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Abstract. In this paper, we study the asymptotic behavior of a stochastic approximation
scheme on two timescales with set-valued drift functions and in the presence of non-
additive iterate-dependent Markov noise. We show that the recursion on each timescale
tracks the flow of a differential inclusion obtained by averaging the set-valued drift
function in the recursion with respect to a set of measures accounting for both averaging
with respect to the stationary distributions of the Markov noise terms and the in-
terdependence between the two recursions on different timescales. The framework studied
in this paper builds on a recent work by Ramaswamy and Bhatnagar, by allowing for the
presence of nonadditive iterate-dependent Markov noise. As an application, we consider
the problem of computing the optimum in a constrained convex optimization problem,
where the objective function and the constraints are averagedwith respect to the stationary
distribution of an underlyingMarkov chain. Further, the proposed scheme neither requires
the differentiability of the objective function nor the knowledge of the averaging measure.
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1. Introduction
Stochastic approximation, introduced by Robbins and Monro [37] as a tool for statistical computation, is
today a main paradigm for online algorithms for system identification, adaptive control, and optimization. A
comprehensive and detailed account of the field can be found in texts by Kushner and Yin [25] and Borkar [11].
Standard stochastic approximation scheme is given by

Xn+1 − Xn − a(n)Mn+1 � a(n)h Xn( ), (1)
where {Xn}n≥0 (iterate sequence) and {Mn}n≥0 (noise sequence, usually assumed to be unbiased with restrictions
on its variance) are sequences of Rd-valued random variables, and h : Rd → Rd is a Lipschitz continuous
function. Further, {a(n)}n≥0 is a sequence of positive real numbers denoting the step-size sequence. The
convergence analysis of Recursion (1), where one wishes to show that the iterates Xn converge to x∗ ∈ Rd,
belonging to the zero set of the function h(·), is usually accomplished using the martingale method (see Duflo [17])
or the ordinary differential equation, or o.d.e., method (introduced by Derevitskii and Fradkov [16] and later
generalized by Benaı̈m et al. [4] to include set-valued dynamical systems). The martingale method involves
showing that the norm distance between the iterate and the desired solution goes to zero using the generalized
martingale convergence theorem, whereas the o.d.e. method involves the identification of a dynamical system
whose solution trajectories the iterates are shown to track. The method of choice usually depends on the ease
of verification of various assumptions involved, in a particular application setting. For example, in stochastic
approximation schemes used to solve stochastic variational inequality problems (SVIP), the martingale method
has been found to be extremely useful (see Jiang and Xu [20], Koshal et al. [23], Iusem et al. [19]), whereas the
o.d.e. method is applied in the analysis of learning algorithms and gradient-based schemes (Sutton et al. [40],
Borkar and Meyn [13], Bhatnagar and Prashanth [7]). Different noise models also have been, most notably the
martingale noise model and the Markov noise model. The study of stochastic approximations with Markov
noise terms was pioneered by Metivier and Priouret [28], where the assumptions on the law of the Markov
noise terms guarantees the existence of a solution to Poisson equation, which is then used to convert the
Markov noise case to stochastic approximation with Martingale noise terms. An extension of the above
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method when the drift function is discontinuous can be found in Fort et al. [18]. An alternate set of Markov
noise conditions that does not require the existence of solution to the Poisson equation was studied by Borkar [10]
(which we extend to our framework presented later).

Under the o.d.e. method of analysis, different step sizes for different components of the iterate in Recursion (1)
introduces different timescales, if the step sizes satisfy a certain rate condition. Such schemes are known as
multitimescale stochastic approximation schemes and are well studied in the presence of martingale noise
with set-valued or single-valued dynamical systems (Ramaswamy and Bhatnagar [36], Perkins and Leslie [34],
Borkar [9]) and Markov noise with single-valued dynamical system (Karmakar and Bhatnagar [21]). In this
paper, we present a two-timescale stochastic approximation scheme with set-valued maps and nonadditive
iterate-dependent Markov noise and study its asymptotic behavior. The framework studied in this paper, to
the best of our knowledge, is the most general two-timescale stochastic approximation framework studied
to date.

1.1. Overview of Two-Timescale Stochastic Approximation Schemes
The standard two-timescale stochastic approximation scheme is given by

Yn+1 − Yn − b(n)M(2)
n+1 � b(n)h2 Xn,Yn( ), (2a)

Xn+1 − Xn − a(n)M(1)
n+1 � a(n)h1 Xn,Yn( ), (2b)

where n ≥ 0 denotes the iteration index, {Xn}n≥0 is a sequence of Rd1 -valued random variables, {Yn}n≥0 is a
sequence of Rd2 -valued random variables, for any i ∈ {1, 2}, hi : Rd1+d2 → Rdi is a Lipschitz continuous function,
and for every i ∈ {1, 2}, {M(i)

n }n≥1 is a Rdi -valued square-integrable martingale difference sequence. The step-size
sequences {a(n)}n≥0 and {b(n)}n≥0 are sequences of positive real numbers chosen such that they satisfy
limn→∞ b(n)

a(n) � 0 in addition to the Monte Carlo step-size conditions. The condition limn→∞ b(n)
a(n) � 0 ensures that

after a large number of iterations, the time step of Recursion (2a) is much smaller than that of (2b). Thus, the
Recursion (2a) appears to be static with respect to the Recursion (2b). Borkar [9], using the dynamical systems
approach studied by Benaim [3], showed the above intuition to hold. More precisely, the faster timescale
Recursion (2b), was shown to track the ordinary differential equation (o.d.e.) given by

dx
dt

� h1 x, y0
( )

, (3)

for some y0 ∈ Rd2, and assuming that for every y ∈ Rd2 , o.d.e. (3) admits a unique globally asymptotically stable
equilibrium point, say λ(y), the slower timescale Recursion (2a) was shown to track the o.d.e. given by,

dy
dt

� h2(λ(y), y). (4)

Further, the map y → λ(y) was assumed to be Lipschitz continuous.
An important application of the above stochastic approximation scheme is in the computation of a saddle

point of a function. Given a function f : Rd1 × Rd2 → R, (x∗, y∗) ∈ Rd1+d2 (x∗ ∈ Rd1 and y∗ ∈ Rd2 , respectively) is a
saddle point of the function f (·, ·) if

inf
x∈Rd1

sup
y∈Rd2

f (x, y) � sup
y∈Rd2

inf
x∈Rd1

f (x, y) � f x∗, y∗
( )

. (5)

From Bertsekas [6, proposition 5.5.6], we know that the function f (·, ·) admits a saddle point if for every
(x, y) ∈ Rd,

(1) −f (x, ·) and f (·, y) are convex functions, and
(2) the sub level sets of functions x → supy∈Rd2 f (x, y) and y → − infx∈Rd1 f (x, y) are compact sets.
Over the years, significant effort has been devoted to developing algorithms to compute such points (see

Nedić and Ozdaglar [32] and Benzi et al. [5] and the references therein). Most of the solutions proposed in the
literature require the computation of partial derivatives of the function f (·, ·). However, in practice, the closed-
form expressions of the partial derivatives are often not known or are expensive to compute, and in such cases,
one often estimates the partial derivatives using values of the objective function (see Spall [39] for one such
estimation method). The two-timescale stochastic approximation scheme can be used to compute a saddle
point with noisy partial derivative values by setting h1(x, y) :� −∇x f (x, y) and h2(x, y) :� ∇y f (x, y), where ∇x and
∇y denote the partial derivative operators with respect to x and y, respectively. In this setting, the sequences
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{M(1)
n }n≥1 and {M(2)

n }n≥1 could contain the partial derivative estimation errors, and the map λ(·) denotes
correspondence between y ∈ Rd2 and the minimum of the function f (·, y). The vector field associated with o.d.e.
(4) is now given by ∇y f (x, y)|x�λ(y), which can be shown to be the same as ∇y f (λ(y), y) using the envelope theorem
from mathematical economics (see Milgrom and Segal [30]). Thus, the slower timescale maximizes the function
y → infx∈Rd1 f (x, y) � f (λ(y), y), thereby at the limit, the iterates of Recursion (2) converge to a saddle point of
the function f (·, ·).

In some cases, the function whose saddle point needs to be computed is itself averaged with respect to a
certain probability measure. For example, consider the function f : Rd1+d2 × 6 → R, where 6 is a compact
metric space, and for some probability measure μ on 6, one wishes to compute the saddle point of the
function fμ : Rd1+d2 → R, where for every (x, y) ∈ Rd1+d2 , fμ(x, y) :�

∫
6
f (x, y, s)μ(ds). If one has access to i.i.d.

samples with probability measure μ, then the saddle point problem above can be solved using Recursion (2).
But if access to such samples is not available and one uses Markov chain Monte Carlo methods to sample from
the measure μ, then Recursion (2) has a nonadditive iterate-dependent Markov noise component. The re-
cursion in this case takes the following form:

Yn+1 − Yn − b(n)M(2)
n+1 � b(n)h2 Xn,Yn,S(2)n

( )
, (6a)

Xn+1 − Xn − a(n)M(1)
n+1 � a(n)h1 Xn,Yn,S(1)n

( )
, (6b)

where {S(1)n }n≥1 and {S(2)n }n≥1 denote the Markov noise terms taking values in an appropriate state space. The
Recursion (6) was studied by Karmakar and Bhatnagar [21] under assumptions similar to those of Borkar [9]
that include the Lipschitz continuity of the maps h1, h2, and λ.

Often, the maps h1 and h2 in Recursion (2) are not Lipschitz continuous, and the map λ is not even single
valued (i.e., the o.d.e. (3) has a globally asymptotically stable equilibrium set). This motivates one to study the
two-timescale recursion with set-valued drift functions. The recursion then takes the following form:

Yn+1 − Yn − b(n)M(2)
n+1 ∈ b(n)H2 Xn,Yn( ), (7a)

Xn+1 − Xn − a(n)M(1)
n+1 ∈ a(n)H1 Xn,Yn( ), (7b)

where H1 and H2 are set-valued maps and other quantities have similar interpretation to those in Recursion (2).
The above recursion was studied by Ramaswamy and Bhatnagar [36], and the map λ was allowed to be set
valued and upper semicontinuous.

1.2. Contributions of This Paper and Comparisons with the State of the Art
In this paper, we study the asymptotic behavior of the recursion given by

Yn+1 − Yn − b(n)M(2)
n+1 ∈ b(n)H2 Xn,Yn,S(2)n

( )
, (8a)

Xn+1 − Xn − a(n)M(1)
n+1 ∈ a(n)H1 Xn,Yn, S(1)n

( )
, (8b)

where H1 and H2 are set-valued maps and {S(1)n }n≥0 and {S(2)n }n≥0 are the Markov noise terms taking values in
compact metric spaces 6(1) and 6(2), respectively. We show that the fast timescale Recursion (8b) tracks the
flow of the differential inclusion (DI) given by

dx
dt

∈ ∪μ∈D(1) x,y( )
∫
6(1)

H1 x, y0, s(1)
( )

μ ds(1)
( )

, (9)

for some y0 ∈ Rd2 , where D(1)(x, y) denotes the set of stationary distributions of the Markov noise terms {S(1)n }n≥0
for every (x, y) ∈ Rd, and the integral above denotes the integral of a set-valued map with respect to measure μ.
(This is explained in Section 2.2, see Definition 6.) Further, we assume that for every y ∈ Rd2 , the above DI
admits a unique globally attracting set λ(y). The map y → λ(y) is also assumed to be upper semicontinuous (see
Definition 1 in Section 2.1). The slower timescale Recursion (8a) is shown to track the flow of the DI given by

dy
dt

∈ ∪μ∈D(y)
∫
Rd1×6(2)

H2 x, y, s(2)
( )

μ dx, ds(2)
( )

, (10)
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where y → D(y) denotes a set-valued map taking values in the space of probability measures on 62, and the
map D(·) is defined such that it captures both the equilibration of the fast timescale iterates to λ(·) and the
averaging due to the Markov noise terms {S(2)n }n≥0.

In comparison with the two-timescale framework studied by Karmakar and Bhatnagar [21], our work allows
for the drift functions (i.e., H1 and H2) to be set valued, and the map λ(·) is allowed to be set valued and upper
semicontinuous, which is much weaker than the requirement imposed in Karmakar and Bhatnagar [21] of
being single valued and Lipschitz continuous. The generalization to the set-valued case allows one to analyze
Recursion (6) when thedrift functionsh1 and h2 are single valued and are just measurable, because the graph of
such amap can be embedded in the graph of a upper semicontinuous set-valuedmap as in Borkar [11, chapter 5.3(iv)].
We refer the reader to Borkar [11, chapter 5.3] for several other scenarios in which the study of stochastic
approximation scheme with set-valued maps becomes essential.

Our work further generalizes the two-timescale framework studied in Ramaswamy and Bhatnagar [36] by
allowing for the presence of Markov noise terms. The analysis in this paper does not extend in a straight-
forward manner from that by Ramaswamy and Bhatnagar [36] and requires results from set-valued map
approximations, parametrization, integration, and the use of probability measure-valued functions. However,
the method of analysis adopted in this paper can be appropriately adapted to obtain the same convergence
guarantees as in Ramaswamy and Bhatnagar [36] when the Markov noise terms are absent.

1.3. Overview of the Analysis and Organization of the Paper
It is known that continuous, convex, and compact set-valued maps taking values in a finite dimensional space
admit a continuous single-valued parametrization. The properties of the set-valued drift function ensure that
the drift functions H1 and H2 are convex and compact set-valued maps and are upper semicontinuous.
However, such maps do not admit a continuous parametrization. We can work around this problem by
enlarging the graph of the drift function because the graph of drift function can be embedded in the graph of a
continuous, convex, and compact set-valued map that admits a continuous single-valued parametrization.
Thus, a sequence of continuous single-valued maps can be obtained that approximate the set-valued drift
function from above. This enables us to write the Inclusion (8) in the form of Recursion (6) with an additional
parameter. The results needed to accomplish the above are stated in Section 2.1.

Before proceeding further, one needs to identify the mean fields that the Recursion (8) is expected to track.
To this end, we need some results from the theory of integration of set-valuedmaps that are reviewed in Section 2.2.
Further, the measurablility and integrability properties of the drift functions of the recursion are investigated,
and the characterization of the integral of a continuous set-valued map in terms of its parametrization is
established.

In Section 2.3, we compile some definitions and results from the theory of differential inclusions that are
needed later to characterize the asymptotic behavior of Recursion (8). Further, in Section 2.4, we state the
assumptions and the main result of the analysis of single timescale stochastic recursive inclusions with
nonadditive iterate-dependent Markov noise from Yaji and Bhatnagar [41], and in Section 2.5, we define and
compile some results needed from theory of the space of probability measure-valued functions.

In Section 3, we state and motivate the assumptions under which the Recursion (8) is analyzed. Using the
results from integration of set-valued maps reviewed in Section 2.2, the mean fields are defined and the main
convergence result is stated. The mean fields defined in Section 3 possess some properties that ensure the
existence of solutions (of their associated differential inclusions). These properties are established in Section 4.
This section also shows that appropriate modifications of the continuous set-valued maps that approximate
the drift functions (obtained in Section 2.1) approximate the mean fields, which play an important role in the
analysis later.

The analysis of Recursion (8) consists of two parts. In Section 5.1, the Recursion (8) is analyzed along the
faster timescale. The Recursion (8) when viewed along the faster timescale appears to be a single timescale
stochastic recursive inclusion with nonadditive iterate-dependent Markov noise. In Section 5.1, we show that
Recursion (8) viewed along the faster timescale satisfies all the assumptions associated with the single
timescale recursion presented in Section 2.4. Applying the main result of single timescale analysis, we
conclude that the faster timescale iterates converge to λ(y) for some y ∈ Rd2 . In Section 5.2, the slower timescale
recursion is analyzed. It is shown that the linearly interpolated sample path of the slower timescale iterates
(defined in Section 5.2.1) tracks an appropriate DI. Continuous functions tracking the flow of a dynamical
system are known as asymptotic pseudotrajectories (see Benaı̈m et al. [4] for definition and related results). The
asymptotic pseudotrajectory argument in this paper presented in Section 5.2.2 comprises the following steps:
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(1) The first step is to get rid of the additive noise terms, {M(2)
n }n≥1. This involves defining an o.d.e. with an

appropriate piecewise constant vector field and showing that the limit points of the shifted linearly in-
terpolated trajectory of the slower timescale iterates coincide with the limit points of the solutions of this o.d.e.
in the space of continuous functions on [0,∞) taking values in Rd2 . Further, a simple argument gives us that the
set of limit points of the shifted linearly interpolated trajectories of the slower timescale iterates is nonempty.

(2) The second step is to show that the limit point obtained in the first step is in fact a solution of DI (10).
This is accomplished using probability measure-valued functions reviewed in Section 2.5. This method also
hasbeenused inanalyzingstochasticapproximationschemesas inRecursion (6) by Karmakar and Bhatnagar [21]
and by Borkar [10]. But the analysis in these references made explicit use of the Lipschitz property of the
underlying drift functions. We observe that continuity is sufficient to carry out this analysis. This is also where
our analysis significantly differs from that of Ramaswamy and Bhatnagar [36]. That the equilibration of the
faster timescale is also accomplished using probability measures simplifies the proof compared with that of
Ramaswamy and Bhatnagar [36].

In Section 5.2.3, the limit sets of the slower timescale iterates are characterized in terms of the dynamics of
DI (10). In addition to the above, using the convergence of the faster timescale iterates to λ(·) obtained in
Section 5.1, we obtain the main convergence result of this paper (i.e., Theorem 4ii).

In Section 7, as applications, we provide methods for computing a solution to constrained and un-
constrained optimization problems. In the first application, we present an algorithm to compute an ε-optimal
solution of a constrained convex optimization, where the optimization problem is obtained by averaging the
quantities involved with respect to the stationary distribution of an underlying Markov chain. Such problems
arise in optimal control where the controller must find an optimum parameter where the changes in state of
the underlying system can be modeled by a Markov chain. The cost function and system constraints are
dependent on the state of the system, and the controller seeks to find the optimum of the long-run average of
the cost function while satisfying the long-run average constraints. In such applications, the stationary dis-
tribution of the system states is not known, but one has access to a sample path of system state changes. We propose
a two-timescale scheme, which performs primal ascent along the faster timescale and dual descent along the slower
timescale with the knowledge of the current state at a given iteration. Using the theory presented in this paper, it is
shown that the limit set of the iterates of the proposed two-timescale scheme are contained in the set of Lagrangian
saddle points of the underlying averaged constrained convex optimization problem. Further, the algorithm does
not assume the differentiability of the objective function and requires only a noisy estimate of the subgradient. In the
second application, we present an algorithm to compute an ε-optimal solution of an unconstrained optimization
problem, using newtons method, where on the faster timescale, the approximation of the newton update is
computed without the need for explicitly inverting the hessian matrix of the objective function. Further, we
allow for a general nondiminishing noise model for the error in hessian and gradient estimation.

In Section 8, we conclude by providing a few directions for future research and outline certain extensions
where we believe the analysis remains the same.

2. Background
In this section, we will briefly review some results needed from the theory of set-valued maps and differential
inclusions, present a brief outline of the analysis of the single timescale version of stochastic recursive in-
clusions with nonadditive iterate-dependent Markov noise, and define the space of probability measure-
valued functions, with a metrizable topology, which are needed later in the analysis of the two-timescale
recursion.

Throughout this paper, 6 denotes a compact metric space and the metric on 6 is denoted by d6. Further, let
1 ≤ d1 ∈ Z, 1 ≤ d2 ∈ Z, d :� d1 + d2, and (x, y) denote a generic element in Rd, where x ∈ Rd1 and y ∈ Rd2 .

2.1. Upper Semicontinuous Set-Valued Maps and Their Approximation
First, we will recall the notions of upper semicontinuity, lower semicontinuity, and continuity of set-valued
maps. These notions are taken from Aubin and Cellina [2, chapter 1.1].

Definition 1. A set-valued map F : Rd × 6 → {subsets of Rk} is
• Upper semicontinuous (u.s.c.) if, for every (x0, y0, s0) ∈ Rd × 6, for every ε > 0, there exists δ > 0 (depending

on (x0, y0, s0) and ε) such that,

‖ (x, y) − (x0, y0) ‖< δ, d6 s, s0( ) < δ ⇒ F(x, y, s) ⊆ F(x0, y0, s0) + εU,

where U denotes the closed unit ball in Rk.
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• Lower semicontinuous (l.s.c) if, for every (x0, y0, s0) ∈ Rd × 6, for every z0 ∈ F(x0, y0, s0), for every sequence
{(xn, yn, sn)}n≥1 converging to (x0, y0, s0), there exists a sequence {zn ∈ F(xn, yn, sn)} converging to z0.

• Continuous if it is both u.s.c. and l.s.c.
For set-valued maps taking compact set values, we have the above mentioned notion of u.s.c. to be

equivalent to the standard notion of u.s.c. (see Aubin and Cellina [2, p. 45]). In this paper, we will encounter
set-valued maps that are compact set valued, and hence we have chosen to state the above as the definition of
upper semicontinuity.

Set-valued maps studied later satisfy certain properties under which we will be able to approximate them
with a family of continuous single-valued maps with an additional parameter. These properties are natural
extensions of the properties imposed onmaps studied by Benaı̈m et al. [4] and Ramaswamy and Bhatnagar [36]
to the case of stochastic recursive inclusions with Markov noise, and we choose to call such maps stochastic
approximation maps (SAM). The definition of SAM is stated below.

Definition 2 (SAM). A set-valued map F : Rd × 6 → {subsets of Rk} is a stochastic approximation map if,
(a) for every (x, y, s) ∈ Rd × 6, F(x, y, s) is a convex and compact subset of Rk,
(b) for every (x0, y0, s0) ∈ Rd × 6, for every Rd × 6 sequence, say {(xn, yn, sn)}n≥1 converging to (x0, y0, s0) and a

sequence {zn ∈ F(xn, yn, sn)}n≥0 converging to z ∈ Rk, we have that z ∈ F(x0, y0, s0), and
(c) there exists K > 0 such that for every (x, y, s) ∈ Rd × 6, supz∈F(x,y,s) ‖z‖ ≤ K(1 + ‖(x, y)‖).
For SAM appearing in two-timescale stochastic recursive inclusions, the condition (c), which is stated above, is

replaced by an equivalent condition:
(c)′ there exists K > 0 such that for every (x, y, s) ∈ Rd × 6, supz∈F(x,y,s) ‖z‖ ≤ K(1 + ‖x‖ + ‖y‖).
The condition (b) in the definition of SAM tells us that the graph of the set-valued map F, G (F), defined as

G (F) :� (x, y, s, z{ )
: z ∈ F(x, y, s), (x, y, s) ∈ Rd × 6

} ⊆ Rd × 6 × Rk,

is closed and hence the said condition is known as the closed graph property. The condition (c) (or (c)′) is known
as the pointwise boundedness condition, and it makes sure that the “size” of the sets linearly grows with the
distance from the origin. This is the only condition where we differ from the conditions imposed by Benaı̈m
et al. [4] and Ramaswamy and Bhatnagar [36]. It is easy to show that when the Markov noise component is
absent, condition (c) (or (c)′) imposed in this paper is the same as the one in Benaı̈m et al. [4] (Ramaswamy and
Bhatnagar [36]).

As a consequence of the properties possessed by a SAM, F, one can show that the map F is u.s.c. This claim
follows from arguments similar to those in Aubin and Cellina [2, chapter 1.1, corollary 1] and is stated as a
lemma below.

Lemma 1 (u.s.c.). A set-valued map F, which is a SAM, is u.s.c.

The graph of a convex and compact u.s.c. set-valued map can be embedded in the graph of a sequence of
decreasing continuous set-valued maps. The following statement is made precise in the following lemma.

Lemma 2 (Continuous embedding). For any set-valued map F that is a SAM, there exists a sequence of set-valued
maps {F(l)}l≥1 such that for every l ≥ 1, F(l) : Rd × 6 → {subsets of Rk} is continuous and satisfies the following.

i. For every (x, y, s) ∈ Rd × 6, F(l)(x, y, s) is a convex and compact subset of Rk.
ii. For every (x, y, s) ∈ Rd × 6, F(x, y, s) ⊆ F(l+1)(x, y, s) ⊆ F(l)(x, y, s).
iii. There exists K(l) > 0 such that for every (x, y, s) ∈ Rd × 6, supz∈F(l)(x,y,s) ‖z‖ ≤ K(l)(1 + ‖(x, y)‖). (If the set-valued

map F satisfies condition (c)′ instead of (c) in the definition of SAM, we have supz∈F(l)(x,y,s) ‖z‖ ≤ K(l)(1 + ‖x‖ + ‖y‖)).
Furthermore, for every (x, y, s) ∈ Rd × 6, ∩l≥1F(l)(x, y, s) � F(x, y, s).
The statement of the above lemma can be found in Aubin and Cellina [2, p. 39] and the proof is similar to the

proof by Aubin and Cellina [2, chapter 1.13, theorem 1] (a brief outline can be found in Yaji and Bhatnagar [41,
appendix A]). The following are some useful observations from the proof of Lemma 2.

