
Online learning over a finite action set with limited switching

Jason Altschuler
Massachusetts Institute of Technology

jasonalt@mit.edu

Kunal Talwar
Google Brain

kunal@google.com

Abstract

This paper studies the value of switching actions in the Prediction From Experts (PFE)
problem and Adversarial Multi-Armed Bandits (MAB) problem. First, we revisit the well-
studied and practically motivated setting of PFE with switching costs. Many algorithms are
known to achieve the minimax optimal order of O(

√
T log n) in expectation for both regret

and number of switches, where T is the number of iterations and n the number of actions.
However, no high probability guarantees are known. Our main technical contribution is the
first algorithms which with high probability achieve this optimal order for both regret and
number of switches. This settles an open problem of (Devroye et al., 2015), directly implies
the first high probability guarantees for several problems of interest, and is efficiently adaptable
to the related problem of online combinatorial optimization with limited switching.

Next, to investigate the value of switching actions at a more granular level, we introduce
the setting of switching budgets, in which the algorithm is limited to S ≤ T switches between
actions. This entails a limited number of free switches, in contrast to the unlimited number of
expensive switches allowed in the switching cost setting. Using the above result and several
reductions, we unify previous work and completely characterize the complexity of this switch-
ing budget setting up to small polylogarithmic factors: for both the PFE and MAB problems,
for all switching budgets S ≤ T , and for both expectation and high probability guarantees.
For PFE, we show that the optimal rate is of order Θ̃(

√
T log n) for S = Ω(

√
T log n), and

min(Θ̃(T logn
S), T) for S = O(

√
T log n). Interestingly, the bandit setting does not exhibit

such a phase transition; instead we show the minimax rate decays steadily as min(Θ̃(T
√
n√
S

), T)

for all ranges of S ≤ T . These results recover and generalize the known minimax rates for the
(arbitrary) switching cost setting.

Accepted for presentation at Conference on Learning Theory (COLT) 2018.

1

ar
X

iv
:1

80
3.

01
54

8v
2

 [
cs

.L
G

]
 1

3
Ju

n
20

18

Contents

1 Introduction 3
1.1 Previous work . 5
1.2 Our contributions . 7
1.3 Notation . 7

2 Switching-cost PFE: the first high probability algorithms 8
2.1 Framework for converting FPL-based algorithms with expectation guarantees into

ones with high-probability guarantees . 9
2.2 Black-box high probability bounds on switching 10
2.3 Controlling regret for FPL-based algorithms . 12
2.4 High probability version of (Kalai and Vempala, 2005)’s Multiplicative Follow the

Perturbed Leader algorithm . 13
2.5 High probability version of (Devroye et al., 2015)’s Prediction By Random Walk

Perturbation algorithm . 14
2.6 High probability algorithm for online combinatorial optimization 16

3 Switching-budget PFE 17

4 Switching-budget MAB 19
4.1 Proof 1 of lower bound in Theorem 14: via reduction to switching-cost MAB . . 20

5 Duality between switching-cost and switching-budget settings 21

6 Conclusions 21

References 23

A Adaptive adversaries in the switching-budget setting 26

B Our framework needs more than just expectation bounds 26

C Proof of standard lemma in analysis of FPL-type algorithms: Lemma 5 27

D Proof of concentration inequalities for FPL regularization: Lemma 9 28

E High probability algorithm for online combinatorial optimization 29

F Lower bounds on regret 32
F.1 Optimality of sub-Gaussian regret tails . 32
F.2 Lower bounds on regret in low-switching regime 34

G Proof 2 of lower bound in Theorem 14: via direct modification of (Dekel et al., 2014)’s
multi-scale random walk 36
G.1 Motivation via adaptation of the construction in (Cesa-Bianchi et al., 2013). . . . 36
G.2 Adversarial construction via adaptation of the construction in (Dekel et al., 2014). 36

2

G.3 Proof of lower bound . 38

H On the upper tails of standard algorithms 41
H.1 FPL* achieves h.p. bounds neither for switches nor for regret 42
H.2 SD achieves h.p. bounds for switches, but cannot achieve sub-Gaussian regret tails 43
H.3 On FLL for online combinatorial optimization 44

1 Introduction

Two fundamental problems in online learning are the Prediction From Experts (PFE) problem
(Cesa-Bianchi et al., 1997, Cesa-Bianchi and Lugosi, 2006) and the Adversarial Multi-Armed
Bandit (MAB) problem (Auer et al., 2002, Bubeck et al., 2012). Over the past few decades, these
problems have received substantial attention due to their ability to model a variety of problems in
machine learning, sequential decision making, online combinatorial optimization, online linear
optimization, mathematical finance, and many more.

PFE and MAB are typically introduced as T -iteration repeated games between an algorithm
(often called player or forecaster) and an adversary (often called nature). In each iteration t ∈
{1, . . . , T}, the algorithm selects an action it out of n possible actions, while the adversary
simultaneously chooses a loss function over the actions `t : {1, . . . , n} → [0, 1]. The algorithm
then suffers the loss `t(it) for its action.

For concreteness, consider the following classic example: at the beginning of each day (the
iterations) we choose one of n financial experts (the actions), and invest based on her advice about
how the stock market will move that day. At the end of the day, we lose (or gain) money based
on how good her advice was. Here, the adversary can be thought of as the stock market, since it
determines the losses.

The goal of the algorithm is to minimize its cumulative loss
∑T

t=1 `t(it) over the course of the
game. In our running example, this corresponds to the total amount of money we lose throughout
the investment period. Of course, this cumulative loss can be arbitrarily and hopelessly bad since
the choice of losses are at the adversary’s disposal. As such, one measures the cumulative loss
of the algorithm against a more meaningful baseline: the cumulative loss of the best action in
hindsight. The algorithm’s regret is defined as the difference between these two quantities:

Regret :=

T∑
t=1

`t(it)− min
i∗∈[n]

T∑
t=1

`t(i
∗)

Indeed in most applications, we typically have reason to believe that at least one action will be
decent throughout the game; otherwise there is nothing to learn. Informally, regret measures the
algorithm’s ability to learn this best action from adversarially noisy observations. Note that if an
algorithm achieves sublinear regret (Regret = o(T)) as a function of the horizon T , then its average
performance converges to that of the best action in hindsight.

The PFE and MAB problems differ in the feedback that the algorithm receives. In PFE, the
algorithm is given full-information feedback: after the tth iteration it can observe the entire loss
function `t. However in MAB, the algorithm is only granted bandit feedback: after the tth iteration,
it can only observe the loss `t(it) of the action it it played.

3

In our running example, full-information feedback corresponds to observing how good each of
the experts’ advice was, whereas with bandit-feedback we observe only that for the expert whose
advice we actually took. Both of these settings occur in real life: the former when the experts’
advice are displayed publicly (e.g. stock predictions on TV or money.cnn.com); and the latter when
we have to pay for each expert’s advice (e.g. hedgefunds or private wealth management advisories).

Switching as a resource. Note that in the setup of PFE and MAB above, the algorithm is not
penalized for switching between different actions in consecutive iterations. However, in many practi-
cal applications it is beneficial to switch infrequently. For instance, in our earlier example, switching
financial advisors between consecutive days could incur many negative consequences (Dekel et al.,
2014), such as the cost of cancelling a contract with the last advisor, the cost of signing a con-
tract with the new advisor, the cost of re-investing according to the new advisor’s suggestions, or
acquiring a bad reputation that makes advisors reluctant to negotiate with you in the future.

Infrequent switching is desirable in many other real-world problems. One example is the online
shortest paths problem, which has been studied intensely in both the full-information (Takimoto
and Warmuth, 2003, Kalai and Vempala, 2005, Awerbuch and Kleinberg, 2008, Koolen et al., 2010)
and bandit settings (Abernethy et al., 2009, Cesa-Bianchi and Lugosi, 2012). In this problem,
there is a static underlying graph and designated source and sink nodes s and t; however, edge
weights change adversarially each iteration. The algorithm chooses at each iteration a path from s
to t, and incurs as loss the weight of that path. A common application of this problem is to select
the fastest routes for packets to traverse over the internet. Switching actions thus corresponds to
changing routes for packets, which can lead to notoriously difficult problems in networking such as
out-of-order delivery of packets and decoding errors on the receiving end (Feamster et al., 2013,
Devroye et al., 2015). A related problem is that of learning spanning trees due to its connection to
the Internet Spanning Tree Protocol (IEEE 802.1D) (Koolen et al., 2010, Cesa-Bianchi and Lugosi,
2012). Consider also the online learning of permutations (Helmbold and Warmuth, 2009, Koolen
et al., 2010) which can model online job scheduling in factories; there, a switch could correspond
to the laborious and expensive task of modifying the assembly line.

Other applications known to benefit from infrequent switching include: the tree-update and
list-update problems (Sleator and Tarjan, 1985a,b, Kalai and Vempala, 2005); online pruning of
decision trees and decision graphs (Helmbold and Schapire, 1997, Takimoto and Warmuth, 2002,
Kalai and Vempala, 2005); learning rankings and online advertisement placement (Shalev-Shwartz
et al., 2012, Audibert et al., 2013); the Adaptive Huffman Coding problem (Knuth, 1985, Kalai and
Vempala, 2005); learning adversarial Markov Decision Processes (Yu et al., 2009, Even-Dar et al.,
2009, Neu et al., 2010); the online buffering problem and economical caching (Geulen et al., 2010);
and the limited-delay universal lossy source coding problem (Gyorgy and Neu, 2014).

These myriad applications motivate the idea of switching as a resource. This notion has
attracted significant research interest in the past few years. The popular way to formalize this idea
is the c-switching-cost setting, in which the algorithm incurs an additional loss1 of c ≥ 1 each time
it switches actions in consecutive iterations. In this paper, we introduce the S-switching-budget
setting, in which the algorithm can switch at most S ∈ {1, . . . , T} times in the T iterations. In
words, the switching-cost setting corresponds to expensive but unlimited switches; whereas the
switching-budget setting corresponds to free but limited switches.

1For simplicity, we assume c ≥ 1; all upper bounds throughout the paper hold with c replaced by max(c, 1).

4

Remark about the power of the adversary. It is important to clarify whether the adversary is
allowed to select its loss function `t on the tth iteration as a function of the player’s previous actions
{is}t−1s=1. If yes, then the adversary is said to be adaptive; if no, then the adversary is said to be
oblivious (to the player’s actions). Note that without loss of generality, we may assume an oblivious
adversary selects all loss functions before the game begins.

In the classical unconstrained-switching setting, one can learn well against both adaptive and
oblivious adversaries, in both MAB and PFE. However, once we penalize switching (with either
switching costs or switching budgets), adaptive adversaries are too powerful and can force any
algorithm to incur linear regret (details in Appendix A). As such, the rest of the paper focuses only
on the oblivious adversarial model.

1.1 Previous work

The inherent complexity of an online learning problem is typically characterized in terms of the
optimal order of growth of regret. This is formalized by the minimax rate, which is defined as
the infimum over (possibly randomized) algorithms, of the supremum over (possibly randomized)
adversaries, of expected regret.

Previous work on Prediction from Experts (details in Figure 1). In the classical (uncon-
strained) setting, the minimax rate Θ(

√
T log n) is well understood (Littlestone and Warmuth,

1994, Freund and Schapire, 1997, Cesa-Bianchi et al., 1997). Moreover, this optimal regret rate is
also achievable with high probability (Cesa-Bianchi and Lugosi, 2006).

The minimax rate is also well-understood in the c-switching cost setting. Recall that here the
objective is “switching-cost-regret”, which is defined as Regret + c · (# switches). The minimax
rate for expected switching-cost-regret is Θ(

√
cT log n) for PFE (Kalai and Vempala, 2005, Geulen

et al., 2010, Devroye et al., 2015). In particular, these results give algorithms which achieve the
optimal minimax order in expectation for both regret and number of switches.

Surprisingly, however, no high-probability guarantees are known for switching-cost PFE;
this is raised as an open question by (Devroye et al., 2015). Indeed, all algorithms that work
well in expectation have upper tails that are either too large or unknown how to analyze. In the
first category is the Multiplicative Follow the Perturbed Leader (FPL*) algorithm of (Kalai and
Vempala, 2005): the large upper tails of this algorithm are folklore but we are not aware of an
explicit reference; for completeness, we give a proof in Appendix H. In the second category are
the Prediction by Random-Walk Perturbation (PRW) algorithm of (Devroye et al., 2015) and the
Shrinking Dartboard (SD) algorithm of (Geulen et al., 2010). Analyzing the upper tails of these
algorithms seem difficult and was left as an open question for PRW in Devroye et al. (2015). For
SD, we show in Appendix H that the tails are at best sub-exponential, and are thus strictly worse
than sub-Gaussian (which our algorithms achieve, and which we show is optimal via a matching
lower bound).

For the S-switching-budget setting, even less is known. The only relevant lower bound seems
to be the trivial one that expected regret is Ω(

√
T log n) for all S, which is the lower bound for

the unconstrained setting (Cesa-Bianchi et al., 1997) and applies since constraining switching
obviously can only make the problem harder. The only relevant upper bound is due to the Lazy
Label Efficient Forecaster (combined with a simple reduction). However, although this elegant
algorithm yields tight bounds for the (very different) setting of Label Efficient Prediction it was

5

designed for (Cesa-Bianchi et al., 2005), it achieves only O(T√
S

) regret for our setting, which is

very far from the Θ(T
min(S,

√
T)

) minimax rate we prove in this paper.

Note also that the existing minimax-optimal switching-cost algorithms FPL*, SD, and PRW
do not apply to the switching-budget setting (even in expectation), since the number of times they
switch is only bounded in expectation, whereas the switching budget setting requires a hard cap.
Of course this could be fixed if the number of switches an algorithm makes has an exponentially
small tail (see Section 3 for details), but this fails for existing algorithms for the reasons stated in
the above discussion about high-probability bounds for switching-cost PFE (see also Appendix H).

Previous work on Multi-Armed Bandits (details in Figure 2). In the unconstrained setting,
the minimax rate Θ(

√
Tn) is well understood (Auer et al., 2002, Audibert and Bubeck, 2010) and

is achieveable with high probability (Audibert and Bubeck, 2010, Bubeck et al., 2012).
For the c-switching cost setting, the minimax rate is known (up to a logarithmic factor in T) to

be Θ̃(c1/3T 2/3n1/3) for MAB (Arora et al., 2012, Dekel et al., 2014). We note that high-probability
guarantees are not explicitly written in the literature, but can be easily obtained by combining
the high-probability guarantee of an algorithm designed for unconstrained MAB, with a standard
mini-batching reduction (e.g. the one by (Arora et al., 2012)). Using the best known bound for
unconstrained MAB (achieved by the Implicitly Normalized Forecaster of (Audibert and Bubeck,
2010)) yields the bound in Table 2. For completeness we give details in Section 4.

