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A PROBABILISTIC APPROACH TO EXTENDED FINITE STATE MEAN FIELD GAMES

RENÉ CARMONA AND PEIQI WANG

Abstract. We develop a probabilistic approach to continuous-time finite state mean field games. Based on an
alternative description of continuous-time Markov chain by means of semimartingale and the weak formulation of
stochastic optimal control, our approach not only allows us to tackle the mean field of states and the mean field of
control in the same time, but also extend the strategy set of players from Markov strategies to closed-loop strategies.
We show the existence and uniqueness of Nash equilibrium for the mean field game, as well as how the equilibrium
of mean field game consists of an approximative Nash equilibrium for the game with finite number of players under
different assumptions of structure and regularity on the cost functions and transition rate between states.

1. Introduction

Mean field game in which players’ states belong to a finite space is first studied in [14]. The dynamics of each
player’s states is depicted by a continuous-time Markov chain, whose transition rate matrix is a function of the
player’s control and probability distribution of all players’ states. By assuming that each player adopts a Markovian
strategy, the Nash equilibrium can be characterized by a HJB equation corresponding to the optimal control of
continuous-time Markov chain on the one hand, and a Kolmogorov equation on how probability distribution of
player’s states evolves on the other hand. Due to the finite nature of the state space, both equations turn out to
be ordinary differential equations and existence of the solution to this forward-backward system can be obtained
by a fixed point argument. Continuous-time finite state mean field games were applied to model socio-economic
phenomena such as paradigm shift in a scientific community and consumer choice in [15]. In [19], the strategic
aspect of cyber attack and defense is analyzed through a finite state mean field game model, in which the author
introduces a major player - the hacker - whose action influences each minor player - the computer user - in terms
of their payoff and dynamics. Theoretical aspects of finite state mean field games with major and minor players
are investigated in [4] where existence of Nash equilibria and results on approximate Nash equilibrium for finite
player game in small duration are obtained, along with the master equation characterizing the Nash equilibrium.

In this paper, we develop a probabilistic framework for continuous-time finite state mean field game. Our starting
point is a semimartingale representation of continuous-time Markov chain introduced in [10]: Let (Xt)0≤t≤T be a
continuous-time Markov chain with m states which are identified with the m standard basis vectors in Rm, then
we can write:

Xt = X0 +

∫

(0,t]

Q∗(t) ·Xt−dt+Mt.

where Q(t) is the transition rate matrix (also known as the Q-matrix) with Q∗(t) being its transpose and M is a
martingale. We immediately notice the analogy with diffusion processes and apply Girsanov Theorem to construct
equivalent probability measures under which the process X admits a different transition rate process. This opens
a pathway to formulating the optimal control problem of continous-time Markov chain in a so-called weak fashion.
Indeed, in the context of optimal control of diffusion processes, the weak formulation links the control of the drift
to the control of the probability measure (as opposed to the control of the path) and identifies the value function
of the control problem as the solution to a backward stochastic differential equation (BSDE). By the comparison
principle of the BSDE, the optimality of the control problem can be obtained by optimizing the driver of the BSDE
which coincides with the Hamiltonian function. It turns out that such procedure can be transplanted to the case of
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optimal control of continuous-time Markov chain, thanks to the theory of BSDE driven by Markov chain developed
in [6] and [7].

Once the optimal control problem can be characterized by a BSDE, our next step is to develop a probabilistic
approach to the mean field game. Probabilistic approach to mean field game is first proposed in [2], where
player’s optimization problem is treated in the strong formulation. By applying Pontryagin’s Maximum Principle,
the optimality of player’s control problem is characterized by a forward-backward stochastic differential equation
(FBSDE). Later in [3], the authors consider the weak formulation of control problem and use the argument of
change of measure which we briefly described above to obtain the BSDE characterizing the optimality. In both
cases, the existence of Nash equilibria of the mean field game boils down to the well-posedness of a BSDE (or
FBSDE) in which the probability distribution of the solution enters into the driver and the terminal condition of
the equation. These are the so-called McKean-Vlasov type of BSDE (or FBSDE) for which the existence of the
solution can be obtained by a fixed-point argument à la Schauder.

By developing the weak formulation, our contributions to finite state mean field game are three-fold. On the
one hand, the flexibility of the probabilistic approach allows us to incorporate not only the mean field of state, but
also the mean field of control into the dynamics and cost functionals of individual players. Mean field of control
is known to be notoriously intractable via PDE method, due to the difficulties in deriving the equation obeyed by
the flow of probability measure of the optimal control. Under the probabilistic framework however, the mean field
of state and the mean field of control can be dealt with in similar manners, although the treatment of mean field
of control is more involved in terms of the topological argument. On the other hand, using the weak formulation
we are able to show Nash equilibria exist among all closed-loop strategies, including the strategies depending on
the past history of player’s states, whereas the PDE approach can only accommodate Markovian strategies.

Lastly, the weak formulation we develop for the finite state mean field game will serve as a launching pad to tackle
the finite state mean field agent-principal problem. Such model is a form of Stackelberg game in which the principal
fixes a contract first and a large population of agents reaches Nash equilibrium according to the contract proposed
by the principal. By fixing a contract we actually mean that the principal chooses a control which enters into each
agent’s dynamics and cost functions. One meaningful direction in probing mean field agent-principal problems is
to understand how the principal can choose the optimal contract so that its own cost function depending on agent’s
distribution is minimized. To the best of our knowledge, this type of problem is first investigated in [9] where the
agent’s dynamics is a diffusion. The main idea is to formulate the optimal contract problem as a Mckean-Vlasov
optimal control problem, in which the state process to be controlled is the Mckean-Vlasov BSDE characterizing
the Nash equilibrium in the weak formulation of the mean field game. With the help of the weak formulation
we develop in this paper, we believe that the same technique can be applied to the case of finite state mean field
agent-principal problem, which could lead to potential applications in epidemics and cyber security.

We would also like to mention a few literatures related to our paper. In [5] the authors proposed a probabilistic
framework for finite state mean field game where the player’s dynamics of states is represented by stochastic
differential equations driven by Poisson random measures. By using Ky Fan’s fixed point theorem, the authors
obtained existence and uniqueness of the Nash equilibrium in relaxed open-loop as well as relaxed feedback controls.
Then under stronger assumption that guarantees uniqueness of optimal non-relaxed feedback control, the authors
deduced existence of Nash equilibria in non-relaxed feedback form. In [8], continuous-time mean field games with
finite state space and finite action space were studied. The authors proved existence of Nash equilibrium among
relaxed feedback controls. In [1] the authors investigated mean field games where each player’s state follows a jump-
diffusion process and the player controls the sizes of the jumps. The formulation is based on weak formulation of
stochastic controls and martingale problems. Existence of Nash equilibrium among relaxed controls and Markovian
controls is established.
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The rest of the paper is organized as follows. In Section 2, we introduce the weak formulation of finite state mean
field game, which is based on a semimartingale representation of continuous-time Markov chain and an argument
of change of measure. We state the assumptions used throughout the paper and give the precise definition of the
Nash equilibrium in the weak formulation. In Section 3, we analyze player’s optimal control problem when facing
a fixed mean field of state and control, by characterizing the value function and the optimal control using a BSDE
driven by Markov chain. Section 4 is devoted to the existence and the uniqueness of the Nash equilibrium. Finally
in Section 5, we formulate the game with finite number of players and show the Nash equilibrium of the mean field
game is an approximate Nash equilibrium of the game with finite number of players.

2. The Weak Formulation for Finite State Mean Field Games

2.1. Notations. If M is a square real matrix, we denote by by M∗ its transpose and M+ its Moore-Penrose
pseudo inverse. For a column vector X , we denote by diag(X) the square diagonal matrix whose diagonal elements
are given by the entries of X . If γ is a random variable on a probability space (Ω,F ,P), we denote its law or its
distribution, namely the push-forward of P by γby P#γ := P ◦ γ−1.

For two square integrable martingales L, M , we denote by [L,M ] the quadratic covariation process of L and
M . For two semimartingales L and M , we denote by 〈L,M〉 the predictable quadratic covariation process of L
and M . For a semimartingale L such that L0 = 0, we denote by E(L) the process of Doléans-Dade exponential of
L. See Chapter II.6 in [21] for the definitions of these standard concepts.

2.2. Controlled probability measure. For the control of continuous-time finite state Markov chains we adopt
the formalism first introduced in [10], and later developed in [6] and [7]. If X = (Xt)0≤t≤T is a continuous-time
Markov chain with m states, we identify these states with the basis vectors ei in Rm and we denote by E the
resulting state space E = {e1, . . . , em}. We assume that the sample paths t→ Xt are càdlàg, i.e. right continuous
with left limits, and continuous at T . In other words, we force XT− = XT .

We first construct a canonical probability space for X. Let Ω be the space of càdlàg functions from [0, T ] to
E which are continuous at T , and let X be the canonical process on Ω, that is Xt(ω) := ωt. We denote by
F := (Ft)t∈[0,T ] with Ft := σ{Xs, s ≤ t} the natural filtration generated by X, and we set F := FT . Throughout
the rest of the paper, we fix a probability measure p◦ on the set E. It will be used as the initial distribution
of the process X. On the filtered space (Ω,F,F), we consider the probability measure P under which X is a
continuous-time Markov chain with initial distribution p◦ and transition rates between any two different states
equal to 1. This means that for i, j ∈ {1, . . . ,m}, i 6= j and ∆t > 0, we have P[Xt+∆t = ej |Ft] = P[Xt+∆t = ej |Xt]
and P[Xt+∆t = ej|Xt = ei] = ∆t+ o(∆t). By Appendix B in [10], the process X has the representation:

(1) Xt = X0 +

∫

(0,t]

Q0 ·Xt−dt+Mt,

where Q0 is the square matrix with diagonal elements all equal to −(m− 1) and off-diagonal elements all equal to
1, and
bcM = (Mt)t≥0 is a Rm-valued P-martingale. The multiplication · is understood as matrix multiplication. Indeed,
Q0 is the transition rate matrix of X under the probability measure P.

Remark 2.1. The representation originally proposed in [10] is:

Xt = X0 +

∫

(0,t]

Q0 ·Xtdt+Mt.

However since Xt is only discontinuous on a countable set, we can replace Xt by Xt− in the integral. The reason
for this slight change of representation is to make the integrand a predictable process, which will be suitable for
the change of measure argument in what follows.
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We shall refer to the probability measure P as the reference measure on the sample space. The first step of
the weak formulation of mean field game consists in depicting how each player’s control as well as the mean field
determine the probability measure of the sample path. We denote by S the m-dimensional simplex:

S := {p ∈ Rm;
m
∑

i=1

pi = 1, pi ≥ 0},

which we identify with the space of probability distributions on E. Let A be a compact subset of Rl from which
the players can choose their controls. Denote by P(A) the space of probability measures on A. We introduce a
function q:

[0, T ]× {1, . . . ,m}2 ×A× S × P(A) → q(t, i, j, α, p, ν),

and we denote by Q(t, α, p, ν) the matrix [q(t, i, j, α, p, ν)]1≤i,j≤m. Throughout the rest of the paper, we make the
following assumption on q:

Assumption 2.2. (i) For all (t, α, p, v) ∈ [0, T ]×A× S × P(A), the matrix Q(t, α, p, ν) is a Q-matrix.
(ii) There exist constants C1, C2 > 0 such that for all (t, i, j, α, p, ν) ∈ [0, T ]×E2 ×A× S ×P(A) such that i 6= j,
we have 0 < C1 < q(t, i, j, α, p, ν) < C2.
(iii) There exists a constant C > 0 such that for all (t, i, j) ∈ [0, T ]×E2, α, α′ ∈ A, p, p′ ∈ S and ν, ν′ ∈ P(A), we
have:

|q(t, i, j, α, p, ν)− q(t, i, j, α′, p′, ν′)| ≤ C(‖α− α′‖+ ‖p− p′‖+W1(ν, ν
′)).

where W1 denotes the 1-Wasserstein distance between probability measures on A.

Recall that a matrix Q = [Qij ] is called a Q-matrix if Qij ≥ 0 for i 6= j and
∑

j 6=i

Qij = −Qii, for all i.

Remark 2.3. Assumption 2.2 is analog to the non-degeneracy condition in the diffusion-based mean field game
models. It guarantees that the probability measure Q(α,p,ν) defined in (7) below, is equivalent to the reference
measure P. In some applications of continuous-time Markov chain models, it happens that jumps from some states
to others are forbidden, in which case the transition rate function q would satisfy q(t, i, j, α, p, ν) ≡ 0 for some
couples (i, j). For example, this is the case in the botnet defense model proposed by [19], as well as in the extended
version of the model which includes an attacker studied in [4]. When that happens, we need to use a different
reference probability measure P: we set the transition rate to 1 for all the jumps, except for those that are forbidden,
for which we set the transition rate to 0. Fortunately, this is the only modification we need to make in order to
accommodate this kind of special case. The arguments presented in the following can be trivially extended to be
compatible with this modified reference probability.

We state without proof a useful property of the martingale M. The proof of this result can be found in [6]:

Lemma 2.4. The predictable quadratic variation of the martingale M under P is given by the formula:

(2) 〈M,M〉t =
∫ t

0

ψtdt,

where ψt is given by:

(3) ψt := diag(Q0 ·Xt−)−Q0 · diag(Xt−)− diag(Xt−) ·Q0.