1. supl≥1 K
(l) is finite and let K̃ :� supl≥1 K

(l), and
2. for every (x, y, s) ∈ Rd × 6, for every ε > 0, there exists L (depending on ε and (x, y, s)), such that for every

l ≥ L, F(l)(x, y, s) ⊆ F(x, y, s) + εU where U denotes the closed unit ball in Rk.
Continuous set-valued maps admit a parametrization by which we mean that a continuous single-valued

map can be obtained that represents the set-valued map in the sense made precise in the lemma below, which
follows from Aubin and Cellina [2, chapter 1.7, theorem 2].
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Lemma 3 (Parametrization). Let F be a SAM, and for every l ≥ 1, let the set-valued map F(l) be as in Lemma 2. Then for every
l ≥ 1, there exists a continuous single-valued map f (l) : Rd × 6 ×U → Rk, where U denotes the closed unit ball in Rk, such
that

i. for every (x, y, s) ∈ Rd × 6, F(l)(x, y, s) � f (l)(x, y, s,U) where f (l)(x, y, s,U) � { f (l)(x, y, s,u) : u ∈ U}, and
ii. for K(l) as in Lemma 2iii, for every (x, y, s,u) ∈ Rd × 6 ×U, we have that ‖ f (l)(x, y, s,u)‖ ≤ K(l)(1 + ‖(x, y)‖)

(If the set-valued map F satisfies condition (c)′ instead of (c) in the definition of SAM, we have ‖ f (l)(x, y, s,u)‖ ≤
K(l)(1 + ‖x‖ + ‖y‖).)

Throughout this paper, we will use U to denote the closed unit ball in Rk, where the dimension k will be
made clear by the context.

Remark 1. To summarize, as a consequence of Lemma 2, we have that corresponding to a set-valued SAM (which is
upper semicontinuous), there exists a sequence of continuous set-valued maps, denoted by F(l), within which the
SAM may be embedded and the sequence of continuous set-valued maps {F(l)}l≥1 approximate F as explained in
Lemma 2. Further, as a consequence of Lemma 3, we have that corresponding to every member of the sequence,
there exists an appropriately defined continuous single-valued map denoted by f (l).

Combining Lemmas 2 and 3 we obtain the approximation theorem stated below.

Theorem 1 (Approximation). For any SAM F, there exists a sequence of continuous functions { f (l)}l≥1 such that for every
l ≥ 1, f (l) : Rd × 6 ×U → Rk is such that,

i. for every (x, y, s) ∈ Rd × 6, F(x, y, s) ⊆ f (l+1)(x, y, s,U) ⊆ f (l)(x, y, s,U) and f (l)(x, y, s,U) is a convex and compact
subset of Rk, and

ii. for K(l) as in Lemma 2iii, for every (x, y, s,u) ∈ Rd × 6 ×U, we have that ‖ f (l)(x, y, s,u)‖ ≤ K(l)(1 + ‖(x, y)‖)
(If the set-valued map F satisfies condition (c)′ instead of (c) in the definition of SAM, we have ‖ f (l)(x, y, s,u)‖ ≤
K(l)(1 + ‖x‖ + ‖y‖).)
Furthermore, for every (x, y, s) ∈ Rd × 6, F(x, y, s) � ∩l≥1 f (l)(x, y, s,U).

2.2. Measurable Set-Valued Maps and Integration
Here, we will review concepts of measurability and integration of set-valued maps. These concepts will be
needed to define the limiting differential inclusion, which the recursion studied in this paper is expected
to track.

Let (0,F0) denote a measurable space and F : 0 → {subsets of Rk} be a set-valued map such that, for
every w ∈ 0, F(w) is a nonempty closed subset of Rk. Throughout this subsection, F refers to the set-valued
map as defined above.

Definition 3 (Measurable set-valued map). A set-valued map F is measurable if for every C ⊆ Rk, closed,

F−1(C) :� w ∈ 0 : F(w) ∩ C �� ∅{ } ∈ F0.

We refer the reader to Li et al. [27, theorem 1.2.3] for other notions of measurability and their relation to the
definition above.

Definition 4 (Measurable selection). A function f : 0 → Rk is a measurable selection of a set-valued map F if f is
measurable and for every w ∈ 0, f (w) ∈ F(w).

For a set-valued map F, let S (F) denote the set of all measurable selections. The next lemma summarizes
some standard results about measurable set-valued maps and their measurable selections.

Lemma 4. For any measurable set-valued map F,
i. S (F) �� ∅.
ii. (Castaing representation) there exists { fn}n≥1 ⊆ S (F) such that, for every w ∈ 0, F(w) � cl({ fn(w)}n≥1), where

cl(·) denotes the closure of a set.

We refer the reader to Li et al. [27, theorems 1.2.6 and 1.2.7] for the proofs of Lemma 4i and ii, respectively.

Definition 5 (μ-integrable set-valuedmap). Let μ be a probability measure on (0,F0). Ameasurable set-valuedmap
F is said to be μ-integrable if there exists f ∈ S (F), which is μ-integrable.
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Definition 6 (Aumann’s integral). Let μ be a probability measure on (0,F0). The integral of a μ-integrable set-
valued map F is defined as,∫

0
F(w)μ(dw) :�

∫
0
f (w)μ(dw) : f ∈ S (F), f is μ − integrable

{ }
.

The next lemma states a useful result on the properties of the integral of a set-valued map, which is convex and
compact set valued.

Lemma 5. Let μ be a probability measure on (0,F0) and F a μ-integrable set-valued map such that for every w ∈ 0, F(w)
is convex and compact. Then,

∫
0
F(w)μ(dw) is a convex and closed subset of Rk.

For a proof of the above lemma, we refer the reader to Li et al. [27, theorem 2.2.2].
Now, we will briefly investigate the measurability properties of a SAM. First, we will define slices of a SAM,

F, for each (x, y) ∈ Rd and for each y ∈ Rd2 . As shown in Lemma 2, when F is a SAM there exists {F(l)}l≥1, a
sequence of continuous set-valued maps that approximate F, and for every l ≥ 1, the set-valued map F(l) can be
parameterized with single-valued maps f (l) as in Lemma 3. We will define similar slices of F(l) and f (l) as well.

Definition 7. Let F : Rd × 6 → {subsets of Rk} be a SAM. Let {F(l)}l≥1 and { f (l)}l≥1 be as in Lemmas 2 and 3,
respectively.

i. For every (x, y) ∈ Rd, define F(x,y) : 6 → {subsets of Rk} such that for every s ∈ 6, F(x,y)(s) :� F(x, y, s).
ii. For every l ≥ 1, for every (x, y) ∈ Rd, define F(l)(x,y) : 6 → {subsets of Rk} such that for every s∈6, F(l)(x,y)(s) :�

F(l)(x, y, s).
iii. For every l ≥ 1, for every (x, y) ∈ Rd, define f (l)(x,y) :6×U→Rk such that for every (s,u) ∈6×U, f (l)(x,y)(s, u) :�

f (l)(x, y, s, u).
iv. For every y ∈ Rd2 , define Fy : Rd1 × 6 → {subsets of Rk} such that for every (x, s) ∈ Rd1 × 6, Fy(x, s) :�

F(x, y, s).
v. For every l ≥ 1, for every y ∈ Rd2 , define F(l)y : Rd1 × 6 → {subsets of Rk} such that for every (x, s) ∈ Rd1× 6,

F(l)y (x, s) :� F(l)(x, y, s).
vi. For every l ≥ 1, for every y ∈ Rd2 , define f (l)y : Rd1 × 6 ×U → Rk such that for every (x, s,u) ∈ Rd1 × 6 ×U,

f (l)y (x, s,u) :� f (l)(x, y, s, u).
The next two lemmas summarize properties that the slices inherit from the maps F, F(l) and f (l). Let B(6)

denote the Borel sigma algebra associated with the metric space (6, d6).
Lemma 6. Let F : Rd × 6 → {subsets of Rk} be a SAM. Let {F(l)}l≥1 and { f (l)}l≥1 be as in Lemmas 2 and 3, respectively. For
every (x, y) ∈ Rd, let F(x,y), F(l)(x,y) and f (l)(x,y) denote the slices as in Definition 7. Then, for every (x, y) ∈ Rd,

i. F(x,y) is a measurable set-valued map and for every s ∈ 6, F(x,y)(s) is a convex and compact subset of Rk. Further,
there exists C(x,y) � K(1 + ‖(x, y)‖) > 0 such that for every s ∈ 6, supz∈F(x,y)(s) ‖z‖ ≤ C(x,y). (If F satisfies condition (c)′
instead of condition (c) in the definition of SAM, we have C(x,y) � K(1 + ‖x‖ + ‖y‖)).

ii. for every l ≥ 1, F(l)(x,y) is a measurable set-valued map and for every s ∈ 6, F(l)(x,y)(s) is a convex and compact subset of

Rk. Further, there exists C(l)
(x,y) � K(l)(1 + ‖(x, y)‖) > 0 such that for every s ∈ 6, supz∈F(l)(x,y)(s)

‖z‖ ≤ C(l)
(x,y). (If F satisfies

condition (c)′ instead of condition (c) in the definition of SAM, we have C(l)
(x,y) � K(l)(1 + ‖x‖ + ‖y‖)).

iii. for any probability measure μ on (6,B(S)), every measurable selection of F(x,y) is μ-integrable and hence F(x,y) is
μ-integrable.

iv. for every l ≥ 1, for any probability measure μ on (6,B(S)), every measurable selection of F(l)(x,y) is μ-integrable and
hence F(l)(x,y) is μ-integrable.

v. for every l ≥ 1, f (l)(x,y) is continuous and for every s ∈ 6, f (l)(x,y)(s,U) � F(l)(x,y)(s) and supu∈U ‖ f (l)(x,y)(s,u)‖ ≤ C(l)
(x,y) where

C(l)
(x,y) is as in part ii of this lemma.

The proof of the above lemma is similar to that of Yaji and Bhatnagar [41, lemma 4.1], and we will provide a
brief outline here. Fix (x, y) ∈ Rd. In order to show that F(x,y) is measurable, one needs to establish that F−1(x,y)(C) ∈
B(6) for any C ⊆ Rk closed. Using the closed graph property of F, one can show that F−1(x,y)(C) is closed subset of
6 and hence is in B(6). The bound C(x,y) and the claim that F(x,y)(s) is convex and compact for every s ∈ 6
follows from conditions (c) (or (c)′) and (a) in the definition of SAM, respectively. Because all measur-
able selections of F(x,y) are bounded, they are μ-integrable for any probability measure μ on (6,B(6)).
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The arguments are exactly same for the claims associated with the slices of approximating maps F(l), for every
l ≥ 1. Finally, part v of the above lemma follows from the properties of maps f (l) stated in Lemma 3.

Let μ be a probability measure on (Rd1 × 6,B(Rd1 × 6)), where B(Rd1 × 6) denotes the Borel sigma algebra
on metric space Rd1 × 6 with metric max{‖x − x′‖, d6(s, s′)} for every (x, s), (x′, s′) ∈ Rd1 × 6 (in fact B(Rd1 × 6) is
the same as the product sigma algebra B(Rd1) ⊗ 6). The support of the measure μ denoted by supp(μ) is
defined as a closed subset of Rd1 × 6 such that

1. μ(supp(μ)) � 1, and
2. for any other closed set A ⊆ Rd1 × 6 such that μ(A) � 1, we have supp(μ) ⊆ A.
For any probability measure μ on Rd1 × 6, such a set always exists and is unique (see Parthasarathy

[33, chapter 2, theorem 2.1]).

Lemma 7. Let F : Rd × 6 → {subsets of Rk} be a SAM satisfying condition (c)′ instead of condition (c) in the definition
of SAM. Let {F(l)}l≥1 and { f (l)}l≥1 be as in Lemmas 2 and 3, respectively. For every (x, y) ∈ Rd, let Fy, F(l)y and f (l)y denote the
slices as in Definition 7. Then, for every y ∈ Rd2 ,

i. Fy is a measurable set-valued map, and for every (x, s) ∈ Rd1 × 6, Fy(x, s) is a convex and compact subset of Rk.
Further, for every (x, s) ∈ Rd1 × 6, supz∈Fy(x,s) ‖z‖ ≤ Ky(1 + ‖x‖), where Ky :� max{K,K‖y‖} and K is as in condition (c)′
in the definition of SAM.

ii. for every l ≥ 1, F(l)y is a measurable set-valued map, and for every (x, s) ∈ Rd1 × 6, F(l)y (x, s) is a convex and compact
subset of Rk. Further, for every (x, s) ∈ Rd1 × 6, supz∈Fy(x,s) ‖z‖ ≤ K(l)

y (1 + ‖x‖), where K(l)
y :� max{K(l),K(l)‖y‖} and K(l)

is as in Lemma 2iii.
iii. for every probability measure μ on (Rd1 × 6,B(Rd1 × 6)) such that supp(μ) is a compact subset of Rd1 × 6, every

measurable selection of Fy is μ-integrable and hence Fy is μ-integrable.
iv. for every l ≥ 1, for every probability measure μ on (Rd1 × 6,B(Rd1 × 6)) such that supp(μ) is a compact subset of

Rd1 × 6, every measurable selection of F(l)y is μ-integrable and hence F(l)y is μ-integrable.
v. for every l≥1, f (l)y is continuous and for every (x,s)∈Rd1 ×6, f (l)y (x,s,U)�F(l)y (x,s) and supu∈U ‖ f (l)y (x,s,u)‖≤

K(l)
y (1+‖x‖), where K(l)

y is as in part ii of this lemma.

The proof of parts i, ii, and v of the above lemma are similar to the corresponding parts in Lemma 6. We will
provide a proof of part iii, and the proof of part iv is exactly the same.

Proof. Fix y ∈ Rd2 .
iii. Consider f ∈S (Fy). By part i of this lemma, we have that ‖ f (x,s)‖ ≤Ky(1+‖x‖). Because supp(μ) is a compact

subset of Rd1 × 6, there exists M > 0 such that for every x ∈ Rd1 for which there exists s ∈ 6 satisfying
(x, s) ∈ supp(μ), we have ‖x‖ ≤ M. Hence, ‖∫

Rd1×6 f (x,s)μ(dx,ds)‖�‖
∫
supp(μ) f (x,s)μ(dx,ds)‖≤

∫
supp(μ)‖ f (x,s)‖μ(dx,ds)≤∫

supp(μ)Ky(1+‖x‖)μ(dx,ds)≤Ky(1+M). Therefore, every measurable selection f ∈ S (Fy) is μ-integrable and hence Fy
is μ-integrable. □

By Lemma 6iv and v, we know that F(l)(x,y) is a μ-integrable set-valued map for any probability measure μ on
(6,B(6)), and f (l)(x,y) is a continuous parametrization of F(l)(x,y) for every l ≥ 1 and for every (x, y) ∈ Rd. Similarly,
by Lemma 7iv and v, we know that F(l)y is μ-integrable for any probability measure μ on (Rd1 × 6,B(Rd1 × 6))
with compact support, and f (l)y is a continuous parametrization of F(l)y for every l ≥ 1 and for every y ∈ Rd2 .
A natural question to ask is about the relation between integral of map F(l)(x,y) (or F(l)y ) and the integral of its
parametrization f (l)(x,y) (or f

(l)
y ). The next lemma answers this question. Before stating the lemma, we introduce

the following notation, which will be used throughout this paper.
Let 3(· · ·) denote the space of probability measures on a Polish space “· · ·” with the Prohorov topology (also

known as the “topology of convergence in distribution”; see Borkar [12, chapter 2] for details). For any
probability measure ν ∈ 3(6 ×U), let ν6 ∈ 3(6) denote the image of measure ν under the projection 6 ×U →
6 (i.e., for any A ∈ B(6), ν6(A) �

∫
A×U μ(ds, du)). Similarly, for any probability measure ν ∈ 3(Rd1 × 6 ×U), let

νRd1×6, ν6 and νRd1 belonging to 3(Rd1 × 6), 3(6) and 3(Rd1), respectively, denote the image of measure ν

under the projections Rd1 × 6 ×U → Rd1 × 6, Rd1 × 6 ×U → 6, and Rd1 × 6 ×U → Rd1 , respectively.

Lemma 8. Let F : Rd × 6 → {subsets of Rk} be a SAM. Let {F(l)}l≥1 and { f (l)}l≥1 be as in Lemmas 2 and 3, respectively. For
every l ≥ 1, for every (x, y) ∈ Rd, let F(l)(x,y), f

(l)
(x,y), and for every y ∈ Rd2, let F(l)y , f (l)y denote the slices as in Definition 7.

i. For every l ≥ 1, for every (x, y) ∈ Rd, for any probability measure μ ∈ 3(6),∫
6
F(l)(x,y)(s)μ(ds) �

∫
6×U

f (l)(x,y)(s,u)ν(ds, du) : ν ∈ 3(6 ×U), ν6 � μ

{ }
.
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ii. Suppose F satisfies condition (c)′ instead of condition (c) in the definition of SAM. Then, for every l ≥ 1, for every
y ∈ Rd2 , for any probability measure μ ∈ 3(Rd1 × 6) with compact support,∫

Rd1×6
F(l)y (dx, ds)μ(dx, ds) �

∫
Rd1×6×U

f (l)y (x, s,u)ν(dx, ds, du) : ν ∈ 3(Rd1 × 6 ×U), νRd1×6 � μ

{ }
.

Remark 2. For any ν ∈ 3(Rd1 × 6 ×U) with νRd1×6 � μ, the support of the measure ν is contained in supp(μ) ×U
because by Borkar [12, chapter 3, corollary 3.1.2], there exists a μ a.s. unique measurable map q :Rd1 ×6→3(U)
such that ν(dx, ds, du) � q(x, s, du)μ(dx, ds) and 1 � ν(Rd1 × 6 × U) � ∫

Rd1×6×U ν(dx, ds, du) � ∫
Rd1× 6

[∫U q(x, s, du)]
μ(dx, ds) � ∫

supp(μ)[
∫
U q(x, s, du)]μ(dx, ds) � ν(supp(μ) × U). Therefore, when supp(μ) is a compact set, the support

of measure ν is also compact and by Lemma 7v it is easy to deduce that for all measures, ν ∈ 3(Rd1 × 6 ×U) with
compact support, for all y ∈ Rd2 , f (l)y is ν-integrable for all l ≥ 1.

The proof of part i of the above lemma is exactly same as that in Yaji and Bhatnagar [41, lemma 4.2]. The
proof of part ii is similar but with minor technical modifications and is presented below.

Proof. ii. Fix y ∈ Rd2 , l ≥ 1 and μ ∈ 3(Rd1 × 6) with compact support.
Consider z ∈ ∫

Rd1×6 F(l)y (x, s)μ(dx, ds). Then there exists f ∈ S (F(l)y ) such that z � ∫
Rd1×6 f (x, s)μ(dx, ds). Let G :

Rd1 × 6 → {subsets of U} be such that for every (x, s) ∈ Rd1 × 6, G(x, s) � {u ∈ U : f (x, s) � f (l)y (x, s,u)} . By the fact
that f (l)y (x, s,U) � F(l)y (x, s) and because f (x, s) ∈ F(l)y (x, s) for every (x, s) ∈ Rd1 × 6, we have that G(x, s) is nonempty.
By the continuity of f (l)y (x, s, ·), we have thatG(x, s) is closed for every (x, s) ∈ Rd1 × 6. For anyC ⊆ U closed,G−1(C) ∈
B(Rd1 × 6) (for a proof, see Yaji and Bhatnagar [41, appendix B]), and hence G is measurable. Because G is
measurable, by Lemma 4i, we have thatS (G) �� ∅. Let g ∈ S (G) and let ĝ : Rd1 × 6 → Rd1 × 6 ×U be such that for
every (x, s) ∈ Rd1 × 6, ĝ(x, s) :� (x, s, g(x, s)). Let ν � μĝ−1 (push-forward measure). Clearly, νRd1×U � μ and∫
Rd1×6×U f (l)y (x, s, u)ν(dx, ds, du) � ∫

Rd1×6×U f (l)y (x, s, u)μĝ−1(dx, ds, du) � ∫
Rd1×6 f (l)y (x, s, g(x, s))μ(dx, ds) � ∫

Rd1×6 f (x, s) ·
μ(dx, ds) � z. Therefore, the left-hand side (L.H.S.) is contained in the right-hand side (R.H.S.).

Let ν ∈ 3(Rd1 × 6 ×U) with νRd1×6 � μ. By Borkar [12, corollary 3.1.2], there exists a μ a.s. unique measurable
map q : Rd1 × 6 → 3(U) such that ν(dx, ds, du) � q(x, s, du)μ(dx, ds). Because μ has compact support, ν has compact
support, and hence f (l)y is ν-integrable (see remark following Lemma 8). Therefore,

∫
Rd1×6×U f (l)y (x, s, u)ν(dx, ds, du) �∫

Rd1×6[
∫
U f (l)y (x, s,u)q(x, s, du)]μ(dx, ds). By Lemma 7v, we know that for every (x, s) ∈ Rd1 × 6, f (l)y (x, s,U) � F(l)y (x, s),

and hence f (l)(x, s,U) is convex and compact subset of Rk. Therefore, for every (x, s) ∈ Rd1 × 6,
∫
U f (l)y (x, s,u) ·

q(x, s, du) ∈ F(l)y (x, s). Let f : Rd1 × 6 → Rk be such that for every (x, s) ∈ Rd1 × 6, f (x, s) :� ∫
U f (l)(x, s,u)q(x, s, du) ·

Then clearly, f is measurable and f ∈ S (F(l)y ). Therefore,
∫
Rd1×6×U f (l)y (x, s,u)ν(dx, ds, du) � ∫

Rd1×6[
∫
U f (l)y (x, s, u)

q(x, s, du)]μ(dx, ds) � ∫
Rd1×6 f (x, s)μ(dx, ds) ∈ ∫

Rd1×6 F(l)y (x, s)μ(dx, ds). The above gives us that the R.H.S. is contained
in the L.H.S. □

2.3. Differential Inclusions and Their Limit Sets
Here, we will review the results of Benaı̈m et al. [4] on the theory of differential inclusions and give definitions
of limit sets associated with such dynamical systems that are used later in the paper.

First, we define a set-valued map whose associated DI is known to admit at least one solution through every
initial condition. Such set-valued maps are called Marchaud maps, and the definition of such a map is
stated below.

Definition 8 (Marchaud map). F : Rk → {subsets of Rk} is a Marchaud map if,
i. for every z ∈ Rk, F(z) is a convex and compact subset of Rk,
ii. there exists K > 0 such that for every z ∈ Rk, supz′∈F(z) ‖z′‖ ≤ K(1 + ‖z‖), and
iii. for every z ∈ Rk, for every Rk-valued sequence, {zn}n≥0 converging to z ∈ Rk, for every sequence {z′n ∈

F(zn)}n≥0 converging to z′ ∈ Rk, we have that z′ ∈ F(z).
Let F be a Marchaud map. Then the DI associated with the map F is given by

dz
dt

∈ F(z). (11)

Because F is a Marchaud map, it is known that the DI (11) admits at least one solution through every initial
condition (see Benaı̈m et al. [4, section 1.2]). By a solution of DI (11) with initial condition z ∈ Rk, we mean a
function z : R → Rk such that z(·) is absolutely continuous, z(0) � z and for a.e. t ∈ R, dz(t)

dt ∈ F(z(t)).
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Now, we will recall the notions of flow, invariant sets, attracting sets, attractors, basin of attraction, and
internally chain transitive sets. All these notions are taken from Benaı̈m et al. [4].

The flow of DI (11) is given by the set-valued map Φ : Rk × R → {subsets of Rk} such that for every
(z, t) ∈ Rk × R,

Φ(z, t) :� z(t) : z is a solution of DI (11) with z(0) � z
{ }

.

For any set A ⊆ Rk, let Φ(A, t) :� ∪z∈AΦ(z, t).
A closed set A ⊆ Rk is invariant for the flow Φ of DI (11) if for every z ∈ A, there exists a solution z(·) of

DI (11) such that, z(0) � z and for every t ∈ R, z(t) ∈ A.
A compact set A ⊆ Rk is an attracting set for the flow Φ of DI (11) if there exists an open neighborhood of A,

say 2, with the property that for every ε > 0, there exists T > 0 (depending on ε > 0 only) such that for every
t ≥ T, Φ(2, t) ⊆ Nε(A), where Nε(A) stands for the ε-neighborhood of A.

A compact set A ⊆ Rk is an attractor for the flow Φ of DI (11) if A is an attracting set and is invariant for the
flow Φ of DI (11).

For any z ∈ Rk, ωΦ(z) :� ∩t≥0Φ(z, [t,∞)), where Φ(z, [t,∞)) :� ∪q≥tΦ(z, q). For any set A ⊆ Rk, the basin of
attraction of set A is denoted by B(A) and is defined as

B(A) :� z ∈ Rk : ωΦ(z) ⊆ A
{ }

.

If A ⊆ Rk is an attractor whose basin of attraction is the whole of Rk (i.e., B(A) � Rk), then A is called a global
attractor.

Given a set A ⊆ Rk and z, z′ ∈ A, for any ε > 0 and T > 0, there exists an (ε,T) chain from z to z′ for DI (11) if
there exists an integer n ∈ N, solutions z1, . . . , zn to DI (11) and real numbers t1, . . . , tn greater than T such that

• for all i ∈ {1, . . . ,n} and for all q ∈ [0, ti], and zi(q) ∈ A,
• for all i ∈ {1, . . . ,n}, ‖ zi(ti) − zi+1(0) ‖≤ ε,
• ‖ z1(0) − z ‖≤ ε and ‖ zn(tn) − z′ ‖≤ ε.
A compact set A ⊆ Rd is said to be internally chain transitive if for every z, z′ ∈ A, for every ε > 0, and for every

T > 0, there exists (ε,T) chain from z to z′ for DI (11).
Suppose L ⊆ Rk is an invariant set. Then, the flow of DI (11) restricted to the invariant set L is a set-valued

map, ΦL : L × R → {subsets of Rk} such that for every (z, t) ∈ L × R,

ΦL(z, t) :� z(t) : z(·) is a solution of DI (11) with z(0) � z, and for every t ∈ R, z(t) ∈ L
{ }

. (12)

2.4. Single Timescale Stochastic Recursive Inclusions with Nonadditive Iterate-Dependent Markov Noise
In this section, we review results by Yaji and Bhatnagar [41] on the analysis of single timescale stochastic
recursive inclusions with nonadditive iterate-dependent Markov noise.