For the S-switching budget setting, a similar simple mini-batching reduction gives algorithms
achieving the minimax rate in expectation and with high probability (details in Section 4). The
lower bound for this setting is significantly more involved. The relevant result is Theorem 4
of (Dekel et al., 2014) who prove a lower bound of Ω̃(T√

S
) via a reduction to the switching-cost

setting. However, their reduction does not get the correct dependence on the number of actions n
and also loses track of polylogarithmic factors.

Table 1: Upper and lower bounds on the complexity of PFE in the different switching settings. Our
new bounds are bolded.

LB on E[Regret] UB on E[Regret] High probability UB
Unconstrained switching

√
T log n

√
T log n

√
T log n

δ

c switching cost
√
cT log n

√
cT log n

√
cT log n log 1

δ

√
cT log n log 1

δ

√
cT log n log 1

δ

S = Ω(
√
T log n) switching budget

√
T log n

√
T log n log T
√
T log n log T
√
T log n log T

√
T log n log 1

δ

√
T log n log 1

δ

√
T log n log 1

δ

S = O(
√
T log n) switching budget T logn

S
T logn
S

T logn
S

T logn
S log TT logn
S log TT logn
S log T T logn

S log 1
δ

T logn
S log 1

δ
T logn
S log 1

δ

Table 2: Upper and lower bounds on the complexity of MAB in the different switching settings.
Our new bounds are bolded.

LB on E[Regret] UB on E[Regret] High probability UB
Unconstrained switching

√
Tn

√
Tn

√
Tn

log n
δ√

logn

c switching cost c1/3T 2/3n1/3

log T c1/3T 2/3n1/3 c1/3T 2/3n1/3
log2/3 n

δ

log1/3 n

S switching budget T
√
n√

S log3/2 T

T
√
n√

S log3/2 T

T
√
n√

S log3/2 T

T
√
n√
S

T
√
n√
S

log n
δ√

logn

6

(a) Switching-budget PFE. (b) Switching-budget MAB.

Figure 1: Complexity landscape of online learning over a finite action set with limited switching.
Axes are plotted in log-log scale. Polylogarithmic factors in T are hidden for simplicity.

1.2 Our contributions

In Section 2, we present the first algorithms for switching-cost PFE that achieve the minimax optimal
rate O(

√
cT log n) with high probability, settling an open problem of (Devroye et al., 2015). In

fact, our results are more general: we give a framework to formulaically convert algorithms that
work in expectation and fall under the Follow-the-Perturbed-Leader algorithmic umbrella, into
algorithms that work with high probability. We then present our algorithms as examples of this
framework. We also show how this framework extends to online combinatorial optimization2 with
limited switching, and give the first high-probability algorithm for this problem.3

Next, to investigate the value of switching actions at a more granular level, we study the new
setting of switching budgets for the PFE and MAB problems, respectively in Sections 3 and 4. The
above result and standard reductions allow us to completely characterize the complexity of this
switching budget setting up to small polylogarithmic factors: for both the PFE and MAB problems,
for all switching budgets S ≤ T , and for both expectation and high probability guarantees. For PFE,
we show the optimal rate is of order Θ̃(

√
T log n) for S = Ω(

√
T log n), and min(Θ̃(T logn

S), T)
for S = O(

√
T log n). Interestingly, the bandit setting does not exhibit such a phase transition;

instead we show the minimax rate decays steadily as min(Θ̃(T
√
n√
S

), T) for all ranges of S ≤ T .

1.3 Notation

We denote the set of integers {1, . . . , k} by [k]. For shorthand, we abbreviate “almost surely” by
a.s., “independently and identically distributed” by i.i.d., “with respect to” by w.r.t., “without loss
of generality” by WLOG, “random variable” by r.v., “(with) high probability” by (w.)h.p., and

2I.e. online linear optimization over a combinatorial polytope, where offline optimization can be done efficiently.
3Note that online combinatorial optimization can be recast naı̈vely as PFE where each vertex is modeled by an expert,

but then the runtime of each iteration is linear in the number of vertices, which is typically exponential in the dimension
(see e.g. (Koolen et al., 2010)). Various approaches have been developed to overcome this; we show that our framework
also applies to this setting without modification.

7

“left (resp. right) hand side” by LHS (resp. RHS). We denote Bernoulli, binomial, and exponential
distributions by Ber(·), Bin(·, ·), and Exp(·), respectively. We write X ∼ D to denote that the
r.v. X has distribution D, and we write σ(X1, . . . , Xk) to denote the sigma-algebra generated by
the random variables X1, . . . , Xk. We denote the total variation distance between two probability
measures P and Q w.r.t. a σ-algebra F by ‖P −Q‖TV,F := supA∈F |P (A)−Q(A)|.

Throughout we reserve the variable T for the number of iterations in the game, n for the number
of actions (i.e. “experts” in PFE or “arms” in MAB), and S for the switching budget. Losses of the
actions are denoted by {`t(i)}t∈[T],i∈[n]. Often it is notationally convenient to add in a fake zero-th
iteration; when we do this the losses are all zero {`0(i) := 0}i∈[n]. Next, we write Regrett(A)
and Switchest(A) to denote the regret and number of switches, respectively, that an algorithm A
makes in the first t iterations. When there is no chance of confusion, we often write just Regrett
and Switchest for shorthand.

Remark on integrality. Since we are interested only in asymptotics and to avoid carrying
ceilings and floors throughout, we ignore issues of integrality for notational simplicity.

2 Switching-cost PFE: the first high probability algorithms

The main result of this section is the following. A partial converse is presented in Appendix F.1.

Theorem 1. For each δ ∈ (0, 12), there exists an algorithm for PFE satisfying the following against
any oblivious adversary

P
(

RegretT , SwitchesT ≤ O
(√

T log n log 1
δ

))
≥ 1− δ

Note that Theorem 1 does not give an uniform algorithm; that is, for each failure probability δ,
there is a (possibly different) corresponding algorithm. Obtaining a uniform h.p. algorithm remains
an important open question.

Combining Theorem 1 with a standard mini-batching argument (see e.g. (Arora et al., 2012))
immediately yields the first h.p. algorithm for the (arbitrary) switching-cost PFE problem.

Corollary 2. Let c ≥ 1. For each δ ∈ (0, 12), there exists an algorithm for PFE satisfying the
following against any oblivious adversary

P
(

RegretT + c · SwitchesT ≤ O
(√

cT log n log 1
δ

))
≥ 1− δ

Proof. Mini-batch the T iterations into T
c contiguous epochs of length c, and then apply the

algorithm from Theorem 1.

The remainder of this section is organized as follows. Subsection 2.1 describes a general
framework for producing a h.p. algorithm given an algorithm satisfying certain properties. In
Subsection 2.2, we show that the switching cost bound holds w.h.p. under our framework. Our
analysis of the regret bounds is not blackbox; the rest of this section analyzes regret bounds for
three algorithms in the FPL algorithmic umbrella.

8

Figure 2: Framework for obtaining algorithms achieving optimal switching and regret w.h.p.

while in iteration ≤ T do

Run A with fresh randomness. Stop when use S′ = O

(√
T logn

log
1
δ

)
switches.

end

2.1 Framework for converting FPL-based algorithms with expectation guarantees
into ones with high-probability guarantees

We will shortly give several algorithms achieving the desired h.p. guarantees in Theorem 1. All
of our algorithms use the same general idea, and so we first abstract slightly and describe a meta-
framework for constructing such h.p. algorithms. Informally, the idea for “boosting” our success
probability is to repeatedly run an algorithm A which is optimal in expectation. This allows a user
to easily and formulaically construct h.p. algorithms specially tailored to desired applications, since
proving expectation bounds is significantly simpler than proving h.p. bounds.

Algorithm 1 informally describes this simple meta framework. The idea is to split the T
iterations into N = log 2

δ variable-length epochs. In each epoch, we restart and run the subroutine

A until it uses S′ �
√
T log n log 1

δ/N switches.
We emphasize two critical aspects of this meta-framework. First, the subroutine A is restarted

with fresh randomness in each new epoch. This is clearly essential for concentration. Second, the
epochs are of variable length (and are in fact random). This can be shown to be essential: if A has
large upper tails on switching (see Appendix H), then simply running A roughly ≈ log 1

δ times in
≈ T/ log 1

δ consecutive epochs of fixed uniform size does not imply the desired concentration in
the total number of switches. Indeed, with a probability too large for our desired h.p. bounds, A
uses far too many switches in one of the epochs, thereby ruining the total switching budget. Further
details for this can be found in Appendix B.

The analysis then consists of the following two parts (and then taking a union bound):

1. Show that w.h.p., we never run out of switches. This amounts to showing that the number of
epochs is greater than N with probability at most e−N = δ

2 .

2. Show that the cumulative regret over the epochs concentrates around N times the expected
regret in a single epoch. We take a point at which the CDF has remaining upper tail ≈ δ

2 .

The analysis of the second step requires specific properties of A. We will require the following
for all τ ≤ T :

(i) E[Switchesτ (A)] = O
(√
τ log n

)
(ii) Regretτ (A)

a.s.
≤ O (Switchesτ (A)) + Zτ (A), where Zτ (A) is independent of the adversary

(iii) (Informal) Zτ (A) has “exponentially small upper tails”

9

Let us comment on these properties. Informally, using (i), we can bound the number of switches
w.h.p., and then (ii) and (iii) together imply a h.p. bound on the regret. We will show the former
can be proven in a blackbox manner just given (i); however, the latter requires analyzing Zτ (A)
which is algorithm-specific.

Note that property (ii) enforces a certain dependence between the regret and number of switches.
Upon first sight it may seem restrictive or slightly unusual; however, this is actually a natural
property of FPL-based algorithms. In particular, we show in the following subsections how this
applies to (Kalai and Vempala, 2005)’s Multiplicative Follow the Perturbed Leader algorithm
(FPL*) and (Devroye et al., 2015)’s Prediction by Random Walk Perturbation algorithm (PRW).

2.2 Black-box high probability bounds on switching

In this subsection, we formalize the above discussion about how property (i) (upper bound on ex-
pected number of switches) is sufficient to prove in an entirely black-box manner that Framework 1
produces an algorithm with h.p. bounds on switching. We also isolate in the statement of this
lemma an upper tail bound on the number of epochs in the batched algorithm, since this will later
be useful for proving h.p. regret bounds. We state the result in some generality, assuming that the
algorithm A has expected switches at most cA

√
T ; for example cA = c

√
log n for FPL*.

Lemma 3. Let A be an algorithm for PFE satisfying E[Switchesτ (A)] ≤ cA
√
τ for all τ ≤ T and

some parameter cA > 0 independent of τ . Denote by B the algorithm produced by Framework 1

with S′ := 23cA

√
T

log
2
δ

. Then for any oblivious adversary, the number of epochs E in B satisfies

P
(
E > log 2

δ

)
≤ δ

2

and so in particular (since each epoch uses at most S′ switches),

P
(

SwitchesT (B) > 23cA

√
T log 2

δ

)
≤ δ

2

Proof sketch. Note that E > N := log 2
δ if and only if B has not yet reached iteration T by the

end of the first N epochs. Thus it suffices to show

P

(
N∑
e=1

Le < T

)
≤ e−N (1)

where Le denotes the length of epoch e, and we use the convention Le = 0 if e > E. We will
prove (1) by first using the expected switching bound on A and Markov’s inequality to show that
each epoch e has large length Le with reasonably large probability; and then using concentration-
of-measure to conclude

∑N
e=1 Le is small only with exponentially small probability in N .

Technical issues of dependency and overcoming them with martingales. However, there is an
annoying technical nuance that must be accounted for in both these steps: {Le}e∈[N] are dependent.
One reason for this is that the final epoch may be truncated if it reaches iteration T before it uses S′

switches; and then all subsequent epochs e ∈ {E + 1, . . . , N} will necessarily have length 0.

10

To fix this issue, consider possibly extending the game past iteration T (only for analysis
purposes) until N epochs are completed. Set to zero all losses in the “overtime” extension of the
game past iteration T . Define now L̃e to be the length of epoch e in the extended game. Importantly,
observe that the event in (1) can be expressed in terms of {L̃e}e∈[N] as{

N∑
e=1

Le < T

}
=

{
N∑
e=1

L̃e < T

}
(2)

This is because Le
a.s.
= L̃e conditional on the event that none of epoch e goes into overtime.

Note that {L̃e}e∈[N] are still not independent, however they are “independent enough” for us
to accomplish the proof sketch using martingale concentration. The following lemma formally
accomplishes the first step in the above proof sketch: conditional on any history, each L̃e has large
length Ltarget := 8T

N with reasonably large probability.4

Lemma 4. For each epoch e ∈ [N] and for each event R in the sigma-algebra σ(L̃1, . . . , L̃e−1),

P
(
L̃e ≥ Ltarget

∣∣∣ R) ≥ 7

8

Proof. Conditioning on the possible realizations te of
∑

i<e L̃i yields

P
(
L̃e ≥ Ltarget

∣∣∣ R) =
∑
te

P

(
L̃e ≥ Ltarget

∣∣∣ ∑
i<e

L̃i = te, R

)
P

(∑
i<e

L̃i = te

∣∣∣ R)

Now the obliviousness of the adversary ensures that L̃e is conditionally independent of R given∑
i<e L̃i. Thus it suffices to now show P(L̃e ≥ Ltarget |

∑
i<e L̃i = te) ≥ 7

8 for each realization te.
By Markov’s inequality,

P
(
L̃e ≥ Ltarget

∣∣∣ te) = P
(
A makes ≤ S′ switches in the Ltarget iterations starting after te

)
= 1− P

(
A makes > S′ switches in Ltarget iterations starting after te

)
≥ 1− E

[
SwitchesLtarget(A)

]
/S′

≥ 1−
(
cA

√
8T
N

)
/

(
23cA

√
T
N

)
≥ 7

8

We are now ready to prove Lemma 3.

Proof of Lemma 3. Define the indicator random variables Xe := 1(L̃e ≥ Ltarget). By (2) and then
the observation that L̃e stochastically dominates Ltarget Xe,

P

(
N∑
e=1

Le < T

)
= P

(
N∑
e=1

L̃e < T

)
≤ P

(
N∑
e=1

Xe <
T

Ltarget
=
N

8

)
4Assume for notational simplicity that Ltarget := 8T

N
≤ T ; otherwise set Ltarget to T and an identical argument

proceeds.