If we define for each i the matrix ψi by:

ψi := diag(Q0 · ei)−Q0 · diag(ei)− diag(ei) ·Q0,
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then clearly we have ψt =
∑m

i=1 1(Xt− = ei)ψ
i. Since each ψi is a semi-definite positive matrix, so is ψt. We define

the corresponding (stochastic) seminorm ‖ · ‖Xt−
on Rm by:

(4) ‖Z‖2Xt−
:= Z∗ · ψt · Z.

The semi-norm ‖·‖Xt−
can be rewritten in a more explicit way. For i ∈ {1, . . . ,m}, let us define the seminorm ‖·‖ei

on Rm by ‖Z‖2ei := Z∗ · ψi · Z =
∑

j 6=i |Zj − Zi|2. Then it is easy to see that ‖Z‖Xt−
=
∑m

i=1 1(Xt− = i)‖Z‖ei .

Since ψt is symmetric, we have (ψ+
t )

∗ = ψ+
t . Recall that ψ+

t is the Moore-Penrose generalized inverse of the
matrix ψt. On the other hand, it is straightforward to verify that for all t ∈ [0, T ] and w ∈ Ω, the range of the
matrix ψt (i.e. the linear space spanned by the columns of ψt) is the space {q ∈ Rm;

∑m
i=1 qi = 0}. Therefore

for all q ∈ Rm with
∑m

i=1 qi = 0, we have ψt · ψ+
t · q = q. This holds in particular for any row vector from any

Q-matrix, or any vector of the form (ej − ei).

In order for the paper to be as self-contained as possible, we also recall the following version of Girsanov Theorem
on change of probability measure. See Theorem III.41 in [21] or Lemma 4.3 in [23].

Theorem 2.5. Let T > 0 and L = (Lt)t≥0 be a martingale defined on [0, T ] with ∆Lt ≥ −1. Assume that the
Doléans-Dade exponential E(L) of L is a uniformly integrable martingale and let Q be the probability measure having
Radon-Nikodym derivative E(L)T with respect to P. If the quadratic covariation process [M,L] is integrable under
P, then M − 〈M,L〉 is a martingale under Q, where the predictable quadratic covariation 〈M,L〉 is computed
under the measure P.

We now describe how the control of a player and the mean field affect the probability law of X. Let us define the
player’s strategy set A to be the collection of F-predictable processes α = (αt)t∈[0,T ] such that αt ∈ A for t ∈ [0, T ].
Given a flow of probability measures p = (pt)t∈[0,T ] on E, and a flow of probability measures ν = (νt)t∈[0,T ] on A,

we define the scalar martingale L(α,p,ν) under P by:

(5) L
(α,p,ν)
t :=

∫ t

0

X∗
s− · (Q(s, αs, ps, νs)−Q0) · ψ+

s · dMs.

Clearly, the jumps of this are given by:

(6) ∆L
(α,p,ν)
t = X∗

t− · (Q(t, αt, pt, νt)−Q0) · ψ+
t ·∆Xt.

One can easily check that ψ+
t · (ej −Xt−) =

m−1
m ej −

∑

i6=j
1
mei when Xt− = ei 6= ej. Therefore when Xt− = ei 6=

ej = Xt, we have:

∆L
(α,p,ν)
t = X∗

t− · (Q(t, αt, pt, νt)−Q0) · ψ+
t · (ej −Xt−)

= e∗i · (Q(t, αt, pt, νt)−Q0) ·





m− 1

m
ej −

∑

k 6=j

1

m
ek





=
m− 1

m
(q(t, i, j, αt, pt, νt)− q0i,j)−

1

m

∑

k 6=j

(q(t, i, k, αt, pt, νt)− q0i,k)

= q(t, i, j, αt, pt, νt)− q0i,j

= q(t, i, j, αt, pt, νt)− 1,

where the last equality is due to the fact that
∑m

k=1(q(t, i, k, αt, pt, νt)− q0i,k) = 0. Therefore we have ∆L
(α,p,ν)
t ≥

−1. By Theorem III.45 in [21] and the remark that follows, in order to show that E(L(α,p,ν)) is uniformly integrable,
it suffices to show E[exp(〈L(α,p,ν),L(α,p,ν)〉T )] <∞. This is straightforward since we have:

〈L(α,p,ν),L(α,p,ν)〉T
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=

∫ T

0

X∗
s− · (Q(s, αs, ps, νs)−Q0) · ψ+

s · d〈M,M〉s
ds

· (X∗
s− · (Q(s, αs, ps, νs)−Q0) · ψ+

s )
∗ds

=

∫ T

0

X∗
s− · (Q(s, αs, ps, νs)−Q0) · ψ+

s · (Q∗(s, αs, ps, νs)−Q0) ·Xs−ds.

and the integrand is bounded by some constant by Assumption 2.2.

We now apply Girsanov’s Theorem. It is straightforward to obtain that:

〈M,L(α,p,ν)〉t =
∫ t

0

d〈M,M〉s · (ψ+
s )

∗ · (Q∗(s, αs, ps, νs)−Q0) ·Xs−

=

∫ t

0

ψs · ψ+
s · (Q∗(s, αs, ps, νs)−Q0) ·Xs−ds

=

∫ t

0

(Q∗(s, αs, ps, νs)−Q0) ·Xs−ds.

In the last equality, we use the fact that (Q∗(s, αs, ps, νs)−Q0)Xs is the difference between two row vectors coming
from Q-matrices, therefore is invariant by ψs · ψ+

s . Let us define the probability measure Q(α,p,ν) by:

(7)
dQ(α,p,ν)

dP
:= E(L(α,p,ν))T .

By Theorem 2.5, we know that the process M(α,p,ν), defined as:

(8) M(α,p,ν)
t := Mt −

∫ t

0

(Q∗(s, αs, ps, νs)−Q0) ·Xs−ds,

is a Q(α,p,ν)-martingale. Therefore the canonical decomposition (1) of X under P can be rewritten as:

(9) Xt = X0 +

∫ t

0

Q∗(s, αs, ps, νs) ·Xs−dt+M(α,p,ν)
t .

This means that under the measure Q(α,p,ν), the stochastic intensity rate of X is given by Q(t, αt, pt, νt). In
addition, since Q(α,p,ν) and P coincides on F0, the law of X0 under Q(α,p,ν) is the same as under the reference
measure P, which is p◦. In particular, when α is a Markov control, i.e. of the form αt = φ(t,Xt−) for some
measurable function φ, X becomes a continuous-time Markov chain with intensity rate q(t, i, j, φ(t, i), pt, νt) under
the measure Q(α,p,ν).

Remark 2.6. In the optimal control literature, admissible controls are often classified into the categories of open-
loop controls and closed-loop controls. Open-loop controls are often referred to controls adapted to the underlying
filtration, which is often generated by the noise process. Closed-loop controls, on the other hand, are controls that
are adapted to the filtration generated by the history of the state process. In our set up, however, we see that the
underlying filtration is indeed the one generated by the past path of the state process. Therefore this difference
vanishes.

2.3. Weak formulation of mean field games. Let f : [0, T ]× E × A × S × P(A) → R and g : E × S → R be
respectively the running and terminal cost functions. In the rest of the paper, we make the following assumptions
on the regularity of the cost functions.

Assumption 2.7. There exists a constant C > 0 such that for all (t, i, j) ∈ [0, T ]× E2, α, α′ ∈ A, p, p′ ∈ S and
ν, ν′ ∈ P(A), we have:

|f(t, ei, α, p, ν)− f(t, ei, α
′, p′, ν′)| ≤C(‖α− α′‖+ ‖p− p′‖+W1(ν, ν

′)),(10)

|g(ei, p)− g(ei, p
′)| ≤C‖p− p′‖.(11)
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When a player chooses a strategy α ∈ A and the mean field is (p,ν), its cost is:

(12) J(α,p,ν) := EQ(α,p,ν)
[

∫ T

0

f(t,Xt, αt, pt, νt)dt+ g(XT , pT )
]

.

Each player aims at minimizing its cost, that is, it solves the optimization problem:

(13) V (p,ν) := inf
α∈A

EQ(α,p,ν)
[

∫ T

0

f(t,Xt, αt, pt, νt)dt+ g(XT , pT )
]

.

The key idea of the theory of mean field games lies in the limit scenario of having infinitely many players in the
game, where a single player’s strategy α does not alter the mean field (p,ν). Therefore when each player solves its
own optimization problem, it considers (p,ν) as given. A Nash equilibrium is then achieved when the law of Xt

under the player controlled probability law, along with the distribution of its control under the same probability
law, coincide with (p,ν). This justifies the following definition of a Nash equilibrium for the weak formulation of
finite state mean field games.

Definition 2.8. Let p∗ : [0, T ] → S, and ν∗ : [0, T ] → P(A) be two measurable functions and α∗ ∈ A. We say
that the tuple (α∗,p∗,ν∗) is a Nash equilibrium for the weak formulation of the mean field game if:
(i) α∗ minimizes the cost when the mean field is given by (p∗,ν∗):

(14) α∗ ∈ arg inf
α∈A

EQ(α,p∗,ν∗)

[

∫ T

0

f(t,Xt, αt, p
∗
t , ν

∗
t )dt+ g(XT , p

∗
T )

]

.

(ii) (α∗,p∗,ν∗) satisfies the consistency conditions whereby for each time t ∈ [0, T ] it holds:

(15) p∗t = {Q(α∗,p∗,ν∗)[Xt = ei]}i=1,...,m,

(16) ν∗t = Q
(α∗,p∗,ν∗)
#α∗

t
.

3. Individual Player’s Optimization Problem

Before introducing and solving the individual player optimization problem, we provide the necessary background
on stochastic equations based on continuous time Markov chains.

3.1. BSDE driven by continuous-time Markov chain. We first recall some of the results on BSDEs driven
by continuous-time Markov chains obtained in [6] and [7]. Recall that M is the P-martingale in the canonical
decomposition of the Markov chain X in (1). We consider the following BSDE with unknown (Y,Z), where Y is
an adapted and càdlàg process in R, and Z is an adapted and left-continuous process in Rm:

(17) Yt = ξ +

∫ T

t

F (w, s, Ys, Zs)ds−
∫ T

t

Z∗
s · dMs.

Here ξ is a FT -measurable P-square integrable random variable and F is the driver function, assumed to be such
that the process t→ F (w, t, y, z) is predictable for all y, z.

Recalling the definition (4) of the stochastic semi-norm ‖ · ‖Xt−
, we have the following existence and uniqueness

result. See Theorem 1.1 in [7].

Lemma 3.1. Assume that there exists C > 0 such that dt⊗ dP-a.s., for all y, y′ ∈ R and z, z′ ∈ Rm we have:

|F (w, t, y, z)− F (w, t, y′, z′)| ≤ C(|y − y′|+ ‖z − z′‖Xt−
).

Then the BSDE (17) admits a solution (Y,Z) satisfying

E

[

∫ T

0

|Yt|2dt
]

< +∞, E

[

∫ T

0

‖Zt‖2Xt−
dt

]

< +∞.
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In addition, the solution is unique in the sense that if (Y1,Z1) and (Y2,Z2) are two solutions, then Y1 and Y2

are indistinguishable and we have E[
∫ T

0
‖Z1

t − Z2
t ‖2Xt−

dt] = 0.

We also have the following stability property, which can be proved by mimicking the argument used in the proof
of Theorem 2.1 in [16].

Lemma 3.2. For n ≥ 0, let (Yn,Zn) be the solution to the BSDE (17) with driver Fn and terminal condition ξn.
Assume that for each n, Fn satisfies the Lipschitz continuity assumption in Lemma 3.1 with the same constant.
In addition, assume that the following conditions hold:
(i) limn→∞ E[|ξn − ξ0|2] = 0.

(ii) For each t ≤ T , limn→∞ E[(
∫ T

t |Fn(w, s, Y 0
s , Z

0
s )− F 0(w, s, Y 0

s , Z
0
s )|ds)2] = 0.

(iii) There exists C > 0 such that E[(
∫ T

t
(Fn(w, s, Y 0

s , Z
0
s )− F 0(w, s, Y 0

s , Z
0
s ))ds)

2] ≤ C for all t ≤ T and n ≥ 0.
Then we have:

lim
n→+∞

E

[

∫ T

t

‖Zn
s − Z0

s‖2Xs−
ds

]

+ E[|Y n
t − Y 0

t |2] = 0.

Finally we state a crucial comparison result for linear BSDEs. See Theorem 3.16 in [7].

Lemma 3.3. Let γ be a bounded predictable process in Rm, β a bounded predictable process in R, φ a non-negative

predictable process in R such that E[
∫ T

0
‖φt‖2dt] < +∞, and ξ a non-negative square-integrable FT -measurable

random variable in R, and let us assume that (Y,Z) solves the linear BSDE:

(18) Yt = ξ +

∫ T

t

(φu + βuYu + γ∗u · Zu)du −
∫ T

t

Z∗
u · dMu.

If for all t ∈ (0, T ] and j such that e∗j · Q0 · Xt− > 0, we have 1 + γ∗t · ψ+
t · (ej − Xt−) ≥ 0 where ψ+

t is the
Moore-Penrose inverse of the matrix ψt defined in equation (3), then Y is nonnegative.

Later in the treatment of games with finitely many players, we will need to consider BSDEs driven by multiple
independent continuous-time Markov chains. It turns out that all the results above regarding BSDEs driven by
one single continuous-time Markov chain can be easily extended to this more general setting. For the sake of
completeness, we state and prove these results in the appendix.