Let (Ω,F ,P) be a probability space and {Zn}n≥0 be a sequence of Rd-valued random variables satisfying

Zn+1 − Zn − a(n)Mn+1 ∈ a(n)F Zn, Sn( ), (13)
where the following assumptions hold:

Assumption S(A1). The map F : Rd × 6 → {subsets of Rd} where (6, d6) is a compact metric space is such that

i. for every (z, s) ∈ Rd × 6, F(z, s) is a convex and compact subset of Rd,
ii. there exists K > 0 such that for every (z, s) ∈ Rd × 6, supz′∈F(z,s) ‖z′‖ ≤ K(1 + ‖z‖), and
iii. for every z ∈ Rd, for every Rd × 6 valued sequence, say {(zn, sn)}n≥1 converging to (z, s), and for any

sequence {z′n ∈ F(zn, sn)}n≥1 converging to z′, we have z′ ∈ F(z, s).
Assumption S(A2). {Sn}n≥0 is a sequence of 6-valued measurable functions on Ω such that for every n ≥ 0,
for every A ∈ B(6), P(Sn+1 ∈ A|Sm,Zm,m ≤ n) � P(Sn+1 ∈ A|Sn,Zn) � Π(Zn,Sn)(A) a.s, where Π : Rd × 6 → 3(6)
is continuous.

Assumption S(A3). {a(n)}n≥0 is a sequence of positive real numbers satisfying

i. a(0) ≤ 1 and for every n ≥ 0, a(n) ≥ a(n + 1),
ii.

∑∞
n�0 a(n) � ∞ and

∑∞
n�0(a(n))2 < ∞.

Yaji and Bhatnagar: SRI in Two Timescales with Markov Noise
Mathematics of Operations Research, 2020, vol. 45, no. 4, pp. 1405–1444, © 2020 INFORMS 1415



Assumption S(A4). {Mn}n≥1 is a sequence of Rd-valued random variables on Ω such that for a.s.(ω), for any T > 0,
limn→∞ supn≤k≤τ(n,T) ‖∑k

m�n a(m)Mm+1(ω)‖ � 0, where τ(n,T) :� min{m > n :
∑m−1

k�n a(k) ≥ T}.
Assumption S(A5). P(supn≥0 ‖Zn‖ < ∞) � 1.

A detailed motivation for each of these assumptions can be found in Yaji and Bhatnagar [41]. We will briefly
explain them and their consequences.

Assumption S(A1) ensures that the set-valued map F is a SAM, and Assumption S(A2) is the iterate-
dependent Markov noise assumption. As a consequence of Assumption S(A2), for every z ∈ Rd, we know that
the Markov chain defined by the transition kernel Π(z, ·)(·) possesses the weak Feller property (see Meyn and
Tweedie [29]). In addition to the above, because the state space is compact, the set of stationary distributions
for the Markov chain whose transition probability is given by Π(z, ·)(·) is nonempty for every z ∈ Rd. Let
D(z) ⊆ 3(6) denote the set of stationary distributions of the Markov chain whose transition kernel is Π(z, ·)(·)
(for any z ∈ Rd, μ ∈ D(z) if and only if for every A ∈ B(6), μ(A) � ∫

6
Π(z, s)(A)μ(ds)). We also know that for

every z ∈ Rd, D(z) is a convex and compact subset of 3(6), and the map z → D(z) has a closed graph (see Yaji
and Bhatnagar [41] and the references therein). Assumption S(A3) is the standard step-size assumption, and
Assumption S(A4) is the general additive noise assumption, which ensures that the contribution of the
additive noise is eventually negligible (for various noise models satisfying Assumption S(A4), see Benaı̈m et al.
[4]). Assumption S(A5) is the stability requirement on the iterate sequence.

The set-valued map, F̂ : Rd → {subsets of Rd} that serves as the vector field for the differential inclusion (DI)
that the iterates are expected to track is defined as,

F̂(z) :� ∪μ∈D(z)
∫
6
Fz(s)μ(ds)

for every z ∈ Rd, where for every z ∈ Rd, Fz denotes the slice as in Definition 7i of the set-valued map F
appearing in Recursion (13). The set-valued map F̂ is a Marchaud map (see Yaji and Bhatnagar [41, lemma 4.7])
and the associated DI given by

dz
dt

∈ F̂(z) (14)

admits at least one solution through every initial condition (see Benaı̈m et al. [4, section 1.2]). Let Σ(z0) denote
the set of solutions of DI (14) with initial condition z0 ∈ Rd and Σ :� ∪z0∈RdΣ(z0) (the set of all possible so-
lutions). For every z0 ∈ Rd, Σ(z0) is a subset of #(R,Rd), the set of all Rd-valued continuous functions on R. The
set #(R,Rd) is a complete metric space for the metric D defined by

D z, z′( ) :�∑∞
k�1

1
2k

min z − z′‖ ‖[−k,k], 1
( )

,

where ‖z − z′‖[−k,k] :� supt∈[−k,k] ‖z(t) − z′(t)‖. As a consequence of Benaı̈m et al. [4, lemma 3.1], we have that Σ
and for every z0 ∈ Rd, Σ(z0) are closed and compact subsets of #(R,Rd), respectively.

Let t0 :� 0 and for every n ≥ 1, t(n) :� ∑n−1
k�0 a(k). Define the stochastic process with continuous sample paths

Z̄ : Ω × R → Rd as

Z̄(ω, t) :� t − t(n)
t(n + 1) − t(n)
( )

Zn+1(ω) + t(n + 1) − t
t(n + 1) − t(n)
( )

Zn(ω)

for every (ω, t) ∈ Ω × [0,∞), where n is such that t ∈ [t(n), t(n + 1)) and for every (ω, t) ∈ Ω × (−∞, 0], let
Z̄(ω, t) :� Z0(ω). Then the main result from the analysis of recursion (13) in Yaji and Bhatnagar [41] is as
follows.

Theorem 2. Under Assumptions S(A1)-S(A5), for almost every ω ∈ Ω,
i. the family of functions {Z̄(ω, · + t)}t≥0 is relatively compact in #(R,Rd),
ii. every limit point of {Z̄(ω, · + t)}t≥0 in #(R,Rd) is a solution of DI (14), more formally,

lim
t→∞D Z̄ ω, · + t( ),Σ( ) � 0, and
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iii. the limit set denoted by L(Z̄(ω, ·)), defined as

L Z̄ ω, ·( )( )
:� ∩t≥0 Z̄(ω, q + t) : q ≥ 0

{ }
,

is nonempty, compact, and internally chain transitive for the flow of DI (14).

For a proof of the above theorem, see Yaji and Bhatnagar [41, theorems 6.6 and 6.7].

2.5. Space of Probability Measure-Valued Functions
In this section, we will define the space of probability measure-valued measurable functions on [0,∞). We will
introduce an appropriate topology on this space and show that such a space is compact metrizable. These
spaces are used in the theory of optimal control of diffusions (see Borkar [8]) and also in analyzing stochastic
approximation schemes (see Yaji and Bhatnagar [41], Borkar [10]). Quantities defined in this section will serve
as tools in analyzing the stochastic recursions later.

Throughout this section, U will denote the closed unit ball in Rd2, and for any r > 0, Br denotes the closed
ball of radius r in Rd1 centered on the origin. For every r > 0, let }(U × Br × 6) denote the set of all functions
γ(·) on [0,∞) taking values in 3(U × Br × 6) (space of probability measures on U × Br × 6 equipped with the
Prohorov topology) such that γ(·) is measurable. Formally,

}(U × Br × 6) :� γ : [0,∞) → 3(U × Br × 6) : γ(·) is measurable
{ }

.

Similarly, for every r > 0, }(Br × 6) (or }(Br)) denotes the set of all functions γ(·) on [0,∞) taking values in
3(Br × 6) (or 3(Br)) such that γ(·) is measurable. Formally,

} Br × 6( ) :� γ : [0,∞) → 3 Br × 6( ) : γ(·) is measurable
{ }

,

} Br( ) :� γ : [0,∞) → 3 Br( ) : γ(·) is measurable
{ }

.

For every r > 0, let τU×Br×6 denote the coarsest topology on }(U × Br × 6), which renders continuous the
functions γ(·) → ∫ T

0 g(t)[∫U×Br×6 f (u, x, s)γ(t)(du, dx, ds)]dt for every f ∈ #(U × Br × 6,R), for every g ∈ L2([0,T],R),
and for every T > 0.

Similarly, for every r > 0, let τBr×6 denote the coarsest topology on }(Br × 6), which renders continuous the
functions γ(·) → ∫ T

0 g(t)[∫Br×6 f (x, s)γ(t)(dx, ds)]dt for every f ∈ #(Br × 6,R), for every g ∈ L2([0,T],R) and for
every T > 0.

Finally, for every r > 0, let τBr denote the coarsest topology on }(Br), which renders continuous the functions,
γ(·) → ∫ T

0 g(t)[∫Br
f (x)γ(t)(dx)]dt for every f ∈ #(Br,R), for every g ∈ L2([0,T],R), and for every T > 0.

The following is a well-known metrization lemma for the topological spaces defined above.

Lemma 9 (Metrization).
i. For every r > 0, the topological space (}(U × Br × 6), τU×Br×6) is compact metrizable.
ii. For every r > 0, the topological space (}(Br × 6), τBr×6) is compact metrizable.
iii. For every r > 0, the topological space (}(Br), τBr) is compact metrizable.

We refer the reader to Borkar [10, lemma 2.1] for the proof of the above metrization lemma. The next lemma
provides continuous functions between the above defined metric spaces, which are used later. The proof of the
lemma below is an extension of Yaji and Bhatnagar [41, lemma 5.2] to the above defined metric spaces. Recall that
for any probability measure ν ∈ 3(U × Br × 6), νBr×6 ∈ 3(Br × 6) denotes the image of the measure ν under the
projection U × Br × 6 → Br × 6 (i.e., for every A ∈ B(Br × 6), νBr×6(A) �

∫
U×A ν(du, dx, ds)). Similarly, νBr ∈ 3(Br)

denotes the image of measure ν under the projection U × Br × 6 → Br (i.e., for every A ∈ B(Br), νBr (A) �∫
U×A×6 ν(du, dx, ds)). It is easy to see that νBr is also the image of νBr×6 under the projection Br × 6 → Br.

Lemma 10. For every r > 0,
i. the map θ1 : 3(U × Br × 6) → 3(Br × 6) such that for every ν ∈ 3(U × Br × 6), θ1(ν) :� νBr×6 is continuous.
ii. the map θ2 : 3(Br × 6) → 3(Br) such that for every ν ∈ 3(Br × 6), θ2(ν) :� νBr is continuous.
iii. for any γ ∈ }(U × Br × 6), we have that θ1 ◦γ ∈ }(Br × 6) where for every t ≥ 0, (θ1 ◦γ)(t) � θ1(γ(t)).
iv. for any γ ∈ }(Br × 6), we have that θ2 ◦γ ∈ }(Br) where for every t ≥ 0, (θ2 ◦γ)(t) � θ2(γ(t)).
v. the map Θ1 : }(U × Br × 6) → }(Br × 6) such that for every γ ∈ }(U × Br × 6), Θ1(γ) :� θ1 ◦γ is continuous.
vi. the map Θ2 : }(Br × 6) → }(Br) such that for every γ ∈ }(Br × 6), Θ2(γ) :� θ2 ◦γ is continuous.
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Proof. Fix r > 0.
i. Let {νn}n≥1 be a sequence in 3(U × Br × 6) converging to ν ∈ 3(U × Br × 6) as n → ∞, and let π : U ×

Br × 6 → Br × 6 denote the projection map such that for every (u, x, s) ∈ U × Br × 6, π(u, x, s) � (x, s). Clearly, π
is continuous and for any continuous function f ∈ #(Br × 6,R), f ◦π is continuous. Because U × Br × 6 is a
compact metric space, from Borkar [12, theorem 2.1.1(ii)], we get that for every f ∈ #(Br × 6,R), ∫U×Br×6( f ◦π) ·(u, x, s)νn(du, dx, ds) → ∫

U×Br×6( f ◦π)ν(du, dx, ds) as n → ∞. By definition, we have that for every n ≥ 0, νnBr×6 �
νnπ−1 (the push-forward measure) and νBr×6 � νπ−1. Therefore, for every f ∈ #(Br × 6,R), ∫Br×6 f (x, s)νnBr×6 ·
(dx, ds) → ∫

Br×6 f (x, s)νBr×6(dx, ds). Hence, by Borkar [12, theorem 2.1.1], we get that νnBr×6 → νBr×6 as n → ∞ in
3(Br × 6), which gives us continuity of θ1(·).

ii. Similar to part i of this lemma.
iii and iv. Composition of measurable functions is measurable.
v. Let {γn}n≥1 be a sequence in }(U × Br × 6) converging to γ ∈ }(U × Br × 6) as n → ∞. Then we know

that for every f ∈ #(U × Br × 6,R), for every T > 0, and for every g ∈ L2([0,T],R),
∫ T
0 g(t)[∫U×Br×6 f (u, x, s) ·

γn(t)(du, dx, ds)]dt →
∫ T
0 g(t)[∫U×Br×6 f (u, x, s)γ(t)(du, dx, ds)]dt as n → ∞. Let π denote the projection map as in

part i of this lemma, and we know that for any f ∈ #(Br × 6,R), f ◦π ∈ #(U × Br × 6,R). Then we have that
for every f ∈ #(Br × 6,R), for every T > 0, and for every g ∈ L2([0,T],R),

∫ T
0 g(t)[∫U×Br×6( f ◦π)(u, x, s)γn(t) ·

(du, dx, ds)]dt → ∫ T
0 g(t)[∫U×Br×6( f ◦π)(u, x, s)γ(t)(du, dx, ds)]dt as n → ∞. By arguments similar to part i of this

lemma, we have that for every f ∈ #(Br × 6,R), for every T > 0, and for every g ∈ L2([0,T],R),
∫ T
0 g(t) ·

[∫U×Br×6 f (x, s)(θ1 ◦γn)(t)(dx, ds)]dt →
∫ T
0 g(t)[∫U×Br×6 f (x, s)(θ1 ◦γ)(t)(dx, ds)]dt as n → ∞. Therefore, Θ1(γn) →

Θ1(γ) in }(Br × 6) as n → ∞, which gives us continuity of Θ1(·).
vi. Similar to part v. of this lemma. □

3. Two-Timescale Scheme and Preliminary Results
In this section, we will formally define the two-timescale recursion as well as state and motivate the as-
sumptions imposed (Assumptions A1–A10).

3.1. Recursion and Assumptions
Let (Ω,F ,P) denote a probability space, {Xn}n≥0 be a sequence of Rd1 -valued random variables on Ω, and
{Yn}n≥0 be a sequence of Rd2 -valued random variables on Ω, which satisfy for every n ≥ 0,

Yn+1 − Yn − b(n)M(2)
n+1 ∈ b(n)H2 Xn,Yn,S(2)n

( )
, (15a)

Xn+1 − Xn − a(n)M(1)
n+1 ∈ a(n)H1 Xn,Yn, S(1)n

( )
, (15b)

where the following assumptions hold.

Assumption A1. The map H1 : R
d × 6(1) → {subsets of Rd1} with 6(1) a compact metric space with metric d6(1) , is

such that
i. for every (x, y, s(1)) ∈ Rd × 6(1), H1(x, y, s(1)) is a convex and compact subset of Rd1 ,
ii. there exists K > 0 such that for every (x, y, s(1)) ∈ Rd × 6(1), supx′∈H1(x,y,s(1)) ‖x′‖ ≤ K(1 + ‖x‖ + ‖y‖), and
iii. for every (x,y,s(1)) ∈Rd×6(1), for every (Rd×6(1))-valued sequence, {(xn, yn, s(1)n )}n≥1 converging to (x,y,s(1)) ∈

Rd×6(1), and for every sequence {x′n ∈ H1(xn, yn, s(1)n )}n≥1 converging to x′ ∈ Rd1 , we have that x′ ∈ H1(x, y, s(1)).
Assumption A2. The map H2 : R

d × 6(2) → {subsets of Rd2} with 6(2) a compact metric space with metric d6(2) is
such that

i. for every (x, y, s(2)) ∈ Rd × 6(2), H2(x, y, s(2)) is a convex and compact subset of Rd2 ,
ii. there exists K > 0 such that for every (x, y, s(2)) ∈ Rd × 6(2), supy′∈H2(x,y,s(2)) ‖y′‖ ≤ K(1 + ‖x‖ + ‖y‖),
iii. for every (x, y, s(2)) ∈ Rd × 6(2), for every (Rd × 6(2))-valued sequence, {(xn, yn, s(2)n )}n≥1 converging to

(x, y, s(2)) ∈ Rd × 6(2), and for every sequence {y′n ∈ H2(xn, yn, s(2)n )}n≥1 converging to y′ ∈ Rd2 , we have that
y′ ∈ H2(x, y, s(2)).
Assumption A3. {S(1)n }n≥0 is a sequence of 6(1)-valued random variables on Ω such that for every n ≥ 0, for every
A ∈ B(6(1)), P(S(1)n+1 ∈ A|S1m,Xm,Ym, 0 ≤m ≤ n) � P(S(1)n+1 ∈ A|S(1)n ,Xn,Yn) �Π(1)(Xn,Yn,S

(1)
n )(A) a.s, where Π(1) : Rd ×

6(1) → 3(6(1)) is continuous.
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Assumption A4. {S(2)n }n≥0 is a sequence of 6(2)-valued random variables on Ω, such that for every n ≥ 0, for every
A ∈ B(6(2)), P(S(2)n+1 ∈A|S2m,Xm,Ym, 0≤m≤n)�P(S(2)n+1 ∈A|S(2)n ,Xn,Yn)�Π(2)(Xn,Yn,S

(2)
n )(A) a.s, where Π(2) :Rd×

6(2) →3(6(2)) is continuous.
Assumption A5. {a(n)}n≥0 and {b(n)}n≥0 are two sequences of positive real numbers satisfying

i. a(0) ≤ 1 and for every n ≥ 0, a(n) ≥ a(n + 1),
ii. b(0) ≤ 1 and for every n ≥ 0, b(n) ≥ b(n + 1),
iii. limn→∞ b(n)

a(n) � 0, and
iv.

∑∞
n�0 a(n) � ∑∞

n�0 b(n) � ∞ and
∑∞

n�0((a(n))2 + (b(n))2) < ∞.

Assumption A6. {M(1)
n }n≥1 is a sequence of Rd1 -valued random variables on Ω such that for a.e.(ω), for any T > 0,

limn→∞ supn≤k≤τ1(n,T) ‖∑k
m�n a(m)M(1)

m+1(ω)‖ � 0, where τ1(n,T) :� min{m > n :
∑m−1

k�n a(k) ≥ T}.
Assumption A7. {M(2)

n }n≥1 is a sequence of Rd2 -valued random variables on Ω such that for a.e.(ω), for any T > 0,
limn→∞ supn≤k≤τ2(n,T) ‖∑k

m�n b(m)M(2)
m+1(ω)‖ � 0, where τ2(n,T) :� min{m > n :

∑m−1
k�n b(k) ≥ T}.

Assumption A8. P(supn≥0(‖Xn‖ + ‖Yn‖) < ∞) � 1.

3.2. Justification for the Assumptions
Assumptions A1 and A2 ensure that H1 and H2 are SAMs. Assumptions A3 and A4 are the iterate-dependent
Markov noise assumptions. Under Assumption A3, for every (x, y) ∈ Rd, the Markov chain associated with the
transition kernel given by Π(1)(x, y, ·)(·) possesses the weak Feller property (see Meyn and Tweedie [29]). In
addition to the above, because 6(1) is a compact metric space, the Markov chain associated with the tran-
sition kernel Π(1)(x, y, ·)(·) has at least one stationary distribution for every (x, y) ∈ Rd (μ ∈ 3(6(1)) is stationary
for the Markov chain associated with the transition kernel Π(1)(x, y, ·)(·) if for every A ∈ B(6(1)), μ(A) �∫
6(1) Π

(1)(x, y, s(1))(A)μ(ds(1))). For every (x, y) ∈ Rd, let D(1)(x, y) ⊆ 3(6(1)) denote the set of stationary distri-
butions of the Markov chain associated with the transition kernel Π(1)(x, y, ·)(·). It can easily be shown that

i. for every (x, y) ∈ Rd, D(1)(x, y) is a convex and compact subset of 3(6(1)), and
ii. the graph of the map (x, y) → D(1)(x, y) is closed, that is, the set

& D(1)
( )

:� (x, y, μ) ∈ Rd ×3 6(1)
( )

: (x, y) ∈ Rd, μ ∈ D(1)(x, y)
{ }

is a closed subset of Rd ×3(6(1)).
The proofs of the above two statements are similar to those in Borkar [11, p. 69]. Similarly, under As-

sumption A4, for every (x, y) ∈ Rd, the set of stationary distributions (denoted by D(2)(x, y)) associated with the
Markov chain defined by the transition kernel Π(2)(x, y, ·)(·) is a nonempty, convex, and compact subset of
3(6(2)), and the map (x, y) → D(2)(x, y) has a closed graph (i.e., the set &(D(2)) defined in an analogous manner
as &(D(1)) is a closed subset of Rd ×3(6(2))).

Assumption A5 is the standard two-timescale step-size assumption. Assumption A5iii tells that eventually,
thetimesteptakenbyRecursion(15a) is smaller than the time step taken by Recursion (15b). Hence, Recursion (15a)
is called the slower timescale recursion, and Recursion (15b) is called the faster timescale recursion. As-
sumptions A6 and A7 are the conditions that the additive noise terms satisfy. These guarantee that the
contribution of additive noise terms is eventually negligible. For various noise models where these additive
noise assumptions are satisfied, we refer the reader to Benaı̈m et al. [4].

Assumption A8 is the stability assumption that ensures that the iterates remain within a bounded set.
Although this is a standard requirement in the study of such recursions, it is highly nontrivial. An important
future direction would be to provide sufficient conditions for verification of Assumption A8. In several
applications, stability is ensured by projecting the iterates into a convex compact set, where the convex,
compact set is chosen such that desired attractors (i.e., set of points to which the iterates converge to) lie
within. In such cases, the recursion studied takes the form

Yn+1 � PY Yn + b(n) h2 Xn,Yn,S(2)n

( )
+M(2)

n+1
( )[ ]

,

Xn+1 � PX Xn + a(n) h1 Xn,Yn,S(1)n

( )
+M(1)

n+1
( )[ ]

,
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where the maps h1 and h2 denote single-valued Lipschitz continuous maps as in Karmakar and Bhatnagar [21],
and PY and PX denote projection maps into appropriate convex and compact sets. The above recursion can be
rewritten as

Yn+1 � Yn + b(n) γY Yn; h2 Xn,Yn, S(2)n

( )
+M(2)

n+1
( )

+ o(b(n))
( )

,

Xn+1 � Xn + a(n) γX Xn; h1 Xn,Yn,S(1)n

( )
+M(1)

n+1
( )

+ o(a(n))
( )

,

where γX(Xn; h1(Xn,Yn,S
(1)
n ) +M(1)

n+1) denotes the directional derivative of the projection map PX(·) along the
direction h1(Xn,Yn,S

(1)
n ) +M(1)

n+1 (similarly, γY(Yn; h2(Xn,Yn, S
(2)
n ) +M(2)

n+1) denotes the directional derivative of the
projection map PY(·) along the direction h2(Xn,Yn,S

(2)
n ) +M(2)

n+1). In most cases, these directional derivatives are
not continuous, and in order to analyze the above recursion, we define the underlying set-valued drift
functions as

H2(x, y, s(2)) :� ∩ε>0c̄o ∪‖(x′,y′)−(x,y)‖<ε γY y′; h2 x′, y′, s(2)
( )

+ z
( )

: z ∈ A(2)(x, y)
{ }( )

,

H1(x, y, s(1)) :� ∩ε>0c̄o ∪‖(x′,y′)−(x,y)‖<ε γX x′; h1 x′, y′, s(1)
( )

+ z
( )

: z ∈ A(1)(x, y)
{ }( )

,

where c̄o(·) denotes the convex closure of a set, and A(i)(x, y) denotes the support of the conditional distribution
of M(i)

n+1 given a sigma algebra F n ({Fn}n≥0 is a filtration with respect to which {M(i)
n+1}n≥0 is a martingale

difference array), which is assumed to be compact. The above set-valued drift functions can be shown to be
SAMs, and hence the projected scheme can be rewritten in the form of the recursion studied in the paper.

Viewing stochastic approximations with projections as schemes with set-valued maps have been used to
analyze recursions arising in variational inequalities by Nagurney and Zhang [31]. Several other schemes used
to solve optimization problems, which rely on the martingale-based method for the analysis of the underlying
stochastic approximation schemes, obtain stability as a consequence of stronger assumptions on noise and
drift functions, which are easily verifiable under that particular application setting (see Jiang and Xu [20],
Koshal et al. [23]). Further, adaptive projection-based methods, which are rooted in Chen et al. [14] and Chen
and Yunmin [15], guarantee stability by truncating iterates when found to be lying outside a prescribed
compact set and have been extended to the case with Markov noise by Andrieu et al. [1] and Fort et al. [18].
Yaji and Bhatnagar [42] extend these adaptive projection schemes to stochastic approximations with set-valued
maps without Markov noise.

3.3. Some Additional Assumptions and Preliminary Results
The Markov noise terms in the faster timescale, in limit will average the drift function H1 w.r.t. the stationary
distributions given by the map (x, y) → D(1)(x, y). The appropriate set-valued map whose associated DI the
faster timescale recursion is expected to track is given by

Ĥ1(x, y) :� ∪μ∈D(1)(x,y)
∫
6(1)

H1,(x,y) s(1)
( )

μ ds(1)
( )

(16)

for every (x, y) ∈ Rdm where for every (x, y) ∈ Rd, the integrand H1,(x,y) denotes the slice as in Definition 7i of
the set-valued map H1 in Recursion (15b). As a consequence of the step-size Assumption A5 with respect to the
faster timescale (15b), the slower timescale recursion (15a) appears to be static and one would expect that the
family of DIs,

dx
dt

∈ Ĥ1(x, y0), (17)

obtained by fixing some y0 ∈ Rd2 to describe the behavior of the faster timescale recursion (15b). Before we
proceed, we need to ensure that for every y0 ∈ Rd2 , the DI (17) has solutions through every initial condition.
The next lemma states the map Ĥ1(·, y0) is a Marchaud map for every y0 ∈ Rd2 , which ensures that the DI (17)
has solutions.