11

We now claim {Mk :=
∑k

e=1Xe − 7
8k}k∈[N] forms a submartingale w.r.t. the filtration {Fk :=

σ(L̃1, . . . , L̃k)}k∈[n]. To see this, observe that Mk is clearly measurable w.r.t. Fk, and also
Lemma 4 gives E[Mk+1|Fk] = Mk +

(
E[Xk+1|Fk]− 7

8

)
≥ Mk. Therefore since also {Mk}

clearly has 1-bounded differences (they are cumulative sums of indicator random variables), Azuma-
Hoeffding’s submartingale inequality upper bounds the above display by

P

(
N∑
e=1

Xe <
N

8

)
≤ exp

(
−2

(
7

8
− 1

8

)2

N

)
≤ exp (−N) =

δ

2

2.3 Controlling regret for FPL-based algorithms

In this subsection, we formalize the discussion from Subsection 2.1 about how algorithms based
on (Kalai and Vempala, 2005)’s FPL algorithmic framework automatically satisfy property (ii). As
such, we first review the basics of FPL; we highlight only the background relevant for the results
in this paper, and refer the reader to (Kalai and Vempala, 2005, Cesa-Bianchi and Lugosi, 2006,
Devroye et al., 2015) for further details.

The Follow The Leader algorithm (FTL) greedily plays at iteration t ∈ [T] the action it :=
arg mini∈[n]

∑t−1
s=0 `s(i) that has been best so far5. However, FTL is well-known to have Ω(T)

regret in the worst case. It turns out one can fix this by “perturbing” the losses in a clever way, and
then in each iteration following the leader with respect to the perturbed losses. This is the FPL
framework. Note the algorithm is then completely determined by its choice of perturbations.

Let us formalize this. Before the game starts, the algorithm chooses (random) perturbations
{Pt(i)}t∈[T+1],i∈[n]. It then plays FTL on the perturbed losses {ˆ̀t(i) := `t(i)+Pt+1(i)}t∈{0,...,T},i∈[n].
That is, at iteration t ∈ [T] it plays action

it := arg min
i∈[n]

t−1∑
s=0

ˆ̀
s(i)

The analysis of FPL-style algorithms is somewhat formulaic. One bounds the regret in terms of
two terms: the number of times the perturbed leader switches (which is the number of switches
that FPL makes!), and the magnitude of the perturbations. In words, the former controls how
predictable the algorithm’s actions are; and the latter controls how much the algorithm “deceives”
itself by playing based on inauthentic losses. This illustrates an important tradeoff, which can be
made formal since larger perturbations make the perturbed leader switch fewer times.

This bound is written formally as follows (Kalai and Vempala, 2005, Devroye et al., 2015). We
generalize the statement slightly by introducing the quantity M := supactions i,i′, loss ` |`(i)− `(i′)|.
The proof is standard via the so-called “Be The Leader” lemma from (Kalai and Vempala, 2005),
and is given in Appendix C for completeness.

5It will be notationally convenient to define {`0(i) := 0}i∈[n] so that the game has losses for iterations t ∈
{0, . . . , T}.

12

Lemma 5 (Standard lemma in analysis of FPL algorithms). Consider FPL with perturbations
{Pt(i)}. The following holds pointwise (w.r.t. the randomness of both the algorithm and adversary)

RegretT (FPL)
a.s.
≤M · SwitchesT (FPL) +

[
max
i∈[n]

T+1∑
t=1

Pt(i)

]
−
T+1∑
t=1

Pt(it)

In the notation of property (ii), the two summands in Lemma 5 constitute ZT . This bounds the
per-epoch regret of the batched algorithm from Framework 1. By summing up the above inequality
over all epochs, one can bound on the regret over the whole game.

Corollary 6. LetB be the algorithm produced from Framework 1 applied to FPL with perturbations
{Pt(i)}. Then

RegretT (B)
a.s.
≤M · SwitchesT (B) +

[
E∑
e=1

max
i∈[n]

∑
t∈e

Pt(i)

]
−
T+1∑
t=1

Pt(it)

Proof. Sum Lemma 5 over all epochs e ∈ [E], and observe

E∑
e=1

Regrete(B) =
E∑
e=1

(∑
t∈e

`t(it)− arg min
i∗∈[n]

∑
t∈e

`t(i
∗)

)
a.s.
≥

T∑
t=1

`t(it)−arg min
i∗∈[n]

E∑
e=1

∑
t∈e

`t(i
∗) = RegretT (B)

2.4 High probability version of (Kalai and Vempala, 2005)’s Multiplicative Follow
the Perturbed Leader algorithm

(Kalai and Vempala, 2005)’s Multiplicative Follow the Perturbed Leader algorithm (FPL*
ε) is a

version of FPL that sets Pt(i) = 0 for all t > 1, and draws the intial perturbations P1(i) := R(i)
ε

where R(i) ∼ exp(1) are i.i.d. standard exponential random variables and ε is a parameter.6 FPL*
ε

admits the following guarantees on its expected number of switches.

Lemma 7. (Kalai and Vempala, 2005) For any τ ∈ N and any oblivious adversary, E[Switchesτ (FPL*
ε)] ≤

1
1−ε (ε τ + 2 log n).

Apply Framework 1 to FPL*
ε with parameter choices ε = 1

2

√
logn log

2
δ

T and S′ = 135
√

T logn

log
2
δ

.

We call this new algorithm Batched Multiplicative Follow the Perturbed Leader (BFPL*
δ).

Theorem 8. For any δ ∈ (0, 12) and any oblivious adversary,

P
(

RegretT (BFPL*
δ), SwitchesT (BFPL*

δ) ≤ O
(√

T log n log 1
δ

))
≥ 1− δ

6Actually this is a slight variation of FPL*
ε in the original paper of (Kalai and Vempala, 2005). Here the perturbations

are drawn from (ε-scaled) exponential distributions rather than (ε-scaled) Laplace distributions. Both are adaptable to
h.p. algorithms in identical ways; the presented version just has a slightly simpler analysis.

13

To prove the h.p. bound on regret for Theorem 8, we will need a FPL*-specific version of
property (iii) from Subsection 2.1. Specifically, as we will see shortly, it will suffice to control
the upper tail of the sum of the maximum of n i.i.d. standard exponential variables. Each of the
maximums is sub-exponential, so the sum of them is also sub-exponential. Formally, the following
concentration inequality will be sufficient. A proof via standard Chernoff bounds is given in
Appendix D.

Lemma 9. Let N,n ≥ 2. If {Re(i)}e∈[N],i∈[n] are i.i.d. standard exponentials, then

P

(
N∑
e=1

max
i∈[n]

Re(i) > 6N log n

)
≤ e−N .

Proof of Theorem 8. Assume WLOG that
√
T log n log 2

δ < T , otherwise the desired bound

is trivially satisfied. This implies in particular that ε < 1
2 and

√
log n <

√
T/ log 2

δ , thus

E[Switchesτ (FPLε)] ≤ 5
√
T log n log 2

δ for all τ ≤ T by Lemma 7. We conclude by Lemma 3

that the event {E ≤ log 2
δ} occurs with probability at least 1− δ

2 ; and whenever this occurs, BFPL*
δ

makes at most 135
√
T log n log 2

δ switches.

We next prove the h.p. regret bound. By Corollary 6 and the choice of perturbations in FPL*
ε ,

RegretT (BFPL*
δ)

a.s.
≤ SwitchesT (BFPL*

δ) +
∑
e∈[E]

max
i∈[n]

Pe(i)

where Pe(i) := Re(i)
ε denotes expert i’s perturbation in epoch e. The proof is thus complete by

taking a union bound over the occurence of {E ≤ log 2
δ} and the event in Lemma 9.

2.5 High probability version of (Devroye et al., 2015)’s Prediction By Random
Walk Perturbation algorithm

The Prediction by Random Walk Perturbation (Devroye et al., 2015) algorithm (PRW) is a version
of FPL with all perturbations Pt(i) drawn i.i.d. uniformly at random from {±1

2}. (Devroye et al.,
2015) show that PRW achieves the optimal order for regret and switching in expectation, and
raise h.p. bounds as an open question. We show presently how to achieve h.p. bounds using
Framework 1.

First, let us recall property (i) for PRW, i.e. a bound on its expected number of switches.

Lemma 10. (Devroye et al., 2015) For any τ ∈ N and any oblivious adversary, the algorithm
PRW satisfies E[Switchesτ (PRW)] ≤ 4

√
2τ log n+ 4 log τ + 4.

A crude bound thus yields E[Switchesτ (PRW)] ≤ 14
√
τ log n for all τ ∈ N and n ≥ 2. So

consider applying Framework 1 to PRW with S′ = 322
√

T logn

log
2
δ

, and call the resulting algorithm

Batched Prediction by Random Walk Perturbation (BPRWδ).

14

Theorem 11. For any δ ∈ (0, 12) and any oblivious adversary,

P
(

RegretT (BPRWδ), SwitchesT (BPRWδ) ≤ O
(√

T log n log 1
δ

))
≥ 1− δ

Proof. By Lemma 3, the event A := {E < log 2
δ} occurs with probability at least 1 − δ

2 . And

whenever this occurs, BPRWδ uses at most 322
√
T log n log 2

δ switches. Next we show h.p.
guarantees on regret. By Corollary 6,

RegretT (BPRWδ)
a.s.
≤ SwitchesT (BPRWδ) +

∑
e∈[E]

max
i∈[n]

∑
t∈e

Pt(i)

− T+1∑
t=1

Pt(it) (3)

Thus by a union bound with A, it suffices to argue that each of these summations is of order

O(
√
T log n log 1

δ) each with probability at least 1− δ
4 .

Bounding the first sum in (3). We argue separately about the expectation and tails of this sum,
which we denote by Y for shorthand. Let us first bound the tails of Y . To this end, condition on
any realization of epoch lengths {Le}e∈[E] summing up to T . Note that the resulting conditional
distribution of each Pt(i) is clearly still supported within [− 1

2 ,
1
2], and thus is 1

2 sub-Gaussian by
Hoeffding’s Lemma. Therefore

∑
t∈e Pt(i) is Le

2 sub-Gaussian for each epoch e, and so by the
Borell-TIS inequality we have that maxi∈[n]

∑
t∈e Pt(i) has Le

2 sub-Gaussian tails over its mean

E[maxi∈[n]
∑

t∈e Pt(i)]. We conclude that Y =
∑

e∈[E] maxi∈[n]
∑

t∈e Pt(i) has
∑
e∈[E] Le

2 = T
2

sub-Gaussian tails over its mean. Therefore, with probability at least 1− δ
4 , Y is bounded above by

E[Y] +O(
√
T log 1

δ).
We now show how to bound the expectation E[Y] of this sum. Let us break each epoch into

sub-epochs of length at most L := T

log
1
δ

, and denote the resulting (random) collection of sub-epochs

by E′. By a simple averaging argument, this increases the number of epochs by at most log 1
δ ; that

is, E′ ≤ E + log 1
δ a.s. holds. It follows by Jensen’s inequality that

Y =
∑
e∈[E]

max
i∈[n]

∑
t∈e

Pt(i)
a.s.
≤

∑
e′∈[E′]

max
i∈[n]

∑
t∈e′

Pt(i) (4)

Now, for each epoch e′ ∈ [E′], we have by construction of E′ that the length of e′ is at most
|e′| ≤ L. While the length of an epoch may be dependent on the random variables Pt(i) in the
epoch, we can still bound for an epoch e′ starting at time te′

max
i∈[n]

∑
t∈e′

Pt(i)
a.s.
≤ max

i∈[n]
max
τ∈[0,L]

te′+τ∑
t=te′

Pt(i) (5)

This inequality allows us to break the dependence between the epoch length and the variables Pt, at
the cost of having to bound the max over τ ∈ [0, L]. Now, a sum such as maxτ∈[0,L]

∑te′+τ
t=te′

Pt(i)

can be handled by standard martingale tail inequalities. Indeed, let Sj(i) =
∑te′+j

t=te′
Pt(i). For any

positive integer c, define

S
(c)
j (i) :=

{
c if Sj′(i) = c for some j′ ≤ j
Sj(i) otherwise

15

In words, S(c)
j (i) tracks Sj(i) unless it hits c at some point, in which case it thereafter remains con-

stant. It is immediate that S(c)
j (i) is a supermartingale and thus by Azuma-Hoeffding’s inequality,

P

 max
τ∈[te′ ,te′+L]

τ∑
t=te′

Pt(i) ≥ c

 = P
(

max
j∈[L]

Sj(i) ≥ c
)

= P
(
S
(c)
L (i) ≥ c

)
≤ exp

(
− c

2

2L

)
Since we have independence between the different i ∈ [n], a standard calculation of integrating sub-
Gaussian upper-tails yields that E[maxi∈[n] maxτ∈[0,L]

∑te′+τ
t=te′

Pt(i)] ≤ O(
√
L log n). Combining

this with (4) and (5), we conclude that E[Y] ≤ O(
√
L log n) · (E[|E|] + log 1

δ).
It remains to bound the expectation of |E|. Note that Lemma 4 implies that

∑k
e=1 Le−

7Ltarget
8 k

is a submartingale until the stopping condition
∑k

e=1 Le ≥ T − Ltarget. By the Optional Stopping
Theorem, the expected stopping time σ satisfies 0 ≤ E[

∑σ
e=1 Le]−

7Ltarget
8 E[σ] ≤ T − 7Ltarget

8 E[σ].
Rearranging yields that the expected stopping time is bounded above by E[σ] ≤ 8T

7Ltarget
. Finally, by

another application of Lemma 4, the last hop of length Ltarget, conditioned on any past, is completed
in an expected O(1) additional steps. We conclude that

E [|E|] ≤ 8T
7Ltarget

+O(1) =
log

2
δ

7 +O(1) = O(log 1
δ) (6)

Bounding the second sum in (3). At first glance, this appears difficult to bound because of
the dependencies that arise since it is chosen (partially) based on Pt. However one can use the
decomposition trick from (Devroye et al., 2015) to write the sum as

−
T+1∑
t=1

Pt(it−1) +
T+1∑
t=1

(
Pt(it−1)− Pt(it)

)
(7)

The first sum is now easily bounded since it−1 and Pt are stochastically independent. In particular,

Hoeffding’s inequality shows that the first sum in (7) is of order O(
√
T log 1

δ) with probability at

least 1− δ
4 . The second sum in (7) is easily bounded using the triangle inequality and the fact that

the perturbations Pt(i) are bounded within {± 1
2}

T+1∑
t=1

(
Pt(it−1)− Pt(it)

)
≤

T+1∑
t=1

|Pt(it−1)− Pt(it)| ≤
T+1∑
t=1

1(it 6= it−1) = SwitchesT (BPRWδ)

which is of the desired order whenever A occurs.