3.2. Hamiltonian. We define the Hamiltonian for the optimization problem of the individual player as the function
H from [0, T ]× E × Rm ×A× S × P(A) into R by:

(19) H(t, x, z, α, p, ν) := f(t, x, α, p, ν) + x∗ · (Q(t, α, p, ν)−Q0) · z.
Since the process X takes value in the set {e1, . . . , em}, it is more convenient to consider m Hamiltonian functions
Hi defined for i = 1, · · · ,m by Hi(t, z, α, p, ν) := H(t, ei, z, α, p, ν). Clearly we have:

(20) Hi(t, z, α, p, ν) = f(t, ei, α, p, ν) +
∑

j 6=i

(zj − zi)(q(t, i, j, α, p, ν)− 1).

We denote by Ĥi the corresponding minimized Hamiltonian:

Ĥi(t, z, p, ν) := inf
α∈A

Hi(t, z, α, p, ν),

and to show the existence of Nash equilibria, we make the following assumption on the minimizer of the Hamiltonian.

Assumption 3.4. (i) For any t ∈ [0, T ], i ∈ {1, . . . ,m}, z ∈ Rm, p ∈ S and ν ∈ P(A), the mapping α →
Hi(t, z, α, p, ν) admits a unique minimizer which does not depend on the mean field of control ν. We denote the
minimizer by âi(t, z, p).
(ii) âi is measurable on [0, T ]×Rm×S and there exist constants C1 > 0 and C2 ≥ 0 such that for all i ∈ {1, . . . ,m},
z, z′ ∈ Rm, p, p′ ∈ S:
(21) ‖âi(t, z, p)− âi(t, z

′, p′)‖ ≤ C1‖z − z′‖ei + (C1 + C2‖z‖ei)‖p− p′‖.
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Remark 3.5. For the sake of convenience, we choose to make the assumption directly on the uniqueness and the
regularity of the minimizer of the Hamiltonian. One possible way to make sure Assumption 3.4 holds is to impose
linearity on the transition rate function q, and strong convexity of the running cost function f . For example, the
following set of conditions will guarantee that Assumption 3.4 holds:

Assumption 3.6. (i) A is a convex and compact subset of Rl.
(ii) The transition rate function q takes the form q(t, i, j, α, p, ν) = q0(t, i, j, p, ν) + q1(t, i, j, p) · α, where q0 :
[0, T ]× E2 × S × P(A) → R and q1 : [0, T ]× E2 × S → Rl are two continuous mappings.
(iii) The running cost function f is of the form f(t, x, α, p, ν) = f0(t, x, α, p) + f1(t, x, p, ν), where for each i ∈
{1, . . . ,m}, the mapping f0(·, ei, ·, ·) (resp. f1(·, ei, ·, ·)) is continuous on [0, T ]×A× P (resp. [0, T ]× S × P(A)).
(iv) For all (t, ei, p) ∈ [0, T ]× E × S, the mapping α → f0(t, ei, α, p) is once continuously differentiable and there
exists a constant C > 0 such that:

(22) ‖∇αf0(t, ei, α, p)−∇αf0(t, ei, α, p
′)‖ ≤ C‖p− p′‖.

(v) f0 is γ-uniformly convex in α, i.e., for all (t, ei, p) ∈ [0, T ]× E × S and α, α′ ∈ A, we have:

(23) f0(t, ei, α, p)− f0(t, ei, α
′, p)− (α− α′) · ∇αf0(t, ei, α, p) ≥ γ‖α′ − α‖2

We define the functions Ĥ and â by:

Ĥ(t, x, z, p, ν) :=

m
∑

i=1

1(x = ei)Ĥi(t, z, p, ν),(24)

â(t, x, z, p) :=

m
∑

i=1

1(x = ei)âi(t, z, p).(25)

From item (i) of Assumption 3.4 and the definition of the reduced Hamiltonian Hi, it is clear that â(t, x, z, p) is

the unique minimizer of the mapping α → H(t, x, z, α, p, ν), and the minimum equals Ĥ(t, x, z, p, ν). In addition,
from Assumptions 2.2, 2.7, 3.4, and the definition of the stochastic semi-norm ‖ · ‖Xt−

, it is easy to deduce the

regularity of the mappings Ĥ and â.

Lemma 3.7. There exists a constant C > 0 such that for all (ω, t) ∈ Ω × (0, T ], p, p′ ∈ S, ν, ν′ ∈ P(A) and
z, z′ ∈ Rm, we have:

(26) |Ĥ(t,Xt−, z, p, ν)− Ĥ(t,Xt−, z
′, p′, ν′)| ≤ C‖z − z′‖Xt−

+ C(1 + ‖z‖Xt−
)(‖p− p′‖+W1(ν, ν

′)),

(27) |â(t,Xt−, z, p)− â(t,Xt−, z
′, p′)| ≤ C‖z − z′‖Xt−

+ C(1 + ‖z‖Xt−
)‖p− p′‖.

Proof. Inequality (27) is an easy consequence of Assumption 3.4 and the definition of the stochastic seminorm

‖ · ‖Xt−
. We now deal with the regularity of Ĥ . By Berge’s maximum theorem, the continuity of Hi and the

compactness of A imply the continuity of Ĥi. Let z, z
′ ∈ Rm, p, p′ ∈ S and ν, ν′ ∈ P(A). For any α ∈ A, we have:

Ĥi(t, z, p, ν)−Hi(t, z
′, α, p′, ν′) ≤ Hi(t, z, α, p, ν)−Hi(t, z

′, α, p′, ν′)

= f(t, ei, α, p, ν)− f(t, ei, α, p
′, ν′) +

∑

j 6=i

[(zj − zi)− (z′j − z′i)]q(t, i, j, α, p
′, ν′)

+
∑

j 6=i

(zj − zi)[q0(t, i, j, p, ν)− q0(t, i, j, p
′, ν′)] + (zj − zi)[q1(t, i, j, p)− q1(t, i, j, p

′)] · α

≤ C‖z − z′‖ei + C(1 + ‖z‖ei)(‖p− p′‖+W1(ν, ν
′)),

where we used the Lipschitz property of f and q, and the boundedness of A and q. Since the above is true for all
α ∈ A, taking supremum of the left-hand side, we obtain:

Ĥi(t, z, p, ν)− Ĥi(t, z
′, p′, ν′) ≤ C‖z − z′‖ei + C(1 + ‖z‖ei)(‖p− p′‖+W1(ν, ν

′)).



10 RENÉ CARMONA AND PEIQI WANG

Exchanging the roles of z and z′, we obtain:

|Ĥi(t, z, p, ν)− Ĥi(t, z
′, p′, ν′)| ≤ C‖z − z′‖ei + C(1 + ‖z‖ei)(‖p− p′‖+W1(ν, ν

′)),

and (26) follows immediately from the definition of the seminorm ‖ · ‖Xt−
. �

3.3. Player’s optimization problem. In this subsection, we show that the optimization problem of the player
facing a given mean field of state and control can be characterized by a BSDE driven by the continuous-time
Markov chain X. Let us fix measurable flows p : [0, T ] → S and ν : [0, T ] → P(A), an admissible strategy α ∈ A,
and let us consider the BSDE:

(28) Yt = g(XT , pT ) +

∫ T

t

H(s,Xs−, Zs, αs, ps, νs)ds−
∫ T

t

Z∗
s · dMs.

Lemma 3.8. The BSDE (28) admits a unique solution (Y,Z) and J(α, p, ν) = EP[Y0].

Proof. From the boundedness of the transition rate function q guaranteed by Assumption 2.2, it is easy to check
that the driver function H of the BSDE (28) is Lipschitz in z with respect to the semi-norm ‖ · ‖Xt−

. Therefore by
Lemma 3.1, it admits a unique solution (Y,Z). Moreover, we have:

Y0 = g(XT , pT ) +

∫ T

0

H(t,Xt−, Zt, αt, pt, νs)dt−
∫ T

0

Z∗
t · dMt

= g(XT , pT ) +

∫ T

0

f(t,Xt−, αt, pt, νt)dt−
∫ T

0

Z∗
t · (dMt − (Q∗(t, αt, pt, νt)−Q0) ·Xt−dt)

= g(XT , pT ) +

∫ T

0

f(t,Xt−, αt, pt, νt)dt−
∫ T

0

Z∗
t · dM(α,p,ν)

t .

Since M(α,p,ν) is a martingale under the measure Q(α,p,ν), we take expectation under Q(α,p,ν) and obtain

J(α,p,ν) = EQ(α,p,ν)

[Y0]. Now since Y0 is F0-measurable, and Q(α,p,ν) coincides with P on F0, we obtain
J(α, p, ν) = EP[Y0]. �

Now we consider the following BSDE:

(29) Yt = g(XT , pT ) +

∫ T

t

Ĥ(s,Xs−, Zs, ps, νs)ds−
∫ T

t

Z∗
s · dMs,

and we show that it characterizes the optimality of the control problem (13).

Proposition 3.9. For any measurable function p from [0, T ] to S and any measurable function ν from [0, T ] to
P(A), the BSDE (29) admits a unique solution (Y,Z). The value function of the optimal control problem (13) is

given by V (p,ν) = EP[Y0] and the process α̂(p,ν) defined by:

(30) α̂
(p,ν)
t := â(t,Xt−, Zt, pt)

is an optimal control. In addition, if α′ ∈ A is an optimal control, we have α′
t = α̂

(p,ν)
t , dt⊗ dP-a.e.

Proof. The existence and uniqueness of the solution to (29) is easily verified by using the Lipschitz property of Ĥ
provided by Lemma 3.7. Let (Y,Z) be this unique solution and define the process α̂ by α̂t := â(t,Xt−, Zt, pt).
Recall the definition of â in equation (25). We have:

â(t,Xt−, Zt, pt) =

m
∑

i=1

1(Xt− = ei)âi(t, Zt, pt) = X∗
t− ·

(

m
∑

i=1

âi(t, Zt, pt)ei

)

.

Since âi is measurable for each i ∈ E, we see that â is a measurable mapping from [0, T ] × Rm × Rm × S to A.
Since both the processes t→ Xt− and Z are predictable, we conclude that α̂ is a predictable process and therefore
an admissible control.
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Now let us fix an arbitrary admissible control α ∈ A, and denote by (Yα,Zα) the solution of the corresponding
BSDE (28), and by (Y,Z) the unique solution of:

(31) Yt =

∫ T

t

H(s,Xs−, Zs, α̂s, ps, νs)ds−
∫ T

t

Z∗
s · dMs.

Setting ∆Y := Yα −Y and ∆Z := Zα − Z and computing the difference of the two BSDEs, we notice that ∆Y

and ∆Z solve the following BSDE:

∆Yt =

∫ T

t

[H(s,Xs−, Z
α
s , αs, ps, νs)−H(s,Xs−, Zs, α̂s, ps, νs)]ds−

∫ T

t

∆Z∗
s · dMs.

We can further decompose the driver of the above BSDE as:

H(s,Xs−, Z
α
s , αs, ps, νs)−H(s,Xs−, Zs, α̂s, ps, νs)

= H(s,Xs−, Z
α
s , αs, ps, νs)−H(s,Xs−, Zs, αs, ps, νs) +H(s,Xs−, Zs, αs, ps, νs)

−H(s,Xs−, Zs, α̂s, ps, νs)

= [H(s,Xs−, Zs, αs, ps, νs)−H(s,Xs−, Zs, α̂s, ps, νs)] +X∗
s− · (Q(s, αs, ps, νs)−Q0) ·∆Z.

Define the processes ψ and γ by ψt := H(t,Xt−, Zt, αt, pt, νt)−H(t,Xt−, Zt, α̂t, pt, νt) and γt := (Q∗(t, αt, pt, νt)−
Q0) ·Xt−. Therefore (∆Y,∆Z) appears as the solution to a linear BSDE of the form (18) with ψ and γ defined
previously and β = 0. Clearly ψ and γ are both predictable. Since α̂t minimizes the Hamiltonian, ψ is nonnegative.
The boundedness of γ follows from the boundedness of the transition rate function q. It remains to check that
1 + γ∗t · ψ+

t · (ej −Xt−) ≥ 0.

When Xt− = ej, the above inequality holds clearly. So we assume that Xt− = ei 6= ej . We have ψ+
t ·(ej−Xt−) =

m−1
m ej −

∑

i6=j
1
mei. Therefore when Xt− = ei 6= ej , we have:

γ∗t · ψ+
t · (ej −Xt−) = X∗

t− · (Q(t, αt, pt, νt)−Q0) · ψ+
t · (ej −Xt−)

= e∗i · (Q(t, αt, pt, νt)−Q0) · (m− 1

m
ej −

∑

k 6=j

1

m
ek)

=
m− 1

m
(q(t, i, j, αt, pt, νt)− q0i,j)−

1

m

∑

k 6=j

(q(t, i, k, αt, pt, νt)− q0i,k)

= q(t, i, j, αt, pt, νt)− q0i,j ,

where the last equality is due to the fact that
∑

k(q(t, i, k, αt, pt, νt)− q0i,k) = 0. Therefore we have:

1 + γ∗t · ψ+
t · (ej −Xt−) = 1 + q(t, i, j, αt, pt, νt)− q0i,j = q(t, i, j, αt, pt, νt) ≥ 0.