Lemma 11. For every y0 ∈ Rd2 , the set-valued map Ĥ1(·, y0) : Rd1 → { subsets of Rd1} is a Marchaud map.

Proof of the above lemma is given in Section 4. The next assumption will ensure that for every y0 ∈ Rd2 , the
DI (17) has a global attractor to which one expects the faster timescale iterates {Xn}n≥0 to converge.
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Assumption A9. For every y0 ∈ Rd2 , the DI (17) admits a globally attracting set, Ay0 . The map λ : Rd2 →{subsets of Rd1}, where for every y ∈ Rd2 , λ(y) :� Ay is such that

i. for every y ∈ Rd2 , supx∈λ(y) ‖x‖ ≤ K(1 + ‖y‖), and
ii. for every y ∈ Rd2 , for every Rd2 -valued sequence, {yn}n≥1 converging to y ∈ Rd2 , and for every {xn ∈ λ(yn)}n≥0

converging to x ∈ Rd1 , we have x ∈ λ(y).
With respect to the slower timescale recursion (15a), the faster timescale recursion will appear to have

equilibrated. Further, the Markov noise terms average the set-valued drift function H2 with respect to the
stationary distributions. In what follows, we construct the set-valued map that the slower timescale recursion
is expected to track and which captures both the equilibration of the faster timescale and the averaging by the
Markov noise terms.

Before we proceed, recall that 3(Rd1 × 6(2)) denotes the set of probability measures on Rd1 × 6(2) with the
Prohorov topology. For any μ ∈ 3(Rd1 × 6(2)), μRd1 ∈ 3(Rd1) and μ6(2) ∈ 3(6(2)) denote the images of the prob-
ability measure μ under projections Rd1 × 6(2) → Rd1 and Rd1 × 6(2) → 6(2), respectively (for any A ∈ B(Rd1),
μRd1 (A) :�

∫
A×6(2) μ(dx, ds(2)), and similarly for every A ∈ B(6(2)), μ6(2) (A) :� ∫

Rd1×A μ(dx, ds(2))).
Define the map D : Rd2 → {subsets of 3(Rd1 × 6)} such that for every y ∈ Rd2 ,

D(y) :� μ∈3 Rd1 ×6(2)
( )

:supp μRd1

( ) ⊆ λ(y) and for every A ∈B 6(2)
( )

, μ6(2) (A)
{

�
∫
6(2)

Π(2) x,y, s(2)
( )

(A)μ dx,ds(2)
( )}

,

(18)
where supp(μRd1 ) denotes the support of measure μRd1 (i.e., supp(μRd1 ) ⊆ Rd1 is a closed set such that
μRd1 (supp(μRd1 )) � 1, and for every closed set A ⊆ Rd1 , with μRd1 (A) � 1, we have supp(μRd1 ) ⊆ A). A natural
question to ask is whether D(y) is nonempty for every y ∈ Rd2, and if it is nonempty, what properties the map D(·)
possesses and its relation to the stationary distributions of the Markov noise terms {S(2)n }n≥0. The lemma below
answers these questions.

Lemma 12. The map D(·) defined in (18) satisfies
i. for every y ∈ Rd2 , D(y) is nonempty, convex, and compact subset of 3(Rd1 × 6(2)),
ii. for every y ∈ Rd2 , for every Rd2 -valued sequence, {yn}n≥1 converging to y ∈ Rd2 , and for every 3(Rd1 × 6(2))-valued

sequence {μn ∈ D(yn)}n≥1 converging to μ ∈ 3(Rd1 × 6(2)), we have μ ∈ D(y).
iii. for every y ∈ Rd2 , c̄o({δx∗ ⊗ ν ∈ 3(Rd1 × 6(2)) : x∗ ∈ λ(y), ν ∈ D(2)(x∗, y)}) ⊆ D(y), where for any x ∈ Rd1 , δx

denotes the Dirac measure.

Proof.
i. Fix y ∈ Rd2 . Consider the product measure μ :� δx∗ ⊗ ν ∈ 3(Rd1 × 6(2)), where δx∗ ∈ 3(Rd1) denotes the Dirac

measure on some x∗ ∈ λ(y) (i.e., for every A ∈ B(Rd1), δx∗ (A) � 1 if x∗ ∈ A, δx∗ (A) � 0 otherwise) and ν ∈ 3(6(2))
is such that ν ∈ D(2)(x∗, y) (i.e., ν is a stationary measure of the Markov chain whose transition kernel is
given by Π(2)(x∗, y, ·)(·)). Then, μRd1 � δx∗ and because x∗ ∈ λ(y), supp(μRd1 ) � {x∗} ⊆ λ(y). Further, μ6(2) � ν

and for every A∈B(6(2)), ∫
Rd1×6(2)Π

(2)(x,y,s)(A)μ(dx,ds)�∫
6(2) [

∫
Rd1

Π(2)(x,y,s(2))(A)δx∗ (dx)]ν(ds(2))�
∫
6(2)Π

(2)(x∗,y,s(2)) ·
(A)ν(ds(2))�ν(A), where the last equality follows from the fact that ν ∈ D(2)(x∗, y). Therefore, δx∗ ⊗ ν ∈ D(y), and
hence D(y) �� ∅.

Let μ1, μ2 ∈ D(y) and α ∈ (0, 1). Consider the measure μ :� αμ1 + (1 − α)μ2 (i.e., for any A ∈ B(Rd1 × 6(2)), μ(A) �
αμ1(A) + (1 − α)μ2(A)). Clearly, μ ∈ 3(Rd1 × 6(2)), μRd1 � αμ1

Rd1
+ (1 − α)μ2

Rd1
, and μ6(2) � αμ1

6(2) + (1 − α)μ2
6(2) . For

i ∈ 1, 2, supp(μi
Rd1

) ⊆ λ(y), from which we have μi
Rd1

(λ(y)) � 1, and hence μRd1 (λ(y)) � αμ1
Rd1

(λ(y)) + (1 − α) ·
μ2
Rd1

(λ(y)) � 1. Therefore, supp(μRd1 ) ⊆ λ(y). For every A ∈ B(6(2)), ∫
Rd1×6(2) Π

(2)(x,y,s(2))(A)μ(dx,ds(2)) � α
∫
Rd1×6(2) ·

Π(2)(x,y,s(2))(A)μ1(dx,ds(2))+ (1−α)∫
Rd1×6(2) Π

(2)(x,y,s(2))(A)μ2(dx,ds(2)) �αμ1
6(2) (A)+ (1−α)μ2

6(2) (A) �μ6(2) (A). There-
fore, μ :� αμ1 + (1 − α)μ2 ∈ D(y), which gives us the convexity of D(y).

In order to show that D(y) is compact, we will first show that the set D(y) is a closed set. Consider {μn}n≥1 such
that for every n ≥ 1, μn ∈ D(y) converging to μ ∈ 3(Rd × 6(2)). Clearly, {μn

Rd1
}n≥1 converges to μRd1 in 3(Rd1).

Because for every n ≥ 1 and because supp(μn
Rd1

) ⊆ λ(y), we have μn(λ(y)) � 1 for every n ≥ 1. By Assumption A9,
λ(y) is a compact subset of Rd1 and by Borkar [12, theorem 2.1.1(iv)], we have lim supn→∞ μn

Rd1
(λ(y)) ≤ μRd1 (λ(y)).

Therefore, μRd1 (λ(y)) � 1, which gives us that supp(μRd1 ) ⊆ λ(y). Clearly, {μn
6(2) }n≥1 converges to μ6(2) in 3(6(2)).

Because 6(2) is a compact metric space, by Borkar [12, theorem 2.1.1(ii)], we know that for every f ∈ #(6(2),R),∫
6(2) f (s̃(2))μn

6(2) (ds̃(2)) →
∫
6(2) f (s̃(2))μ6(2) (ds̃(2)) as n → ∞. Let νn(ds̃2) :� ∫

Rd1×6(2) Π
(2)(x, y, s(2))(ds̃(2))μ(dx, ds(2)) ∈ 3(6(2))

for every n ≥ 1 and ν(ds̃(2)) :� ∫
Rd1×6(2) Π

(2)(x, y, s(2))(ds̃(2))μ(dx, ds(2)). It is easy to see that for any f ∈ #(6(2),R),
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∫
6(2) f (s̃(2))νn(ds̃(2)) �

∫
Rd1×6(2) [

∫
6(2) f (s̃(2))Π(2)(x, y, s(2))(ds̃(2))]μn(dx, ds(2)). By Assumption A4, (x, s(2)) → ∫

6(2) f (s̃(2))
Π(2)(x, y, s(2))(ds̃(2)) is continuous for any f ∈ #(6(2),R). Therefore, as μn → μ in 3(Rd1 × 6(2)), we have∫
Rd1×6(2) [

∫
6(2) f (s̃(2))Π(2)(x, y, s(2))(ds̃(2))]μn(dx, ds(2)) → ∫

Rd1×6(2) [
∫
6(2) f (s̃(2))Π(2)(x, y, s(2))(ds̃(2))]μ(dx, ds(2)) or

∫
6(2) f (s̃(2)) ·

νn(ds̃(2)) → ∫
6(2) f (s̃(2))ν(ds̃(2)) . Because for every n ≥ 1, μn ∈ D(y), we have

∫
6(2) f (s̃(2))μn

6(2) (ds̃(2)) �
∫
6(2) f (s̃(2))νn(ds̃(2))

for every f ∈ #(6(2),R). Thus, for every f ∈ #(6(2),R), we have
∫
6(2) f (s̃(2))μ6(2) (ds̃(2)) � ∫

6(2) f (s̃(2))ν(ds̃(2)). Therefore,
μ6(2) � ν, which establishes that μ ∈ D(y), and hence D(y) is closed. To establish the compactness of D(y), we show
that the set D(y) is relatively compact in 3(Rd1 × 6(2)). For any measure μ ∈ D(y), the support of the measure μ,
denoted by supp(μ) is contained in λ(y) × 6(2), which is a compact set independent of μ ∈ D(y). Thus, the family of
measures {μ : μ ∈ D(y)} is tight, and, by Prohorov’s theorem (see Borkar [12, theorem 2.3.1]), we have a set of
measures D(y) that is relatively compact in 3(Rd1 × 6(2)). Therefore, D(y) is closed and relatively compact.

ii. Let yn → y in Rd2 and μn ∈ D(yn) → μ in 3(Rd1 × 6(2)) as n → ∞. Let B1 denote the closed unit ball in Rd1 .
By Assumption A9, we have that the set-valued map y → λ(y) is u.s.c. Therefore, for every ε > 0, there exists
δ > 0(depending on ε and y) such that for every y′ ∈ Rd1 , satisfying ‖y′ − y‖ < δ, we have λ(y′) ⊆ λ(y) + εB1.
Because λ(y) is compact, λ(y) + εB1 is compact. Because yn → y, there exists N such that for every n ≥ N,
‖yn − y‖ < δ. Then, for all n ≥ N, λ(yn) ⊆ λ(y) + εB1. By the above, we have that lim supn→∞ μn

Rd1
(λ(y) + ε(B1)) � 1

for every ε > 0. Because μn → μ, we have that μn
5d1

→ μ5d1 in 3(5d1) and by Borkar [12, theorem 2.1.1(iv)],
we have that for every ε > 0, μRd1 (λ(y) + εB1) � 1. Because λ(y) is compact, λ(y) � ∩n≥1(λ(y) + 1

n B1) and
μRd1 (λ(y)) � limn→∞ μRd1 (λ(y) + 1

n B1) � 1. Therefore, supp(μRd1 ) ⊆ λ(y). Let νn(ds̃(2)) :� ∫
Rd1×6(2) Π

(2)(x, yn, s(2))(ds̃2) ·
μn(dx, ds(2)) ∈ 3(S2) and ν(ds̃(2)) :� ∫

Rd1×6(2) Π
(2)(x, y, s(2))(ds̃(2))μ(dx, ds(2)). Then, for any f ∈ #(6(2),R), for any

n ≥ 1,
∫
6(2) f (s̃(2))νn(s̃(2)) � ∫

Rd1×6(2) [
∫
6(2) f (s̃(2))Π(2)(x, yn, s(2))(ds̃(2))]μn(dx, ds(2)) and

∫
6(2) f (s̃(2))ν(s̃(2)) �

∫
Rd1×6(2) [

∫
6(2) ·

f (s̃(2))Π(2)(x,y,s(2))(ds̃(2))]μ(dx,ds(2)). Because for every n ≥ 1, μn ∈ D(yn), we have that supp(μn) ⊆ λ(yn) × S2.
By using the u.s.c. property of the map λ(·) and the fact that yn → y, we get that for any ε > 0, there exists N
such that for every n ≥ N, λ(yn) × 6(2) ⊆ (λ(y) + εB1) × 6(2). Therefore, for every f ∈ #(6(2),R), for every n ≥ N,∫
6(2) f (s̃(2))νn(ds̃(2)) �

∫
(λ(y)+εB1)×6(2) [

∫
6(2) f (s(2))Π(2)(x,yn,s(2))(ds̃(2))]μn(dx,ds(2)). By assumption (A4), the map (x,y,s(2))

→ ∫
6(2) f (s̃(2))Π(2)(x,y,s(2))(ds̃(2)) is continuous, and hence its restriction to the compact set (λ(y) + εB1) × C × 6(2)

is uniformly continuous, where C ⊆ Rd2 is a compact set such that for every n ≥ 1, yn ∈ C. By the above, we can
conclude that for any ε̃ > 0, there exists N1 such that for every n ≥ N1, for every (x, s(2)) ∈ (λ(y) + εB1) × 6(2),
| ∫

6(2) f (s̃(2))Π(2)(x, yn, s(2))(ds̃(2)) −
∫
6(2) f (s̃(2))Π(2)(x, y, s(2))(ds̃(2))| < ε̃. Therefore, for every f ∈ #(6(2),R), there exists

Ñ :� max{N,N1} such that for every n ≥ Ñ,∫
6(2)

f s̃(2)
( )

νn ds̃(2)
( )

−
∫
6(2)

f s̃(2)
( )

ν ds̃(2)
( )⃒⃒⃒

⃒
⃒⃒⃒
⃒

≤
ε̃ +

∫
Rd1×6(2)

∫
6(2)

f s̃(2)
( )

Π(2) x, y, s(2)
( )

ds̃(2)
( )[ ]

μn ds, ds(2)
( )

−
∫
6(2)

f s̃(2)
( )

ν ds̃(2)
( )⃒⃒⃒

⃒
⃒⃒⃒
⃒.

The second term in the R.H.S. of the above inequality goes to zero as n → ∞ (use the definition of ν(ds̃(2)),
Assumption A4 and Borkar [12, theorem 2.1.1(ii)]). Therefore, taking the limit in the above equation, we get
that for any f ∈ #(6(2),R), for every ε̃ > 0, limn→∞ | ∫

6(2) f (s̃(2))νn(ds̃(2)) −
∫
6(2) f (s̃(2))ν(ds̃(2))| ≤ ε̃. Hence, νn → ν in

3(6(2)) as n → ∞. Clearly, μn
6(2) → μ6(2) as n → ∞. Therefore, ν � μ6(2) , which gives us that μ ∈ D(y).

iii. Follows from part i of this lemma. □

Define the set-valued map Ĥ2 : R
d2 → {subsets of Rd1} such that for every y ∈ Rd2 ,

Ĥ2(y) :� ∪μ∈D(y)
∫
Rd1×6(2)

H2,y x, s(2)
( )

μ dx, ds(2)
( )

, (19)

where for every y ∈ Rd2 , H2,y denotes the slice as in Definition 7iv of the set-valued map H2. Because for every
y ∈ Rd2 , for every μ ∈ D(y), supp(μ) is compact, by Lemma 7iii, we know that the slices H2,y are μ-integrable for
every μ ∈ D(y). So the above set-valued map is well defined, and we will show later that the slower timescale
iterates track the DI given by

dy
dt

∈ Ĥ2(y). (20)
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The above DI is guaranteed to have solutions as a consequence of the lemma below.

Lemma 13. The set-valued map Ĥ2 : R
d2 → { subsets of Rd2} is a Marchaud map.

The proof of the above lemma is given in Section 4.

Remark 3. In order to understand the DI (20) better, we consider the cases where the map λ(·) is single-valued and
the case where Markov noise terms are absent. These special cases also highlight the fact that our results are a
significant generalization of the results by Ramaswamy and Bhatnagar [36] and Karmakar and Bhatnagar [21].

1. When the map λ(·) is single valued, for any μ ∈ D(y), because supp(μRd1 ) ⊆ λ(y), we have that μRd1 � δλ(y),
where δλ(y) ∈3(Rd1) denotes the Dirac measure at λ(y). Therefore, the measure μ � δλ(y) ⊗ μ6(2) . Because
μ ∈ D(y), we know that for every A ∈ B(6(2)), μ6(2) (A) � ∫

Rd1×6(2) Π
(2)(x, y, s(2))(A)μ(dx, ds(2)) � ∫

6(2) [
∫
Rd1

Π(2)·
(x, y, s(2))(A)δλ(y)(dx)] μ6(2) (ds(2)) � ∫

6(2) Π
(2)(λ(y), y, s(2))(A)μ6(2) (ds(2)). Thus, μ6(2) ∈ D(2)(λ(y), y), where D(2)(λ(y), y)

denotes the set of stationary measures of the Markov chain with transition kernel Π(2)(λ(y), y, ·)(·). Therefore,
for every y ∈ Rd2 ,

Ĥ2(y) � ∪μ∈D(y)
∫
Rd1×6(2)

H2,y x, s(2)
( )

μ dx, ds(2)
( )

� ∪ν∈D(2)(λ(y),y)
∫
6(2)

H2,(λ(y),y) s(2)
( )

ν ds(2)
( )

,

where H2,(λ(y),y) denotes the slice as in Definition 7i of the set-valued map H2. Therefore, DI (20) is nothing but the set-
valued analog of the slower timescale DI in Karmakar and Bhatnagar [21].

2. Suppose Markov noise terms are absent (for the analysis and definition of such a recursion, see
Ramaswamy and Bhatnagar [36]). Then, such a recursion can be rewritten in the form of Recursion (15), with
Markov noise terms taking values in a dummy state space 6(1) � 6(2) � {s∗} with transition laws Π(1)(x, y, s∗) �
Π(2)(x, y, s∗) � δs∗ for every (x, y) ∈ Rd. Then, it is easy to deduce that the stationary distribution maps D(1)(x, y) �
D(2)(x, y) � δs∗ for every (x, y) ∈ Rd. Then, for every y ∈ Rd2 , any μ ∈ D(y) is of the form μ � ν ⊗ δs∗ , where ν ∈
3(Rd1) with supp(ν) ⊆ λ(y). Then, for any y ∈ Rd2 ,

Ĥ2(y) � ∪μ∈D(y)
∫
Rd1×6(2)

H2,y x, s(2)
( )

μ dx, ds(2)
( )

� ∪ ν∈3(Rd1 ):
supp(ν)⊆λ(y)

∫
Rd1

H2,y(x, s∗)ν(dx) � c̄o ∪x∈λ(y)H2(x, y, s∗)( )
,

which is exactly the same slower timescale DI as in Ramaswamy and Bhatnagar [36].
Suppose now that the following holds in addition:

Assumption A10. DI (20) has a globally attracting set = ⊆ Rd2 , then, the main result of this paper states that for
almost every ω, as n → ∞,

Xn(ω)
Yn(ω)

( )
→ ∪y∈= λ(y) × y

{ }( )
.

4. Mean Fields and Their Properties
In this section, we prove that for every y ∈ Rd2 , the set-valued map Ĥ1(·, y) and the set-valued map Ĥ2(·) defined
in Equations (16) and (19), respectively, are Marchaud maps.

Recall that by Assumptions A1 and A2, the set-valued maps H1 and H2 are SAMs. For such set-valued maps,
by Lemma 2, we know that there exist sequences of continuous set-valued maps, denoted by {H(l)

1 }l≥1 and
{H(l)

2 }l≥1, which approximate H1 and H2, respectively. Further, by Lemma 3, these approximating maps admit a
continuous parametrization denoted by, h(l)1 and h(l)2 . Throughout this section, {H(l)

1 }l≥1, {H(l)
2 }, {h(l)1 }l≥1, and

{h(l)2 }l≥1 denote the maps as described above.
Similar to the definition of the maps Ĥ1 and Ĥ2, we define the maps obtained by averaging the set-valued

maps H(l)
1 and H(l)

2 for every l ≥ 1 with respect to measures given by the maps (x, y) → D(1)(x, y) and y → D(y).
Definition 9. Let the maps D(1) : Rd → {subsets of 3(6(1))} and D : Rd2 → {subsets of 3(Rd1 × 6(2))} be as in
Section 3. For every l ≥ 1,

i. for every (x, y) ∈ Rd, define Ĥ(l)
1 : Rd → {subsets of Rd1} such that,

Ĥ(l)
1 (x, y) :� ∪μ∈D(1)(x,y)

∫
6(1)

H(l)
1,(x,y) s(1)

( )
μ ds(1)
( )

,
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where H(l)
1,(x,y) denotes the slice (as in Definition 7ii) of the set-valued map H(l)

1 , and
ii. for every y∈Rd2 , define Ĥ(l)

2 : Rd2 → {subsets of Rd2} such that,

Ĥ(l)
2 (y) :� ∪μ∈D(y)

∫
5d1×6(2)

H(l)
2,y x, s(2)
( )

μ dx, ds(2)
( )

,

where H(l)
2,y denotes the slice (as in Definition 7v) of the set-valued map H(l)

2 .

In the lemma below, we prove that for every y ∈ Rd2 , the maps Ĥ(l)
1 (·, y) and the map Ĥ(l)

2 (·) are Marchaud
maps for every l ≥ 1.

Lemma 14. For every l ≥ 1,
i. the set-valued map Ĥ(l)

1 : Rd → {subsets of Rd1} is such that,
a. for every (x, y) ∈ Rd, Ĥ(l)

1 (x, y) is a nonempty, convex and compact subset of Rd1 , and
b. for K(l) > 0, where K(l) is as in Lemma 2, for every (x, y) ∈ Rd, supx′∈Ĥ(l)

1 (x,y) ‖x′‖ ≤ K(l)(1 + ‖x‖ + ‖y‖),
I for every (x, y) ∈ Rd, for Rd-valued sequence, {(xn, yn)}n≥1 converging to (x, y) ∈ Rd, and for every sequence {x′n ∈

Ĥ(l)
1 (xn, yn)} converging to x′ ∈ Rd1 , we have that x′ ∈ Ĥ(l)

1 (x, y).
ii. for every y ∈ Rd2 , the map Ĥ(l)

1 (·, y) is a Marchaud map,

iii. the map Ĥ(l)
2 (·) is a Marchaud map.

Proof. Fix l ≥ 1.
i. For every (x, y) ∈ Rd, by Lemma 6iv, H(l)

1,(x,y) is μ-integrable for every μ ∈ D(1)(x, y). Hence, for every

(x, y) ∈ Rd, Ĥ(l)
1 (x, y) is nonempty. Let x1, x2 ∈ Ĥ(l)

1 (x, y) and α ∈ (0, 1). Then by Lemma 8i, there exist ν1, ν2 ∈
3(6(1) ×U) such that for i ∈ {1, 2}, νi

6(1) ∈ D(1)(x, y) and xi � ∫
6(1)×U h(l)1,(x,y)(s(1),u)νi(ds(1), du), where U denotes

the closed unit ball in Rd1 . Then, αx1 + (1 − α)x2 � ∫
6(1)×U h(l)1,(x,y)(s(1), u)(αν1 + (1 − α)ν2)(ds(1), du). Clearly,

(αν1 + (1 − α)ν2)6(1) � αν1
6(1) + (1 − α)ν2

6(1) ∈ D(1)(x, y), where the last inclusion follows from the fact that D(1)(x, y)
is a convex subset of 3(6(1)). By Lemma 8i, we get that αx1 + (1 − α)x2 ∈ Ĥ(l)

1 (x, y). Therefore, Ĥ(l)
1 (x, y) is convex.

By Lemma 6ii, for every (x, y) ∈ Rd, the set-valued map H(l)
1,(x,y) is bounded by C(l)

(x,y) :� K(l)(1 + ‖x‖ + ‖y‖). Therefore, for
every f ∈S (H1,(x,y)), for every s(1) ∈ 6(1), ‖ f (s(1))‖ ≤ C(l)

(x,y). Thus, for every x
′ ∈ Ĥ(l)

1 (x, y), by definition, x′ � ∫
6(1) f (s(1))μ(ds(1))

for some f ∈ S (H(l)
1 ) and some μ ∈ D(1)(x, y). Therefore, for every x′ ∈ Ĥ(l)

1 (x, y), ‖x′‖ ≤ ∫
6(1) ‖ f (s(1))‖μ(ds(1)) ≤ C(l)

(x,y) �
K(l)(1 + ‖x‖ + ‖y‖).