2.6 High probability algorithm for online combinatorial optimization

In online linear optimization and online combinatorial optimization, there is often an exponential
number of experts but low-dimensional structure between them (see e.g. (Koolen et al., 2010,
Audibert et al., 2013)). As such, naı̈vely using a standard PFE algorithm is of course (exponentially)
inefficient. Various intricate tricks have been developed to deal with this; the point of this subsection
is that our Framework 1 also applies easily to these without modification. As an example, we detail
how to modify (Devroye et al., 2015)’s Online Combinatorial Optimization version of PRW. But
for brevity of the main text, this is deferred to Appendix E.

16

3 Switching-budget PFE

In this section, we characterize the complexity of the switching-budget PFE problem, for all ranges
of the switching budget S ∈ [T]. Interestingly, the optimal regret exhibits the following (coarse)
phase transition at switching budget size S = Θ(

√
T log n). We thus separate the cases into a

high-switching regime (S = Ω(
√
T log n)) and low-switching regime (S = O(

√
T log n)).

Theorem 12 (High-switching regime). When S = Ω(
√
T log n), the optimal rate for S-switching

budget PFE against an oblivious adversary is min
(
T, Θ̃(

√
T log n)

)
. Specifically,

• Expectation upper bound: There exists an efficient S-budget algorithm achievingO
(√
T log n log T

)
expected regret.

• H.p. upper bound: For any δ ∈
(
0, 12
)
, there exists an efficient S-budget algorithm achieving

O
(√
T log n log 1

δ

)
regret with probability at least 1− δ.

• Expectation lower bound: There exists an oblivious adversary that forces any S-budget
algorithm to incur expected regret at least min

(
T,Ω(

√
T log n)

)
.

• H.p. lower bound: For any δ ∈
(
0, 12
)
, there exists an oblivious adversary that forces any

S-budget algorithm to incur regret min(T,Ω(
√
T log n

δ)) with probability at least δ.

Theorem 13 (Low-switching regime). When S = O(
√
T log n), the optimal rate for S-switching

budget PFE against an oblivious adversary is min
(
T, Θ̃

(
T logn
S

))
. Specifically,

• Expectation upper bound: There exists an efficient S-budget algorithm achievingO
(
T logn log T

S

)
expected regret.

• H.p. upper bound: For any δ ∈
(
0, 12
)
, there exists an efficient S-budget algorithm achieving

O

(
T logn log

1
δ

S

)
regret with probability at least 1− δ.

• Expectation lower bound: There exists an oblivious adversary that forces any S-budget
algorithm to incur expected regret at least min

(
T,Ω

(
T logn
S

))
.

• H.p. lower bound: For any δ ∈
(
0, 12
)
, there exists an oblivious adversary that forces any

S-budget algorithm to incur regret min(T,Ω(
T (logn+

√
log 1/δ)

S)) with probability at least δ.

Note that the extra log T factor for expected regret in both the above theorems is from naı̈vely
integrating out the tail of the h.p. algorithms. Removing this log factor is an open question.

We first present the proof for the high-switching regime, since it is direct given the machinery
we developed above in Section 2.

Proof of Theorem 12. We first prove the h.p. guarantee. Mini-batch the T iterations into T ′ =
O(T/ log 1

δ) epochs each of uniform size O(log 1
δ). Applying the h.p. algorithm from Theorem 1

to this batched game thus yields an algorithm A that with probability at least 1− δ, incurs at most

17

O(log 1
δ ·
√
T ′ log n log 1

δ) = O(
√
T log n log 1

δ) regret and makes at most O(
√
T ′ log n log 1

δ) =

O(
√
T log n) switches. Define now the algorithm A′ that runs A but if it ever exhausts S switches,

then it just stays on the same action for the rest of the game. By construction, A′ deterministically
never uses more than S switches, and is thus an S-budget algorithm. Moreover, with probability
at least 1 − δ, A (with an appropriate choice of constant in the above mini-batching argument)
also uses no more than S switches, in which event the actions of A and A′ are identical, and so in
particular RegretT (A′) = O(

√
T log n log 1

δ).
The expectation guarantee is proved by invoking this h.p. guarantee with δ = 1

T , expanding
E[Regret] by conditioning on the (regret) failure event of this algorithm, and using the trivial
observation that regret is always upper bounded by T . The expectation lower bound follows
immediately from the classical Ω(

√
T log n) lower bound for PFE without constraints on switch-

ing (Cesa-Bianchi et al., 1997). The h.p. lower bound follows by analyzing the tails for the same
adversary and is deferred to Appendix F.1.

We now shift our attention to the low-switching regime. Both the upper and lower bounds will
be proved using mini-batching reductions. The upper bounds (algorithms) are straightforward so
we present them first.

Proof of achievability in Theorem 13. WLOG we may restrict to S = ω(
√

log n) since otherwise
the statement is trivially satisfied. For the h.p. algorithm, minibatch into T ′ := S2

logn epochs (so
that S =

√
T ′ log n) and apply the h.p. algorithm from Theorem 12. The expectation guarantee

follows from an identical argument as in Theorem 12.

Proof sketch of lower bound in Theorem 13. (Full details in Appendix F.2.) The idea is
essentially a batched version of Cesa-Bianchi et al. (1997)’s classical lower bound for unconstrained
PFE. So let us first recall that argument. That construction draws the loss of each expert in each
iteration i.i.d. from {0, 1} uniformly at random. A simple argument shows any algorithm has
expected loss T

2 , but that the best expert has loss concentrating around T
2 − Θ(

√
T log n) since

(after translation by T
2) it is the minimum of n i.i.d. simple random walks of length T . Therefore

they conclude E[Regret] = Ω(
√
T log n).

However, that adversarial construction does not capitalize on the algorithm’s limited switching
budget in our setting. We accomplish this by increasing the variance of the random walk in a certain
way that a switch-limited algorithm cannot benefit from. Specifically, proceed again by batching
the T iterations into roughly E ≈ S2

logn epochs, each of uniform length T
E . For each epoch and each

expert, draw a single Ber(12) and assign it as that expert’s loss for each iteration in that epoch.
Informally, the optimal algorithm still incurs expected loss of half for each iteration in epochs it

does not switch in; and loss of 0 for each epoch it switches in. Critically, however, the algorithm can
switch at most S times, which is small compared to the number of epochs E. Thus any algorithm
incurs expected loss roughly ≈ T

E

(
E
2 − S

)
= T

2 −Θ
(
T logn
S

)
. Moreover, the best expert now has

loss concentrating around T
E

(
E
2 −Θ(

√
E log n)

)
= T

2 −Θ
(
T logn
S

)
.

18

Therefore, after appropriately choosing constants in the epoch size, we can then conclude that
the regret of any S-budget algorithm is Ω

(
T logn
S

)
in expectation, with sub-Gaussian tails of size

Ω(
T (logn+

√
log 1/δ)

S). Full details deferred to Appendix F.2.

4 Switching-budget MAB

In this section, we characterize the complexity of switching-budget MAB, for all ranges of the
switching budget S ∈ [T]. Interestingly, there is no phase transition here: the regret smoothly
decays as a function of the switching budget.

Theorem 14. The optimal rate for S-switching-budget MAB against an oblivious adversary is
min

(
Θ̃
(
T
√
n√
S

)
, T
)

. Specifically,

• Expectation upper bound: There exists an efficient S-budget algorithm achieving O
(
T
√
n√
S

)
expected regret.

• H.p. upper bound: There exists an efficient S-budget algorithm that for all δ ∈ (0, 1) achieves
O
(
T
√
n√
S

log(n/δ)√
logn

)
regret with probability at least 1− δ.

• Expectation lower bound: There exists an oblivious adversary that forces any S-budget
algorithm to incur expected regret at least min

(
T,Ω

(
T
√
n√

S log3/2 T

))
.

The upper bound proofs are just standard mini-batching arguments (see e.g. (Arora et al., 2012)).

Proof of upper bounds in Theorem 14. Mini-batch the T iterations into S epochs of TS consecutive
iterations. After a rescaling of the epoch losses by S

T , this becomes an unconstrained MAB problem.
Therefore applying the results in (Audibert and Bubeck, 2010) gives the desired expected and h.p.
guarantees on regret.

The proof of the lower bound is more involved. We present two ways of proving this result,
both of which appeal to results developed in the elegant work of (Dekel et al., 2014), which gave
the first tight (up to a logarithmic factor in T) lower bound for switching-cost MAB.

The first proof is elementary and quick, but does not give an explicit adversarial construction:
we prove the desired switching-budget MAB lower bound via a reduction to the switching-cost
MAB lower bound of (Dekel et al., 2014). This approach is inspired by the proof of Theorem 4
in (Dekel et al., 2014), which uses a similar type of argument. However their reduction obtains the
wrong dependence on the number of actions n and also loses track of polylogarithmic factors. In
Subsection 4.1, we give a more careful reduction that fixes these issues.

The second proof is significantly more complicated, but direct and also gives an explicit
adversarial construction: we use a modification of the multi-scale random walk construction
developed in (Dekel et al., 2014). Specifically, we show that the constant gap ε between the
best action and all other actions can be enlarged to roughly

√
n
S while ensuring that no S-budget

algorithm can information-theoretically distinguish the best action. Informally, this implies that any

19

S-budget algorithm incurs expected regret of order roughly T ε = T
√
n√
S

as desired. We present this
proof since it gives an explicit adversarial construction, whereas the first proof does not; however
since the analysis is essentially identical to that in (Dekel et al., 2014), the proof is deferred to
Appendix G.

4.1 Proof 1 of lower bound in Theorem 14: via reduction to switching-cost MAB

Denote the minimax rates for the switching-budget and switching-cost settings, respectively, by

R(T, n, S) := min
S-budget alg

max
oblivious adversary

E[Regret]

R(T, n, c) := min
alg

max
oblivious adversary

E[Regret + c · Switches]

Proof of lower bound in Theorem 14. Observe we may WLOG restrict to S > max
(
n
2 , 3
)
. This

is sufficient since when S ≤ n
2 , the algorithm cannot try all arms and thus cannot achieve sublinear

regret7. And when S ≤ 3, then by monotonicity of R in its last argument, R(T, n, S) ≥ R(T, n, 4)
so the desired bound follows for free up to a constant factor of at most

√
4 = 2.

Observe that for any S, we can apply an optimal S-budget algorithm (i.e. achieving E[Regret] =
R(T, n, S)), to achieve an expected cost of at most R(T, n, S) + cS for the c-switching-cost
problem. Said more concisely, this implies that for any c > 0,

R(T, n, c) ≤ min
S∈[T]

[
R(T, n, S) + cS

]
(8)

Now Theorem 3 of (Dekel et al., 2014) shows that for any c ∈
(

0, T
max(n,6)

)
,

R(T, n, c) ≥ T 2/3n1/3c1/3

50 log T

So fix any S ∈ [T] such that S > max
(
n
2 , 3
)
, and define c := R(T,n,S)

2S . Then c ∈
(

0, T
max(n,6)

)
and so combining the above two displays yields

R(T, n, S) ≥ T 2/3n1/3c1/3

100 log T

Use the definition of c and then invoke the above display to conclude

1
√

2 (100 log T)3/2

(
T
√
n√
S

)
=

1
√

2 (100 log T)3/2

 T
√
n√(

R(T,n,S)
2c

)
 ≤ R(T, n, S)3/2

R(T, n, S)1/2
= R(T, n, S)

7The following construction makes this formal. The adversary selects one good arm i∗ uniformly at random, and
then defines losses `t(i) = 1(i = i∗). Since the algorithm receives only bandit feedback and can play at most n

2
actions,

thus clearly with probability at least 1
2

it never plays the best action, therefore E[Regret] ≥ T
2

.

20

5 Duality between switching-cost and switching-budget settings

One direction of this duality is simple and folklore: as mentioned in the discussion around (8) above,
any S-switching-budget algorithm with expected regret upper bounded by R(T, n, S) clearly yields
a c-switching-cost algorithm with expected cost at most R(T, n, c) ≤ R(T, n, S) + cS. Note
that plugging into (8) the bounds on R(T, n, S) proved in this paper, immediately recovers the
corresponding known upper bounds on R(T, n, c) up to polylogarithmic factors in T , for both

PFE and MAB. Indeed, setting SPFE(c) = Θ̃(
√

T logn
c) yields RPFE(T, n, c) ≤ Õ(

√
cT log n);

and setting SMAB(c) = Θ̃(T
2/3n1/3

c2/3
) yields RMAB(T, n, c) ≤ Õ(T

√
n

S3/2).
However, the other direction of this duality is not obvious, since a c-switching cost algorithm

with expected cost at most R(T, n, c) might be unusable for the switching-budget setting. Indeed
when black-boxed, this algorithm yields only the upper bound of c−1R(T, n, c) switches in expec-
tation, as opposed to the hard-cap requirement needed for the switching-budget setting. Of course,
the mini-batching MAB algorithm from (Arora et al., 2012) by construction achieves this hard-cap
requirement deterministically, so this converse duality direction is easy for MAB. But for PFE
this direction is not clear, since existing algorithm’s upper tails on switching are too large to be
applicable for the switching-budget setting (see discussions in Section 1.1 and Appendix H).

One way of interpreting the results from Sections 2, is that (almost) nothing is lost by requiring
c-switching cost algorithms to have h.p. bounds on switching. Such algorithms can then certainly
be applied to the switching-budget problem, by setting the switching-failure probability δ ≈ 1

T and
recalling that regret is always bounded by T . This yields the desired other direction of the duality
(up to a single logarithmic factor in T).

This discussion is summarized formally by the proceeding remark.

Remark 15. The complexity of the c-switching-cost and S-switching budget setting are equivalent
(in terms of minimax rates being equal up to a polylogarithmic factor in T) when:

• PFE8: S = Θ̃
(√

T logn
max(c,1)

)
or equivalently c = Θ̃

(
max

(
T logn
S2 , 1

))
.

• MAB9: S = Θ̃
(
T 2/3N1/3

c2/3

)
or equivalently c = Θ̃

(
T
√
N

S3/2

)
.

One can visualize this duality as follows. Consider (for any c ≥ 1
T), the unique point P =

(Px, Py) at the intersection of the line y = cx with the complexity profile in Figure 1 (Figure 1(a)
for PFE or 1(b) for MAB). Then, up to a small polylogarithmic factor in T , Py is equal to the
minimax rate for both the c-switching-cost setting and the S := Px-switching-budget setting; and
moreover c and S are related by the duality formulas in Remark 15 above.