By Lemma 3.3, we conclude that ∆Y is nonnegative and in particular Y α
0 ≥ Y0. Since α is an arbitrary admissible

control, in light of Lemma 3.8, this means that EP[Y0] ≤ infα∈A J(α,p,ν) = V (p,ν). Finally, we notice that Y0 is
the expected total cost when the control is α̂. We conclude that α̂ is an optimal control and EP[Y0] = V (p, ν).

Now we show that α̂ is the unique optimal control. Let α′ be another optimal control. We consider the solution
(Y′,Z′) to the following BSDE:

(32) Y ′
t =

∫ T

t

H(s,Xs−, Z
′
s, α

′
s, ps, νs)ds−

∫ T

t

(Z ′
s)

∗ · dMs.

Since α′ is optimal, we have EP[Y ′
0 ] = J(α′,p,ν) = V (p,ν) = EP[Y0]. Now taking the difference of the BSDE (31)

and (32), we obtain:

Y0 − Y ′
0 =

∫ T

0

[

H(t,Xt−, Zt, α̂t, pt, νt)−H(t,Xt−, Z
′
t, α

′
t, pt, νt)

]

dt−
∫ T

0

(Zt − Z ′
t)

∗ · dMt
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=

∫ T

0

[

X∗
t− · (Q(t, α̂t, pt, νt)−Q0) · Zt −X∗

t− · (Q(t, α′
t, pt, νt)−Q0) · Z ′

t

]

dt

+

∫ T

0

[

f(t,Xt−, α̂t, pt, νt)− f(t,Xt−, α̂t, pt, νt)
]

dt−
∫ T

0

(Zt − Z ′
t)

∗ · dMt

=

∫ T

0

[

f(t,Xt−, α̂t, pt, νt)− f(t,Xt−, α
′
t, pt, νt) +X∗

t− · (Q(t, α̂t, pt, νt)−Q(t, α′
t, pt, νt)) · Zt

]

dt

−
∫ T

0

(Zt − Z ′
t)

∗ ·
[

dMt − (Q∗(t, α′
t, pt, νt)−Q0) ·Xt−dt

]

=

∫ T

0

[

H(t,Xt−, Zt, α̂t, pt, νt)−H(t,Xt−, Zt, α
′
t, pt, νt)

]

dt−
∫ T

0

(Zt − Z ′
t)

∗ · dM(α′,p,ν)
t .

Taking Q(α′,p,ν)-expectations and using the fact that Q(α′,p,ν) coincides with P in F0, we get:

0 = EP[Y0 − Y ′
0 ] = EQ(α′,p,ν)

[Y0 − Y ′
0 ]

= EQ(α′,p,ν)

[

∫ T

0

[

H(t,Xt−, Zt, α̂t, pt, νt)−H(t,Xt−, Zt, α
′
t, pt, νt)

]

dt

]

≤ 0,

where the last inequality is due to the fact that α̂t minimizes the Hamiltonian. In fact, we have α̂t = α′
t, dt ⊗

dQ(α′,p,ν)-a.e. If we assume otherwise, the last inequality would be strict, since the minimizer of the Hamiltonian
is unique by Assumption 3.4. Since P is equivalent to Q(α′,p,ν), we have α̂t = α′

t, dt⊗ dP-a.e. �

4. Existence of Nash Equilibria

We state the main result of this section:

Theorem 4.1. Under Assumptions 2.2, 2.7 and 3.4, there exists a Nash equilibrium (α∗,p∗,ν∗) for the weak
formulation of the finite state mean field game in the sense of Definition 2.8.

The rest of this section is devoted to the proof of Theorem 4.1. As in the case of diffusion-based mean field
games, we shall rely on a fixed point argument to show existence of Nash equilibria. We start from a measurable
function p : [0, T ] → S and a measurable function ν : [0, T ] → P(A) where we recall that S is the m-dimensional
simplex which we identify with the space of probability measures on E, while P(A) is the space of probability
measures on A. We then solve the BSDE (29), and obtain the solution (Y(p,ν),Z(p,ν)) as well as the optimal

control α̂(p,ν) given by (30). Finally, we compute the probability measure Q̂(p,ν) := Q(α̂(p,ν),p,ν) as defined in (7),

and consider the push-forward measures of Q̂(p,ν) by (Xt, α̂
(p,ν)
t ). Clearly, we identified a Nash equilibrium if we

find a fixed point for the mapping (p,ν) → Q̂
(p,ν)

#(Xt,α̂
(p,ν)
t )

.

In practice however, the implementation of the fixed-point argument mentioned above is prone to several dif-
ficulties. The foremost challenge lies in the lack of results allowing us to identify compact subsets of the spaces
of measurable functions from [0, T ] to S or P(A). This makes it difficult to apply Schauder’s theorem or similar
versions of fixed point theorems. For this reason, we shall resort to different descriptions of the mean field for
the state and the control. For the mean field of the state, since we have assumed from the very beginning that
X is a càdlàg process, we will directly deal with its probability law on the space D of all càdlàg functions from
[0, T ] to E = {e1, . . . , em} endowed with the Skorokhod topology. The space of probability measures on D and
its topological properties have been studied thoroughly (see [18] for a detailed account), and a simple criterion for
compactness is available.

Unfortunately, resolving the corresponding issue for the control is more involved. Here, we adopt the technique
based on the stable topology used in [3]. Indeed, a measurable mapping from [0, T ] to P(A) can be viewed as a
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random variable defined on the space ([0, T ],B([0, T ]),L) taking values in P(A). Here, B([0, T ]) is the Borel σ-field
of [0, T ], L is the uniform probability measure on [0, T ] and P(A) is endowed with the Wasserstein-1 distance.
To obtain compactness, the idea is to use randomization. We consider the space of probability measures on
[0, T ]×P(A), denoted by P([0, T ]×P(A)). Then for each measurable mapping ν from [0, T ] to P(A), we consider
the measure η on [0, T ] × P(A) given by η(dt, dm) := L(dt) × δνt(dm) where δ is the Dirac measure. We may
endow the space P([0, T ]×P(A)) with the so-called stable topology introduced in [17], for which convenient results
on compactness are readily available.

In the following, we detail the steps that lead to the existence of Nash equilibria. We start by specifying the
topology we use for the space of mean fields on the state as well as the control. We then properly define the mapping
compatible with the definition of Nash equilibrium, we show its continuity, and construct a stable compact. Once
these ingredients are in place, we apply Schauder’s fixed point theorem to conclude.

4.1. Topology for the space of mean fields. We first consider the mean field for the state by endowing the
state space E := {e1, . . . , em} with the discrete metric dE(x, y) := 1(x 6= y). Then it is well known that (E, dE) is
a Polish space. Then, the Skorokhod space:

(33) D := {x : [0, T ] → E, x is càdlàg and left continuous on T }
is endowed with the J1 metric:

(34) dD(x, y) := inf
λ∈Λ

max{sup
t≤T

|λ(t)− t|, sup
t≤T

|y(λ(t)) − x(t)|}

where Λ is the set of all strictly increasing, continuous bijections from [0, T ] to itself. It can be proved that dD
is a metric on D and the metric space (D, dD) is a Polish space. Let us denote by P the collection of probability
measures on (D, dD) endowed with the weak topology. Recall that the reference measure P is an element of P . Let
P0 be the subset of P defined by:

(35) P0 := {Q :
dQ

dP
= L, with EP[L2] ≤ C0}.

where C0 is a constant which we will specify later (see the proof of Proposition 4.10). We have the following result:

Proposition 4.2. P0 is convex and relatively compact in P.

Proof. The convexity of P0 is trivial. Let us show that P0 is relatively compact. We proceed in three steps.

Step 1. For K ∈ N and δ > 0, we define Dδ,K as the collection of paths in D which meet the following criteria:
(a) the path has no more than K discontinuities, (b) the first jump time, if any, happens on or after δ, (c) the last
jump happens on or before T − δ, and (d) the amounts of time between jumps are greater or equal than δ. We
now show that Dδ,K is compact in D. Since D is Polish space it is enough to show the sequential compactness.
Let us fix a sequence xn in Dδ,K . For each xn, we use the following notation: kn is the number of its jumps,
δ ≤ t1n < t2n < · · · < tkn

n ≤ T − δ are the times of its jumps. ∆t1n := t1n and ∆tin := tin − ti−1
n for i = 2, . . . , kn are

the time elapsed between consecutive jumps and x0n, x
1
n, . . . , t

kn
n are the value taken by xn in each interval defined

by the jumps. Then we can represent xn using the vector yn of dimension 2(K + 1):

yn = [kn,∆t
1
n,∆t

2
n, . . . ,∆t

kn
n , 0, . . . , 0, x0n, x

1
n, . . . , x

kn
n , 0, . . . , 0].

In the above representation, the first coordinate of yn is the number of jumps. Coordinate 2 to K + 1 are the
times elapsed between jumps defined above, and if there are fewer than K jumps, we complete the vector by 0.
Coordinates K + 2 to 2(K + 1) are the values taken by the path x and completed with 0. Clearly there is a
bijection from xn to yn by this representation. By the definition of the set Dδ,K , we have ∆tin ∈ [δ, T ] for i ≤ kn
and

∑kn

i=1 ∆t
i
n ≤ T − δ, whereas the rest of the coordinates of yn belongs to a finite set. This implies that yn lives

in a compact and therefore we can extract a converging subsequence which we still denote by yn. Again, since kn
and the last K + 1 components can only take finitely many values by their definition, therefore there exists N0
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such that for n ≥ N0, we have kn = k and xin = xi for all i ≤ k. In addition we have ∆tin converges to ∆ti for all

i ≤ k, where ∆ti ≥ δ for all i ≤ k and
∑k

i=1 ∆t
i ≤ T − ǫ. We consider the path represented by the vector y:

y = [k,∆t1,∆t2, . . . ,∆tk, 0, . . . , 0, x0, x1, . . . , xk, 0, . . . , 0].

Clearly x belongs to the set Dδ.K and it is straightforward to verify that xn converge to x in J1 metric, where xn
is the path represented by the vector yn. This implies that Dδ.K is compact.

Step 2. Now we show that for any ǫ > 0, there exists δ > 0 and K ∈ N such that P(Dδ.K) ≥ 1− ǫ. Recall that P
is the reference measure and under P the canonical process X is a continuous-time Markov chain with transition
rate matrix Q0. Therefore the time of first jump, as well as the time between consecutive jumps thereafter, which
we denote by ∆t1,∆2, . . . are i.i.d. exponential random variables of parameter (m− 1) under the measure P. We
have:

P(Dδ,K) = P[∆t1 > T ] +

K
∑

k=1

P

[

{∆t1 ≥ δ} ∩ · · · ∩ {∆tk ≥ δ} ∩ {
k+1
∑

i=1

∆ti > T } ∩ {
k
∑

i=1

∆ti ≤ T − δ}
]

.

For each k = 1, . . . ,K, we have:

P

[

{∆t1 ≥ δ} ∩ · · · ∩ {∆tk ≥ δ} ∩ {
k+1
∑

i=1

∆ti > T } ∩ {
k
∑

i=1

∆ti ≤ T − δ}
]

≥ P [{∆t1 ≥ δ} ∩ · · · ∩ {∆tk ≥ δ}] + P

[

{
k+1
∑

i=1

∆ti > T } ∩ {
k
∑

i=1

∆ti ≤ T − δ}
]

− 1

= (P[∆t1 ≥ δ])k + P

[

{
k+1
∑

i=1

∆ti > T } ∩ {
k
∑

i=1

∆ti ≤ T − δ}
]

− 1

= (exp(−k(m− 1)δ)− 1) + exp(−(m− 1)T )
(m− 1)k(T − δ)k

k!
.

It follows that:

P(Dδ,K) ≥
K
∑

k=1

(exp(−k(m− 1)δ)− 1) + exp(−(m− 1)T )

K
∑

k=0

(m− 1)k(T − δ)k

k!

≥
K
∑

k=1

(exp(−k(m− 1)δ)− 1) + exp(−(m− 1)T )

K
∑

k=0

(m− 1)kT k

k!
− (1− exp(−(m− 1)δ)).

We can first pick K greater enough such that (exp(−(m− 1)T )
∑K

k=0(m− 1)kT k/k!) is greater than (1− ǫ/2) and
then pick δ small enough to make the rest of the terms greater than −ǫ/2, which eventually makes P(Dδ,K) greater
than (1− ǫ).

Step 3. Finally we show that P0 is tight. For any ǫ > 0, by Step 2, we can pick δ > 0 and K ∈ N such that
P(D \ Dδ,K) ≤ (ǫ/C0)

2. For all Q ∈ P0, we have dQ/dP = L and (EP[L2])1/2 ≤ C0 and by Cauchy-Schwartz
inequality we obtain:

Q(D \Dδ,K) = EP[L · 1x∈D\Dδ,K
] ≤ (EP[L2])1/2P(D \Dδ,K)1/2 ≤ ǫ.

This implies the tightness of P0. Finally by Prokhorov’s Theorem we conclude that P0 is relatively compact. �

We now need to link the convergence of measures on path space to the convergence in S, i.e. measures on state
space. We define the function π by:

π : [0, T ]× P(E) ∋ (t, µ) → [µ#Xt
({e1}), µ#Xt

({e2}), . . . , µ#Xt
({em})] ∈ S
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and prove the following result:

Lemma 4.3. If µn 7→ µ in P, there exists a subset D(µ) of [0, T ) at most countable such that for all t 6∈ D(µ):

(36) lim
n→+∞

π(t, µn) = π(t, µ).