As a consequence of the arguments in the preceding paragraph, for some (x, y) ∈ Rd, in order to show that Ĥ(l)
1 (x, y) is

compact, it is enough to show that it is closed. Consider a sequence {xn ∈ Ĥl
1(x, y)}n≥1 converging to x∗ ∈ Rd1 . Then, by

the definition of Ĥ(l)
1 (x, y) and by Lemma 8i, for every n ≥ 1, there exists νn ∈ 3(61 ×U) such that νn

6(1) ∈ D(1)(x, y) and
xn � ∫

6(1)×U h(l)1,(x,y)(s(1),u)νn(ds(1), du). Because 6(1) ×U is a compact metric space, 3(6(1) ×U) is compact, and hence there
exists a subsequence {nk}k≥1 such that {νnk}k≥1 converges to ν ∈ 3(6(1) ×U). Clearly, {νnk

6(1) }k≥1 converges to ν6(1) and by
Borkar [12, theorem 2.1.1(ii)], xnk � ∫

6(1)×U h(l)1,(x,y)(s(1), u)νnk (ds(1), du) →
∫
6(1)×U h(l)1,(x,y)(s(1), u)ν(ds(1), du) � x∗. Because for

every k, νnk
6(1) ∈ D(1)(x, y) and by the fact that D(1)(x, y) is closed, we get that ν6(1) ∈ D(1)(x, y). Therefore, x∗ �∫

6(1)×U h(l)1,(x,y)(s(1), du)ν(ds(1), du) and ν6(1) ∈ D(1)(x, y). Thus, x∗ ∈ Ĥ(l)
1 (x, y), which gives us that Ĥ(l)

1 (x, y), is closed.
Let {(xn, yn)}n≥1 be a sequence converging to (x, y) and let {x′n ∈ Ĥ(l)

1 }n≥1 be a sequence converging to x′. Then, by
Lemma 8i, for every n ≥ 1, there exists νn ∈3(6(1) ×U) such that νn

6(1) ∈D(1)(xn,yn) and x′n �
∫
6(1)×U h(l)1,(x,y)(s(1),u)νn(ds(1),du).

Because 6(1) ×U is a compact metric space, 3(6(1) ×U) is a compact metric space, and hence there exists a subse-
quence, say {nk}k≥1, such that {νnk}k≥1 converges to ν ∈ 3(6(1) ×U). Clearly, νnk

6(1) → ν6(1) in 3(6(1)) and by the closed
graph property of the map (x, y) → D(1)(x, y), we have that ν6(1) ∈ D(1)(x, y). Using the continuity of the map h(l)1 (·), it is easy
to show that limk→∞ sup(s(1) ,u)∈6(1)×U ‖h(l)1,(xnk ,ynk )(s

(1),u) − h(l)1,(x,y)(s(1), u)‖ � 0. Then, ‖x′ −∫
6(1)×Uh

(l)
1,(x,y)(s(1),u)ν(ds(1),du)‖≤‖x′−∫

6(1)×Uh
(l)
1,(xnk ,ynk )(s

(1),u)νnk (ds(1),du)‖+∫
6(1)×U ‖h(l)1,(xnk ,ynk )(s

(1),u)−h(l)1,(x,y)(s(1),u)‖νnk (ds(1),du)+‖∫
6(1)×Uh

(l)
1,(x,y)(s(1),u)νnk (ds(1),du)−∫

6(1)×Uh
(l)
1,(x,y)(s(1),u)ν(ds(1),du)‖. Now use Borkar [12, theorem 2.1.1(ii)] in the above inequality to obtain limk→∞ ‖x′ −∫

6(1)×U h(l)1,(x,y)(s(1), u)ν(ds(1), du)‖ � 0. Then Lemma 8i gives us that x′ ∈ Ĥ(l)
1 (x, y).

ii. Follows from part i of this lemma.
iii. The proof’ is similar to part i of this lemma with minor modifications. The first modification is the use of

Lemma 8ii instead of Lemma 8i. For example, in order to show that Ĥ(l)
2 (y) is closed for some y ∈ Rd2 , fix
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sequence {y′n}n≥1 ⊆ Ĥ(l)
2 (y) converging to y′. Use Lemma 8ii and the definition of Ĥ(l)

2 (y), to obtain
{νn}n≥1 ⊆ 3(Rd1 × 6(2) ×U), where U denotes the closed unit ball in Rd2, and the sequence {νn}n≥1 is such that for
every n ≥ 1, νn

Rd1×6(2) ∈ D(y) and y′n � ∫
Rd1×6(2)×U h(l)2,y(x, s(2),u)νn(dx, ds(2), du). By definition of D(y), for every n ≥ 1,

supp(νn
Rd1×6(2) ) ⊆ λ(y) × 6(2) and hence supp(νn) ⊆ λ(y) × 6(2) ×U, which is a compact subset of Rd1 × 6(2) ×U.

Now by Prohorov’s theorem, the sequence {νn}n≥1 is a relatively compact subset of 3(Rd1 × 6(2) ×U) and hence
has a convergent subsequence. By Lemma 12i, D(y) is compact, and hence every limit point of {νn

Rd1×6(2) } is
in D(y). The rest of the argument is same as the corresponding in part (i) of this lemma.

In order to show that Ĥ(l)
2 (·) has a closed graph, fix sequences {yn}n≥1 converging to y and {y′n ∈ Ĥ(l)

2 (yn)}n≥1
converging to y′. Use Lemma 8ii, to obtain {νn}n≥1 ⊆ 3(Rd1 × 6(2) ×U) such that for every n ≥ 1, νn

Rd1×6(2) ∈ D(yn)
and y′n :� ∫

Rd1×6(2)×U h(l)2,y(x, s(2),u)νn(dx, ds(2), du). Then, for every n ≥ 1, supp(νn) ⊆ λ(yn) × 6(2) ×U. By Assump-
tion A9, for any δ > 0, the set L :� {x ∈ λ(ỹ) : ‖ỹ − y‖ ≤ δ} is a compact subset of Rd1 . Therefore, there exists N large
such that for every n ≥ N, supp(νn) ⊆ L × 6(2) ×U. By Prohorov’s theorem, the sequence of measures {νn}n≥N is
tight and has a convergent subsequence. Clearly, by Lemma 12ii, every limit point of {νn

Rd1×6(2) }n≥N is in D(y). Now
the rest of the argument is the same as the corresponding argument in part i of this lemma. □

By Lemma 2, we know that for every l ≥ 1, for every (x, y) ∈ Rd, H1(x, y) ⊆ H(l+1)
1 (x, y) ⊆ H(l)

1 (x, y) (similarly,
H2(x, y) ⊆ H(l+1)

2 (x, y) ⊆ H(l)
2 (x, y)). The next lemma states that the above is true for Ĥi and Ĥ(l)

i as well for every
i ∈ {1, 2}.
Lemma 15.

i. For every l ≥ 1, for every (x, y) ∈ Rd, Ĥ1(x, y) ⊆ Ĥ(l+1)
1 (x, y) ⊆ Ĥ(l)

1 (x, y).
ii. For every l ≥ 1, for y ∈ Rd2 , Ĥ2(y) ⊆ Ĥ(l+1)

2 (y) ⊆ Ĥ(l)
2 (y).

iii. For every (x, y) ∈ Rd, ∩l≥1Ĥ(l)
1 (x, y) � ∪μ∈D(1)(x,y) ∩l≥1

∫
6(1) H

(l)
1,(x,y)(s(1))μ(ds(1)).

iv. For every y ∈ Rd2 , ∩l≥1Ĥ(l)
2 (y) � ∪μ∈D(y) ∩l≥1

∫
Rd2×6(2) H

(l)
2,y(x, s(2))μ(dx, ds(2)).

v. For every (x, y) ∈ Rd, Ĥ1(x, y) � ∩l≥1Ĥ(l)
1 (x, y).

vi. For every y ∈ Rd2 , Ĥ2(y) � ∩l≥1Ĥ(l)
2 (y).

Proof. The proofs of parts i and ii follow directly from the definition of Ĥi, Ĥ
(l)
i for every l ≥ 1 and the fact that

for every i ∈ {1, 2}, Hi(x, y) ⊆ H(l+1)
i (x, y) ⊆ H(l)

i (x, y) for every (x, y) ∈ Rd. The proof of part iii is similar to part iv,
and we present the proof of part iv below (the proof of part iii is in fact the same as that of Yaji and Bhatnagar
[41, lemma 4.4(ii)]).

iv. Fix y∈Rd2 . Then, by definition of Ĥ(l)
2 (y), we have that for every l ≥ 1, for any μ∈D(y), ∫

Rd1×6(2) H
(l)
2,y(x,s(2)) ·

μ(dx,ds(2)) ⊆Ĥ(l)
2 (y). Therefore, ∪μ∈D(y) ∩l≥1

∫
Rd1×6(2) H

(l)
2,y(x, s(2))μ(dx, ds(2)) ⊆ ∩l≥1Ĥ(l)

2 (y).
Let y′ ∈ ∩l≥1Ĥ(l)

2 (y). Then, for every l ≥ 1, there exists μl ∈ D(y) such that y′ ∈ ∫
Rd1×6(2) H

(l)
2,y(x, s(2))μl(dx, ds(2)).

Because {μl}l≥1 is a subset of D(y), for every l ≥ 1, supp(μl) ⊆ λ(y) × 6(2). Hence, the sequence of probability
measures {μl}l≥1 is tight and, by Prohorov’s theorem, has a limit, say μ∗ ∈ 3(Rd1 × 6(2)). Let {lk}k≥1 be a subsequence
such that μlk → μ∗ as k → ∞, and, by Lemma 12i, we know thatD(y) is compact, which gives us μ∗ ∈ D(y). Because
for every l ≥ 1, for every k such that lk ≥ l,S (H(lk)

2,y ) ⊆ S (H(l)
2,y), we get that for every l ≥ 1, for every k such that lk ≥ l,∫

Rd1×6(2) H
(l)
2,y(x, s(2))μlk (dx, ds(2)) � y′. For every l ≥ 1, by Lemma 8ii, we know that for every k such that lk ≥ l, there

exists ν(l,lk) ∈ 3(Rd1 × 6(2) ×U) (U denotes the closed unit ball in Rd2 ) such that y′ � ∫
Rd1×6(2)×U h(l)2,y(x, s(2),u) ·

ν(l,lk)(dx, ds(2), du) and ν(l,lk)
Rd1×6(2) � μlk . Further, for every l ≥ 1, for every k such that lk ≥ l, supp(ν(l,lk)) ⊆ λ(y) × 6(2) ×U,

and hence {ν(l,lk)}k:lk≥l is tight and, by Prohorov’s theorem, has a convergent subsequence. For every l ≥ 1, let ν(l)

denote a limit point of the sequence {ν(l,lk)}k:lk≥l. Because for every l ≥ 1, {ν(l,lk)
Rd1×6(2) � μlk}k:lk≥l and μlk → μ∗ as k → ∞,

we have that ν(l)
Rd1×6(2) � μ∗ ∈ D(y). By Borkar [12, theorem 2.1.1(ii)], for every l ≥ 1, y′ � ∫

Rd1×6(2)×U h(l)2,y(x, s(2),u) ·
ν(l)(dx, ds(2), du), and hence by Lemma 8ii, y′ ∈ ∫

Rd1×6(2) H
(l)
2,y(x, s(2))μ∗(dx, ds(2)), where μ∗ ∈ D(y). Therefore, there

exists μ∗ ∈ D(y) such that for every l ≥ 1, y′ ∈ ∫
Rd1×6(2) H

(l)
2,y(x, s(2))μ∗(dx, ds(2)). Hence, y′ ∈ ∪μ∈D(y) ∩l≥1

∫
Rd1×6(2) ·

H(l)
2,y(x, s(2))μ(dx, ds(2)).
The proof of part v is similar to the proof of part vi, and we present a proof of part vi below (the proof of part v is

exactly the same as that of Yaji and Bhatnagar [41, lemma 4.4(iii)]).
vi. From part ii of this lemma, we have that, for every y ∈ Rd2 , Ĥ2(y) ⊆ ∩l≥1Ĥ(l)

2 (y).
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Fix y ∈ Rd2 and μ ∈ D(y). Let y′ ∈ ∩l≥1
∫
Rd1×6(2) H

(l)
2,y(x, s(2))μ(dx, ds(2)). Then, for every l ≥ 1, there exists f (l) ∈

S (H(l)
2,y) such that y′ � ∫

Rd1×6(2) f (l)(x, s(2))μ(dx, ds(2)). Let d(ỹ,A) :� inf{‖ỹ − z‖ : z ∈ A} for every ỹ ∈ Rd2 and for every
A ⊆ Rd2 compact. By Lemma 5, we have that

∫
Rd1×6(2) H2,y(x, s(2))μ(dx, ds(2)) is compact and convex. Then,

d y′,
∫
Rd1×6(2)

H2,y x, s(2)
( )

μ dx, ds(2)
( )( )

� inf y′ − z
⃦⃦ ⃦⃦

: z ∈
∫
Rd1×6(2)

H2,y x, s(2)
( )

μ dx, ds(2)
( ){ }

� inf
f∈S (H2,y)

y′ −
∫
Rd1×6(2)

f x, s(2)
( )

μ dx, ds(2)
( )⃦⃦⃦

⃦
⃦⃦⃦
⃦

� inf
f∈S (H2,y)

∫
Rd1×6(2)

f (l) x, s(2)
( )

− f x, s(2)
( )( )

μ dx, ds(2)
( )⃦⃦⃦

⃦
⃦⃦⃦
⃦

≤ inf
f∈S (H2,y)

∫
Rd1×6(2)

f (l) x, s(2)
( )

− f x, s(2)
( )⃦⃦⃦ ⃦⃦⃦

μ dx, ds(2)
( )

�
∫
Rd1×6(2)

inf f (l) x, s(2)
( )

− ỹ
⃦⃦⃦ ⃦⃦⃦

: ỹ ∈ H2,y x, s(2)
( ){ }

μ dx, ds(2)
( )

,

where the last equality follows from Li et al. [27, lemma 1.3.12]. By Yaji and Bhatnagar [41, lemma 3.7], we
know that for every l ≥ 1, the map (x, s(2)) → d( f (l)(x, s(2)),H2,y(x, s(2))) is measurable, and from the last equality,
it follows that for every l ≥ 1,

d y′,
∫
Rd1×6(2)

H2,y x, s(2)
( )

μ dx, ds(2)
( )( )

≤
∫
Rd1×6(2)

d f (l) x, s(2)
( )

,H2,y x, s(2)
( )( )

μ dx, ds(2)
( )

.

By Observation (2) stated after Lemma 2, we have that for every (x, s(2)) ∈ Rd2 × 6(2), liml→∞ d( f (l)(x, s(2)),
H2,y(x, s(2))) � 0. Because μ ∈ D(y), supp(μ) ⊆ λ(y) × 6(2), for every l ≥ 1,∫

Rd1×6(2)
d f (l) x, s(2)

( )
,H2,y x, s(2)

( )( )
μ dx, ds(2)
( )

�
∫
λ(y)×6(2)

d f (l) x, s(2)
( )

,H2,y x, s(2)
( )

μ dx, ds(2)
( )( )

.

Because λ(y) is compact, there exists M > 0 such that for every x ∈λ(y), ‖x‖ ≤ M. By Lemma 7ii, Assumption A2
and Observation (1) stated below Lemma 2, we have that for every l ≥ 1, for every (x, s(2)) ∈ λ(y) × 6(2),
d( f (l)(x, s(2)), H2,y(x, s(2))) ≤ (K(l)

y + K)(1 + ‖x‖) ≤ (max{K̃, K̃‖y‖} + K)(1 +M). By the bounded convergence theo-
rem, we have

d y′,
∫
Rd1×6(2)

H2,y x, s(2)
( )

μ dx, ds(2)
( )( )

≤ lim
l→∞

∫
Rd1×6(2)

d f (l) x, s(2)
( )

,H2,y x, s(2)
( )( )

μ dx, ds(2)
( )

� 0.

Therefore, d(y′, ∫
Rd1×6(2) H2,y(x, s(2))μ(dx, ds(2))) � 0, and by Lemma 5, we know that

∫
Rd1×6(2) H2,y(x, s(2))μ(dx, ds(2))

is a closed subset of Rd2 . Hence, y′ ∈ ∫
Rd1×6(2) H2,y(x, s(2))μ(dx, ds(2)) .

From the arguments in the preceding paragraph, we have that for every y ∈ Rd2 , for every μ ∈ D(y), ∩l≥1
∫
Rd1×6(2) ·

H(l)
2,y(x, s(2))μ(dx, ds(2)) ⊆

∫
Rd1×6(2) H2,y(x, s(2))μ(dx, ds(2)). Thus, for every y ∈ Rd2 ,

∪μ∈D(y) ∩l≥1
∫
Rd1×6(2)

H(l)
2,y x, s(2)
( )

μ dx, ds(2)
( )

⊆ ∪μ∈D(y)
∫
Rd1×6(2)

H2,y x, s(2)
( )

μ dx, ds(2)
( )

� Ĥ2(y).

By part iv of this lemma, we get that for every y ∈ Rd2 , ∩l≥1Ĥ(l)
2 (y) ⊆ Ĥ2(y). □

Lemma 16. The set-valued map Ĥ1 : R
d → {subsets of Rd1} as defined in Equation (16) is such that,

i. for every (x, y) ∈ Rd, Ĥ1(x, y) is a nonempty, convex, and compact subset of Rd1 ,
ii. there exists K > 0 (same as in Assumption A1ii such that for every (x, y) ∈ Rd, supx′∈Ĥ1(x,y) ‖x′‖ ≤

K(1 + ‖x‖ + ‖y‖), and
iii. for every (x,y) ∈Rd, for every Rd-valued sequence, {(xn,yn)}n≥1 converging to (x,y), and for every {x′n ∈ Ĥ1

(xn, yn)}n≥1 converging to x′, we have x′ ∈ Ĥ1(x, y).
Proof.

i. Fix (x, y) ∈ Rd. By Lemma 6iii, H1,(x,y) is μ-integrable for every μ ∈ D(1)(x, y). Hence, Ĥ1(x, y) is nonempty.
For every l ≥ 1, by Lemma 14i(a), we know that Ĥ(l)

1 (x, y) is convex and compact subset of Rd1 . By Lemma 15v,
we have that Ĥ1(x, y) � ∩l≥1Ĥ(l)

1 (x, y), and hence Ĥ1(x, y) is convex and compact.
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ii. Fix (x,y) ∈Rd. For any x′ ∈Ĥ1(x,y), there exists μ∈D(1)(x,y) and f ∈S (H1,(x,y)) such that x′ � ∫
6(1) f (s(1)) ·

μ(ds(1)). By Lemma 6i, we know that for every s(1) ∈ 6(1), ‖ f (s(1))‖ ≤ C(x,y) � K(1 + ‖x‖ + ‖y‖). Therefore, ‖x′‖ �
‖ ∫

6(1) f (s(1)) μ(ds(1))‖ ≤ C(x,y) � K(1 + ‖x‖ + ‖y‖).
iii. Let {(xn, yn)}n≥1 be a sequence converging to (x, y) and {x′n ∈ Ĥ1(xn, yn)}n≥1 be a sequence converging to x′.

Then, by Lemma 15v, we have that for every l ≥ 1, for every n ≥ 1, x′n ∈ Ĥ(l)
1 (xn, yn). By Lemma 14i(c), we have

that for every l ≥ 1, x′ ∈ Ĥ(l)
1 (x, y). Thus by Lemma 15v, we have x′ ∈ Ĥ1(x, y). □

Lemma 11 is an immediate consequence of the above lemma. Similarly, the proof of Lemma 13 follows from
the fact that {Ĥ(l)

2 }l≥1 are Marchaud maps (see Lemma 14iii), which approximate Ĥ2 (see Lemma 15vi and the
linear growth property of the map λ(·) (i.e., Assumption A9i).

5. Recursion Analysis
In this section, we present the analysis of Recursion (15). The analysis comprises two parts.

The first part deals with the analysis of the faster timescale recursion, where we show that the faster
timescale iterates {Xn}n≥1 converge almost surely to λ(y) (as in Assumption A9) for some y ∈ Rd2 .

The second part deals with the slower timescale recursion analysis, where we show that the slower timescale
iterates {Yn}n≥1 track the flow of DI (20).

Throughout this section, we assume that Assumptions A1–A9 are satisfied.

5.1. Faster Timescale Recursion Analysis
For every ω ∈ Ω, for every n ≥ 0, the two-timescale recursion (15a and 15b) can be written as

Yn+1(ω) − Yn(ω) − b(n)M(2)
n+1(ω) � b(n)V2

n(ω), (21a)
Xn+1(ω) − Xn(ω) − a(n)M(1)

n+1(ω) � a(n)V1
n(ω), (21b)

where for every n ≥ 0, V1
n and V2

n are such that for every ω ∈ Ω,

V1
n(ω) ∈ H1 Xn(ω),Yn(ω),S(1)n (ω)

( )
,

V2
n(ω) ∈ H2 Xn(ω),Yn(ω),S(2)n (ω)

( )
.

Recursion (21) can be rewritten as

Yn+1(ω) − Yn(ω) � a(n) b(n)
a(n)V

2
n(ω) +

b(n)
a(n)M

(2)
n+1(ω)

( )
,

Xn+1(ω) − Xn(ω) � a(n) V1
n(ω) +M(1)

n+1(ω)
( )

for every ω ∈ Ω and for every n ≥ 0. The above can be now written in the form of the single timescale recursion
(i.e., (13)):

Zn+1 − Zn − a(n)Mn+1 ∈ a(n)F Zn, S(1)n

( )
, (23)

where
1. for every n ≥ 0, Zn � (Xn,Yn),
2. for n ≥ 0, Mn+1 � (M(1)

n+1,
b(n)
a(n) (V2

n +M(2)
n+1)),

3. F : Rd × 6(1) → {subsets of Rd} such that for every (x, y, s(1)) ∈ Rd × 6(1), F(x, y, s(1)) � (H1(x, y, s(1)), 0).
We now show that the quantities defined above satisfy the assumptions associated with the single timescale

recursionas inSection 2.4. Clearly, by Assumption A5, the step-size sequence {a(n)}n≥0 satisfies Assumption S(A3),
and by Assumption A3, the Markov noise terms, {S(1)n }n≥0 satisfy Assumption S(A2). As a consequence of
the stability Assumption A8, we have that P(supn≥0 ‖Zn :� (Xn,Yn)‖ < ∞) � 1, and hence Assumption S(A5)
is satisfied.

Consider the set-valued map F defined above. Clearly, by Assumption A1i, for every (x, y, s(1)) ∈ Rd × 6(1),
F(x, y, s(1)) is a nonempty, convex, and compact subset of Rd. Further, by Assumption A1ii, we have that for
every (x, y, s(1)) ∈ Rd × 6(1), sup(x′,y′)∈F(x,y,s(1)) ‖(x′,y′)‖� supx′∈H1(x,y,s(1)) ‖x′‖ ≤K(1+‖x‖+‖y‖) ≤max{K,KC}(1+‖(x,y)‖),
where C > 0 is such that ‖x‖ + ‖y‖ ≤ C‖(x, y)‖ for every (x, y) ∈ Rd (see Kumaresan [24, theorem 4.3.26]).
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By Assumption A1iii, the map H1 has a closed graph, and hence the map F also has a closed graph. Therefore,
the set-valued map satisfies Assumption S(A1).

Recall that for every T > 0, for every n ≥ 0, τ1(n,T) :� min{m > n :
∑m−1

k�n a(k) ≥ T}. Let
Ω1 :� ω ∈ Ω : Assumptions A6, A7, and A8 hold

{ }
. (24)

Clearly, P(Ω1) � 1. Let ω ∈ Ω1 and fix T > 0. For any n ≥ 0,

sup
n≤k≤τ1(n,T)

∑k
m�n

a(m)Mm+1(ω)
⃦⃦⃦
⃦⃦

⃦⃦⃦
⃦⃦ ≤ sup

n≤k≤τ1(n,T)

∑k
m�n

a(m)M(1)
m+1(ω)

⃦⃦⃦
⃦⃦

⃦⃦⃦
⃦⃦ + sup

n≤k≤τ1(n,T)

∑k
m�n

a(m) b(m)
a(m) V2

n(ω) +M(2)
m+1(ω)

( )⃦⃦⃦
⃦⃦

⃦⃦⃦
⃦⃦.

By Assumption A8, for every ω ∈ Ω1, there exists r > 0 such that supn≥0(‖Xn(ω)‖ + ‖Yn(ω)‖) ≤ r. Because
for every n ≥ 0, for every ω ∈ Ω1, V2

n(ω) ∈ H2(Xn(ω),Yn(ω),S(2)n (ω)), and by Assumption A2ii, we have that
‖V2

n(ω)‖ ≤ K(1 + ‖Xn(ω)‖ + ‖Yn(ω)‖) ≤ K(1 + r) �: R < ∞. Further, by Assumption A5iii, for every 0 < ε < T,
there exists N such that for every n ≥ N, b(n) ≤ ε

T+1 a(n). Therefore, for every n ≥ N, for every m > n,∑m−1
k�n b(k) ≤ ε

T+1
∑m−1

k�n a(k). Thus, for every n ≥ N,
∑τ1(n,T)−1

k�n b(k) ≤ ε and τ1(n,T) ≤ τ2(n,T). Therefore, for every
0 < ε < T, for every n ≥ N,

sup
n≤k≤τ1(n,T)

∑k
m�n

a(m)Mm+1(ω)
⃦⃦⃦
⃦⃦

⃦⃦⃦
⃦⃦ ≤ sup

n≤k≤τ1(n,T)

∑k
m�n

a(m)M(1)
m+1(ω)

⃦⃦⃦
⃦⃦

⃦⃦⃦
⃦⃦ + εR + sup

n≤k≤τ2(n,T)

∑k
m�n

b(m)M(2)
m+1(ω)

⃦⃦⃦
⃦⃦

⃦⃦⃦
⃦⃦.

Taking the limit in the above equation and using Assumptions A6 and A7 give us that for every 0 < ε < T,

lim
n→∞ sup

n≤k≤τ1(n,T)

∑k
m�n

a(m)Mm+1(ω)
⃦⃦⃦
⃦⃦

⃦⃦⃦
⃦⃦ ≤ Rε.