6 Conclusions

In this work, we studied online learning over a finite action set, in the presence of a budget for
switching. While this problem is closely related to the switching cost setting, handling switching

8When S = Ω̃(logn) or equivalently c = Õ
(

T
logn

)
, since otherwise the minimax rate is uninterestingly Ω̃(T).

9When S = Ω̃(n), or equivalently c ≤ Õ
(
T
n

)
, since otherwise the minimax rate is uninterestingly Ω̃(T).

21

budgets requires obtaining high probability bounds on the number of switches. We presented a
general approach for converting FPL-type algorithms into algorithms with high probability bounds
on switches as well as regret. Using this result, we showed tradeoffs between the regret and the
switching budget that are tight up to logarithmic factors.

We conclude with some open questions. The most natural open question is to close the
polylogarithmic gaps between the upper and lower bounds for the regret in the presence of switching
budgets, for both the experts and the bandit setting. Another natural question is to give a uniform
high probability algorithm, i.e. a single algorithm for PFE that yields bounds similar to Theorem 1
simultaneously for all δ.

Acknowledgements. We are thankful to the three anonymous COLT 2018 reviewers for their
helpful comments. We are indebted to Elad Hazan for numerous fruitful discussions and for
suggesting the switching-budget setting to us. We also thank Yoram Singer, Tomer Koren, David
Martins, Vianney Perchet, and Jonathan Weed for helpful discussions.

Part of this work was done while JA was visiting the Simons Institute for the Theory of
Computing, which was partially supported by the DIMACS/Simons Collaboration on Bridging
Continuous and Discrete Optimization through NSF grant #CCF-1740425. JA is also supported by
NSF Graduate Research Fellowship 1122374.

22

References

Jacob D Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient
algorithm for bandit linear optimization. In COLT, 2009.

Robert J Adler and Jonathan E Taylor. Random fields and geometry. Springer Science & Business
Media, 2009.

Raman Arora, Ofer Dekel, and Ambuj Tewari. Online bandit learning against an adaptive adversary:
from regret to policy regret. ICML, 2012.

Jean-Yves Audibert and Sébastien Bubeck. Regret bounds and minimax policies under partial
monitoring. Journal of Machine Learning Research, 11(Oct):2785–2836, 2010.

Jean-Yves Audibert, Sébastien Bubeck, and Gábor Lugosi. Regret in online combinatorial opti-
mization. Mathematics of Operations Research, 39(1):31–45, 2013.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multi-
armed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

Baruch Awerbuch and Robert Kleinberg. Online linear optimization and adaptive routing. Journal
of Computer and System Sciences, 74(1):97–114, 2008.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymp-
totic theory of independence. Oxford university press, 2013.

Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends R© in Machine Learning, 5(1):1–122,
2012.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Nicolo Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. Journal of Computer and System
Sciences, 78(5):1404–1422, 2012.

Nicolo Cesa-Bianchi, Yoav Freund, David Haussler, David P Helmbold, Robert E Schapire, and
Manfred K Warmuth. How to use expert advice. Journal of the ACM (JACM), 44(3):427–485,
1997.

Nicolo Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Minimizing regret with label efficient
prediction. IEEE Transactions on Information Theory, 51(6):2152–2162, 2005.

Nicolo Cesa-Bianchi, Ofer Dekel, and Ohad Shamir. Online learning with switching costs and other
adaptive adversaries. In Advances in Neural Information Processing Systems, pages 1160–1168,
2013.

Ofer Dekel, Jian Ding, Tomer Koren, and Yuval Peres. Bandits with switching costs: T 2/3 regret. In
Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pages 459–467.
ACM, 2014.

23

Luc Devroye, Gábor Lugosi, and Gergely Neu. Prediction by random-walk perturbation. In
Conference on Learning Theory, pages 460–473, 2013.

Luc Devroye, Gábor Lugosi, and Gergely Neu. Random-walk perturbations for online combinatorial
optimization. IEEE Transactions on Information Theory, 61(7):4099–4106, 2015.

Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Online markov decision processes.
Mathematics of Operations Research, 34(3):726–736, 2009.

Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn. Queue, 11(12):20, 2013.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

Sascha Geulen, Berthold Vöcking, and Melanie Winkler. Regret minimization for online buffering
problems using the weighted majority algorithm. In COLT, pages 132–143, 2010.

Andras Gyorgy and Gergely Neu. Near-optimal rates for limited-delay universal lossy source
coding. IEEE Transactions on Information Theory, 60(5):2823–2834, 2014.

David P Helmbold and Robert E Schapire. Predicting nearly as well as the best pruning of a
decision tree. Machine Learning, 27(1):51–68, 1997.

David P Helmbold and Manfred K Warmuth. Learning permutations with exponential weights.
Journal of Machine Learning Research, 10(Jul):1705–1736, 2009.

Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal of
Computer and System Sciences, 71(3):291–307, 2005.

Donald E Knuth. Dynamic huffman coding. Journal of algorithms, 6(2):163–180, 1985.

Wouter M Koolen, Manfred K Warmuth, and Jyrki Kivinen. Hedging structured concepts. In
COLT, pages 93–105. Citeseer, 2010.

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information and
computation, 108(2):212–261, 1994.

Gergely Neu and Gábor Bartók. An efficient algorithm for learning with semi-bandit feedback. In
International Conference on Algorithmic Learning Theory, pages 234–248. Springer, 2013.

Gergely Neu, Andras Antos, András György, and Csaba Szepesvári. Online markov decision
processes under bandit feedback. In Advances in Neural Information Processing Systems, pages
1804–1812, 2010.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and
Trends R© in Machine Learning, 4(2):107–194, 2012.

Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985a.

24

Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. Journal of the
ACM (JACM), 32(3):652–686, 1985b.

Eiji Takimoto and Manfred K Warmuth. Predicting nearly as well as the best pruning of a planar
decision graph. Theoretical Computer Science, 288(2):217–235, 2002.

Eiji Takimoto and Manfred K Warmuth. Path kernels and multiplicative updates. Journal of
Machine Learning Research, 4(Oct):773–818, 2003.

Jia Yuan Yu, Shie Mannor, and Nahum Shimkin. Markov decision processes with arbitrary reward
processes. Mathematics of Operations Research, 34(3):737–757, 2009.

25

A Adaptive adversaries in the switching-budget setting

In this section, we make formal the notion that adaptive adversaries are too powerful to compete
against in the switching-budget setting. This is why this paper focuses on oblivious adversaries.

The lower-bound construction is quite simple, and is identical to the folklore construction for
adaptive adversaries in the switching-cost setting.

Theorem 16. There is a deterministic adaptive adversary for PFE with n = 2 actions, that forces
any S-switching-budget algorithm A to incur regret at least

Regret(A) ≥ T − 1

2
− S

In particular, for any S = o(T), the minimax rate for regret is Θ(T).

Proof. Define the adaptive adversary which constructs losses as follows

`t(i) :=

{
0 t = 1

1{i = it−1} t > 1

where it is the action A plays at iteration t. First, observe that these losses force A to incur
cumulative loss at least T −S− 1. This is becauseA incurs a loss of 1 whenever it does not switch,
and a loss of 0 whenever it does (but it can only do switch at most S times). Formally:

T∑
t=1

`t(it) =

T∑
t=2

1{it = it−1} = (T − 1)−
T∑
t=2

1{it 6= it−1} ≥ T − S − 1

On the other hand, the best action has cumulative loss at most T−12 by a simple averaging argument.
Plugging in the definition of regret finishes the proof.

B Our framework needs more than just expectation bounds

Our analysis of Algorithm 1 needs specific properties of the algorithm A that it builds on. We next
argue that our approach cannot convert an arbitrary algorithmA achieving guarantees in expectation
into one achieving them w.h.p. Indeed, consider an arbitrary algorithm A satisfying the property
that E[RegretT (A)] and E[SwitchesT (A)] are both O(

√
T log n), and define a new algorithm Ap

by: with probability 1− p run A for all T iterations; otherwise with probability p play action ⊥
for
√
T log n/p iterations, and then run A for the remainder. Here ⊥ is a new action that incurs

loss 1 in each step. Clearly Ap also satisfies E[RegretT (Ap)],E[SwitchesT (Ap)] = O(
√
T log n).

However, applying the meta-framework in Figure 1 to Ap cannot produce an algorithm with the
desired h.p. guarantees. Indeed, when p ≈ δ/ log 1

δ , then with probability roughly 1−(1−p)N ≈ δ,
we encounter the bad event for Ap in at least one of the epochs. When this occurs, we incur regret

roughly
√
T log n/p ≈

√
T log n/δ, instead of the

√
T log n log 1

δ required for a h.p. guarantee.

26

C Proof of standard lemma in analysis of FPL-type algorithms: Lemma 5

In this section, we present for completeness a standard proof of Lemma 5 (Kalai and Vempala,
2005, Cesa-Bianchi and Lugosi, 2006, Devroye et al., 2015). The key step in its proof is to compare
it to the Be-The-Leader algorithm (BTL), which is known to have negative regret.

Formally, BTL plays at iteration t the action it+1 := arg mini∈[n]
∑t

s=0 `t(i).10 In other
words, it plays the action that the Follow the Leader algorithm (FTL) would play at iteration t+ 1.
The following so-called “Be-The-Leader” lemma shows that BTL has negative regret. It has a one
line induction proof (Kalai and Vempala, 2005).

Lemma 17 (Be-The-Leader lemma, (Kalai and Vempala, 2005)). For all i ∈ [n],

T∑
t=0

`t(it+1) ≤
T∑
t=0

`t(i)

The proof of Lemma 5 now follows readily from Lemma 17.

Proof of Lemma 5. Let i∗ := arg mini∈[n]
∑T

t=1 `t(i) be the best action in hindsight (w.r.t. the
true losses). Applying Lemma 17 to the regularized losses {ˆ̀t(i) = `t(i) +Pt+1(i)}t∈{0,...,T},i∈[n],

T∑
t=0

ˆ̀
t(it+1) ≤

T∑
t=0

ˆ̀
t(i
∗)

Using the definition of ˆ̀
t(i) and the fact that `0(i) = 0, we can expand the LHS as

T∑
t=0

ˆ̀
t(it+1) =

T∑
t=1

`t(it) +
T+1∑
t=1

Pt(it) +
T∑
t=1

(
`t(it+1)− `t(it)

)
The RHS can similarly be expanded as

T∑
t=0

ˆ̀
t(i
∗) =

T∑
t=1

`t(i
∗) +

T+1∑
t=1

Pt(i
∗)

Combining the above two displays and using the definition of regret gives

RegretT (FPL) =

T∑
t=1

`t(it)−
T∑
t=1

`t(i
∗) ≤

T+1∑
t=1

Pt(i
∗)−

T+1∑
t=1

Pt(it) +

T∑
t=1

(
`t(it)− `t(it+1)

)
The proof is complete by the trivial observation

∑T
t=1 Pt(i

∗) ≤ maxi∈[n]
∑T

t=1 Pt(i) and the
bound
T∑
t=1

(
`t(it)− `t(it+1)

)
≤

T∑
t=1

∣∣∣`t(it)− `t(it+1)
∣∣∣ ≤M T∑

t=1

1(it 6= it+1) = M · SwitchesT (FPL)

where we have respectively used the triangle inequality, the definition ofM := suploss `, actions i,i′ |`(i)−
`(i′)|, and the fact that FPL by definition plays the regularized leaders.

10Note that although BTL is well-defined, it is of course not a “legitimate” online learning algorithm since we do not
have access to the loss `t at iteration t. As such, BTL is only for analysis purposes.

27

D Proof of concentration inequalities for FPL regularization: Lemma 9

Recall we wish to show the concentration inequality

P

(
N∑
e=1

Xe > 6N log n

)
< e−N

where N,n ≥ 2, {Re(i)}e∈[N],i∈[n] are i.i.d. standard exponentials, and Xe := maxi∈[n]Re(i).
We will prove this via Chernoff bounds. As such, the first step is to bound the MGF of each Xe, i.e.
bound the MGF of the maximum order statistic of n independent standard exponentials.

Note that our MGF bounds are rather crude (we use a union bound to upper bound the tail
distribution of a maximum order statistic); nevertheless this gives the optimal concentration rate up
to a constant factor. Indeed, since the expectation of the maximum of N i.i.d. standard exponentials
is
∑n

i=1 i
−1 ∈ [log n, log n+ 1] ≥ log n, thus E

[∑N
e=1Xe

]
≥ N log n, which is already within

a factor of 6 of the concentration inequality we show in Lemma 9.

Lemma 18. Let X be the maximum of n i.i.d. standard exponential random variables. Then for
all t ∈ (0, 1),

E
[
etX
]
≤ nt

1− t
Proof. Recall that for a positive r.v. Y , E[Y] =

∫∞
0 P(Y ≥ u)du. Thus

E
[
etX
]

=

∫ nt

0
P
(
etX ≥ u

)
du+

∫ ∞
nt

P
(
etX ≥ u

)
du (9)

The first integral is trivially upper bounded by nt. For the second integral, perform a change of
variables u = nt(1+δ). Then du = nt(1+δ)t log ndδ so∫ ∞

nt
P
(
etX ≥ u

)
du ≤ tnt log n

∫ ∞
0

P (X ≥ (1 + δ) log n)nδtdδ

Now since X = maxi∈[n]R(i) are i.i.d. standard exponentials, we have by a union bound

P(X ≥ (1 + δ) log n) = 1− P(max
i∈[n]

R(i) < (1 + δ) log n)

= 1− P(R(i) < (1 + δ) log n)n

= 1−
[
1− n−(1+δ)

]n
≤ n−δ

Combining the above two displays gives∫ ∞
nt

P
(
etX ≥ u

)
du ≤ tnt log n

∫ ∞
0

nδ(t−1)dδ

= tnt log n

[
nδ(t−1)

(t− 1) log n

]∞
0

=
t

t− 1
nt

28

Plugging this into (9), we conclude E
[
etX
]
≤ nt

(
1 + t

1−t

)
= nt

1−t as desired.

The proof of Lemma 9 now follows readily.

Proof of Lemma 9. By a standard Chernoff argument and then applying Lemma 18 with t = 1
2 ,

P

(
N∑
e=1

Xe ≥ a

)
≤ e−ta E

[
etXe

]N ≤ e− 1
2 (a−N logn−2N log 2)

The proof is complete by taking a := N log n+ 2N log 2 + 2N , which is crudely bounded above
by 6N log n since by assumption N,n ≥ 2.