Proof. Define D(µ) := {0 ≤ t ≤ T ; µ(Xt − Xt− 6= 0) > 0}. By Lemma 3.12 in [18], the set D(µ) is at most
countable. In addition, we have T 6∈ D(µ) since all the paths in D is left-continuous on T . In light of Proposition
3.14 in [18], we have µn

#Xt
converges to µ#Xt

weakly for all t 6∈ D(µ). To conclude, we use the fact that µn
#Xt

for

all t ∈ [0, T ] and n are counting measure on the discrete set E. �

We now turn to the mean field of control. Let (P(A),W1) be the space of probability measures on the compact
set A ⊂ Rl endowed with the weak topology and metricized by the Wasserstein-1 distance. (P(A),W1) is a Polish
space. Since A is compact, it is easy to show that P(A) is tight and therefore by Prokhorov’s theorem (P(A),W1)
is in fact compact. We endow P(A) with its Borel σ−algebra denoted by B(P(A)). We endow [0, T ] with its Borel
σ−algebra B([0, T ]) and the (normalized) Lebesgue measure L(dt) := 1

T dt. Finally, we construct the product space
[0, T ]×P(A) endowed with the σ-algebra B([0, T ])⊗B(P(A)). The space of probability measures on [0, T ]×P(A)
can be viewed as a randomized version of the space of mean field of control. We introduce the stable topology on
this space:

Definition 4.4. Let us denote by R the space of probability measures on ([0, T ]×P(A),B([0, T ])⊗B(P(A))). We
call the stable topology of R the coarsest topology such that the mappings η →

∫

g(t,m)η(dt, dm) are continuous
for all bounded and measurable mappings g defined on [0, T ]×P(A) such that m→ g(t,m) is continuous for each
fixed t ∈ [0, T ].

We collect a few useful results on the space R endowed with the stable topology.

Proposition 4.5. The topology space R is compact, metrizable, and Polish.

Proof. Notice that both [0, T ] and P(A) are Polish for their respective topologies. This implies that the σ-algebra
B([0, T ])⊗ B(P(A))) is separable. It follows from Proposition 2.10 in [17] that R is metrizable.

We now show that R is compact. Notice that for an element η in R, its first marginal is a probability measure
on [0, T ] and its second marginal is a probability measure on P(A). It is trivial to see that both the spaces of
probability measures on [0, T ] and on P(A) are tight and therefore relatively compact by Prokhorov’s theorem. We
then apply Theorem 2.8 in [17] and obtain the compactness of R.

Having showed that R is compact and metrizable, we see that R is separable. Compactness also leads to
completeness. Therefore R is Polish space. Finally, we notice that R is also sequential compact since R is
metrizable. �

The following result provides a more convenient way to characterize the convergence in the stable topology.

Lemma 4.6. Denote by H the collection of mappings f of the form f(t, ν) = 1B(t) · g(ν) where B is a Borel
subset of [0, T ] and g : P(A) → R is a bounded Lipschitz function (with respect to the Wasserstein-1 distance on
P(A)). Then the stable topology introduced in Definition 4.4 is the coarsest topology which makes the mappings
η →

∫

[0,T ]×P(A) f(t, ν)η(dt, dν) continuous for all f ∈ H.

Proof. Let H0 be the collection of mappings f of the form f(t, ν) = 1B(t) · g(ν) where B is a Borel subset of [0, T ]
and g : P(A) → R is a bounded and uniformly continuous function. Then clearly we have H ⊂ H0. By Proposition
2.4 in [17], the stable topology is the coarsest topology under which the mappings η →

∫

[0,T ]×P(A)
f(t, ν)η(dt, dν)

are continuous for all f ∈ H0. Therefore, we only need to show that if ηn is a sequence of elements in R such that
∫

f(t, ν)ηn(dt, dν) →
∫

f(t, ν)η0(dt, dν) for all f ∈ H, then we have
∫

f(t, ν)ηn(dt, dν) →
∫

f(t, ν)η0(dt, dν) for all
f ∈ H0 as well.

Now let us fix f ∈ H0 with f(t, ν) = 1B(t) · g(ν), Note that P(A) is a compact metric space and g is a
bounded, uniformly continuous and real-valued function. A famous result from [13] (see also [20]) shows that
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g can be approximated uniformly by bounded Lipschitz continuous function. That is, for all ǫ > 0, we can
find gǫ ∈ H such that supν∈P(A) |gǫ(ν) − g(ν)| ≤ ǫ/3. By our assumption we have

∫

1B(t)gǫ(ν)η
n(dt, dν) →

∫

1B(t)gǫ(ν)η
0(dt, dν). Therefore there exists N0 such that |

∫

1B(t)gǫ(ν)η
n(dt, dν)−

∫

1B(t)gǫ(ν)η
0(dt, dν)| ≤ ǫ/3

for all n ≥ N0. Combining these facts we have, for n ≥ N0:

|
∫

1B(t)g(ν)η
n(dt, dν)−

∫

1B(t)g(ν)η
0(dt, dν)| ≤|

∫

1B(t)gǫ(ν)η
n(dt, dν)−

∫

1B(t)gǫ(ν)η
0(dt, dν)|

+

∫

1B(t)|gǫ(ν)− g(ν)|ηn(dt, dν) +
∫

1B(t)|gǫ(ν)− g(ν)|η0(dt, dν)

≤ǫ/3 + ǫ/3 + ǫ/3 = ǫ,

which shows that
∫

f(t, ν)ηn(dt, dν) →
∫

f(t, ν)η0(dt, dν). �

Now we consider the following subset of R:

R0 := {η ∈ R; the marginal distribution of η on [0, T ] is L}.
We have the following result:

Lemma 4.7. R0 is a convex and compact subset of R.

Proof. We apply Theorem 2.8 in [17]. In particular, we verify without difficulty that {η[0,T ]; η ∈ R0} = {L} is
compact and {ηP(A); η ∈ R0} is a subset of P(P(A)), which is relatively compact as well. �

For any η ∈ R0, since its first marginal is L, by disintegration we can write η(dt, dm) = L(dt) × ηt(dm) where
the mapping [0, T ] ∋ t→ ηt(·) ∈ P(P(A)) is a measurable mapping and the decomposition is unique up to almost
everywhere equality. On the other hand, for any measurable function ν : [0, T ] → P(A), we may construct an
element Ψ(ν) in R0 by:

(37) Ψ(ν)(dt, dm) := L(dt) × δνt(dm).

Since we have changed the way we represent the mean field of control, we need to modify accordingly the definition
of transition rate matrix as well as the cost functionals in order to make them compatible with the randomization
procedure. For any function F : P(A) → R possibly containing other arguments, we denote F : P(P(A)) → R by
F (m) :=

∫

ν∈P(A) F (ν)m(dν), which we call the randomized version of F . Obviously we have F (δν) = F (ν). In

this way, we define without any ambiguity the randomized version q of the rate function q, as well as its matrix
representation Q. We also define f as the randomized version of cost functional f . Since the terminal cost g does
not depend on the mean field of control, we do not need to consider its randomized version.

Recall from Assumption 3.4 that the minimizer âi of the reduced Hamiltonian is only a function of t, z and p.

Consequently, for H , Hi, Ĥ and Ĥ
i
, which are the randomized version of H , Hi, Ĥ and Ĥi respectively, we still

have:

Ĥ(t, x, z, p,m) = inf
α∈A

H(t, x, z, α, p,m),

â(t, x, z, p) = arg inf
α∈A

H(t, x, z, α, p,m).

In addition, we have the following result on the Lipschitz property of Ĥ and â:

Lemma 4.8. There exists a constant C > 0 such that for all (ω, t) ∈ Ω × (0, T ], p, p′ ∈ S, α, α′ ∈ A, z, z′ ∈ Rm

and m,m′ ∈ P(P(A)), we have:

(38) |q(t, i, j, α, p,m)− q(t, i, j, α′, p′,m′)| ≤ C(‖α− α′‖+ ‖p− p′‖+ W̄1(m,m
′)),

and

(39) |Ĥ(t,Xt−, z, p,m)− Ĥ(t,Xt−, z
′, p′,m′)| ≤ C‖z − z′‖Xt−

+ C(1 + ‖z‖Xt−
)(‖p− p′‖+ W̄1(m,m

′)).
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Proof. We have:

|Ĥ(t,Xt−, z, p,m)− Ĥ(t,Xt−, z
′, p′,m′)|

≤|Ĥ(t,Xt−, z, p,m)− Ĥ(t,Xt−, z, p,m
′)|+ |Ĥ(t,Xt−, z, p,m

′)− Ĥ(t,Xt−, z
′, p′,m′)|

≤
∣

∣

∣

∣

∣

∫

ν∈P(A)

Ĥ(t,Xt−, z, p, ν)(m(dν)−m′(dν))

∣

∣

∣

∣

∣

+

∫

ν∈P(A)

|Ĥ(t,Xt−, z, p, ν)− Ĥ(t,Xt−, z
′, p′, ν)|m′(dν)

≤
∣

∣

∣

∣

∣

∫

ν∈P(A)

Ĥ(t,Xt−, z, p, ν)(m(dν)−m′(dν))

∣

∣

∣

∣

∣

+ C(1 + ‖z‖Xt−
)‖p− p′‖+ C‖z − z′‖Xt−

.

Since the space P(A) is compact and the mapping ν → Ĥ(t,Xt−, z, p, ν) is Lipschitz, with Lipschitz constant equal
to C(1 + ‖z‖Xt−

), Kantorovich-Rubinstein duality theory implies:
∣

∣

∣

∣

∣

∫

ν∈P(A)

Ĥ(t,Xt−, z, p, ν)(m(dν)−m′(dν))

∣

∣

∣

∣

∣

≤ C(1 + ‖z‖Xt−
)W̄1(m,m

′),

where W̄1(m,m
′) is the Wasserstein-1 distance on the space of probability measure on P(A) whose definition we

recall for the sake of definiteness:

(40) W̄1(m,m
′) := inf

π∈P(P(A)×P(A))

∫

P(A)×P(A)

W1(ν, ν
′)π(dν, dν′).

Combined with the estimation above, we obtain the desired inequality for Ĥ . The Lipschitz property for q can be
proved in the same way. �

4.2. Mapping fixed points. We now define the mapping whose fixed points characterize the Nash equilibria of
the mean field game in its weak formulation. For any (µ, η) ∈ P ×R0, where η has the disintegration η(dt, dm) =
L(dt) × ηt(dm), we consider the solution (Y(µ,η),Z(µ,η)) to the BSDE:

(41) Yt = g(XT , pT ) +

∫ T

t

Ĥ(s,Xs−, Zs, π(s, µ), ηs)ds−
∫ T

t

Z∗
s · dMs.

Denote by α̂(µ,η) the predictable process t → â(t,Xt−, Z
(µ,η)
t , π(t, µ)), which is the optimal control of the player

faced with the mean field (µ, η) ∈ P(E)×R0. Next, we consider the scalar martingale L(µ,η) defined by:

(42) L
(µ,η)
t :=

∫ t

0

X∗
s− · (Q(s, α̂(µ,η)

s , π(s, µ), ηs)−Q0) · dMs.

Define the probability measure Q̂(µ,η) by:

(43)
dQ̂(µ,η)

dP
:= E(L(µ,η))T ,

where E(L(µ,η)) is the Doléans-Dade exponential of the martingale L(µ,η). Finally we define the mappings Φµ, Φη

and Φ respectively by:

(44) Φµ : P ×R0 ∋ (µ, η) → Q̂(µ,η) ∈ P

(45) Φη : P ×R0 ∋ (µ, η) → L(dt) × δ
Q̂

(µ,η)

#α̂
(µ,η)
t

(dν) ∈ R0
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(46) Φ : P ×R0 ∋ (µ, η) →
(

Φµ(µ, η),Φη(µ, η)
)

∈ P ×R0.

Remark 4.9. Before delving into its properties of Φ, we first need to show that the mapping Φ is well-defined.
More specifically, we need to show that given (µ, η) ∈ P ×R0, the outputs Q̂(µ,η) and L(dt) × δ

Q̂
(µ,η)

#α̂
(µ,η)
t

(dν)) does

not depend on which solution to the BSDE (41) we use to construct α̂(µ,η), L(µ,η) and E(L(µ,η)). To this end, let
us consider (Y,Z) and (Y′,Z′) two solutions to BSDE (41), α̂ and α̂′ the corresponding optimal controls, L and
L′ the corresponding martingales defined in (42), and Q and Q′ the resulting probability measures defined in (43).

By uniqueness of solution to (41), we have E

[

∫ T

0 ‖Z ′
t − Zt‖2Xt−

dt
]

= 0. Using the Lipschitz continuity of â and q,

it is straightforward to show E

[

∫ T

0
‖α′

t − αt‖2dt
]

= 0 and eventually Q = Q′.

Proposition 4.10. Let us denote by P̄0 the closure of the set P0 defined in (35). Then the set P̄0 ×R0 is stable
for the mapping Φ.

Proof. It suffices to show that for all (µ, η) ∈ P ×R0, we have Φµ(µ, η) ∈ P0. By the definition of P0 in (35), this
boils down to showing that there exists a constant C0 > 0 such that for all (µ, η), we have:

EP[(E(L(µ,η))T )
2] ≤ C0.