Therefore, for every ω ∈ Ω1, for every T > 0, limn→∞ supn≤k≤τ1(n,T) ‖∑k
m�n a(m)Mm+1(ω)‖ � 0. Thus the additive

noise terms {Mn}n≥1 satisfy Assumption SA4.
Therefore, quantities in Recursion (23) satisfy Assumptions SA1–SA5, and we apply the main result of the

single timescale recursion (see Theorem 2iii) to conclude the following.

Lemma 17. Under Assumptions A1–A8, for almost every ω, there exists a nonempty compact set L ⊆ Rd (depending on ω)
such that

i. (Xn(ω),Yn(ω)) → L as n → ∞, where {(Xn,Yn)}n≥0 is as in Recursion (15).
ii. the set L is internally chain transitive for the flow of the DI,

dx
dt
dy
dt

( )
∈ Ĥ1(x, y)

0

( )
. (25)

The set-valued map associated with the DI (25) is clearly a Marchaud map (use Lemma 16). Further, any
solution (x(·), y(·)) of DI (25) is such that for every t ∈ R, y(t) � y(0) and x(·) is a solution to DI (17) with
y0 � y(0).

Fix ω ∈ Ω such that Lemma 17 holds. Let L ⊆ Rd be as in Lemma 17. Let

A :� (x, y) ∈ Rd : x ∈ λ(y), y ∈ Rd2
{ }

, (26)
where for every y ∈ Rd2 , λ(y) is as in Assumption A9. Because L is internally chain transitive for the flow of
DI (25), by Benaı̈m et al. [4, lemma 3.5], we know that it is invariant. Let (x∗, y∗) ∈ L and (x(·),y(·)) be a solution
to DI (25) with initial condition (x∗, y∗) and for all t ∈ R, (x(t), y(t)) ∈ L. Then, for every t ∈ R, y(t) � y∗ and x(·) is
a solution of DI (17) with y0 � y∗. By Assumption (A9), there exists a compact subset λ(y∗) ⊆ Rd1 , which is a
globally attracting set for the flow of DI (17) with y0 � y∗. By definition of a globally attracting set, we have that
∩t≥0{x(q + t) : q ≥ 0} ⊆ λ(y∗). Therefore, (x(t),y(t)) → λ(y∗) × {y∗} ⊆ A, and because for every t ∈ R, (x(t),y(t)) ∈ L,
we get that L ∩ A �� ∅. In fact, for any closed set C ⊆ Rd invariant for the flow of DI (25), the above argument
gives us that C ∩ A �� ∅. If we are able to show that L ∩ A � L, then, by Lemma 17i, we obtain that
(Xn(ω),Yn(ω)) → L ⊆ A as n → ∞. In this regard, we need to impose the following assumption.
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Assumption A11. For any compact set C ⊆ Rd, invariant for the flow of DI (25), for any open neighborhood 2 of
C ∩ A, there exists an open neighborhood 2′ of C ∩ A such that

ΦC(2′ ∩ C, [0,∞)) ⊆ 2 ∩ C,

where ΦC : C × R → {subsets of Rd} denotes the flow of DI (25) restricted to the invariant set C (see Section 2.3
for definition).

Remark 4. The above assumption is a weaker form of Assumption A1 imposed by Borkar [11, chapter 6] (that
implies Assumption A11 above). The above assumption is basically the Lyapunov stability condition (see Benaı̈m
et al. [4, definition IX(ii)]) for the flow restricted to the invariant set C. We will see that in the application studied
later, the above assumption is satisfied.

Lemma 18. Under Assumptions A1–A9 and A11, for almost every ω, L ⊆ Rd as in Lemma 17 is such that

L ⊆ (x, y) ∈ Rd : x ∈ λ(y), y ∈ Rd2
{ }

.

Therefore, (Xn(ω),Yn(ω))→L⊆ {(x,y) ∈Rd : x∈λ(y), y ∈Rd2} as n → ∞, where {(Xn,Yn)}n≥0 is as in Recursion (15).

Proof. We present a brief outline here to highlight where Assumption A11 is used.
Let A ⊆ Rd be as in Equation (26). Fix ω ∈ Ω and obtain L as in Lemma 17. We know that L is internally chain

transitive for the flow of DI (25), and because it is also invariant, L ∩ A �� ∅. By Assumption A9, for every (x∗, y∗) ∈ L,
ωΦL((x∗, y∗)) ⊆ L ∩ A. Thus, for every (x∗, y∗) ∈ L, for every solution of DI (25), (x(·), y(·)) such that (x(0),
y(0)) � (x∗, y∗), and for every t ∈ R, (x(t),y(t)) ∈ L, for every open neighborhood 2 of L ∩ A, there exists t > 0 such
that (x(t), y(t)) ∈ 2 ∩ L. By Benaı̈m et al. [4, lemma 3.13], we get that for every open neighborhood 2 of L ∩ A, there
exists T > 0, for every (x∗, y∗) ∈ L, for every solution of DI (25), (x(·), y(·)) such that (x(0), y(0)) � (x∗, y∗) and for
every t ∈ R, (x(t),y(t)) ∈ L, for some t ∈ [0,T], (x(t), y(t)) ∈ 2 ∩ L.

Fix ε > 0. Then, by Assumption A11, there exists an open neighborhood of L ∩ A, 2 such that ΦL(2 ∩ L, [0,∞)) ⊆
Nε(L ∩ A) ∩ L. From arguments in the previous paragraph, we can find T > 0 such that for every (x∗, y∗) ∈ L, for
every solution of DI (25) with (x(0), y(0)) � (x∗, y∗) and (x(t),y(t)) ∈ L for every t ∈ R, there exists t ∈ [0,T] such that
(x(t),y(t)) ∈ 2 ∩ L. Therefore, ΦL(L, [T,∞)) ⊆ Nε(L ∩ A) ∩ L. Thus, L ∩ A is an attracting set for ΦL. Now the claim
follows from Benaı̈m et al. [4, proposition 3.20]. □

5.2. Slower Timescale Recursion Analysis
Before we present the analysis of slower timescale recursion, we present some preliminaries where we will
define various quantities needed later. Throughout this section, let {H(l)

2 }l≥1 and {h(l)2 }l≥1 denote maps as in
Section 4. Further, we will allow Assumptions A1‒A9 and A11 to be satisfied. The slower timescale recursion
analysis is similar to the analysis of single timescale inclusion by Yaji and Bhatnagar [41] with minor
modifications arising because of the presence of faster timescale iterates. Throughout this section, U denotes
the closed unit ball in Rd2 , and Br denotes the closed ball of radius r > 0 in Rd1 centered on the origin.

5.2.1. Preliminaries. Let ts(0) :� 0 and for every n ≥ 1, ts(n) :� ∑n−1
m�0 b(m). Define Ȳ : Ω × [0,∞) → Rd2 such that

for every (ω, t) ∈ Ω × [0,∞),
Ȳ(ω, t) :� t − ts(n)

ts(n + 1) − ts(n)
( )

Yn+1(ω) + ts(n + 1) − t
ts(n + 1) − ts(n)
( )

Yn(ω),

where n is such that t ∈ [ts(n), ts(n + 1)).
Consider the slower timescale recursion (15a) given by

Yn+1 − Yn − b(n)M(2)
n+1 ∈ b(n)H2 Xn,Yn,S(2)n

( )
for every n ≥ 0. By Lemma 2, we have that for every l ≥ 1, for every n ≥ 0, H2(Xn,Yn,S

(2)
n ) ⊆ H(l)

2 (Xn,Yn, S
(2)
n ).

Therefore, for every l ≥ 1, the following recursion follows from the above (i.e., (15a)):

Yn+1 − Yn − b(n)M(2)
n+1 ∈ b(n)H(l)

2 Xn,Yn,S(2)n

( )
.

By Lemma 3, we know that for every l ≥ 1, the set-valued map H(l)
2 admits a continuous single-valued pa-

rametrization h(l)2 . The next lemma allows us to write the slower timescale inclusion in terms of the pa-
rametrization of H(l)

2 , and the result follows from Yaji and Bhatnagar [41, lemma 6.1].
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Lemma 19. For every l ≥ 1, for every n ≥ 0, there exists a U-valued random variable on Ω, U(l)
n , such that for every ω ∈ Ω,

Yn+1(ω) − Yn(ω) − b(n)M(2)
n+1(ω) � b(n)h(l)2 Xn(ω),Yn(ω),S(2)n (ω),U(l)

n (ω)
( )

.

For every l ≥ 1, define Γ(l) : Ω × [0,∞) → 3(U × Rd1 × 6(2)) such that for every (ω, t) ∈ Ω × [0,∞),
Γ(l)(ω, t) :� δU(l)

n (ω) ⊗ δXn(ω) ⊗ δS(2)n (ω), (27)
where δU(l)

n (ω) ∈ 3(U) denotes the Dirac measure at U(l)
n (ω) ∈ U (for every A ∈ B(U), δU(l)

n (ω)(A) � 1 if U(l)
n (ω) ∈ A,

0 otherwise), δXn(ω) ∈ 3(Rd1) denotes the Dirac measure at Xn(ω) ∈ Rd1 , and similarly, δS(2)n (ω) ∈ 3(6(2)) denotes
the Dirac measure at S(2)n (ω) ∈ 6(2).

The lemma below provides an equicontinuity result used later.

Lemma 20. For every l ≥ 1, for every r > 0, the family of maps

y ∈ rU →
∫
U×Br×6(2)

h(l)2 x, y, s(2),u
( )

ν du, dx, ds(2)
( )

: ν ∈ 3 U × Br × 6(2)
( ){ }

is equicontinuous.

Proof. Fix l ≥ 1. By Lemma 3, we know that the map h(l)2 (·) is continuous. Hence, the map h(l)2 (·) restricted to the
compact set Br × rU × 6(2) ×U is uniformly continuous. Therefore, for every ε > 0, there exists δ > 0 such that for
every (x,y,s(2),u),(x,y′,s(2),u) ∈Br× rU×6(2) ×U, satisfying ‖y−y′‖<δ, ‖h(l)2 (x,y,s(2),u)−h(l)2 (x,y′,s(2),u‖<ε. There-
fore, for δ > 0 as above, with ‖y − y′‖ < δ, for any ν ∈ 3(U × Br × 6(2)), ‖∫U×Br×6(2) h

(l)
2 (x,y,s(2),u) ·ν(du,dx,ds(2)) −∫

U×Br×6(2) h
(l)
2 (x,y′,s(2),u)ν(du,dx,ds(2))‖ ≤ ∫

U×Br×6(2) ‖h(l)2 (x,y,s(2),u) − h(l)2 (x,y′,s(2),u)‖ν(du,dx,ds(2)) ≤ ε. □

For every l ≥ 1, define G(l) : Ω × [0,∞) → Rd2 such that for every (ω, t) ∈ Ω × [0,∞),
G(l)(ω, t) :� h(l)2 Xn(ω),Yn(ω),S(2)n (ω),U(l)

n (ω)
( )

, (28)

where n is such that t ∈ [ts(n), ts(n + 1)).
In what follows, most of the arguments are sample pathwise, and we use smaller case symbols to denote the

above-defined quantities along a particular sample path. For example, xn, yn, u(l)n , m(2)
n+1, s(2)n , ȳ(t), γ(l)

n (t), and
g(l)(t) denote Xn(ω), Yn(ω), U(l)

n (ω), M(2)
n+1(ω), S(2)n (ω),Ȳ(ω, t), Γ(l)n (ω, t), and G(l)(ω, t), respectively, for some ω

fixed.

5.2.2. Main Result: Asymptotic Pseudotrajectory. For every ω ∈ Ω, for every l ≥ 1, and for every t̃ ≥ 0, let ỹ(l)(·; t̃)
denote the solution of the o.d.e.

˙̃y(l) t; t̃
( ) � g(l) t + t̃

( ) (29)
for every t ≥ 0 with initial condition ỹ(l)(0; t̃) � ȳ(t̃).

Let Ω1 be as in (24). Then by Assumptions A6–A8, we have that P(Ω1) � 1. First, we will get rid of the
additive noise terms. In this regard, we prove the lemma below that states that for every ω ∈ Ω1, the family of
functions {ȳ(· + t)}t≥0 and {ỹ(l)(·; t)}t≥0 have the same limit points in #([0,∞),Rd2) for every l ≥ 1. The proof of
the lemma below is similar to that of Yaji and Bhatnagar [41, lemma 6.3] and is given in Appendix A.

Lemma 21. For almost every ω, for every l ≥ 1, and for every T > 0,

lim
t→∞ sup

0≤q≤T
ȳ(q + t) − ỹ(l)(q; t)
⃦⃦⃦ ⃦⃦⃦

� 0.

The lemma below guarantees the existence of limit points for {ỹ(l)(·; t)}t≥0 in #([0,∞),Rd2). The proof is similar
to that of Yaji and Bhatnagar [41, lemma 6.4] and is given in Appendix B.

Lemma 22. For almost every ω, for every l ≥ 1, the family of functions {ỹ(l)(·; t)}t≥0 is relatively compact in #([0,∞),Rd2).
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As a consequence of Lemmas 21 and 22, we get that for almost every ω,
i. the family of functions {ȳ(· + t)}t≥0 is relatively compact in #([0,∞),Rd), and
ii. the linearly interpolated trajectory of the slower timescale iterates, ȳ(·), is uniformly continuous on [0,∞).
The next proposition states that every limit point of {ȳ(· + t)}t≥0 is a solution of DI (20) on [0,∞). The proof is

along the lines of that of Yaji and Bhatnagar [41, proposition 6.5], but with modifications arising because of the
presence of faster timescale iterates.

Proposition 1. For almost every ω, every limit point y∗(·) of {ȳ(· + t)}t≥0 in #([0,∞),Rd2) satisfies the following.
i. For some r > 0, for every l ≥ 1, there exists γ̃(l) ∈ }(U × Br × 6(2)) such that for every t ≥ 0,

y∗(t) � y∗(0) +
∫ t

0

∫
U×Br×6(2)

h(l)2 x, y∗(q), s(2),u
( )

γ̃(l)(q) du, dx, ds(2)
( )[ ]

dq.

ii. For every l ≥ 1, γ̃(l) as in part i of this proposition is such that for almost every t ≥ 0,

Θ1 γ̃(l)
( )

(t) ∈ D y∗(t)( )
.

iii. y∗(·) is absolutely continuous and for almost every t ∈ [0,∞),
dy∗(t)
dt

∈ Ĥ2 y∗(t)( )
.

Proof. LetΩ2 :� {ω ∈ Ω :Lemma 18 holds}. From the proof of Yaji and Bhatnagar [41, theorem 6.6 ], it is clear that
Ω1 ⊆ Ω2 and P(Ω2) � 1. Fix ω ∈ Ω2 and let tn → ∞ be such that ȳ(· + tn) → y∗(·) in #([0,∞),Rd2).

i. Fix l ≥ 1. By Assumption 8, there exists r > 0 such that supn≥0(‖xn‖ + ‖yn‖) ≤ r. Then, for any t ≥ 0,
γ(l)(t) :� δu(l)n

⊗ δxn ⊗ δs(2)n
∈ 3(U × Br × 6(2)), where n is such that t ∈ [ts(n), ts(n + 1)). Therefore, γ(l) ∈ }(U×

Br × 6(2)), and by Lemma 9i, we get that the sequence {γ(l)(· + tn)}n≥1 has a convergent subsequence in
}(U × Br × 6(2)). Let γ̃(l) be a limit point of {γ(l)(· + tn)}n≥1 and, without loss of generality, assume γ(l)(· + tn) →
γ̃(l) as n → ∞. By definition of ỹ(l)(·; tn), we have that for every n ≥ 1, for every t ≥ 0,

ỹ(l)(t; tn) � ȳ(tn) +
∫ t

0
g(l) q + tn

( )
dq � ȳ(tn) +

∫ t

0
h(l)2 x[tn+q], y[tn+q], s

(2)
[tn+q],u

(l)
[tn+q]

( )
dq,

where for any t ≥ 0, [t] :� max{n ≥ 0 : t ≥ ts(n)}. Using the definition of γ(l)(· + tn) (see (27) and recall that
γ(l)(· + tn) :� Γ(l)(ω, · + tn)) in the above, we get that for every n ≥ 1, for every t ≥ 0,

ỹ(l)(t; tn) � ȳ(tn) +
∫ t

0

∫
U×Br×6(2)

h(l)2 x, y[tn+q], s
(2),u

( )
γ(l) q + tn

( )
du, dx, ds(2)
( )[ ]

dq.

Because ȳ(· + tn) → y∗(·) in #([0,∞),Rd2), by Lemma 21, we have that ỹ(l)(·; tn) → y∗(·) as n → ∞. By taking the
limit in the above equation, we get that for every t ≥ 0,

lim
n→∞ ỹ(l)(t; tn) − ȳ(tn)

[ ]
� lim

n→∞

∫ t

0

∫
U×Br×6(2)

h(l)2 x, y[tn+q], s
(2),u

( )
γ(l) q + tn

( )
du, dx, ds(2)
( )[ ]

dq,

y∗(t) − y∗(0) � lim
n→∞

∫ t

0

∫
U×Br×6(2)

h(l)2 x, y[tn+q], s
(2),u

( )
γ(l) q + tn

( )
du, dx, ds(2)
( )[ ]

dq. (30)

Because γ(l)(· + tn) → γ̃(l)(·) and by our choice of the topology for }(U × Br × 6(2)), we have∫ t

0

∫
U×Br×6(2)

f̃ q, u, x, s(2)
( )

γ(l) q + tn
( )

du, dx, ds(2)
( )[ ]

dq −
∫ t

0

∫
U×Br×6(2)

f̃ q, u, x, s(2)
( )

γ̃(l)(q) du, dx, ds(2)
( )[ ]

dq → 0

for all bounded continuous f̃ : [0, t] ×U × Br × 6(2) → R of the form

f̃ q,u, x, s(2)
( )

� ∑N
m�1

amgm(q)fm u, x, s(2)
( )

Yaji and Bhatnagar: SRI in Two Timescales with Markov Noise
Mathematics of Operations Research, 2020, vol. 45, no. 4, pp. 1405–1444, © 2020 INFORMS 1431



for some N ≥ 1, scalars am, and bounded continuous functions gm, fm on [0, t], U × Br × 6(2), respectively, for
1 ≤ m ≤ N. By the Stone-Weierstrass theorem, such functions can uniformly approximate any function in
#([0, t] ×U × Br × 6(2),R). Thus, the above convergence holds true for all real valued continuous functions on
[0, t] ×U × Br × 6(2), implying that t−1γ(l)(q + tn)(du, dx, ds(2))dq → t−1γ̃(l)(q)(du, dx, ds(2))dq in 3([0, t] ×U × Br ×
6(2)). Thus, ⃦⃦⃦

⃦
∫ t

0

∫
U×Br×6(2)

h(l)2 x, y∗(q), s(2),u
( )

γ(l) q + tn
( )

du, dx, ds(2)
( )[ ]

dq

−
∫ t

0

∫
U×Br×6(2)

h(l)2 x, y∗(q), s(2),u
( )

γ̃(l)(q) du, dx, ds(2)
( )[ ]

dq
⃦⃦⃦
⃦ → 0

(31)

as n → ∞. Because {ȳ(· + tn)|[0,t]}n≥1 uniformly converges to y∗(·)|[0,t], we have that the function q → y[tn+q]
uniformly converges to y∗(·)|[0,t] on [0, t]. Using the above and Lemma 20, we have that for every ε > 0, there
exists N(depending on ε) such that for every n ≥ N, for every q ∈ [0, t],∫

U×Br×6(2)
h(l)2 x, y[tn+q], s

(2), u
( )

γ(l)
⃦⃦⃦
⃦ q + tn

( )
du, dx, ds(2)
( )

−
∫
U×Br×6(2)

h(l)2 x, y∗(q), s(2),u
( )

γ(l) q + tn
( )

du, dx, ds(2)
( )⃦⃦⃦⃦ < ε. (32)

Now, ∫ t

0

∫
U×Br×6(2)

h(l)2 x, y[tn+q], s
(2),u

( )
γ(l) q + tn

( )
du, dx, ds(2)
( )[ ]

dq
⃦⃦⃦
⃦

−
∫ t

0

∫
U×Br×6(2)

h(l)2 x, y∗(q), s(2),u
( )

γ̃(l)(q) du, dx, ds(2)
( )[ ]

dq
⃦⃦⃦
⃦

≤
∫ t

0

∫
U×Br×6(2)

h(l)2 x, y[tn+q], s
(2),u

( )
γ(l) q + tn

( )
du, dx, ds(2)
( )

dq
⃦⃦⃦
⃦

−
∫ t

0

∫
U×Br×6(2)

h(l)2 x, y∗(q), s(2), u
( )

γ(l) q + tn
( )

du, dx, ds(2)
( )

dq
⃦⃦⃦
⃦

+
∫ t

0

∫
U×Br×6(2)

h(l)2 x, y∗(q), s(2),u
( )

γ(l) q + tn
( )

du, dx, ds(2)
( )[ ]

dq
⃦⃦⃦
⃦

−
∫ t

0

∫
U×Br×6(2)

h(l)2 x, y∗(q), s(2), u
( )

γ̃(l)(q) du, dx, ds(2)
( )[ ]

dq
⃦⃦⃦
⃦.

Taking the limit as n → ∞ in the above equation and using (31) and (32), we get

lim
n→∞

∫ t

0

∫
U×Br×6(2)

h(l)2 x, y[tn+q], s
(2),u

( )
γ(l) q + tn

( )
du, dx, ds(2)
( )[ ]

dq
⃦⃦⃦
⃦

−
∫ t

0

∫
U×Br×6(2)

h(l)2 x, y∗(q), s(2),u
( )

γ̃(l)(q) du, dx, ds(2)
( )[ ]

dq
⃦⃦⃦
⃦ ≤ εt

for every ε > 0. Therefore, for every t ≥ 0,

lim
n→∞

∫ t

0

∫
U×Br×6(2)

h(l)2 x, y[tn+q], s
(2),u

( )
γ(l) q + tn

( )
du, dx, ds(2)
( )[ ]

dq

�
∫ t

0

∫
U×Br×6(2)

h(l)2 x, y∗(q), s(2),u
( )

γ̃(l)(q) du, dx, ds(2)
( )[ ]

dq.
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Substituting the above limit in Equation (30), we get that for every t ≥ 0,

y∗(t) − y∗(0) �
∫ t

0

∫
U×Br×6(2)

h(l)2 x, y∗(q), s(2),u
( )

γ̃(l)(q) du, dx, ds(2)
( )[ ]

dq.

ii. Fix l ≥ 1. Let μ(l) :� Θ1(γ(l)). Then, for every n ≥ 1, μ(l)(· + tn) � Θ1(γ(l)(· + tn)) and because γ(l)(· + tn) → γ̃(l)
in }(U × Br × 6(2)), by Lemma 10v, we get that μ(l)(· + tn) → μ̃(l)(·) �: Θ1(γ̃(l)) in }(Br × 6(2)) as n → ∞. In order
to prove that for almost every t ≥ 0, μ̃(l)(t) ∈ D(y∗(t)), we need to show that for almost every t ≥ 0,

1. supp(μ̃(l)
Br
(t)) ⊆ λ(y∗(t)), and

2. for every A ∈ B(6(2)), μ̃(l)
6(2) (t)(A) �

∫
Rd1×6(2) Π

(2)(x, y∗(t), s(2))(A)μ̃(l)(t)(dx, ds(2)).
First, we present a proof of the claim in part 1 above. μ(l)

Br
:� Θ2(μ(l)) ∈ }(Br) and because as n → ∞, μ(l)(· + tn) → μ̃(l),

by Lemma 10vi, we have that μ(l)
Br
(· + tn) → μ̃(l)

Br
in}(Br). Because as n→∞, μ(l)

Br
(· + tn) → μ̃(l)

Br
in}(Br), by Borkar [11, chap-

ter 6, lemma 3], we have that for almost every t ≥ 0, there exists a subsequence {nk}k≥1 and a subsequence of natural
numbers {cp}p≥1 such that

1
cp

∑cp
k�1

μ(l)
Br
(t + tnk ) → μ̃(l)

Br
(t) (33)

in 3(Br) as p → ∞. Fix t ≥ 0 such that the above holds. By the definition of μ(l)
Br
, we have that for every k ≥ 1,

μ(l)
Br
(t + tnk ) � δx[t+tnk ]

, where [t + tnk ] :� max{m > n : t + tnk ≥ ts(m)}. Because ȳ(· + tnk ) → y∗(t), using the uniform
continuity of ȳ(·), we have that the function t̃ ∈ [0,∞) → y[t̃+tnk ] uniformly converges on compacts to the
function y∗(·). Therefore, y[t+tnk ] → y∗(t) as k → ∞, and by Lemma 18, we have that x[t+tnk ] → λ(y∗(t)). Further, by
the definition of r > 0, as in part i of this proposition, we get that supn≥1 ‖xn‖ ≤ r. Hence, λ(y∗(t)) ∩ Br �� ∅
and x[t+tnk ] → λ(y∗(t)) ∩ Br as k → ∞. For every ε > 0, clearly (λ(y∗(t)) + Bε) ∩ Br is compact and there exists
K large such that for every k ≥ K, x[t+tnk ] ∈ (λ(y∗(t)) + Bε) ∩ Br, and hence δx[t+tnk ]

((λ(y∗(t)) + Bε) ∩ Br) � 1 for every

k ≥ K. Because 1
cp

∑cp
k�1 μ

(l)
Br
(t + tnk ) → μ̃(l)

Br
(t) in 3(Br) as p → ∞, by Borkar [12, theorem 2.1.1(iv)] we have that, for

every ε > 0,

lim sup
p→∞

1
cp

∑cp
k�1

μ(l)
Br
(t + tnk ) λ(y∗(t)) + Bε

( ) ∩ Br
( ) � lim sup

p→∞
1
cp

∑cp
k�1

δx[t+tnk ]
λ(y∗(t)) + Bε

( ) ∩ Br
( )

� 1

≤ μ̃(l)
Br
(t) λ(y∗(t)) + Bε

( ) ∩ Br
( ) ≤ 1.

