements 5 and 6 must have removed either (a, b] or (a′, b′] from S1 ∪ S2. Thus, there must be a
knapsack in (a, b] \ (a′, b′] that is not in S◦ ∪ S∗.

Now we focus on the laminar forest defined by the set S ′ (the forest is not empty). We assign
each knapsack s ∈ [T] \ (S◦ ∪ S∗) to the minimal set (a, b] ∈ S ′ that contains s. If some (a, b] ∈ S ′
has exactly one child (a′, b′] in the laminar forest, then ((a, b] \ (a′, b′]) \ (S◦ ∪ S∗) 6= ∅ and some
knapsack must be assigned to (a, b]. The number of leaves in the laminar forest is strictly more than the
number of non-leaves that have at least two children. Since the number of nodes in the laminar forest is
|S ′| =

∣∣[T] \ (S◦ ∪ S∗)
∣∣, and each inner node with exactly one child is assigned at least one knapsack in

[T] \ (S◦ ∪ S∗), there must be a leaf (a, b] in the forest such that (a, b] is assigned at most one knapsack
in [T] \ (S◦ ∪ S∗). For this (a, b], we have

∑
s∈(a,b]\S∗ ys =

∑
s∈(a,b]\(S◦∪S∗) ys +

∑
s∈(a,b]∩S◦ ys < 1,

since |(a, b] \ (S◦ ∪ S∗)| ≤ 1, every s /∈ S∗ has ys < 1, and every s ∈ (a, b] ∩ S◦ has ys = 0. Recall that

R̂a,b > 0 by Observation (4.1c). If (a, b] ∈ S1, then
∑

s∈(a,b]\S∗ min
{
Cs, R̂a,b

}
ys <

∑
s∈(a,b]\S∗ R̂a,bys <

R̂a,b < 2R̂a,b, contradicting Constraint (18) for (a, b]. If (a, b] ∈ S2, then
∑

s∈(a,b]\S∗ ys < 1 contradicts

Constraint (19) for (a, b]. This finishes the proof of the lemma.

15

	1 Introduction
	1.1 Our Reults and Techniques

	2 Preliminaries
	3 Approximation Algorithm for Capacitated Multi-Item Lot-Sizing
	4 Approximation Algorithm for Laminar Knapsack Covering via Iterative Rounding
	A Reduction of Interval Knapsack Covering to Laminar Knapsack Covering
	B Omitted Proofs
	B.1 Proof of Lemma ??
	B.2 Proof of Lemma ??
	B.3 Proof of Lemma ??