Let us denote Wt := E(L(µ,η))t. By Itô’s lemma we have:

d(W 2
t ) = 2Wt−dWt + d[W,W ]t

since dL
(µ,η)
t = X∗

t− · (Q(t, α̂
(µ,η)
t , π(t, µ), ηt) − Q0) · ψ+

t · dMt and dWt = Wt−dL
(µ,η)
t , denoting It := ψ+

t ·
(Q∗(t, α̂

(µ,η)
t , π(t, µ), ηt)−Q0) ·Xt− we have:

d(W 2
t ) = 2W 2

t−dL
(µ,η)
t +W 2

t−I
∗
t · d[M,M]t · It.

We know that the optional quadratic variation of M can be decomposed as:

[M,M]t = Gt + 〈M,M〉t = Gt +

∫ t

0

ψsds,

where G is a martingale. Therefore we have:

d(W 2
t ) = 2W 2

t−dL
(µ,η)
t +W 2

t−I
∗
t · dGt · It +W 2

t−I
∗
t · ψt · Itdt.

Let Tn be a sequence of stopping time converging to +∞ which localizes both the local martingales
∫ t

0
W 2

s−dL
(µ,η)
s

and
∫ t

0 W
2
s−I

∗
s · dGs · Is. Then integrating the above SDE between 0 and T ∧ Tn and taking the expectation under

P we obtain:

EP[W 2
T∧Tn

] =1 + EP

[

∫ T∧Tn

0

W 2
t−I

∗
t · ψt · Itdt

]

= 1 + EP

[

∫ T∧Tn

0

W 2
t−I

∗
t · ψt · Itdt

]

≤1 +

∫ T

0

EP
[

W 2
t∧Tn

I∗t∧Tn
· ψt∧Tn

· It∧Tn

]

dt ≤ 1 + C0

∫ T

0

EP[W 2
t∧Tn

].

Here we have used Tonelli’s theorem as well as the fact that I∗s ·ψs · Is is bounded by a constant C0 independent of
µ, η and n, which is a consequence of the boundedness of the transition rate function q. Now applying Gronwall’s
lemma we obtain:

EP[W 2
T∧Tn

] ≤ C0.

where the constant C0 does not depend on n, µ or η. Notice that W 2
T∧Tn

converges to W 2
t almost surely, we apply

Fatou’s lemma and obtain EP[W 2
T ] ≤ C0. �
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4.3. Existence of Nash equilibria. The last missing piece in applying Schauder’s fixed point theorem is to show
the continuity of the mapping Φ on P ×R0 for the product topology. To this end, we show the continuity of the
mappings Φµ and Φη. Notice that both P and R0 are metrizable, so we only need to show sequential continuity.

Let us fix a sequence (µ(n), η(n))n≥1 converging to (µ(0), η(0)) in P ×R0, with the decomposition η(n)(dt, dν) =

L(dt) × η
(n)
t (dν). To simplify the notation we denote Y(µ(n),η(n)), Z(µ(n),η(n)), α̂(µ(n),η(n)), L(µ(n),η(n)), Q̂(µ(n),η(n))

respectively by Y(n), Z(n), α̂(n), L(n) and Q(n) for n ≥ 0. We also denote by E(n) the expectation under Q(n) and

p
(n)
t = π(t, µ(n)), whereas E still denotes the expectation under the reference measure P.
We start by proving the continuity of Φµ, or equivalently the convergence of Q(n) toward Q(0). We divide the

proof into several intermediary results.

Lemma 4.11. Without any loss of generality, we may assume that there exists a constant C such that ‖Z(0)
t ‖Xt−

≤
C for all (ω, t) ∈ Ω× [0, T ].

Proof. We consider the following ODE of unknown Vt = [V1(t), . . . , Vm(t)] ∈ Rm:

(47)
0 =

dVi(t)

dt
+ Ĥi(t, V (t), p

(0)
t , η

(0)
t ) +

∑

j 6=i

[Vj(t)− Vi(t)],

Vi(T ) = g(ei, p
(0)
T ), i = 1, . . . ,m.

Set ζ : [0, T ]× Rm ∋ (t, v) → [ζ1(t, v), . . . , ζm(t, v)] ∈ Rm where ζi(t, v) := Ĥi(t, v, p
(0)
t , η

(0)
t ) +

∑

j 6=i[vj − vi]. By

Lemma 4.8, we see that t → ζ(t, v) is measurable for all v ∈ Rm and v → ζ(t, v) is Lipschitz in v uniformly in
t. By Theorem 1 and Theorem 2 in [11], the ODE (47) admits a unique solution on the interval [0, T ], which
is absolutely continuous. Now we define Yt =

∑m
i=1 1(Xt = ei)Vi(t) and Zt = Vt. By continuity of V , we have

∆Yt := Yt − Yt− = V ∗
t (Xt −Xt−) = Z∗

t ·∆Xt. Applying Ito’s formula to Y, we obtain:

Yt =YT −
∫ T

t

m
∑

i=1

1(Xt = ei)V̇i(s)ds−
∑

t<s≤T

∆Ys

=g(XT , p
(0)
T ) +

∫ T

t

m
∑

i=1

1(Xt = ei)Ĥ
i
(t, V (t), p

(0)
t , η

(0)
t )

+

∫ T

t

m
∑

i=1

1(Xt = ei)
∑

j 6=i

[Vj(t)− Vi(t)]−
∫ T

t

Z∗
s · dXs

=g(XT , p
(0)
T ) +

∫ T

t

Ĥ
i
(s,Xs, Zs, p

(0)
s , η(0)s )ds−

∫ T

t

Z∗
s · dMs,

where in the last equality we used the fact that dXs = Q0 · Xs−ds + dMs and Vt = Zt. Therefore (Y,Z) and
(Y(0),Z(0)) solves the same BSDE. As we have discussed in Remark 4.9, we may assume that Z(0) = Z. Therefore

Z
(0)
t = V (t). It follows from the continuity of t → V (t) that ‖Z(0)

t ‖Xt−
is bounded for all ω ∈ Ω and t ∈ [0, T ] by

a uniform constant. �

Now we show that Z(n) converges toward Z(0).

Proposition 4.12. We have:

(48) lim
n→∞

E

[

∫ T

0

‖Z(n)
t − Z

(0)
t ‖2Xt−

dt

]

= 0.

Proof. By Lemma 3.2, it suffices to check that:

In(t) := E

[

(

∫ T

t

Ĥ(s,Xs−, Z
(0)
s , p(n)s , η(n)s )− Ĥ(s,Xs−, Z

(0)
s , p(0)s , η(0)s )ds)2

]
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converges to 0 for all t ≤ T , and that In(t) is bounded by C uniformly in t and n. We also need to check

Jn := E[|g(XT , p
(n)
T ) − g(XT , p

(0)
T )|2] converges to 0. By Lipschitz property of the cost functional g and Lemma

4.3, we have:

Jn ≤ C‖p(n)T − p
(0)
T ‖2 = C‖π(µ(n), T )− π(µ(0), T )‖2 → 0,

as n→ +∞. To check the uniform boundedness of In(t), we recall from Lemma 3.7 that:

|Ĥ(t,Xt−, Z
(0)
t , p

(n)
t , η

(n)
t )− Ĥ(t,Xt−, Z

(0)
t , p

(0)
t , η

(0)
t )| ≤ C(1 + ‖Z(0)

t ‖Xt−
)(‖p(n)t − p

(0)
t ‖+ W̄1(η

(n)
t , η

(0)
t )),

where W̄1 is the Wasserstein distance on the space P(P(A)). Clearly ‖p(n)t − p
(0)
t ‖ can be bounded by a constant

since p
(n)
t is in the simplex S. On the other hand, we have:

W̄1(η
(n)
t , η

(0)
t ) ≤

∫

(ν1,ν2)∈P(A)2
W1(ν1, ν2)η

(n)
t (dν1)η

(0)
t (dν2).

Since A is compact, W1(ν1, ν2) for (ν1, ν2) ∈ P(A)2 is bounded, which implies that W̄1(η
(n)
t , η

(0)
t ) is also bounded

by a constant uniformly in n and t. This implies:

In(t) ≤ CE[

∫ T

t

(1 + ‖Z(0)
s ‖Xs−

)ds] ≤ C(1 + (E[

∫ T

0

‖Z(0)
s ‖2Xs−

ds])1/2) < +∞,

which means that In(t) is uniformly bounded in n and t. To show that In(t) converges to 0, we write:

In(t) ≤ 2E





(

∫ T

t

(Ĥ(s,Xs−, Z
(0)
s , p(n)s , η(n)s )− Ĥ(s,Xs−, Z

(0)
s , p(0)s , η(n)s ))dt

)2




+ 2E





(

∫ T

t

(Ĥ(s,Xs−, Z
(0)
s , p(0)s , η(n)s )− Ĥ(s,Xs−, Z

(0)
s , p(0)s , η(0)s ))dt

)2




≤ 2CE

[

∫ T

t

(1 + ‖Z(0)
s ‖Xs−

)2‖p(n)s − p(0)s ‖2ds
]

+ 2E





(

∫ T

t

(Ĥ(s,Xs−, Z
(0)
s , p(0)s , η(n)s )− Ĥ(s,Xs−, Z

(0)
s , p(0)s , η(0)s ))dt

)2


 .

By Lemma 4.3, we have (1 + ‖Z(0)
s ‖Xs−

)2‖p(n)s − p
(0)
s ‖2 → 0, dt⊗ dP-a.e. On the other hand, we have:

(1 + ‖Z(0)
s ‖Xs−

)2‖p(n)s − p(0)s ‖2 ≤ C(1 + ‖Z(0)
s ‖Xs−

)2,

where the right hand side is ds⊗ dP-integrable. Therefore by the dominated convergence theorem, we obtain:

E

[

∫ T

t

(1 + ‖Z(0)
s ‖Xs−

)2‖p(n)s − p(0)s ‖2ds
]

→ 0,

as n→ +∞. It remains to show that:

Kn := E





(

∫ T

t

(Ĥ(s,Xs−, Z
(0)
s , p(0)s , η(n)s )− Ĥ(s,Xs−, Z

(0)
s , p(0)s , η(0)s ))dt

)2




converges to 0. For a fix w ∈ Ω and s ≤ T , we have:
∫ T

t

(Ĥ(s,Xs−, Z
(0)
s , p(0)s , η(n)s )− Ĥ(s,Xs−, Z

(0)
s , p(0)s , η(0)s ))ds
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=

∫ T

t

∫

ν∈P(A)

Ĥ(s,Xs−, Z
(0)
s , p(0)s , ν)(η(n)s − η(0)s )(dν)ds

=

∫

[0,T ]×P(A)

κ(s, ν)η(n)(ds, dν) −
∫

[0,T ]×P(A)

κ(s, ν)η(0)(ds, dν),

where we defined κ(s, ν) := 1t≤s≤TH(s,Xs−, Z
(0)
s , p

(0)
s , ν). Clearly κ is continuous in ν for all s. On the other

hand, by inequality (26) in Lemma 3.7, for all t ≤ s ≤ T and ν ∈ P(A) we have:

|H(s,Xs−, Z
(0)
s , p(0)s , ν)| ≤ |H(s,Xs−, 0, 0, 0)|+ C‖Z(0)

s ‖Xs−
+ C(1 + ‖Z(0)

s ‖Xs−
)(‖p(0)s ‖+W1(ν, 0)).

Therefore by Lemma 4.11 and the boundedness of P(A), we conclude that the mapping (s, ν) → κ(s, ν) is bounded.
It follows from the definition of stable topology and η(n) → η(0) that:

lim
n→+∞

∫ T

t

(Ĥ(s,Xs−, Z
(0)
s , p(0)s , η(n)s )− Ĥ(s,Xs−, Z

(0)
s , p(0)s , η(0)s ))ds = 0,

for all w ∈ Ω. In addition, we have:
(

∫ T

t

(Ĥ(s,Xs−, Z
(0)
s , p(0)s , η(n)s )− Ĥ(s,Xs−, Z

(0)
s , p(0)s , η(0)s ))ds

)2

≤(T − t)

∫ T

t

|Ĥ(s,Xs−, Z
(0)
s , p(0)s , η(n)s )− Ĥ(s,Xs−, Z

(0)
s , p(0)s , η(0)s )|2ds

≤C
∫ T

t

(1 + ‖Z(0)
s ‖Xs−

)2(W̄1(η
(n)
s , η(0)s ))2ds ≤ C

∫ T

t

(1 + ‖Z(0)
s ‖Xs−

)2ds

and
∫ T

t (1 + ‖Z(0)
s ‖Xs−

)2ds is integrable. Apply once again the dominated convergence theorem, we conclude that
Kn converges to 0. This completes the proof. �

We will also need a result on a more convenient representation of the Doléans-Dade exponential of L(n).

Lemma 4.13. Denote by W(n) the Doléans-Dade exponential of L(n). Then the Itô differential of log(W(n))
satisfies:

d[log(W
(n)
t )] = X∗

t− · (Q(t, α̂
(n)
t , p

(n)
t , η

(n)
t )−Q0+O(t, α̂

(n)
t , p

(n)
t , η

(n)
t ) ·Q0) ·Xt−dt+X

∗
t− ·O(t, α̂(n)

t , p
(n)
t , η

(n)
t ) ·dMt,

where O(t, α̂
(n)
t , p

(n)
t , η

(n)
t ) is the matrix with log(q(t, i, j, α̂

(n)
t , p

(n)
t , η

(n)
t )) as off-diagonal elements and zeros on the

diagonal.