Therefore, for every ε > 0, μ̃(l)
Br
(t)((λ(y∗(t))+Bε)∩Br) � 1, which gives us that μ̃(l)

Br
(t)(λ(y∗(t))∩Br) � 1, and hence

supp(μ̃(l)
Br
(t)) ⊆ λ(y∗(t)). Because (33) holds for almost every t ≥ 0, we have that for almost every t ≥ 0,

supp(μ̃(l)
Br
(t)) ⊆ λ(y∗(t)).

The proof of the claim in part 2 above is similar to the proof of Yaji and Bhatnagar [41, proposition 6.5(ii)], and we
provide a brief outline for the sake of completeness. Let { fi}i≥1 ⊆ #(6(2),R) be a convergence determining class for3(6(2)).
By an appropriate affine transformation, we can ensure that for every i ≥ 1, for every s(2) ∈ 6(2), 0 ≤ fi(s(2)) ≤ 1. Define

ζin :� ∑n−1
k�0

b(k) fi S2k+1
( ) − ∫

6(2)
fi s̃(2)
( )

Π(2) Xk,Yk,S2k
( )

ds̃(2)
( )( )

for every n ≥ 1, for every i ≥ 1. For every i ≥ 1, {ζin}n≥1 is a square integrable martingale w.r.t. the filtration
{F n :� σ(Xk,Yk,S2k : 0≤ k≤ n)}n≥1 and further

∑∞
n�0E[(ζin+1−ζin)2|Fn] ≤ 2

∑∞
n�1(b(n))2 <∞. By the Martingale con-

vergence theorem (see Borkar [11, appendix C, theorem 11]), we get that for almost every ω, for every i ≥ 1,
{ζin}n≥1 converges. Let Ωm :� {ω ∈ Ω : ∀i ≥ 1, {ζin} converges}. Define Ω∗ :� Ωm ∩Ω2 and from the arguments
above, we get that P(Ω∗) � 1. Therefore, for every ω ∈ Ω∗, for every i ≥ 1, and for every T > 0,

∑τ2(n,T)
k�n

b(k) fi s
(2)
k+1

( )
−
∫
6(2)

fi s̃(2)
( )

Π(2) xk, yk, s
(2)
k

( )
ds̃(2)
( )( )

→ 0
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as n → ∞. By our choice of { fi}i≥1, the fact that the step-size sequence {b(n)}n≥0 is nonincreasing and the
definition of μ(l), we get that for every ω ∈ Ω∗, for every i ≥ 1, and for every T > 0,

lim
t→∞

∫ T

0

∫
Br×6(2)

fi s(2)
( )

−
∫
6(2)

fi s̃(2)
( )

Π(2) x, y[q+t], s(2)
( )

ds̃(2)
( )[ ]

μ(l)(q + t) dx, ds(2)
( )

dq � 0,

where [q+ t] :�max{n≥ 0 : t≥ ts(n)}. By Assumption A4, we have that for every i ≥ 1, the function (x, y, s(2)) →
fi(s(2)) −

∫
6(2) fi(s̃(2))Π(2)(x, y, s(2))(ds̃(2)) is continuous, and hence the restriction of the above function to the

compact set Br × rU × 6(2) is uniformly continuous, where r > 0 is as in part i of this proposition. Using the
uniform continuity above and the fact that limt→∞ sup0≤q≤T ȳ(q + t) − y[q+t]

⃦⃦ ⃦⃦ � 0 (which follows from definition
of ȳ(·) and uniform continuity of ȳ(·)), we get that for every ω ∈ Ω∗, for every i ≥ 1, and for every T > 0,

lim
t→∞

∫ T

0

∫
Br×6(2)

fi s(2)
( )

−
∫
6(2)

fi s̃(2)
( )

Π(2) x, ȳ q + t
( )

, s(2)
( )

ds̃(2)
( )[ ]

μ(l)(q + t) dx, ds(2)
( )

dq � 0. (34)

We know that as n → ∞, ȳ(· + tn) → y∗(·) in #([0,∞),Rd2) and μ(l)(· + tn) → μ̃(l)(·) in }(Br × 6(2)). Further, by
arguments similar to Lemma 20, the family of functions

y ∈ rU →
∫
Br×6(2)

fi(s(2)) −
∫
6(2)

fi(s̃(2))Π(2)(x, y, s(2))(ds̃(2))
[ ]

ν(dx, ds(2)) : ν ∈ 3(Br × 6(2))
{ }

is equicontinuous. Therefore, for every ω ∈ Ω∗, for every T > 0,

lim
t→∞

∫ T

0

∫
Br×6(2)

∫
6(2)

fi s̃(2)
( )

Π(2) x, y∗ q
( )

, s 2( )( )
ds̃ 2( )( )[⃦⃦⃦

⃦
−
∫
6(2)

fi s̃ 2( )( )
Π 2( ) x, ȳ q + t

( )
, s 2( )( )

ds̃ 2( )( )]
μ(l) q + t

( )
dx, ds 2( )( )

dq
⃦⃦⃦
⃦ � 0,

lim
t→∞

∫ T

0

∫
Br×6(2)

fi s 2( )( ) − ∫
6 2( )

fi s̃ 2( )( )
Π 2( ) x, y∗ q

( )
, s 2( )( )

ds̃ 2( )( )[ ]
μ(l) q + t

( )
dx, ds 2( )( )

dq
⃦⃦⃦
⃦

−
∫ T

0

∫
Br×6(2)

fi s 2( )( ) − ∫
6 2( )

fi s̃ 2( )( )
Π 2( ) x, y∗ q

( )
, s 2( )( )

ds̃(2)
( )[ ]

μ̃(l) q
( )

dx, ds 2( )( )
dq
⃦⃦⃦
⃦ � 0.

Using the above and Equation (34), we get that for every ω ∈ Ω∗, for every T > 0,∫ T

0

∫
Br×6(2)

fi s 2( )( ) − ∫
6 2( )

fi s̃ 2( )( )
Π 2( ) x, y∗ q

( )
, s 2( )( )

ds̃ 2( )( )[ ]
μ̃ l( ) q

( )
dx, ds(2)
( )

dq � 0.

By applying Lebesgue’s differentiation theorem (see Borkar [11, chapter 11.1.3]), we get that for every ω ∈ Ω∗, for every
i ≥ 1, and for almost every t ≥ 0,∫

Br×6(2)
fi s 2( )( ) − ∫

6(2)
fi s̃ 2( )( )

Π 2( ) x, y∗ t( ), s 2( )( )
ds̃ 2( )( )[ ]

μ̃ l( ) t( ) dx, ds 2( )( ) � 0.

Because for every t ≥ 0, μ̃(l)(t) ∈ 3(Br × 6(2)), it is also an element of3(Rd1 × 6(2))with supp(μ̃(l)(t)) ⊆ Br × 6(2). Therefore,
for every ω ∈ Ω∗, for every i ≥ 1, and for almost every t ≥ 0,∫

Rd1×6(2)
fi s 2( )( ) − ∫

6 2( )
fi s̃ 2( )( )

Π 2( ) x, y∗ t( ), s 2( )( )
ds̃ 2( )( )[ ]

μ̃ l( ) t( ) dx, ds 2( )( ) � 0.

Because { fi}i≥1 is a convergence determining class for 3(6(2)), from the above, it follows that for every ω ∈ Ω∗, for almost
every t ≥ 0,

μ̃(l)
6(2) t( ) ds̃ 2( )( ) � ∫

Rd1×6(2)
Π(2) x, y∗ t( ), s 2( )( )

ds̃ 2( )( )
μ̃ l( ) t( ) dx, ds 2( )( )

.
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iii. Fix l ≥ 1. Then, by part i of this proposition, y∗(·) is clearly absolutely continuous, and for almost every
t ≥ 0,

dy∗(t)
dt

�
∫
U×Rd1×6(2)

h l( )
2 x, y∗ t( ), s 2( ),u
( )

γ̃ l( ) t( ) du, dx, ds 2( )( )
.

By part ii of this lemma, we know that for almost every t ≥ 0, Θ1(γ̃(l))(t) � γ̃(l)
Br×6(2) (t) � γ̃(l)

Rd1×6(2) (t) ∈ D(y∗(t)).
Hence, by Lemma 8ii, for almost every t ≥ 0,

dy∗(t)
dt

�
∫
U×Rd1×6(2)

h(l)2 x, y∗ t( ), s 2( ),u
( )

γ̃ l( ) t( ) du, dx, ds 2( )( )
∈ ∪μ∈D y∗ t( )( )

∫
Rd1×6 2( )

H l( )
2,y∗ t( ) x, s

2( )( )
μ dx, ds 2( )( )

� Ĥ l( )
2 y∗ t( )( )

.

Because the above holds for every l ≥ 1, we get that for almost every t ≥ 0,

dy∗(t)
dt

∈ ∩l≥1Ĥ(l)
2 (y∗(t)) � Ĥ2(y∗(t)),

where the last equality follows from Lemma 15vi. □

A continuous function y : R → Rd2 is said to be an asymptotic pseudotrajectory for the flow of DI (20)
if limt→∞ D(y(· + t),Σ2) � 0, where Σ2 ⊆ #(R,Rd2) denotes the set of solutions of DI (20). Fix ω ∈ Ω∗. Extend
ȳ(·) to the whole of R by defining ȳ(t) � ȳ(0) for every t < 0. Then by Assumption A8 and uniform con-
tinuity of ȳ(·), we have that the family of functions {ȳ(· + t)}t≥0 is relatively compact in #(R, Rd2). Let y∗(·) be a
limit point of the above family of functions. Then, by Proposition 1iii, y∗(·)|[0,∞) is a solution of DI (20) on [0,∞).
Usually, the negative time argument is omitted because it follows from the positive time argument.

Fix T> 0. Let tn→∞ be such that ȳ(· + tn) → y∗(·) in #(R,Rd2). Then, ȳ(·+ tn−T)→y∗(·−T). By Proposition 1iii,
y∗(· − T)|[0,∞) is a solution of DI (20) on [0,∞). Therefore, y∗(·)|[−T,0] is absolutely continuous and for

a.e. t ∈ [−T, 0], dy∗(t)
dt ∈ Ĥ2(y∗(t)). Because T was arbitrary, we have that the y∗(·)|(−∞,0] is solution of DI (20) on

(−∞, 0]. Therefore, y∗(·) ∈ Σ2, and, by Benaı̈m et al. [4, theorem 4.1], we get the following result.

Theorem3 (APT). Under AssumptionsA1–A9 andA11, for almost everyω, the linearly interpolated trajectory of the slower
timescale recursion (15a), ȳ(·), is an asymptotic pseudotrajectory of DI (20).

5.2.3. Characterization of Limit Sets. As a consequence of Theorem 3, for almost every ω, the limit sets of the
slower timescale recursion, L(ȳ), defined as

L(ȳ) :� ∩t≥0 ȳ(q + t) : q ≥ 0
{ } (35)

can be characterized in terms of the dynamics of DI (20). Further, using Lemma 18, we obtain the main result
of this paper, which we will state below.

Theorem 4 (Limit set). Under assumptions A1–A9 and A11, for almost every ω,
i. L(ȳ) is a nonempty, compact subset of Rd2 and is internally chain transitive for the flow of DI (20), and
ii. if Assumption 10 is satisfied, then L(ȳ) ⊆ = and as n → ∞,

xn
yn

( )
→ ∪y∈= λ y

( ) × y
{ }( )

.

Proof. Fix ω ∈ Ω∗.
i. By Theorem 3, we know that ȳ(·) is an asymptotic pseudotrajectory for the flow of DI (20). Now the claim

follows from Benaı̈m et al. [4, theorem 4.3].
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ii. By part i of this theorem, we know that L(ȳ) is internally chain transitive for the flow of DI(20). Because =
is a globally attracting set for DI(20), by Benaı̈m et al. [4, corollary 3.24], we get that L(ȳ) ⊆ =. Therefore,
yn → = as n → ∞ and by Lemma 18, we get that, as n → ∞,

xn
yn

( )
→ ∪y∈= λ y

( ) × y
{ }( )

. □

6. Applications
In this section, we consider applications of the theory to problems in convex optimization. First, we present an
application of the theory to solve a constrained convex optimization problem, where the objective function
and the functions defining the constraints are averaged with respect to the stationary distribution of a Markov
process. Then, we present another application where Newton’s method is used to solve an unconstrained
optimization problem. Throughout this section, we assume that 6(1) � 6(2) � 6 and |6| < ∞.

7. Application: Constrained Convex Optimization
In this section, we consider an application of the theory to a problem of constrained convex optimization.
Throughout this section, we assume that 6(1) � 6(2) � 6 and |6| < ∞. The finiteness of the state space is an
assumption imposed only for this application and not in the analysis of the scheme presented in the paper.

Let the objective function J : Rd1 × 6 → R be such that J(·) is continuous and for every s ∈ 6, J(·, s) is convex
and coercive (i.e., for any M > 0, there exists r > 0 such that for any x ∈ Rd1 with ‖x‖ ≥ r, we have that
J(x, s) ≥ M). The functions describing the constraints are given by C : 6 → Rd2×d1 and w : 6 → Rd2 . We assume
that for any s ∈ 6, the set -(s) :� {x ∈ Rd1 : C(s)x � d(s)} is nonempty. The law of the Markov noise terms is
given by Π : Rd1 × 6 → 3(6) such that Π is continuous and let μ ∈ 3(6) denote the unique stationary dis-
tribution of the Markov chain given by the transition kernel Π(x, ·)(·) for every x ∈ Rd1 .

Let ∂J(x, s) denote the set of subgradients of the convex function J(·, s) at the point x ∈ Rd1 . Formally,

∂J(x, s) :� g ∈ Rd1 : ∀x′ ∈ Rd1 , J x′, s
( ) ≥ J x, s( ) + g, x′ − x

〈 〉{ }
.

Then, it is easy to show that for every (x, s) ∈ Rd1 × 6, ∂J(x, s) is convex and compact. Further, the map (x, s) →
∂J(x, s) possesses the closed graph property. We assume that the map (x, s) → ∂J(x, s) satisfies the linear growth
property, that is, there exists K > 0 such that supx′∈∂J(x,s) ‖x′‖ ≤ K(1 + ‖x‖).

Let Jμ : Rd1 → R be defined such that for every x ∈ Rd1 , Jμ(x) :�
∫
6
J(x, s)μ(ds). Similarly, define Cμ :� ∫

6
C(s)·

μ(ds) ∈ Rd2×d1 and wμ :� ∫
6
w(s)μ(ds) ∈ Rd2 . The optimization problem that we wish to solve is given by

OP(μ) : min
x∈Rd1

Jμ(x), subject to :

Cμx � wμ.

The standard approach in solving the optimization problem OP(μ) is the projected subgradient descent al-
gorithm whose recursion is given by

Xn+1 � Pμ Xn − a(n)(gn +Mn+1)( )
,

where gn ∈ ∂Jμ(Xn), Mn+1 is the subgradient estimation error and Pμ denotes the projection operation onto the
affine subspace -μ :� {x ∈ Rd1 : Cμx � wμ}. Such a scheme cannot be implemented when μ is not known. This is
the case in problems arising in optimal control.

The feasible set of the optimization problem OP(μ), given by -μ, is nonempty because for every s ∈ 6, -(s) is
nonempty. Further, because for every s ∈ 6, J(·, s) is coercive, the function Jμ(·) is coercive and hence bounded
below. Therefore, the optimization problem OP(μ) has at least one solution. Let the solution set of the op-
timization problem OP(μ) be denoted by Z.

For any r > 0, let Br denote the closed ball of radius r in Rd1 centered on the origin. For every s ∈ 6, pick
xs ∈ -(s) and compute M1 :� max{J(xs, s′) : s, s′ ∈ 6}. Then, xμ :� ∑

s∈6 μ(s)xs ∈ -μ and Jμ(xμ) ≤ M1. Because |6| <
∞ and the functions J(·, s) are coercive, for some M > max{0,M1}, there exists r > max{‖xs‖ : s ∈ 6} such that for
every s ∈ 6, for every x ∈ Bc

r, J(x, s) ≥ M, and for every s ∈ 6, Br ∩ -(s) �� ∅. Then Z ⊆ Br. Instead of OP(μ), we
will solve the following penalized/regularized optimization problem given by

ÕP(μ) : min
x∈Rd1

Jμ(x) + ε

2r2
x‖ ‖2 + K + 1

2
max x‖ ‖2 − r2, 0

{ }
,

subject to : Cμx � wμ,

where r > 0 is as determined above, K is the constant associated with the linear growth property of the sub-
gradient map ∂J(·, s), and ε > 0 is an arbitrary constant small in value. Then, it is easy to show that ÕP(μ) has
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at least one solution, and the set of solutions of ÕP(μ) denoted by Z̃ is such that Z̃ ⊆ Br. Further, for any x̃ ∈ Z̃,
for any x∗ ∈ Z, Jμ(x̃) − Jμ(x∗) ≤ ε.

Consider the Lagrangian L : Rd → R associated with the optimization problem ÕP(μ) defined such that for
every (x, y) ∈ Rd,

L(x, y) :� Jμ(x) + ε

2r2
x‖ ‖2 + K + 1

2
max x‖ ‖2 − r2, 0

{ } + y,Cμx − wμ

〈 〉
.

Let Ĵ : Rd1 × 6 → R, be defined such that for every (x, s) ∈ Rd1 × 6, Ĵ(x, s) :� J(x, s) + ε
2r2 ‖x‖2 + K+1

2 max{‖x‖2 − r2, 0}.
Then, for every (x, s) ∈ Rd1 × 6,

Ĵμ(x) :� Jμ(x) + ε

2r2
x‖ ‖2 + K + 1

2
max x‖ ‖2 − r2, 0

{ } � ∫
6
Ĵ(x, s)μ(ds).

When the transition law Π (and hence μ) is not known, we propose the following recursion, which performs
primal descent along the faster timescale (i.e., minimization of L(·, y) w.r.t. x) and dual ascent on the slower
timescale (i.e., maximization of L(x, ·) w.r.t. y). The recursion is given by

Yn+1 − Yn � b(n)(C(Sn)Xn − w(Sn)), (36a)
Xn+1 − Xn − a(n)M1

n+1 ∈ −a(n) ∂Ĵ(Xn,Sn) + C(Sn)TYn
( )

, (36b)
where the step-size sequences {a(n)}n≥0 and {b(n)}n≥0 are chosen such that they satisfy Assumption A5
and {M1

n}n≥1 denotes the subgradient estimation error, which is assumed to satisfy Assumption A6 (e.g., when
{M1

n}n≥1 is i.i.d. zero mean with finite variance, Assumption A6 is satisfied; more generally, Assumption A6 is
satisfied if {M1

n}n≥1 is a martingale difference sequence satisfying Assumption A3 in Borkar [11, chapter 2.1]).
It is easy to see that the maps (x, y, s) → −(∂Ĵ(x, s) + C(s)Ty) and (x, y, s) → C(s)x − w(s) satisfy Assumptions A1

and A2, respectively. The linear growth property of the map (x, y, s) → −(∂Ĵ(x, s) + C(s)Ty) follows from the
linear growth property of x → ∂J(x, s). Further, by Bertsekas [6, proposition 5.4.6], we get that for every
(x, y) ∈ Rd, − ∫

6
(∂Ĵ(x, s) + C(s)Ty)μ(ds) � −(∂Ĵμ(s) + CT

μy) � −∂L(x, y).
For every y ∈ Rd2 , let λ(y) :� {x ∈ Rd1 : −CT

μy ∈ ∂Ĵμ(x)}. Then, for every y ∈ Rd2 , λ(y) is nonempty because L(·, y)
is convex and coercive. Further, |λ(y)| � 1; that is, λ(y) is a singleton because L(·, y) is strictly convex. For
any y ∈ Rd2 , x′ ∈ λ(y) if and only if there exists g̃ ∈ Rd1 in the set of subgradients of the function Jμ(·) +
K+1
2 max{‖ · ‖2 − r2, 0} at x′ such that g̃ + ε

r2 x
′ + CT

μy � 0. So either ‖x′‖ ≤ r or if ‖x′‖ > r, then max{‖x′‖2 − r2, 0} �
‖x′‖2 − r2, and hence for some g ∈ ∂Jμ(x′), g̃ � g + (K + 1)x′, from which we get that,

K + 1 + ε

2r2

( )
‖x′‖ � ‖g + CT

μy‖ ≤ K + K‖x′‖ + ‖CT
μ‖ ‖y‖.

Thus, for K′ :� max{K, r, ‖CT
μ‖}, we get that for every y ∈ Rd2 , ‖λ(y)‖ ≤ K′(1 + ‖y‖). The set λ(y) is clearly globally

attracting for the flow of DI dx
dt ∈ −(∂Ĵμ(x) + CT

μy), and by Aubin and Cellina [2, theorem 6], the map y ∈ Rd2 →
λ(y) is u.s.c. (because λ(·) is also single valued, it is continuous). Hence, the map λ(·) satisfies Assumption 9.

If the iterates are stable for a.e. ω (i.e., Assumption 8 is satisfied), the result in Section 5.1 gives us that for
almost every ω, there exists a nonempty compact set A ⊆ Rd such that (Xn(ω),Yn(ω)) → A as n → ∞ and A is
internally chain transitive for the flow of DI,

dx
dt
dy
dt

( )
∈ −∂Ĵμ(x) − CT

μy

0

( )
. (37)

By the arguments in Section 5.1, we have that A ∩ &(λ) �� ∅, where &(λ) :� {(λ(y), y) : y ∈ Rd2}. Let 2 ⊆ Rd be an
open neighborhood of &(λ). Let 2′(δ) :� {(x, y) ∈ Rd : L(x, y) − L(λ(y), y) < δ}. By Aubin and Cellina [2, chap-
ter 1.2, theorem 6], the map y ∈ Rd2 → L(λ(y), y) is continuous, and hence 2′(δ) is an open neighborhood of
&(λ). Further, it is easy to show that ∩δ>02′(δ) � &(λ), and hence ∩δ>0(2′(δ) ∩ A) � &(λ) ∩ A. Because A ⊆ Rd is
compact, there exists δ∗ > 0 such that 2′(δ∗) ∩ A ⊆ 2 ∩ A. Consider any solution of DI (37), (x(·),y(·)) starting at
(x∗, y∗) ∈ 2′(δ∗) ∩ A and satisfying for every t ∈ R, (x(t),y(t)) ∈ A. Recall from Section 5.1 that (x(·),y(·)) as above
is such that for every t ≥ 0, y(t) � y∗ and x(·) is a solution of DI, dx

dt ∈ −(∂Ĵμ(x) + CT
μy

∗) � −∂L(x, y∗) and hence
descends along the potential L(x, y∗). Therefore, the solution (x(·), y(·)) remains within 2′(δ∗) ∩ A, which gives
us that ΦA(2′(δ∗) ∩ A, [0,∞)) ⊆ 2 ∩ A, where ΦA denotes the flow of DI (37) restricted to the set A. Thus,
Assumption A11 is satisfied, and, from Lemma 18, we get the following result.

Lemma 23 (Faster Timescale Convergence). For almost every ω, (Xn(ω),Yn(ω)) → &(λ) as n → ∞.
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Theorem 3 gives us that the iterates {Yn}n≥0 in Recursion (36a) track the flow of DI,
dy
dt

∈ ∪ν∈D(y)
∫
Rd1×6

C(s)x − w(s)( )ν(dx, ds), (38)

where, for every y ∈ Rd2 , D(y) is as in Equation (18). Because for every y ∈ Rd2 , λ(y) is a singleton and because μ
is the unique stationary distribution of the Markov chain given by transition kernel Π(·)(·), we get that for
every y ∈ Rd2 , D(y) � δλ(y) ⊗ μ. Therefore, DI (38) takes the following form:

dy
dt

� Cμλ(y) − wμ. (39)

In order to analyze the asymptotic behavior of o.d.e. (39), we need the following version of the envelope
theorem. The proof of the envelope theorem below is similar to that by Milgrom and Segal [30].

Lemma 24 (Envelope Theorem). Let y : [0,T] → Rd2 be an absolutely continuous function. Let L̃ : Rd1 × [0,T] → R be
defined such that for every (x, t) ∈ Rd1 × [0,T], L̃(x, t) :� L(x,y(t)). Then,

i. for every x ∈ Rd1 , L̃(x, ·) is absolutely continuous and there exists $ ⊆ [0,T] with Lebesgue measure T such that for
every t ∈ $, for every x ∈ Rd1 , ∂L̃(x,t)

∂t exists and ∂L̃(x,t)
∂t � 〈dy(t)dt ,Cμx − wμ〉.

ii. the function V : [0,T] → R, where for every 0 ≤ t ≤ T, V(t) :� infx∈Rd1 L̃(x, t) is absolutely continuous. Further,
for any 0 < t ≤ T,

V(t) � V(0) +
∫ t

0

∂L̃(x, q)
∂q

⃒⃒⃒
⃒⃒
x�λ(y(q))

dq.

Proof.
i. Because y(·) is absolutely continuous, it is differentiable almost everywhere, and let $ ⊆ [0,T] be the set of

t ∈ [0,T] such that dy(t)
dt exists. Then clearly, the Lebesgue measure of $ is T.