E High probability algorithm for online combinatorial optimization

For simplicity, we restrict to the case of online combinatorial optimization over subsets of the
binary hypercube, which as e.g. (Cesa-Bianchi and Lugosi, 2012) and (Devroye et al., 2015) argue,
includes most of the important applications. Formally, the experts are elements of a decision set
S ⊆ {0, 1}d, |S| = n. Losses are linear functions `t(v) := `Tt v where `t ∈ [0, 1]d are constrained
in infinity norm. A (non-essential) assumption often made in the literature, that allows for more
specific bounds, is that each action v ∈ S is m-sparse, i.e. each v ∈ S satisfies ‖v‖0 = ‖v‖1 = m.
(For example, if S is the set of r×r permutation matrices, then m is only r rather than d = r2.) We
refer the reader to the introduction of (Devroye et al., 2015) for a summary of the state-of-the-art
for this problem.

(Devroye et al., 2015) introduce an efficient algorithm for this setting that we call here Com-
binatorial PRW (COMBPRW). It also falls under the FPL framework: the perturbations are i.i.d.
Gaussian random vectors P1, . . . , PT ∼ N (0, η2Id×d), for some parameter η. At each iteration
t ∈ [T], COMBPRW then plays the leading action vt := arg minv∈S(

∑t−1
s=0

ˆ̀
s)
T v w.r.t. the

perturbed losses ˆ̀
s := `s + Ps+1.

Following (Devroye et al., 2013), we will set η = log−
1
2 d, which the authors show leads to

regretO(m2
√
T log d) andO(m

√
T log d) switches, both in expectation11. We apply Framework 1

to COMBPRW to obtain an algorithm that we call Batched COMBPRW (BCOMBPRWδ); we next
show that this achieves both of these w.h.p. (up to an extra logarithmic factor in the regret).

The analysis is similar to the earlier proofs for BFPL*
δ and BPRWδ in Sections 2.4 and 2.5,

respectively. We start with an upper bound on the expected number of switches. (This is property
(i) of Framework 1; see Subsection 2.1.)

Lemma 19 (Lemma 5 of (Devroye et al., 2013)). For any τ ∈ N and any oblivious adversary,
E[Switchesτ (COMBPRW)] ≤

∑τ
t=1

mE ‖`t+Pt+1‖2∞
2η2t

+ m
√
2 log dE ‖`t+Pt+1‖∞

η
√
t

.

11In the journal version (Devroye et al., 2015), a different setting of η is used which leads to a slightly better regret
bound ofO(m

3
2
√
T log d) (See Theorem 4 of (Devroye et al., 2013) and Theorem 1 of (Devroye et al., 2015).) However,

to show this they employ the proof technique of (Neu and Bartók, 2013) which is not amenable to the h.p. framework and
analysis developed in Section 2. We use the algorithm and the analysis approach of (Devroye et al., 2013, Theorem 4).

29

Standard bounds on suprema of Gaussian processes give that E[‖P1‖∞] ≤ η
√

2 log d and
E[‖P1‖2∞] ≤ η2(2 log d+

√
2 log d+ 1) (Boucheron et al., 2013). Thus

E[Switchesτ (COMBPRW)] ≤ O
(
m

(
1 + η2 log d

η2

)
log τ

)
+O

(
m

(
1 + η

√
log d

η

)√
τ log d

)
which for η = log−

1
2 d is bounded above by cm

√
τ log d for some c > 0. Denote by Batched

COMBPRW (BCOMBPRWδ) the algorithm produced by Framework 1 with S′ := 23cm
√

T

log
2
δ

log d.

Theorem 20. For any δ ∈ (0, 12) and any oblivious adversary,

P

(
RegretT (BCOMBPRWδ) ≤ O

(
m2
√
T log 1

δ log d ·
√

log
(
dT
δ

))
,

SwitchesT (BCOMBPRWδ) ≤ O
(
m
√
T log 1

δ log d

))
≥ 1− δ

Proof. By Lemma 3, the event A := {E ≤ log 2
δ} occurs with probability at least 1 − δ

2 . And

whenever this happens, BCOMBPRWδ switches at most 23cm log d
√
T log 2

δ times.

Next we show h.p. guarantees on regret. By Hölder’s Inequality, sup`∈[0,1]d, v,v′∈S |`T v −
`T v′| ≤ m. Thus by Corollary 6,

RegretT (BCOMBPRWδ)
a.s.
≤ m · SwitchesT (BCOMBPRWδ) +

∑
e∈[E]

max
v∈S

(∑
t∈e

Pt

)T
v

− T+1∑
t=1

P Tt vt

(10)

So by a union bound with A, it suffices to show each of these summations are of the desired order
with probability at least 1− δ

4 . We proceed by similar arguments to the ones we used in the analysis
of BPRW in Section 2.5.

Bounding the first sum in (10). This part of the proof is nearly identical to the analogous
argument in the proof of Theorem 11. Denote this sum by Y . We first bound its upper tails. Fix
any realization of epoch lengths {Le}e∈[E] summing to T . Since the Pt ∼ N (0, η2I) are i.i.d.,
thus Ze :=

∑
t∈e Pt has law N (O,Leη

2I). Thus Xv,e := ZTe v is distributed N (0,mLeη
2) for

each v ∈ S. (Of course Xv,e are not necessarily independent.) The Borell-TIS inequality gives
that supv∈S Xv,e has mLeη2 sub-Gaussian tails around its mean (Adler and Taylor, 2009). We
conclude that Y =

∑
e∈[E] supv∈S Xv,e has mTη2 sub-Gaussian tails around its mean E[Y].

We next bound this expectation E[Y]. As in the proof of Theorem 11, we split epochs
longer than L := T log−1 1

δ so as to ensure that each sub-epoch is of length at most L. By a
simple averaging argument, the number of sub-epochs is at most log 1

δ more than the number
of epochs. Denote the set of sub-epochs by E′. By Jensen’s inequality, it suffices to bound∑

e′∈E′ supv∈S
(∑

t∈e′ Pt
)T
v. For a sub-epoch starting at te′ , we can bound

sup
v∈S

(∑
t∈e′

Pt

)T
v ≤ sup

v∈S
sup
τ∈[0,L]

te′+τ∑
t=te′

Pt

T

v.

30

This allows us to break the dependence between the epoch length and the variables Pt at the cost of
having to bound the max over τ ∈ [0, L]. For any v, a martingale argument identical to that in the

proof of Theorem 11 yields the following tail bound on supτ∈[0,L]

(∑te′+τ
t=te′

Pt

)T
v:

P

 sup
τ∈[0,L]

te′+τ∑
t=te′

Pt

T

v > cη
√

2mL

 ≤ exp(−c2)

Using a union bound on
(
d
m

)
possibilities for m, we get

P

sup
v∈S

sup
τ∈[0,L]

te′+τ∑
t=te′

Pt

T

v > cη
√

2mL

 ≤ (d
m

)
exp(−c2)

Setting c = a
√
m log d, and upper bounding the expectation by the integral of the tail, we get that

E

sup
v∈S

sup
τ∈[0,L]

te′+τ∑
t=te′

Pt

T

v

 ≤ O(mη
√
L log d)

To upper bound the expectation of the sum of this over E epochs, we multiply by the expected
number of (sub)epochs, which is O(log 1

δ) by (6). We thus conclude the following upper tail bound
on the first sum in (10):

P

∑
e∈[E]

max
v∈S

(∑
t∈e

Pt

)T
v ≥ O(mη

√
T log 1

δ log d) + u

 ≤ exp

(
− u2

2mTη2

)

and so in particular, conditioned on A, with probability at least 1− δ
4 , this sum is upper bounded

by O(mη
√
T log 1

δ log d) + η
√

2mT log 4
δ .

Bounding the second sum in (10). We use the same decomposition trick from (Devroye et al.,
2013) as we used in the analysis of BPRW. Specifically, the sum in question can be written as

−
T+1∑
t=1

P Tt vt−1 +

T+1∑
t=1

P Tt (vt−1 − vt) (11)

The first sum in (11) is now easily bounded since vt−1 and Pt are stochastically independent. In
particular, this means each P Tt vt−1 has distribution N (0, η2m). Since moreover {P Tt vt−1}t∈[T+1]

are themselves stochastically independent, thus
∑T+1

t=1 P
T
t vt−1 has distribution N (0, η2m(T + 1))

and thus is upper bounded by η
√

2m(T + 1) log 8
δ = O(η

√
mT log 1

δ) with probability at least

1− δ
8 .

31

The second sum in (11) can be upper bounded as follows

T+1∑
t=1

P Tt (vt−1 − vt) ≤
T+1∑
t=1

‖Pt‖∞‖vt−1 − vt‖1

≤ 2m
T+1∑
t=1

‖Pt‖∞1(vt−1 6= vt)

≤ 2m

(
sup

i∈[d],t∈[T+1]
|Pi,t|

)(
T+1∑
t=1

1(vt−1 6= vt)

)
(12)

The first and third inequalities above are due to Hölder’s inequality; the second is by trian-
gle inequality and the assumption that each ‖vt‖1 ≤ m. Now, supi∈[d],t∈[T+1] |Pi,t| is the
supremum of d(T + 1) i.i.d. N (0, η2) Gaussians and thus by the Borell-TIS inequality is at

most E[supi∈[d],t∈[T+1] |Pi,t|] +
√

2 log 8
δ ≤ η

√
2 log(2dT) + η

√
2 log 8

δ = O(η
√

log
(
dT
δ

)
)

with probability at least 1 − δ
8 . Thus when this and A occur, the term in (12) is of order

O(m2 log d
√
T log 1

δ · η
√

log
(
dT
δ

)
).

The theorem statement now follows by a union bound and combining the above displays.

F Lower bounds on regret

In this section, we prove the lower bounds in Theorems 12 and 13. We first prove that the tails
of regret can be no better than sub-Gaussian, implying the lower bound in Theorem 12. Then in
Section F.2, we show the lower bound for the low switching budget case.

F.1 Optimality of sub-Gaussian regret tails

Recall the classical lower bound of Cesa-Bianchi et al. (1997), in which the adversary generates
all losses `t(i) as independent Ber(12) random variables. A simple argument (see e.g. Section 3)
shows that against this adversary, any algorithm must suffer expected regret of order at least the
minimax optimal rate Ω(

√
T log n). In fact it is easy to check that this lower bound holds with

constant probability, i.e. the independent Ber(12) losses sequence forces any algorithm to incur
regret Ω(

√
T log n) with probabilty at least 1/4.

We next give a probabilistic analysis of this lower-bound construction and show that for any
algorithm, the upper tails of regret are no better than sub-Gaussian. Informally, this order is what
one would expect from this lower-bound construction in light of Gaussian isoperimetry and the
Borell-TIS inequality. This is formally stated as follows.

Proposition 21. Let log 1
δ be ω(log2 T) and o(T). For large enough n = Ω(1), there exists an

oblivious adversary that forces any PFE algorithm to incur at least Ω(
√
T log 1

δ) regret with
probability at least δ.

Note that together the above proposition combined with the expectation lower bound of (Cesa-
Bianchi et al., 1997), show the correct dependence in each of the parameters T , n, and δ indepen-
dently but not jointly.

32

To prove Proposition 21, we will use the following standard result on the concentration and
anti-concentration of a binomial random variable. For completeness, we provide a short proof.

Lemma 22. There exist constants c1 ≤ c2 such that for all sufficiently large T and for all
r ∈ [log T2 , T

1/2

4],

P
X∼Bin(T,12)

(
X ≥ T

2
+ r
√
T

)
≤ exp(−c1r2)

P
X∼Bin(T,12)

(
X ≥ T

2
+ r
√
T

)
≥ exp(−c2r2)

Proof. The upper bound (concentration) follows immediately from Hoeffding’s Inequality. For

the lower bound (anti-concentration), we will use the fact that
√

2πnn+
1
2 e−n ≤ n! ≤ enn+

1
2 e−n.

Additionally, we use that (1 + x) ≤ exp(x) and that (1− x) ≥ exp(−2x) for x ∈ (0, 12). To avoid
carrying around a ceiling, we assume that r

√
T is an integer.

P
(
X ≥ T

2
+ r
√
T

)
≥ P

(
X =

T

2
+ r
√
T

)
=

T !

(T2 + r
√
T)!(T2 − r

√
T)!

2−T

≥
√

2πT T+
1
2 e−T

2T e2(T2 + r
√
T)

T+1
2

+r
√
T (T2 − r

√
T)

T+1
2
−r
√
T e−T

=
2
√

2π

e2
√
T (1 + 2r√

T
)
T+1
2

+r
√
T (1− 2r√

T
)
T+1
2
−r
√
T

=
2
√

2π(1− 2r√
T

)r
√
T

e2
√
T (1− 4r2

T)
T+1
2 (1 + 2r√

T
)r
√
T

≥ 2
√

2π exp(−4r2)

e2
√
T exp(−2r2(1 + 1

T)) exp(2r2)

≥ exp(−5r2).

Armed with this lemma, the proof of Proposition 21 is straightforward.

Proof of Proposition 21. Consider the adversary from Cesa-Bianchi et al. (1997), which generates
each loss `t(i) independently as Ber(12). Then any algorithm has cumulative loss distributed as
Bin(T, 12). On the other hand, the loss of the best expert is the minimum of n such Bin(T, 12)
random variables.

Set r =

√
log 1

2δ
2c2

, and define the events A := {loss of algorithm ≥ T
2 + 2r

√
T} and B :=

{loss of best expert < T
2 + r

√
T}. When both A and B occur, the algorithm incurs regret at least

r
√
T = Ω(

√
T log 1

δ); thus it suffices to now show P(A and B) ≥ δ.

33

The anti-concentration direction of Lemma 22 yields

P (A) ≥ 2δ.

On the other hand, the concentration direction of Lemma 22 yields

P
(
BC
)

=

[
P
(

Bin(T, 12) ≥ T

2
+ r
√
T

)]n
≤ exp(−c1r2n) = (2δ)

n
c1
2c2

Choosing n ≥ 4c2
c1

, we conclude that for small enough δ ≤ 1
4 , then P(BC) ≤ 4δ2 ≤ δ. The proof

is now complete by a union bound:

P (A and B) = 1− P
(
AC or BC

)
≥ 1− P(AC)− P(BC) = P(A)− P(BC) ≥ 2δ − δ = δ

The better of these two lower bounds Ω(
√
T log n) and Ω(

√
T log 1

δ) is always Ω(
√
T log n

δ)

as desired.