Proof. Since W(n) is the Doléans-Dade exponential of L(n), W(n) satisfies the SDE dW
(n)
t =W

(n)
t− dL

(n)
t . Applying

Ito’s formula and noticing that the continuous martingale part of Ln is zero, we have:

d log(W
(n)
t ) = dL

(n)
t −∆L

(n)
t + log(1 + ∆L

(n)
t ).

Then using dL
(n)
t = X∗

t− · (Q(t, α̂
(n)
t , p

(n)
t , η

(n)
t )−Q0) · ψ+

t · dMt and noticing that the jumps of Ln are driven by
the jumps of M, and hence X , we obtain:

d log(W
(n)
t ) =−X∗

t− · (Q(t, α̂
(n)
t , p

(n)
t , η

(n)
t )−Q0) · ψ+ ·Q0 ·Xt−dt+ log(1 + ∆L

(n)
t )

=X∗
t− · (Q(t, α̂

(n)
t , p

(n)
t , η

(n)
t )−Q0) ·Xt−dt+ log(1 + ∆L

(n)
t ),

where we have used the fact that for all q-matrices A, we have X∗
t− ·A ·ψ+ ·Q0 ·Xt− = −X∗

t− ·A ·Xt−. Piggybacking
on the derivation following equation (6), for Xt− = ei and Xt = ej we have:

log(1 + ∆L
(n)
t ) = log(q(t, i, j, α̂

(n)
t , p

(n)
t , η

(n)
t )).
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Using matrix notation and recalling the definition of O in the statement of Lemma 4.13, we may write:

log(1 + ∆L
(n)
t ) = X∗

t− ·O(t, α̂
(n)
t , p

(n)
t , η

(n)
t ) ·∆Xt.

Using again the equality ∆Xt = dXt = Q0 ·Xt−dt+dMt, we arrive at the desired representation of the differential
of log(Wt). �

We now show the first component of the mapping Φ is sequentially continuous.

Proposition 4.14. Q(n) converges to Q(0) in P.

Proof. For two probability measures Q and Q′ in P , the total variation distance d between Q and Q′ is:

(49) dTV (Q,Q
′) := sup{|Q(A)−Q′(A)|, A ∈ B(D)}.

It is well-known that convergence in total variation implies weak convergence, hence convergence in the topological
space P . Therefore our aim is to show that dTV (Q

(n),Q(0)) → 0 as n→ +∞. By Pinsker’s inequality, we have:

d2TV (Q
(0),Q(n)) ≤ 1

2
E(0)

[

log

(

dQ(0)

dQ(n)

)]

.

Since dQ(n)

dP = E(L(n))T , we have:

d2TV (Q
(0),Q(n)) ≤ E(0)[log(E(L(0))T )− log(E(L(n))T )].

Using Lemma 4.13, we have:

E(0)[log(E(L(0))T )− log(E(L(n))T )]

=E(0)

[

∫ T

0

X∗
t− · (Q(t, α̂

(0)
t , p

(0)
t , η

(0)
t )−Q(t, α̂

(n)
t , p

(n)
t , η

(n)
t )) ·Xt−dt

]

+ E(0)

[

∫ T

0

X∗
t− · (O(t, α̂

(0)
t , p

(0)
t , η

(0)
t )−O(t, α̂

(n)
t , p

(n)
t , η

(n)
t )) ·Q0 ·Xt−dt

]

+ E(0)

[

∫ T

0

X∗
t− · (O(t, α̂

(0)
t , p

(0)
t , η

(0)
t )−O(t, α̂

(n)
t , p

(n)
t , η

(n)
t )) · dMt

]

.

By Assumption 2.2, the process t→
∫ t

0
X∗

s− · (O(s, α̂(0)
s , p

(0)
s , ν

(n)
s )−O(s, α̂(n)

s , p
(n)
s , ν

(n)
s )) ·dMs is a true martingale

therefore have zero expectation. We now deal with the convergence of the term E0[
∫ T

0 X∗
t− · (Q(t, α̂

(n)
t , p

(n)
t , η

(n)
t )−

Q(t, α̂
(0)
t , p

(0)
t , η

(0)
t )) ·Xt−dt], whereas the term E0[

∫ T

0
X∗

t− · (O(t, α̂
(n)
t , p

(n)
t , η

(n)
t )−O(t, α̂

(0)
t , p

(0)
t , η

(0)
t )) ·Q0 ·Xt−dt]

can be dealt with in the exact the same way. Using the Lipschitz property of â and Q in Lemma 3.7 and Lemma
4.8, we obtain:

E(0)

[

∫ T

0

X∗
t− · (Q(t, α̂

(0)
t , p

(0)
t , η

(0)
t )−Q(t, α̂

(n)
t , p

(n)
t , η

(n)
t )) ·Xt−dt

]

≤E(0)

[

∫ T

0

X∗
t− · (Q(t, α̂

(0)
t , p

(0)
t , η

(n)
t )−Q(t, α̂

(n)
t , p

(n)
t , η

(n)
t )) ·Xt−dt

]

+ E(0)

[

∫ T

0

X∗
t− · (Q(t, α̂

(0)
t , p

(0)
t , η

(0)
t )−Q(t, α̂

(0)
t , p

(0)
t , η

(n)
t )) ·Xt−dt

]

≤ E(0)

[

∫ T

0

C(‖α̂(n)
t − α̂

(0)
t ‖+ ‖p(n)t − p

(0)
t ‖)dt

]
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+ E(0)

[

∫ T

0

X∗
t− · (Q(t, α̂

(0)
t , p

(0)
t , η

(n)
t )−Q(t, α̂

(0)
t , p

(0)
t , η

(0)
t )) ·Xt−dt

]

≤E(0)

[

∫ T

0

C‖Z(n)
t − Z

(0)
t ‖Xt−

dt

]

+ E(0)

[

∫ T

0

C(1 + ‖Z(0)
t ‖Xt−

)‖p(n)t − p
(0)
t ‖dt

]

+ E(0)

[

∫ T

0

X∗
t− · (Q(t, α̂

(0)
t , p

(0)
t , η

(n)
t )−Q(t, α̂

(0)
t , p

(0)
t , η

(0)
t )) ·Xt−dt

]

.

We deal with these terms separately. For the first expectation, by Cauchy-Schwartz inequality, we have:
(

E(0)

[

∫ T

0

C‖Z(n)
t − Z

(0)
t ‖Xt−

dt

])2

=

(

E

[

W
(0)
T

∫ T

0

C‖Z(n)
t − Z

(0)
t ‖Xt−

dt

])2

≤ E[(W
(0)
T )2]E





(

∫ T

0

C‖Z(n)
t − Z

(0)
t ‖Xt−

dt

)2




≤ CE[(W
(0)
T )2]E

[

∫ T

0

‖Z(n)
t − Z

(0)
t ‖2Xt−

dt

]

.

This converges to 0 by Proposition 4.12. For the second expectation, we notice from Lemma 4.11 that ‖Z(0)
t ‖Xt−

is bounded by a constant for all (ω, t) ∈ Ω× [0, T ]. Therefore we have:

E(0)

[

∫ T

0

C(1 + ‖Z(0)
t ‖Xt−

)‖p(n)t − p
(0)
t ‖dt

]

≤ C

∫ T

0

C‖p(n)t − p
(0)
t ‖dt,

where the right-hand side converges to 0 by dominated convergence theorem. Finally for the third expectation, we
rewrite the integrand as:

∫ T

0

X∗
t− · (Q(t, α̂

(0)
t , p

(0)
t , η

(n)
t )−Q(t, α̂

(0)
t , p

(0)
t , η

(0)
t )) ·Xt−dt

=

∫

[0,T ]×P(A)

X∗
t− ·Q(t, α̂

(0)
t , p

(0)
t , ν) ·Xt−(η

(n)(dt, dν) − η(0)(dt, dν)).

This converges to 0, since η(n) converges to η(0) in stable topology and the mapping ν → Q(t, α̂
(0)
t , p

(0)
t , ν) is

continuous for all t. Notice also that the integrand is bounded by a constant, since q is bounded according
to Assumption 2.2. Then by dominated converges theorem the thrid expectation converges to 0 as well. This
completes the proof. �

To show the continuity of Φη, we need the following lemma.

Lemma 4.15. Let (ν
(n)
t )t≤T be a sequence of measurable functions from [0, T ] to P(A) such that

∫ T

0
W1(ν

(n)
t , ν

(0)
t ) →

0. Then L(dt)× δ
ν
(n)
t

(dν) converges to L(dt)× δ
ν
(0)
t

(dν) in R0 in the sense of the stable topology.

Proof. Set λ(n)(dt, dν) := L(dt) × δ
ν
(n)
t

(dν) for n ≥ 0, let f : [0, T ] × P(A) → R be a mapping of the form

f(t, ν) = 1t∈B · g(ν) where B is measurable subset of [0, T ] and gis a bounded Lipschitz function on P(A). We
then have:
∣

∣

∣

∣

∣

∫

[0,T ]×P(A)

f(t, ν)λ(n)(dt, dν) −
∫

[0,T ]×P(A)

f(t, ν)λ(0)(dt, dν)

∣

∣

∣

∣

∣

≤
∫

t∈B

|g(ν(n)t )−g(ν(0)t )|dt ≤ C

∫ T

0

W1(ν
(n)
t , ν

(0)
t )dt.

By Lemma 4.6, we conclude that λ(n) converges to λ(0) for the stable topology. �
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Proposition 4.16. L(·) × δ
Q

(n)

#α̂
(n)
t

(·) converges to L(·) × δ
Q

(0)

#α̂
(0)
t

(·) in R0 in the sense of the stable topology.

Proof. By Lemma 4.15, we only need to show
∫ T

0
W1(Q

(n)

#α̂
(n)
t

,Q
(0)

#α̂
(0)
t

)dt converges to 0. Notice that:

∫ T

0

W1(Q
(n)

#α̂
(n)
t

,Q
(0)

#α̂
(0)
t

)dt ≤
∫ T

0

W1(Q
(n)

#α̂
(n)
t

,Q
(0)

#α̂
(n)
t

)dt+

∫ T

0

W1(Q
(0)

#α̂
(n)
t

,Q
(0)

#α̂
(0)
t

)dt.

By the very definition of the total variation distance (recall equation 49), we have clearly:

dTV (Q
(n)

#α̂
(n)
t

,Q
(0)

#α̂
(n)
t

) ≤ dTV (Q
(n),Q(0)),

which converges to 0 according to the proof of Proposition 4.14. By Theorem 6.16 in [24], since A is bounded and

Q
(n)

#α̂
(n)
t

∈ P(A), there exists a constant C such that:

W1(Q
(n)

#α̂
(n)
t

,Q
(0)

#α̂
(n)
t

) ≤ C · dTV (Q
(n)

#α̂
(n)
t

,Q
(0)

#α̂
(n)
t

).

This shows that W1(Q
(n)

#α̂
(n)
t

,Q
(0)

#α̂
(n)
t

) converges to 0. In addition, it is also bounded since A is bounded. The

dominated convergence theorem then implies that:

∫ T

0

W1(Q
(n)

#α̂
(n)
t

,Q
(0)

#α̂
(n)
t

)dt→ 0, n→ +∞.

Now for the other term, we have:

intT0 W1(Q
(0)

#α̂
(n)
t

,Q
(0)

#α̂
(0)
t

)dt ≤
∫ T

0

E(0)[‖α̂(n)
t − α̂

(0)
t ‖]dt

= E

[

W
(0)
T

∫ T

0

‖α̂(n)
t − α̂

(0)
t ‖dt

]

≤ (E[(W
(0)
T )2])1/2

(

E

[

T

∫ T

0

‖α̂(n)
t − α̂

(0)
t ‖2dt

])1/2

.

The Lipschitz property of â (see Lemma 3.7) and Proposition 4.12 imply that E
[

T
∫ T

0 ‖α̂(n)
t − α̂

(0)
t ‖2dt

]

→ 0. �

We are now ready to show the existence of Nash equilibria.

Proof. (of Theorem 4.1) Consider the product space Γ := P ×R endowed with the product topology of the weak
topology on P and the stable topology on R. By Proposition 4.5, Γ is a Polish space. By Proposition 4.2 and
Lemma 4.7, Γ0 := P̄0 × R0 is a compact and convex subset of Γ and it is stable by the mapping Φ defined in
(46). In addition, we see from Proposition 4.14 and Proposition 4.16 that Φ is continuous. Therefore applying
Schauder’s fixed point theorem, we conclude that Φ admits a fixed point (µ∗, η∗) ∈ P̄0 ×R0.

Now let us define p∗t := π(t, µ∗) ∈ S and α∗
t := â(t,Xt−, Z

∗
t , π(t, µ

∗)) where (Y∗,Z∗) is the solution to the BSDE
(41) with µ = µ∗ and η = η∗. We then define P∗ := Pµ∗,η∗

and ν∗t := P∗
#α∗

t
. Since (µ∗, η∗) is the fixed point of the

mapping Φ, we have η∗t = δν∗

t
and µ∗ = P∗. It follows that p∗t = π(t,P∗) = [P∗(Xt = ei)]1≤i≤m. By Proposition

3.9, we see that α∗ is the solution to the optimal control problem (13) when the mean field of state is p∗ and the
mean field of control is ν∗. This implies that (α∗,p∗,ν∗) is a Nash equilibrium. �
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5. Uniqueness of Nash equilibrium

Uniqueness of Nash equilibria will be proven under the following conditions.