Fix x ∈ Rd1 . Then, L(x, ·) is a Lipschitz continuous function because for any y′, y′′ ∈ Rd2 ,

L(x, y′) − L(x, y′′)⃒⃒ ⃒⃒ � y′ − y′′,Cμx − wμ

〈 〉⃒⃒ ⃒⃒
≤ y′ − y′′
⃦⃦ ⃦⃦

Cμx − wμ

⃦⃦ ⃦⃦
� βx y′ − y′′

⃦⃦ ⃦⃦
,

where βx :� ‖Cμx − wμ‖. Further, L(x, ·) is differentiable (i.e., totally differentiable because it is linear in y), and
the total derivative is given by ∇yL(x, y′) � (Cμx − wμ) for every y′ ∈ Rd2 . Because L̃(x, ·) is the composition of an
absolutely continuous function y(·) and a Lipschitz continuous function L(x, ·), we have that L̃(x, ·) is absolutely
continuous. By Rudin [38, theorem 9.15], we have that for every t ∈ $, ∂L̃(x,t)

dt exists and ∂L̃(x,t)
dt � 〈dy(t)dt ,Cμx − wμ〉.

ii. Because y(·) is absolutely continuous, there exists α > 0 such that supt∈[0,T] ‖y(t)‖ ≤ α. Further, by As-
sumption A9, for every t ∈ [0,T],

V(t) � inf
x∈Rd1 :‖x‖≤K′(1+‖y(t)‖)

L̃(x, t) � inf
x∈Rd1 :‖x‖≤K′(1+α)

L̃(x, t).

Therefore, for every 0 ≤ t < t′ ≤ T,

V(t′) − V(t)| | ≤ sup
x∈Rd1 :‖x‖≤K′(1+α)

L̃(x, t′) − L̃(x, t)⃒⃒ ⃒⃒

≤ sup
x∈Rd1 :‖x‖≤K′(1+α)

∫ t′

t

∂L̃(x, q)
∂q

dq

⃒⃒⃒
⃒⃒

⃒⃒⃒
⃒⃒

� sup
x∈Rd1 :‖x‖≤K′(1+α)

y(t′) − y(t),Cμx − wμ

〈 〉⃒⃒ ⃒⃒

≤ sup
x∈Rd1 :‖x‖≤K′(1+α)

Cμx − wμ

⃦⃦ ⃦⃦⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ y(t′) − y(t)⃦⃦ ⃦⃦

.
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Now the absolute continuity of V(·) follows from absolute continuity of y(·). Because V(·) is absolutely
continuous, dV(q)

dq exists for a.e. q ∈ [0,T], and for any 0 < t ≤ T, V(t) � V(0) + ∫ t
0
dV(q)
dq dq. Let q ∈ (0,T) be such that

dV(q)
dq exists and q ∈ $. Then, for q′ > q, V(q′) − V(q) ≤ L̃(λ(y(q)), q′) − L̃(λ(y(q)), q). The right derivative of V(·) at q,

which is the same as dV(q)
dq satisfies dV(q)

dq ≤ ∂L̃(x,q)
∂q |x�λ(y(q)). Considering q < q′ and repeating the above argument

gives us ∂L̃(x,q)
∂q |x�λ(y(q)) ≤ dV(q)

dq . Thus, for a.e. q ∈ [0,T], ∂L̃(x,q)
∂q |x�λ(y(q)) � dV(q)

dq and because V(·) is absolutely con-

tinuous, for any 0 < t ≤ T,

V(t) � V(0) +
∫ t

0

∂L̃(x, q)
∂q

⃒⃒⃒
⃒⃒
x�λ(y(q))

dq. □

Let Qμ : Rd2 → R be defined such that for y ∈ Rd2 , Qμ(y) :� infx∈Rd1 L(x, y) � L(λ(y), y). The function Qμ(·) is the
objective function of the dual of the optimization problem ÕP(μ) and is a concave function. By the strong
duality theorem (see Bertsekas [6, proposition 5.3.3]), the dual optimization problem given by maxy∈Rd2 Qμ(y)
has at least one solution and let the set of solutions of the dual optimization problem be denoted by =. Further,
the strong duality theorem also gives us that for any y ∈ = and for any x ∈ Z̃, Qμ(y) � Ĵμ(x).

Let y : R → Rd2 be a solution of the o.d.e. (39) with initial condition y ∈ =. Then, y(·) is absolutely continuous
and for a.e. t ∈ [0,∞), dy(t)

dt � Cμλ(y(t)) − wμ. By Lemma 24ii, we have that for any t ≥ 0,

V(t) � V(0) +
∫ t

0

∂L̃(x, q)
∂q

⃒⃒⃒
⃒⃒
x�λ(y(q))

dq,

� V(0) +
∫ t

0

dy(q)
dq

,Cμλ(y(q)) − wμ

〈 〉
dq,

� V(0) +
∫ t

0
Cμλ(y(q)) − wμ

⃦⃦ ⃦⃦2dq. (40)
Because V(t) �Qμ(y(t)) and V(0) � Qμ(y), where y ∈ =, we get that V(t) − V(0) ≤ 0. Hence, for every t ≥ 0,∫ t
0 ‖Cμλ(y(q)) − wμ‖2dq ≤ 0, which gives us that ‖Cμλ(y(t)) − wμ‖ � 0 for a.e. t ∈ [0,∞). Thus, for any solution of
o.d.e. (39), y(·), with initial condition y ∈ =, we have that Cμλ(y) − wμ � 0 and for every t ≥ 0, y(t) � y. Therefore,
= ⊆ {y ∈ Rd2 : Cμλ(y) − wμ � 0}. Further, by Bertsekas [6, proposition 5.3.3(ii)], any y ∈ Rd2 such that Cμλ(y) −
wμ � 0 is a solution of the dual optimization problem, and hence = � {y ∈ Rd2 : Cμλ(y) − wμ � 0} (from this, it also
follows that = is closed).

In the theorem below, we summarize the main convergence result associated with Recursion (36).

Theorem 5 (Convergence to Lagrangian Saddle Points).
i. For any solution y(·) of the o.d.e. (39) with any initial condition y0 ∈ Rd2 , which is bounded for t ≥ 0 (i.e.,

supt≥0 ‖y(t)‖ < ∞), we have that as t → ∞, infy∈= ‖y(t) − y‖ → 0.
ii. For any y ∈ =, λ(y) is a solution of the optimization problem ÕP(μ) (i.e., λ(y) ∈ Z̃).
iii. If the iterates remain stable for almost every ω (i.e., Assumption A8 is satisfied), then, for almost every ω,

a. Yn(ω) → = as n → ∞, and

b. Xn(ω)
Yn(ω)

( )
→ ∪y∈=

λ(y)
y

( ){ }
⊆ Rd.

Proof.
i. Let y(·) be a solution of the o.d.e. (39) with initial condition y0 ∈ Rd2 (assume y0 /∈ =; otherwise, we know

that for every t ≥ 0, y(t) � y0 and hence the claim follows) such that supt≥0 ‖y(t)‖ ≤ M for some M > 0. Then,
y(·)|[0,∞) is uniformly continuous because for any 0 ≤ t < t′ < ∞,

y(t′) − y(t)⃦⃦ ⃦⃦ � ∫ t′

t
Cμy(q) − wμ

( )
dq

⃦⃦⃦
⃦

⃦⃦⃦
⃦

≤
∫ t′

t
Cμ

⃦⃦ ⃦⃦
y(q)⃦⃦ ⃦⃦ + wμ

⃦⃦ ⃦⃦( )
dq

≤ Cμ

⃦⃦ ⃦⃦
M + wμ

⃦⃦ ⃦⃦( )(t′ − t).
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The function y ∈ Rd2 → ‖Cμy − wμ‖ is uniformly continuous, and hence the function t ∈ [0,∞) → ‖Cμy(t) − wμ‖
is uniformly continuous. Further by Lemma 24ii, for any t > 0, 0 ≤ V(t) − V(0) ≤ Qμ(y) − V(0) < ∞, where
y ∈ =. The claim that as t → ∞, y(t) → = is equivalent to the claim that as t → ∞, ‖Cμy(t) − wμ‖ → 0.

Suppose there exists ε > 0 such that for every T > 0, there exists t ≥ T such that ‖Cμy(t) − wμ‖ > ε. From the uniform
continuity of t → ‖Cμy(t) − wμ‖, there exists δ > 0 such that for every t, t′ ∈ [0,∞) satisfying |t − t′| < δ, |‖Cμy(t) −
wμ‖ − ‖Cμy(t′) − wμ‖| < ε

2. Therefore, we can obtain a sequence {tn}n≥1 such that for every n ≥ 1, δ < tn < tn+1 − 2δ and

for every t∈ (tn−δ, tn+δ), ‖Cμy(t) − wμ‖ > ε
2. Let N be such that 2(Qμ(y)−V(0))

ε2δ < N, where y ∈ =. Then, by Lemma 24ii, we
get that

Qμ(y(tN+1)) − V(0) � V(tN+1) − V(0)
�
∫ tN+1

0

dy(q)
dq

,Cμλ(y(q)) − wμ

〈 〉
dq

�
∫ tN+1

0
‖Cμy(q) − wμ‖2dq

≥ ∑N
n�1

∫ tn+δ

tn−δ
‖Cμy(q) − wμ‖2dq

> N
ε2δ

2

( )
> Qμ(y) − V(0),

which contradicts the fact that V(t) − V(0) ≤ Qμ(y) − V(0). Therefore, limt→∞ ‖Cμy(t) − wμ‖ � 0.
ii. Let y ∈ =. Then, we know that Cμλ(y) − wμ � 0, and hence λ(y) is feasible for ÕP(μ). By the definition of

λ(y), we have that for every x ∈ Rd1 , L(λ(y), y) ≤ L(x, y). Now the claim follows from Bertsekas [6, proposi-
tion 5.3.3(ii)].

iii. Let ω be such that Theorem 4 holds.
a. Then, by Theorem 4i, we know that there exists a nonempty, compact set A ⊆ Rd2 such that as n → ∞,

Yn(ω) → A. Further, A is internally chain transitive for the flow of o.d.e. (39) and hence is invariant. Let y(·) be
a solution to o.d.e. (39) with initial condition in A and for every t ∈ R, y(t) ∈ A. Because A is compact,
supt≥0 ‖y(t)‖ < ∞, and hence by part i of this theorem, we get that y(t) → = as t → ∞. Because for every t ≥ 0,
y(t) ∈ A, we get that = ∩ A �� ∅. Further, for some y ∈ =, (∩δ>0{y′ ∈ Rd2 : Qμ(y) −Qμ(y′) < δ}) ∩ A � = ∩ A. For
any ε > 0, there exists δε > 0 such that {y′ ∈ Rd2 : Qμ(y) −Qμ(y′) < δ} ∩ A ⊆ Nε(= ∩ A), where Nε(·) denotes the
ε-neighborhood of a set. By using Lemma 24ii, it is easy to show that ΦA({y′ ∈ Rd2 : Qμ(y) −Qμ(y′) < δ} ∩ A,
[0,∞)) ⊆ Nε(= ∩ A), where ΦA denotes the flow of o.d.e. (39) restricted to set A (see Section 2.3). Therefore,
= ∩ A is an attracting set for the flow ΦA. From Benaı̈m et al. [4, proposition 3.20], we get that = ∩ A � A.
Therefore, as n → ∞, Yn(ω) → =.

b. Follows from part iii(a) of this theorem and Lemma 23. □

7.1. Newton’s Method with Markov Sampling
Let the objective function J : Rd1 × 6 → R be such that J(·) is continuous and for every s ∈ 6, J(·, s) is twice
continuously differentiable, convex, and coercive (i.e., for any M > 0, there exists r > 0 such that for any x ∈ Rd1

with ‖x‖ ≥ r, we have that J(x, s) ≥ M). Let ∇J(x, s) and H(x, s) denote the gradient and hessian, respectively, of
the convex function J(·, s) at the point x ∈ Rd1 . We assume that the map (x, s) → ∇J(x, s) satisfies the linear
growth property, that is, there exists K > 0 such that ∇J(x, s) ≤ K(1 + ‖x‖) and that there exists r > 0 such that
the maximum eigenvalue of the hessian H(x, s) is bounded above by r.

Let Jμ : Rd1 → R be defined such that for every x ∈ Rd1 , Jμ(x) :�
∫
6
J(x, s)μ(ds). The optimization problem that

we wish to solve is given by

min
x∈Rd1

Jμ(x).

Clearly, the function Jμ is twice continuously differentiable. While for every s ∈ 6 the hessian of the function
Jμ(·, s) need not be invertible, we assume that the hessian of the averaged function Jμ(·) at x, denoted by Hμ(x),
is invertible for any x and that there exists an η > 0 such that the minimum eigenvalue of the matrix Hμ(x) is
bounded below by η for every x. Further, because for every s ∈ 6, J(·, s) is coercive, the function Jμ(·) is coercive
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and hence bounded below. Therefore, the optimization problem OP(μ) has at least one solution. Let the
solution set of the optimization problem OP(μ) be denoted by Z and because Hμ(·) is invertible, |Z| � 1.

The standard approach in solving the optimization problem OP(μ) is the Newton’s algorithm whose re-
cursion is given by

Xn+1 � Xn − a(n) H−1
μ (Xn)∇Jμ(Xn) +Mn+1

( )
,

where Mn+1 is the error in gradient and hessian estimation. When the cardinality of the set 6 is large,
computation of expectations of the gradient and hessian for every iteration is infeasible. Hence, one resorts to
sampling-based approaches in which the expectation of the gradient and hessian are replaced by the gradient
and hessian of the function J(·,Sn), respectively, where Sn is sampled from a distribution such that the desired
expectation is obtained in the limit.

We consider a popular sampling approach known as the Markov sampling method where samples are
obtained from a Markov chain with a unique stationary distribution μ. Let the law of the Markov sampling
terms be given by Π : Rd × 6 → 3(6). We assume that Π is continuous and μ ∈ 3(6) is the unique stationary
distribution of the Markov chain given by the transition kernel Π(x, y, ·)(·) for every (x, y) ∈ Rd1+d1 . As in the
previous section, for any r > 0, let Br denote the closed ball of radius r in Rd1 centered on the origin.

We propose the following recursion, which performs Newton update estimation on the fast timescale and
the Newton update on the slow timescale. The recursion is given by

Xn+1 − Xn � −b(n)Yn, (41a)
Yn+1 − Yn − a(n)Mn+1 ∈ −a(n) H(Xn,S′n)T H(Xn,S′′n )Yn − ∇J(Xn,Sn)[ ] ⊕ Bδ

( )
, (41b)

where the step-size sequences {a(n)}n≥0 and {b(n)}n≥0 are chosen such that they satisfy Assumption A5 and Bδ,
the closed ball of radius δ centered on the origin in Rd1 , denotes the nondiminishing, bounded error com-
ponent in the estimation of the gradient/hessian, whereas {Mn} denotes the diminishing error component in
the estimation and is assumed to satisfy Assumption A6. Further, {S′n}, {S′′n}, and {Sn} are chosen such that
they are independent sampling processes with the same sampling law as {Sn}, by which we mean that at
iteration n, if Xn,Yn are the solution estimate and the current update estimate, respectively, and Sn, S′n, and S′′n
are the current samples, the samples Sn+1, S′n, and S′′n are sampled independently from the distributions
Π(Xn,Yn,Sn), Π(Xn,Yn,S′n), and Π(Xn,Yn,S′′n ), respectively.

One can easily show that the set-valued drift function in Recursion (41b) is upper semicontinuous with
convex and compact set values. The linear growth property of the drift function follows from the maximum
eigenvalue bound and the linear growth property of the map (x, s) → ∇J(x, s). If the iterates remain stable for
a.e. ω, by Lemma 18, we have that for a.e. ω, there exists a nonempty compact set A ⊆ Rd1 such that
(Yn(ω),Xn(ω)) → A as n → ∞ and A is internally chain transitive for the flow of DI,

dy
dt
dx
dt

( )
∈ −∇y Hμ(x)y − ∇Jμ(x)

⃦⃦ ⃦⃦2( )
⊕ Bδ

0

( )
, (42)

where ∇y denotes the gradient with respect to y. For every x ∈ Rd1 , the differential inclusion given by

dy
dt

∈ −∇y Hμ(x)y − ∇Jμ(x)
⃦⃦ ⃦⃦2( )

⊕ Bδ (43)

is a δ-inflated system (see Kloeden and Kozyakin [22] for a definition) of the o.d.e.,

dy
dt

� −∇y Hμ(x)y − ∇Jμ(x)
⃦⃦ ⃦⃦2( )

,

and clearly the point Hμ(x)−1∇Jμ(x) is a global attractor of the above o.d.e..
From the result of Kloeden and Kozyakin [22] on continuity of attractors, we have that for any (x, δ), the

δ-inflated dynamical system as in Equation (43) has a global attractor (denoted by λδ(x) ⊆ Rd1 ), and for any
sequence {(xn, δn)} converging to (x, δ), H(λδn(xn),λδ(x)) converges to zero, where H(·) denotes the Hausdorff
metric on the family of compact and convex subsets of Rd (see equation (13) in Yaji and Bhatnagar [42] for a
definition). Clearly, for any x, λ0(x) � Hμ(x)−1∇Jμ(x). Further, we assume that for any δ1 > 0, there exists a δ
small enough such that the Hausdorff distance between λδ(x) and λ0(x) is less than δ1 uniformly for all x.
(Although we state this as an assumption, under the assumptions on the hessian matrix Hμ imposed above,
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we feel that the analysis in Kloeden and Kozyakin [22] can be modified to obtain the same.) From the above
and the linear growth property of the gradient ∇Jμ(·), it now follows that the map x → λδ(x) satisfies As-
sumption A9.

Theorem 4 now gives us that for a.e. ω, the iterates Xn(ω) converge to an internally chain transitive set of the DI,

dx
dt

∈ c̄o λδ(x)( )
⊆ Hμ(x)−1∇Jμ(x) ⊕ Bδ1 ,

(44)

where the last inclusion follows from choosing δ small enough. The lower bound on the minimum eigenvalue
of the hessian matrix Hμ(·) gives us that the mean field of the DI (44) is a Marchaud map. From the result on
continuity of attractors in Li and Zhang [26], we have that for any ε > 0, there exists δ1 small enough such that
the DI (44) has a global attractor Aδ1 such that Aδ1 ⊆ A0 ⊕ Bε, where A0 � {x ∈ Rd1 : ∇Jμ(x) � 0}, the global
attractor of the o.d.e.,

dx
dt

� Hμ(x)−1∇Jμ(x).

Thus, by choosing δ > 0 small enough, the iterates Xn of Recursion (41) converge to the ε-perturbed solution of
the optimization problem given by

min
x∈Rd1

Jμ(x).

8. Conclusions and Directions for Future Work
We have presented a detailed analysis of a two-timescale stochastic recursive inclusion with set-valued drift
functions and in the presence of nonadditive iterate-dependent Markov noise with nonunique stationary
distributions. The analysis in Section 5 shows us that the asymptotic behavior of the two-timescale re-
cursion (15) is such that the faster timescale iterates in recursion (15b) track the flow of DI (17) for some fixed
value of the slower timescale variable, and the slower timescale iterates track the flow of DI (20). The as-
sumptions under which the two-timescale recursion is studied in this paper are weaker than those in current
literature. Recursions with such behavior are often required to solve nested minimization problems that arise
in machine learning and optimization. A special case of constrained convex optimization with linear constraints is
considered as an application where the objective function is not assumed to be differentiable, and further, the
objective function and constraints are averaged with respect to stationary distribution of an underlying Markov
chain. When the transition law and hence the stationary distribution is not known in advance, a primal descent-
dual ascent algorithm as in Recursion (36) can be implemented with the knowledge of the sample paths of the
underlying Markov chain, and the analysis presented in this paper guarantees convergence to an ε-optimal
solution for a user specified choice of ε. Further, another application is presented where we show that the
Newton’s method to compute a solution to an unconstrained convex optimization problem with non-
diminishing bounded noise model for the errors in gradient and hessian estimation converges to an ε-optimal
solution if the bound on the nondiminishing error is sufficiently small, while not requiring an explicit in-
version of the hessian.

We outline a few important directions for future work.
1. For two-timescale stochastic approximation schemes with set-valued mean fields, to the best of our

knowledge, there are no sufficient conditions for stability in the current literature. We believe extensions of the
stability result for single-timescale stochastic approximation by Borkar and Meyn [13] and Ramaswamy and
Bhatnagar [35] can be made to the case of two-timescale recursions. Another approach to stability could be
along the lines of Andrieu et al. [1].

2. In many applications, the iterates are projected at each time step and are ensured to remain within a
compact, convex set. Such projections often arise due to the inherent need of the application at hand or are
used to ensure stability. Such projected schemes tend to introduce spurious equilibrium points at the
boundary of the feasible set. Further complications arise due to the presence of Markov noise terms; most of the
time, the projection map is not differentiable, and only directional derivatives are known to exist. Such projected
stochastic approximation schemes for a single-valued case without Markov noise component are analyzed by
Nagurney and Zhang [31] and should serve as a basis for analyzing more general frameworks with projection.

3. In some applications arising in reinforcement learning, the noise terms are not Markov by themselves,
but their lack of Markov property comes through the dependence on a control sequence in addition to the
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iterate sequence. Under such controlled Markov noise assumption, the two-timescale stochastic approxi-
mation scheme has been analyzed by Karmakar and Bhatnagar [21] but with single valued, Lipschitz con-
tinuous drift functions. Extending the analysis presented in this paper to the case with set-valued drift
functions and controlled Markov noise is straightforward and requires no major change in the overall flow of
the analysis. This extension allows one to analyze the asymptotic behavior of a larger class of reinforcement
learning algorithms (see Perkins and Leslie [34]).

4. Several other applications, such as two-timescale controlled stochastic approximation and two-timescale
approximate drift problem also can be analyzed with the help of the results presented in this paper (see Borkar
[11, chapter 5.3] for definitions of the above).

Appendix A. Proof of Lemma 21
Fix ω ∈ Ω1, l ≥ 1, and T > 0. We prove the claim along the sequence {ts(n)}n≥1 from which the claim of Lemma 21 easily
follows.

Fix n ≥ 0. Let τ2(n,T) :� min{m > n : ts(m) ≥ ts(n) + T}. Let q ∈ [0,T]. Then there exists k such that ts(n) + q ∈ [ts(k), ts(k +
1)) and n ≤ k ≤ τ2(n,T) − 1. By the definition of ȳ(·) and ỹ(l)(·; ts(n)), we have that ȳ(ts(n) + q) � αyk + (1 − α)yk+1 and
ỹ(l)(q; ts(n)) � αỹ(l)(ts(k) − ts(n); ts(n)) + (1 − α)ỹ(l)(ts(k + 1) − ts(n); ts(n)), where α � ts(k+1)−ts(n)−q

ts(k+1)−ts(k) . Because ỹ(l)(·; ts(n)) is a solution

of the o.d.e. (29), we have that for every k ≥ n, ỹ(l)(ts(k) − ts(n); ts(n)) � yn +∑k−1
j�n b(j)h(l)2 (xj, yj, s(2)j ,u(l)j ), and by Lemma 19, we

have that for every k ≥ n, yk � ȳ(ts(k)) � yn +∑k−1
j�n b(j)h(l)2 (xj, yj, s(2)j , u(l)j ) +∑k−1

j�n b(j)m(2)
j+1. Thus,

ȳ(ts(n) + q) − ỹ(l)(q; ts(n))
⃦⃦⃦ ⃦⃦⃦

≤ α
∑k−1
j�n

b(j)m(2)
j+1 + (1 − α)∑k

j�n
b(j)m(2)

j+1

⃦⃦⃦
⃦⃦

⃦⃦⃦
⃦⃦

≤ α
∑k−1
j�n

b(j)m(2)
j+1

⃦⃦⃦
⃦⃦

⃦⃦⃦
⃦⃦ + (1 − α) ∑k

j�n
b(j)m(2)

j+1

⃦⃦⃦
⃦⃦

⃦⃦⃦
⃦⃦

≤ sup
n≤k≤τ(n,T)

∑k
j�n

b(j)m(2)
j+1

⃦⃦⃦
⃦⃦

⃦⃦⃦
⃦⃦.

Because the R.H.S. of the above inequality is independent of q ∈ [0,T], we have sup0≤q≤T ‖ȳ(ts(n) + q) − ỹ(l)(q; ts(n))‖ ≤
supn≤k≤τ2(n,T) ‖∑k

j�n b(j)m(2)
j+1‖. Therefore, limn→∞ sup0≤q≤T ‖ȳ(ts(n) + q) − ỹ(l)(q; ts(n))‖ ≤ limn→∞ supn≤k≤τ2(n,T) ‖∑k

j�n b(j)m(2)
j+1‖. Now

the claim follows from Assumption A7.

Appendix B. Proof of Lemma 22
Fix l ≥ 1, ω ∈ Ω1. By Assumption A8, we know that there exists r > 0 such that supn≥0(‖xn‖ + ‖yn‖) ≤ r, and hence
supt≥0 ỹ

(l)(0; t) � supt≥0 ȳ(t) ≤ r.
For any t ≥ 0, let [t] :� max{n ≥ 0 : ts(n) ≤ t}. For every t ≥ 0 and q1, q2 ∈ [0,∞) (w.l.o.g. assume q1 < q2), we have

ỹ(l)(q1; t) − ỹ(l)(q2; t)
⃦⃦⃦ ⃦⃦⃦

�
∫ q2

q1
h(l)2 x[t+q], y[t+q], s

(2)
[t+q], u

(l)
[t+q]

( )
dq

⃦⃦⃦
⃦⃦

⃦⃦⃦
⃦⃦

≤
∫ q2

q1
h(l)2 x[t+q], y[t+q]s

(2)
[t+q], u

(l)
[t+q]

( )⃦⃦⃦ ⃦⃦⃦
dq

≤
∫ q2

q1
K(l) 1 + x[t+q]

⃦⃦ ⃦⃦ + y[t+q]
⃦⃦ ⃦⃦( )

dq

≤ C(l)(q2 − q1),
where C(l) :� K(l)(1 + r) and r > 0 is such that supn≥0(‖xn‖ + ‖yn‖) ≤ r. Thus, {ỹ(l)(·; t)}t≥0 is an equicontinuous family. Now the
claim follows from the Arzella-Ascoli theorem.
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