F.2 Lower bounds on regret in low-switching regime

In this section, we prove the lower bound in Theorem 13.
The idea is essentially a batched version of Cesa-Bianchi et al. (1997)’s classical lower bound

for unconstrained PFE. So let us first recall that argument. That construction draws the loss
of each expert in each iteration i.i.d. from {0, 1} uniformly at random. A simple argument
shows any algorithm has expected loss T

2 , but that the best expert has loss concentrating around
T
2 −Θ(

√
T log n) since (after translation by T

2) it is the minimum of n i.i.d. simple random walks
of length T . Therefore they conclude E[Regret] = Ω(

√
T log n).

However, that adversarial construction does not capitalize on the algorithm’s limited switching
budget in our setting. We accomplish this by increasing the variance of the random walk in a certain
way that a switch-limited algorithm cannot benefit from. Specifically, proceed again by batching
the T iterations into roughly E ≈ S2

logn epochs, each of uniform length T
E . For each epoch and each

expert, draw a single Ber(12) and assign it as that expert’s loss for each iteration in that epoch.
Informally, the optimal algorithm still incurs expected loss of half for each iteration in epochs it

does not switch in; and loss of 0 for each epoch it switches in. Critically, however, the algorithm can
switch at most S times, which is small compared to the number of epochs E. Thus any algorithm
incurs expected loss roughly ≈ T

E

(
E
2 − S

)
= T

2 −Θ
(
T logn
S

)
. Moreover, the best expert now has

loss concentrating around T
E

(
E
2 −Θ(

√
E log n)

)
= T

2 −Θ
(
T logn
S

)
.

Therefore, after appropriately choosing constants in the epoch size, we can then conclude that
the expected regret of any S-budget algorithm is Ω

(
T logn
S

)
.

We next give details. We will make use of the following simple anti-concentration lemma. The
proof is standard and ommitted since it follows directly from Lemma 6 of (Cesa-Bianchi et al.,
1997), or even just from combining Hoeffding’s inequality with a union bound.

34

Lemma 23. There exists a universal constant c > 0 such that for all E,n ∈ N+

E
[
min
i∈[n]

Zi

]
≤ E

2
− c
√
E log n

where {Zi}i∈[n] are i.i.d. Bin(E, 12).

Proof of lower bound in Theorem 13. Let c > 0 be the constant from Lemma 23. We will restrict
WLOG to the case c

2 log n ≤ S ≤ c
2

√
T log n. Indeed, when the latter inequality does not hold,

then the lower bound from Theorem 12 applies. And when the former inequality does not hold, then
we may apply the Ω(T) lower bound that we show presently for (the easier setting of) S′ = c

2 log n.
Mini-batch the T iterations into E := 4

c2
S2

logn epochs, each of uniform length T
E . For each

epoch e ∈ [E], assign to each expert i ∈ [n] a loss of Xe(i) ∼ Ber(12) for each iteration in that
epoch. Clearly this adversary is oblivious.

Note that the cumulative loss
∑T

t=1 `t(i) of each expert i is equal in distribution to T
E times a

Bin(E, 12) r.v. Thus by Lemma 23,

E

[
min
i∈[n]

T∑
t=1

`t(i)

]
≤ T

E

(
E

2
− c
√
E log n

)
=
T

2
− cT

√
log n√
E

=
T

2
− c2

2

T log n

S

Now let us compute the expected loss any algorithm A that uses at most S switches. It is simple to
see that the following deterministic strategy is optimal: for each epoch, burn the first iteration by
not moving; then if we are on a good expert do not move for the rest of the epoch; else if we are on
a bad expert then make a switch if we have switches remaining. To analyze this, let the random
variable B denote the number of epochs in which the algorithm plays a bad expert in that epoch’s
first iteration. Then the r.v. min(B,S) is equal to the number of bad epochs in which A makes a
switch. Thus since E[B] = E

2 , we obtain

E [cumulative loss of A] = E
[
1 ·min(B,S) +

T

E
· (B −min(B,S))

]
≥ T

E
E [B − S]

≥ T

E

(
E

2
− S

)
=
T

2
− TS

E

=
T

2
− c2

4

T log n

S

Combining the two above displays, we conclude that any S-switching budget algorithm A suffers
expected regret at least c

2

4
T logn
S = Ω

(
T logn
S

)
.

This implies the bound on the expected regret. The high probability regret bound follows in a
similar fashion by mini-batching the lower bound argument in Section F.1.

35

G Proof 2 of lower bound in Theorem 14: via direct modification
of (Dekel et al., 2014)’s multi-scale random walk

This proof is significantly more involved than the first proof given in Subsection 4.1, but it yields
an explicit adversarial construction. Since the proof relies on (existing) sophisticated techniques,
we first outline the main ideas and tools.

G.1 Motivation via adaptation of the construction in (Cesa-Bianchi et al., 2013).

Let us begin by showing how to adapt the pioneering lower-bound construction for switching-cost
MAB in (Cesa-Bianchi et al., 2013), to our switching-budget setting. Although this idea does not
quite work (due to reasons stated below about the losses drifting outside of [0, 1]), it will motivate
the adaptation of (Dekel et al., 2014) we later describe in Appendix Subsections G.2 and G.3 (that
does work).

The critical idea in their construction of losses is the use of random walks to hide the best
action. Formally, draw an action i∗ ∈ [n] uniformly at random; it will be designated as the best
action. Then define the oblivious losses

`t(i) :=
t∑

τ=1

Zτ − ε1(i = i∗)

where Z1, . . . , ZT ∼ N (0, 1) are i.i.d. standard Gaussians. Note that action i∗ is better than all
other actions by a deterministic amount ε in each iteration, but the identity of i∗ is hidden (at least
partially) because the algorithm receives only bandit feedback.

The key intuition of this loss construction is that the player learns absolutely nothing from
playing the same arm in consecutive iterations. Therefore an optimal algorithm will switch between
arms in each of the first S iterations (the “exploration” phase), and subsequently play the arm
estimated to be best for the remaining T − S iterations (the “exploitation” phase). A standard
information theoretic argument shows that it takes roughly Ω

(
ε−2
)

switches to distinguish whether
a given arm is ε-biased (Auer et al., 2002, Cesa-Bianchi et al., 2013). Moreover, a simple averaging
argument shows that at least one of the n actions is played at most S

n times in these first S
exploratory iterations. Informally, this shows that the player cannot identify the best arm after
S exploratory iterations when ε = o(

√
n
S), and therefore the minimax rate is lower bounded by

sup
ε=o

(√
n
S

)Ω(T ε) = Ω
(
T
√
n√
S

)
.

However, the problem with this adversarial construction is that the losses are certainly not
bounded within [0, 1] and indeed are likely to drift to very large values that scale with T . As such,
it is not clear whether the above lower bound is merely an artifact of these large losses.

G.2 Adversarial construction via adaptation of the construction in (Dekel et al.,
2014).

We fix this issue of bounded losses by closely following the elegant argument of (Dekel et al.,
2014), who gave the first rigorous tight lower bound for switching-cost MAB. Their construction
is similar in flavor to (Cesa-Bianchi et al., 2013)’s random walk construction described above;

36

however, they prevent drifting by generating the losses instead from a carefully chosen multi-scale
random walk (MRW).

Our loss functions will be identical to the one in (Dekel et al., 2014) (see Figure 1 in their paper),
except that we will alter the bias ε of the best arm based on the switching-budget S. Specifically,
we will set ε =

√
n

54
√
S(log T)3/2

, as opposed to their choice ε = n1/3

9T 1/3 log T
. For completeness, we

re-state this construction as follows in our notation and with our ε.

Figure 3: Explicit construction of (random, oblivious) adversarial loss sequence that forces any
S-switching-budget algorithm to incur E[Regret] ≥ min

(
T, Ω̃

(
T
√
n√
S

))
.

• Set ε :=
√
n

54
√
S(log2 T)

3/2
and σ := 1

9 log2 T

• Choose i∗ ∈ [n] uniformly at random
• Draw Z1, . . . , ZT ∼ N (0, σ2) i.i.d. Gaussians
• Define W0, . . . ,WT recursively by:

W0 := 0

Wt := Wp(t) + Zt ∀t ∈ [T]

where p(t) := t− 2δ(t) and δ(t) := max{i ≥ 0 : 2i divides t}
• For all t ∈ [T] and i ∈ [n], define

`
unclipped
t (i) := Wt + 1

2 − ε ·1(i = i∗)

`t(i) := clip(`
unclipped
t (i))

where clip(x) := min(max(x, 0), 1)

We now provide a bit of intuition about this construction, and refer the reader to (Dekel et al., 2014)
for further details and intuition.

In essence, this construction has many similarities to the one in Subsection G.1: the best
action is better than all others by a constant gap ε = Θ̃

(√
n
S

)
, and this best action is hidden by

constructing the losses from a certain random walk. A similar heuristic information-theoretic
argument as in Subsection G.1 above, shows that any algorithm needs more than S switches to
distinguish the best arm. We make this argument formal in the following subsection.

The key difference in this construction is in the so-called parent function p(t). Note that defining
instead p(t) = t − 1 would recover the construction in Subsection G.1 (modulo the clipping of
losses and setting of parameters ε and δ). However as pointed out above, then Wt =

∑t
τ=1 Zτ

would often drift outside of [0, 1]. It turns out that the choice of p(t) := t− 2δ(t) ensures that the
resulting stochastic process Wt will have small “depth” and “width”. We refer to (Dekel et al.,
2014) for formal definitions and further details about this, and just remark here that informally
these properties ensure that (1) w.h.p. the process Wt does not drift far, implying that w.h.p. the

37

losses `t(i) are not clipped; and (2) each switch gives the player little information about the identity
of the best arm.

In words, the definition of p(t) means that Wt is created by summing up the Zi in the binary
expansion of t: e.g.,W1 = Z1,W2 = Z2,W3 = Z2+Z3,W4 = Z4,W5 = Z4+Z1,W6 = Z6+Z4,
and so on; see Figure 2 of (Dekel et al., 2014) for details. The functions `unclipped

t : [n] → R are
then created from centering the process Wt at 1

2 , and then the losses `t : [n]→ [0, 1] are created
from clipping the outputs to [0, 1]. Intuitively, the larger σ is, the more it masks the bias ε of the
best arm; but the smaller it is, the more likely the losses will not need to be clipped.

We refer the reader to (Dekel et al., 2014) for further intuition and details, and now proceed to
formally prove the desired lower bound in Theorem 14 using this construction.

G.3 Proof of lower bound

We now prove the lower bound in Theorem 14 using the adversarial construction in Figure 3. The
proof will almost exactly follow the analysis in (Dekel et al., 2014). As they do, let us first prove
the result for deterministic algorithms; extending to randomized algorithms will then be easy at the
end. Formally, we will aim to first show the following.

Lemma 24. The loss sequence in Figure 3 forces any deterministic S-budget algorithm A to incur
expected regret at least

E[RegretT (A)] ≥ min

(
T,

1

324(log T)3/2

(
T
√
n√
S

))
Let {it}t∈[T] be the decisions ofA. SinceA is deterministic, we know each it is a deterministic

function of its previous observations {`τ (iτ)}τ∈[t−1].

Step 1 of proof: Compare regret to unclipped regret. It will be easier mathematically to
analyze the unclipped regret, which is defined exactly like regret but on the unclipped losses
`

unclipped
t . This quantity is more amenable to analysis since it equal to the following simple

expression

Regretunclipped(A) :=
T∑
t=1

`
unclipped
t (it)− min

i∗∈[n]

T∑
t=1

`t(i
∗) = ε (T −Ni∗)

where for each i ∈ [n], Ni denotes the number of times A played action i.
The first step in the proof is thus to compare E[Regret(A)] to E[Regretunclipped(A)]. This is

achieved by the following lemma, whose statement and proof are nearly identical to that of Lemma
4 in (Dekel et al., 2014); we provide details for completeness.

Lemma 25 (Slight modification of Lemma 4 in (Dekel et al., 2014)). If T > 6 and S ≥ n
81 log3 T

,

E [Regret(A)] ≥ E
[
Regretunclipped(A)

]
− ε T

6

38

Proof. Define the event B := {∀t ∈ [T] : `t = `
unclipped
t }; we will first show P(B) ≥ 5

6 . To do
this we show that the stochastic process Wt has small drift. Indeed, Lemmas 1 and 2 of (Dekel
et al., 2014) show that (with setting the parameter δ := 1

T ≤
1
6)

P
(

max
t∈[T]
|Wt| ≤

1

3

)
≥ 5

6

Whenever this occurs, we have that 1
2 +Wt ∈ [16 ,

5
6] for all t ∈ [T]; and thus since ε ≤ 1

6 (by our
assumption on S), we have that all unclipped losses `unclipped

t (i) ∈ [0, 1]. Thus P(B) ≥ 5
6 .

To conclude, observe that Regret(A) = Regretunclipped(A) when B occurs. Otherwise, we have
always have

0 ≤ Regret(A) ≤ Regretunclipped(A) ≤ ε T

The first inequality is because there is an action which is always the best; the second inequality is
because the gap to the best action can only decrease when losses are clipped; and the final equality
is since the best action for the unclipped losses is always best by a constant gap of ε. Therefore
we conclude Regretunclipped(A) − Regret(A) ≤ ε T and so the proof is concluded by a simple
conditioning argument:

E
[
Regretunclipped(A)− Regret(A)

]
= P(BC)E

[
Regretunclipped(A)− Regret(A) | BC

]
≤ ε T

6

Step 2 of proof: Analyze unclipped regret in terms of the algorithm’s ability to distinguish
the best arm. At this point, we need to define some new notation. Following (Dekel et al.,
2014), denote by F the σ-algebra generated by the player’s observations up to time T . Also for
i ∈ [n], denote by Qi(·) := P(·|i∗ = i) the conditional probability measures on the event that the
best action is i. Similarly denote by Q0(·) the probability measure in which no action is good
(“i∗ = 0”). Let EQi [·] denote expectations w.r.t. these probability measures. Finally, we will denote
by ‖P −Q‖TV,F := supA∈F |P (A)−Q(A)| the total variation distance between two probability
measures P and Q with respect to the sigma-algebra F .

The key lemma of this section is then to lower bound the expected unclipped regret in terms
of how well the algorithm can distinguish the best arm. As is standard, the latter quantity will be
measured in terms of the algorithm’s ability at the end of the game, to distinguish whether there
was a biased arm or not, i.e. whether the losses were generated from the measure Qi(·) or Q0(·).
This is made formal as follows.

Lemma 26 (Slight modification of Lemma 5 in (Dekel et al., 2014)).

E
[
Regretunclipped(A)

]
≥ ε T

2
− ε T

n

n∑
i=1

‖Q0 −Qi‖TV,F

Proof. Identical to the proof of Lemma 5 in (Dekel et al., 2014), except without switching costs.

39

Step 3 of proof: Upper bound the algorithm’s ability to distinguish the best arm, in terms
of its number of switches. Recall the discussions in Subsections G.1 and G.2 about how the
random-walk loss construction ensures that the amount of information the algorithm learns about
the best action, is controlled by the number of switches it makes. The following makes this intuition
precise.

Lemma 27 (Corollary 1 of (Dekel et al., 2014)).

1

n

n∑
i=1

‖Q0 −Qi‖TV,F ≤
ε

σ
√
n

√
EQ0 [SwitchesT (A)] · log2 T

We note that the above is the main technical lemma in the proof. We refer to the original
paper of (Dekel et al., 2014) for its proof, and just remark here that roughly speaking the argument
follows the standard framework of: upper bounding total variation by KL divergence via Pinsker’s
inequality; and then upper bounding KL divergence via properties of the loss construction.

Critical to us will be the trivial observation that EQ0 [SwitchesT (A)] ≤ S since A deterministi-
cally never makes more than S switches.

Step 4 of proof: Combining everything together to prove the lower bound against determin-
istic algorithms. We are now ready to prove Lemma 24.

Proof of Lemma 24. We may assume WLOG that T > 6 and S ≥ n
81(log2 T)

3 . The former condition
can be justified by simply enlarging the constant in our final Ω(·) lower bound. The latter can be
justified since when it does not hold, the resulting setting is only harder than when S = n

81(log2 T)
3 ;

and for this setting, the ensuing argument shows a lower bound of T
36 = Ω(T).

Therefore by applying Lemmas 25, 26, and 27, and using the fact that A is limited to S
switches,

E [Regret(A)] ≥ ε T

3
− ε2 T

σ
√
n

√
S · log2 T

The proof is complete by plugging in our choice of parameters ε and σ.

Step 5 of proof: Extending the hardness result to randomized algorithms. We are now fi-
nally ready to prove the lower bound in Theorem 14. We use a standard argument that is similar to
the one in the proof of Theorem 1 of (Dekel et al., 2014).

Proof of lower bound in Theorem 14. Lemma 24 shows that the oblivious adversary defined by the
losses in Figure 3 is hard against any deterministic algorithm. Now since the adversary is oblivious,
and since any randomized algorithm can be viewed as a distribution over deterministic algorithms
(where all coin flips done before the game begins), the expected regret of a randomized algorithm
against the losses in Figure 3 can be computed by first taking the expectation over the algorithm’s
internal randomness.

40

We note there is also a standard argument if one wants a hard deterministic adversary. Since
the adversary is oblivious, applying the Max-Min inequality and the probabilistic method yields

max
random adversary

min
random S-budget algorithm

E[Regret] ≤ min
random S-budget algorithm

max
random adversary

E[Regret]

= min
random S-budget algorithm

max
deterministic adversary

E[Regret]

Now Theorem 14 lower bounds the first inequality of the above display. Thus we conclude that
for any S-budget algorithm, there exists a hard deterministic adversary. Of course this is now an
existential result not an explicit construction since the deterministic adversary now depends on the
algorithm it is trying to be hard against.

H On the upper tails of standard algorithms

In this section, we discuss whether existing algorithms achieve h.p. guarantees. As far as we
know, there are three existing algorithms that in expectation achieve the minimax optimal rate
of O(

√
T log n) for both regret and number of switches. A natural question is whether these

algorithms also achieve these optimal rates w.h.p.
The first (chronologically) of these three algorithms is (Kalai and Vempala, 2005)’s Multiplica-

tive Follow the Perturbed Leader algorithm (FPL*). It seems to be folklore that this algorithm’s
upper tail is far too large (in fact it is inverse polynomially large!) for both switching and regret to
achieve h.p. bounds. However, we are not aware of anywhere in the literature that this is explicitly
written down, so for completeness we give proofs of these facts in Appendix H.1.

The second of these algorithms is the Shrinking Dartboard (SD) algorithm proposed by (Geulen
et al., 2010). Their paper does not consider whether SD achieves h.p. bounds on either switching or
regret; and to the best of our knowledge, neither of the questions is answered in the literature yet. In
Appendix H.2, we give a simple proof that SD does achieve h.p. bounds on switching (even against
adaptive adversaries!). However, we give a simple construction for which SD achieves no better
than sub-exponential regret tails. It is not clear though whether SD achieves sub-exponential regret
tails in general – this seems a hard problem and would have interesting implications since the tails
would be uniform (as opposed to our proposed algorithms; see discussion immediately following
Theorem 1). Nevertheless, in light of the sub-Gaussian upper tails achieved by Theorem 1 and the
sub-Gaussian lower bound in Proposition 21, SD is anyways provably suboptimal. Moreover, SD
does not have an efficient implementation for online combinatorial optimization (Devroye et al.,
2015), whereas, as shown in Section E, our Framework 1 easily extends to this setting.

The third of these three algorithms is the Prediction by Random-Walk Perturbation algorithm
from (Devroye et al., 2015). However, analyzing its upper tails (for both switching and regret)
seems quite difficult and was left as an open problem in their paper.

Finally, we discuss briefly in Section H.3 why (Kalai and Vempala, 2005)’s Follow the Lazy
Leader (FLL) algorithm, which gives expected regret and switching bounds for the combinatorial
setting, does not satisfy the conditions of our framework.

41

H.1 FPL* achieves h.p. bounds neither for switches nor for regret

Let us first recall the algorithm: before the game starts, the algorithm draws a perturbation12

Pi ∼ exp(1)
ε for each action; then at each iteration t ∈ [T], the algorithm plays the action

it := arg min
i∈[n]

(
Pi +

∑
s<t

`s(i)

)

that is best with respect to the perturbed cumulative losses. (Kalai and Vempala, 2005) show that

when ε is chosen of order
√

logn
T , then in expectation FPL*

ε achieves the minimax optimal rate
of O(

√
T log n) for both switching and regret. However, this rate is achieved w.h.p. neither for

switches nor for regret, since both of their upper tails are only inverse polynomially small (instead
of inverse exponentially small). This is formally stated as follows.

Proposition 28. Consider PFE with n = 2 actions. Let ε = Θ
(

1√
T

)
, so that in expectation FPL*

ε

achieves the minimax regret rate of O(
√
T). There exists a deterministic oblivious adversary such

that for any T sufficiently large,

P
(

Regret(FPL*
ε), Switches(FPL*

ε) = Ω(T)
)
≥ Ω

(
1√
T

)
To prove Proposition 28, we will employ the folklore construction traditionally used for show-

ing Ω(T) switching and regret lower bounds on the naı̈ve Follow the Leader (FTL) algorithm. For
FTL, this construction is deterministically hard (i.e. with probability 1); here, we show that for
FPL*

ε the construction is hard with non-negligible probability.

Proof. By assumption ε = c√
T

. Take any T ≥ c2

4 and define the losses as follows. Set `1(i) :=

1
2 ·1(i = 2), and in every subsequent iteration t > 1 set `t(i) :=

{
1(i = 1) t even
1(i = 2) t odd

. The

key observation is that whenever P1 − P2 ∈ [0, 12), then Switches(FPL*) = T and moreover
Regret = (loss of player) − (loss of best expert) = (T − 1

2) − (T2 −
1
2) = T

2 . Thus it suffices
to lower bound the probability that P1 − P2 ∈ [0, 12). But this is a straightforward calculation:

12Note that for clarity, we use exponential perturbations instead of Laplacian perturbations as in (Kalai and Vempala,
2005)’s original paper, since this is how we discussed the algorithm in Section 2. An identical argument works for
Laplacian perturbations, since Laplacians also have sub-exponential tails.

42

recalling that each Pi := Ri
ε = Ri

√
T
c where Ri are i.i.d. standard exponential random variables,

P
(
P1 − P2 ∈ [0, 12)

)
= P

(
R1 −R2 ∈ [0, c

2
√
T

)
)

=

∫ ∞
0

e−r2
∫ r2+

c
2
√
T

r2

e−r1dr1dr2

=

(
1− e−

c
2
√
T

)∫ ∞
0

e−2r2dr2

= 1
2

(
1− e−

c
2
√
T

)
≥ c

8
√
T

where the final step is due to the inequality 1− e−x ≥ x
2 which holds for all x ∈ [0, 1].

H.2 SD achieves h.p. bounds for switches, but cannot achieve sub-Gaussian regret
tails

(Geulen et al., 2010) show that their SD algorithms achieve in expectation the minimax optimal
rate O(

√
T log n) for both switches and regret, when SD’s learning parameter η is chosen of order√

logn
T . However, they do not consider whether this optimal rate is achieved with high probability.

First, we give a simple proof that SD w.h.p. achieves this optimal rate for switching.

Proposition 29. Let η = c
√

logn
T . Then for any (even adaptive) adversary and any δ ∈ (0, 1),

P
(

SwitchesT (SD) ≥ c
√
T log n+

√
2T log 1

δ

)
≤ δ

Proof. Let Xt := 1(it 6= it−1) denote the indicator r.v. that SD switches actions between iterations
t− 1 and t. Define also Zt to be the indicator r.v. that line 7 in Algorithm 2 of (Geulen et al., 2010)
is executed at iteration t. Then conditional on any event A in the sigma-algebra generated by past
decisions of the player and adversary σt−1 := σ(i1, `1, . . . , it−1, `t−1),

P (Xt = 1 | A) ≤ P (Zt = 1 | A) = 1− (1− η)`t−1(i) ≤ η

The first inequality is because Zt stochastically dominates Xt conditional on any historic event A,
since line 7 must be executed in order for SD to switch actions. The middle equality is by definition
of SD. The final inequality is due to the `∞ constraint on the losses to lie within [0, 1].

We conclude that {Mt :=
∑t

s=1Xs − tη}t∈[T] is a super-martingale w.r.t. the filtration

{σt−1}t∈[T]. Moreover, it has bounded differences of at most 1, since |Mt+1−Mt|
a.s.
≤ max(η, 1−

η) ≤ 1. Since clearly M0 = 0, we conclude from Hoeffding-Azuma’s inequality (Boucheron et al.,
2013) that

P (Switches(SD) ≥ ηT + r) = P (MT −M0 ≥ r) ≤ exp

(
− r

2

2T

)
The proof is complete by setting r =

√
2T log 1

δ .

43

Next, we show a sub-exponential lower bound on the upper tails of SD’s regret.

Lemma 30. The regret of SD does not have sub-Gaussian tails, even when there are only n = 2
actions. That is, for all δ ∈ (0, 1), there exists an oblivious adversary that forces SD to incur at
least min

(
Ω(
√
T log 1

δ), T
)

regret with probability at least δ.

Proof. Let η = c√
T

so that in expectation SD achieves the minimax regret rate ofO(
√
T). Consider

the following simple adversarial construction: draw a “bad” arm i∗ uniformly at random, and

construct the losses `t(i) := 1(i = i∗, t ≤ T ′) where T ′ :=
log

1
2δ

2η + 1.13

Clearly if i1 = · · · = iT ′ = i∗ then the algorithm incurs regret of T ′ which is of order
Ω(
√
T log 1

δ) since η must be chosen of order Θ(T−1/2) so that SD achieves the minimax rate of
O(
√
T) regret in expectation. Thus it suffices to show P(i1 = · · · = iT ′ = i∗) ≥ δ. To see this,

note that i1 = i∗ with probability 1
n = 1

2 ; and moreover by the definition of SD, it+1 = it with
probability at least 1− η regardless of SD’s previous actions i1, . . . , it−1. Thus by the inequality
1− η ≥ e−2η for η ∈ [0, 34], we conclude that for all sufficiently large T = Ω(1),

P (i1 = · · · = iT ′ = i∗) ≥ 1
2(1− η)T

′−1 ≥ 1
2 exp

(
−2η(T ′ − 1)

)
= δ

As a specific instantiation, this shows that SD incurs Ω(T) regret with probability at least
2−O(

√
T).

H.3 On FLL for online combinatorial optimization

The Follow the Lazy Leader (FLL) algorithm of (Kalai and Vempala, 2005) is an elegant variant
of FPL* that easily extends to the online combinatorial optimization setting and admits bounds
on expected switches as well as expected regret. Unfortunately, the proof of these bounds does
not quite go via bounding the regret in terms of number of switches. Thus this algorithm does not
satisfy property (ii) that our framework requires, and it is not clear if one can convert an FLL-type
algorithm to get a high probability result.

13This is well-defined when T ′ ≤ T . If δ is small enough that T ′ > T , the written proof works without modification
after replacing δ with a larger δ′ such that T ′ = T . This then proves a stronger statement than required for δ.

44

	1 Introduction
	1.1 Previous work
	1.2 Our contributions
	1.3 Notation

	2 Switching-cost PFE: the first high probability algorithms
	2.1 Framework for converting `39`42`"613A``45`47`"603AFPL-based algorithms with expectation guarantees into ones with high-probability guarantees
	2.2 Black-box high probability bounds on switching
	2.3 Controlling regret for `39`42`"613A``45`47`"603AFPL-based algorithms
	2.4 High probability version of KalVem's Multiplicative Follow the Perturbed Leader algorithm
	2.5 High probability version of DevLugNeu15's Prediction By Random Walk Perturbation algorithm
	2.6 High probability algorithm for online combinatorial optimization

	3 Switching-budget PFE
	4 Switching-budget MAB
	4.1 Proof 1 of lower bound in Theorem 14: via reduction to switching-cost MAB

	5 Duality between switching-cost and switching-budget settings
	6 Conclusions
	References
	A Adaptive adversaries in the switching-budget setting
	B Our framework needs more than just expectation bounds
	C Proof of standard lemma in analysis of `39`42`"613A``45`47`"603AFPL-type algorithms: Lemma 5
	D Proof of concentration inequalities for `39`42`"613A``45`47`"603AFPL regularization: Lemma 9
	E High probability algorithm for online combinatorial optimization
	F Lower bounds on regret
	F.1 Optimality of sub-Gaussian regret tails
	F.2 Lower bounds on regret in low-switching regime

	G Proof 2 of lower bound in Theorem 14: via direct modification of DekDinKorPer's multi-scale random walk
	G.1 Motivation via adaptation of the construction in CBDekSha13.
	G.2 Adversarial construction via adaptation of the construction in DekDinKorPer.
	G.3 Proof of lower bound

	H On the upper tails of standard algorithms
	H.1 `39`42`"613A``45`47`"603AFPL* achieves h.p. bounds neither for switches nor for regret
	H.2 `39`42`"613A``45`47`"603ASD achieves h.p. bounds for switches, but cannot achieve sub-Gaussian regret tails
	H.3 On FLL for online combinatorial optimization