Assumption 5.1. (i) The transition rate function q does depend neither on the mean field of state p nor on the
mean field of control ν. The cost functional f is separable in the sense that it is of the form:

(50) f(t, x, α, p, ν) = f0(t, x, α) + f1(t,X, p) + f2(t, p, ν).

(ii) For all t ∈ [0, T ], i ∈ {1, . . . ,m}, z ∈ Rm, p ∈ S and ν ∈ P(A), the mapping α → Hi(t, z, α, p, ν) admits a
unique minimizer, whichbecause of assumption (i), only depends on t and z. We denote it by âi(t, z). In addition,
we assume that âi is a measurable from [0, T ]× Rm into A, and that there exists a constant C > 0 such that for
all i ∈ {1, . . . ,m}, and z, z′ ∈ Rm:

(51) ‖âi(t, z)− âi(t, z
′)‖ ≤ C‖z − z′‖ei .

(iii) For all p, p′ ∈ S and t ∈ [0, T ], we have:

m
∑

i=1

(g(ei, p)− g(ei, p
′))(pi − p′i) ≥ 0,(52)

m
∑

i=1

(f1(t, ei, p)− f1(t, ei, p
′))(pi − p′i) ≥ 0.(53)

Remark 5.2. Item (ii) of Assumption 5.1 holds if we impose additional conditions of linearity and strong convexity
on the transition rate function and the cost function, for example:

Assumption 5.3. (i)The transition rate function q takes the form q(t, i, j, α) = q0(t, i, j)+ q1(t, i, j) ·α, where the
mappings q0 : [0, T ]× E2 → R and q1 : [0, T ]× E2 → Rl are continuous.
(ii) f0 is γ−strongly convex in α, i.e., for all (t, i) ∈ [0, T ]× E and α, α′ ∈ A, we have:

(54) f0(t, ei, α)− f0(t, ei, α
′)− (α− α′) · ∇αf0(t, ei, α) ≥ γ‖α′ − α‖2

Theorem 5.4. Under Assumptions 2.2, 2.7 and 5.1, there exists at most one Nash equilibrium for the weak
formulation of the finite state mean field game.

Proof. Let (α(1),p(1),ν(1)) and (α(2),p(2),ν(2)) be two Nash equilibria of the mean field game. For i = 1, 2, we
denote by (Y(i),Z(i)) the solution to the BSDE (29) with p = p(i), ν = ν(i), which is written as:

Y
(i)
0 = g(XT , p

(i)
T ) +

∫ T

0

Ĥ(t,Xt−, Z
(i)
t , p

(i)
t , ν

(i)
t )dt−

∫ T

0

(Z
(i)
t )∗ · dMt

we have α̂
(i)
t := â(t, Z

(i)
t ), dP ⊗ dt-a.e. Let us denote Q(i) := Q(α̂(i),p(i),ν(i)), the controlled probability measure

defined in (7), under which M(i) := M(α̂(i),p(i),ν(i)) is a martingale. In addition, we use the abbreviation f
(i)
t :=

f(t,Xt−, α̂
(i)
t , p

(i)
t , ν

(i)
t ), g(i) = g(XT , p

(i)
T ) and Q

(i)
t := Q(t, α̂

(i)
t ). Taking the difference of the BSDEs we obtain:

Y
(1)
0 − Y

(2)
0 =g(1) − g(2) +

∫ T

0

(f
(1)
t − f

(2)
t +X∗

t− · (Q(1)
t −Q0) · Z(1)

t −X∗
t− · (Q(2)

t −Q0) · Z(2)
t )dt

+

∫ T

0

(Z
(1)
t − Z

(2)
t )∗ · dMt

=g(1) − g(2) +

∫ T

0

(f
(1)
t − f

(2)
t +X∗

t− · (Q(1)
t −Q

(2)
t ) · Z(1)

t )dt+

∫ T

0

(Z
(1)
t − Z

(2)
t )∗ · dM(2)

t

=g(1) − g(2) +

∫ T

0

(f
(1)
t − f

(2)
t +X∗

t− · (Q(1)
t −Q

(2)
t ) · Z(2)

t )dt+

∫ T

0

(Z
(1)
t − Z

(2)
t )∗ · dM(1)

t .
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Taking expectations with respect to Q(1) and Q(2) and using the fact that

EP[Y
(1)
0 − Y

(2)
0 ] = EQ(1)

[Y
(1)
0 − Y

(2)
0 ] = EQ(2)

[Y
(1)
0 − Y

(2)
0 ],

we obtain the following equality:

(55)

EQ(1)

[

g(1) − g(2) +

∫ T

0

(f
(1)
t − f

(2)
t +X∗

t− · (Q(1)
t −Q

(2)
t ) · Z(2)

t )dt

]

= EQ(2)

[

g(1) − g(2) +

∫ T

0

(f
(1)
t − f

(2)
t +X∗

t− · (Q(1)
t −Q

(2)
t ) · Z(1)

t )dt

]

.

Next we notice that:

f1
t +X∗

t− ·Q(1)
t · Z2

t = f(t,Xt−, α̂
(1)
t , p

(1)
t , ν

(1)
t ) +X∗

t− ·Q(t, α̂
(1)
t ) · Z(2)

t

= H(t,Xt−, α̂
(1)
t , Z

(2)
t , p

(1)
t , ν

(1)
t ) ≥ H(t,Xt−, α̂

(2)
t , Z

(2)
t , p

(1)
t , ν

(1)
t )

= H(t,Xt−, α̂
(2)
t , Z

(2)
t , p

(2)
t , ν

(2)
t ) + (f1(t,Xt−, p

(1)
t )− f1(t,Xt−, p

(2)
t ))

+ (f2(t, p
(1)
t , ν

(1)
t )− f2(t, p

(2)
t , ν

(2)
t ))

and using the inequality:

H(t,Xt−, α̂
(1)
t , Z

(2)
t , p

(1)
t , ν

(1)
t ) ≥ H(t,Xt−, α̂

(2)
t , Z

(2)
t , p

(1)
t , ν

(1)
t )

which is due to the fact that α̂
(2)
t minimizes the Hamiltonian α→ H(t,Xt−, α, Z

(2)
t , p

(1)
t , ν

(1)
t ) and Assumption 5.1

that the minimizer does not depend on the mean field terms, we get:

f
(1)
t − f

(2)
t +X∗

t−(Q
(1)
t −Q

(2)
t )Z

(2)
t ≥ (f1(t,Xt−, p

(1)
t )− f1(t,Xt−, p

(2)
t )) + (f2(t, p

(1)
t , ν

(1)
t )− f2(t, p

(2)
t , ν

(2)
t )).

Interchanging the indices we obtain:

f
(2)
t − f

(1)
t +X∗

t− · (Q(2)
t −Q

(1)
t ) · Z(1)

t ≥ (f1(t,Xt−, p
(2)
t )− f1(t,Xt−, p

(1)
t )) + (f2(t, p

(2)
t , ν

(2)
t )− f2(t, p

(1)
t , ν

(1)
t )).

Injecting these inequalities into equation (55) we have:

0 = EQ(1)

[

g(1) − g(2) +

∫ T

0

(f
(1)
t − f

(2)
t +X∗

t− · (Q(1)
t −Q

(2)
t ) · Z(2)

t )dt

]

− EQ(2)

[

g(1) − g(2) +

∫ T

0

(f
(1)
t − f

(2)
t +X∗

t− · (Q(1)
t −Q

(2)
t ) · Z(1)

t )dt

]

≥ EQ(1)

[

g(1) − g(2) +

∫ T

0

(f1(t,Xt−, p
(1)
t )− f1(t,Xt−, p

(2)
t ) + f2(t, p

(1)
t , ν

(1)
t )− f2(t, p

(2)
t , ν

(2)
t ))dt

]

− EQ(2)

[

g(1) − g(2) +

∫ T

0

(f1(t,Xt−, p
(1)
t )− f1(t,Xt−, p

(2)
t ) + f2(t, p

(1)
t , ν

(1)
t )− f2(t, p

(2)
t , ν

(2)
t ))dt

]

= EQ(1)

[

g(1) − g(2) +

∫ T

0

(f1(t,Xt−, p
(1)
t )− f1(t,Xt−, p

(2)
t ))dt

]

− EQ(2)

[

g(1) − g(2) +

∫ T

0

(f1(t,Xt−, p
(1)
t )− f1(t,Xt−, p

(2)
t ))dt

]

where the last equality is due to the fact that [f2(t, p
(2)
t , ν

(2)
t )− f2(t, p

(1)
t , ν

(1)
t )] is deterministic.

From Proposition 3.9, since α(i) is the optimal control with regard to the mean field p(i) and ν(i), we have

α
(i)
t = α̂

(i)
t , dt ⊗ dP-a.e. This implies that Q(i)[Xt− = ek] = Q(α(i),p(i),ν(i))[Xt− = ek] for all i = 1, 2 and
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k = 1, . . . ,m. Since (α(i),p(i),ν(i)) is a Nash equilibrium, we have Q(α(i),p(i),ν(i))[Xt− = ek] = [p
(i)
t ]k. Therefore

we obtain Q(i)[Xt− = ek] = [p
(i)
t ]k for all i = 1, 2 and k = 1, . . . ,m. Now using item (iii) of Assumption 5.1, we

have:

(56)

0 ≥
m
∑

i=1

(g(ei, p
(1)
T )− g(ei, p

(2)
T ))([p

(1)
T ]i − [p

(2)
T ]i)

+

∫ T

0

m
∑

i=1

(f0(t, ei, p
(1)
t )− f0(t, ei, p

(2)
t ))([p

(1)
t ]i − [p

(2)
t ]i)dt ≥ 0

Assume that there exists a measurable subset N of [0, T ]× Ω with strictly positve dt ⊗ dQ(1) measure, such that

α̂
(1)
t 6= α̂

(2)
t on N . By Assumption 5.1, the mapping α → H(t,Xt−, α, Z

(2)
t , p

(1)
t , ν

(1)
t ) admits a unique minimizer

and therefore for all (t, w) ∈ N , we have:

H(t,Xt−, α̂
(1)
t , Z

(2)
t , p

(1)
t , ν

(1)
t ) > H(t,Xt−, α̂

(2)
t , Z

(2)
t , p

(1)
t , ν

(1)
t )

Piggybacking on the argument laid out above, we see that the first inequality is strict in (56) which leads to a

contradiction. Therefore we have α̂
(1)
t = α̂

(2)
t , dt⊗dQ1-a.e., and dt⊗dP-a.e., since P is equivalent to Q(1). It follows

that α
(1)
t = α

(2)
t , dt ⊗ dP-a.e. Finally, using the same type of argument as in the proof of Proposition 4.14, we

obtain Q(1) = Q(2) which finally leads to (p(1),ν(1)) = (p(2),ν(2)). This completes the proof of the uniqueness. �

6. Approximate Nash Equilibrium for Games with Finite Many Players

In this section we show that the solution of a mean field game can be used to construct approximate Nash
equilibria for games with finitely many players. We first set the stage for the weak formulation of the game with
N players in finite state spaces. Recall that Ω is the space of càdlág mappings from [0, T ] to E = {e1, . . . , eM}
which are continuous on T , t → Xt is the canonical process and F := (Ft)t≤T is the natural filtration generated
by X. Let us fix p◦ ∈ S a probability distribution on the state space E. Let P be the probability on (Ω,FT )
under which X is a continuous-time Markov chain with transition rate matrix Q0 and initial distribution p◦.
Let ΩN be the product space of N copies of Ω, and PN be the product probability measure of N identical
copies of P. For n = 1, . . . , N , define the process Xn

t (w) := wn
t of which the natural filtration is denoted by

Fn,N := (Fn,N
t )t∈[0,T ]. We also denote by FN := (FN

t )t∈[0,T ] the natural filtration generated by the process

(X1,X2, . . . ,XN ). Denote Mn
t := Xn

t − X0
t −

∫ t

0 Q
0 · Xn

s−ds. It is clear that under PN , X1, . . . ,XN are N

independent continuous-time Markov chains with initial distribution p◦ and Q0 as the transition rate matrix,
and M1, . . . ,MN are independent FN -martingales. For later use, for i = 1, . . . , N , we define the matrix ψn

t by
ψn
t := diag(Q0 ·Xn

t−)−Q0 · diag(Xn
t−)− diag(Xn

t−) ·Q0.

Throughout this section, we let Assumptions 2.2, 2.7 and 3.4 hold. In addition, we adopt the following assump-
tion:

Assumption 6.1. The transition rate function q does not depend on the mean field of state, nor the mean field of
control.

We assume that each player can observe the entire past history of every player’s state. We denote by AN the
collection of FN -predictable processes taking values in A. Each player n chooses a strategy αn ∈ AN . We define

the martingale L(α1,...,αN ) by:

(57) L
(α1,...,αN )
t :=

∫ t

0

N
∑

n=1

(Xn
s−)

∗ · (Q(s, αn
s )−Q0) · (ψn

s )
+ · dMn

s ,

and the probability measure Q(α1,...,αN ) by:

(58)
dQ(α1,...,αN )

dPN
= E(α1,...,αN )

T ,
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where we denote by E(α1,...,αN ) the Doléans-Dade exponential of L(α1,...,αN ). Finally we introduce the empirical
distribution of the states:

(59) pNt :=
1

N

[

N
∑

n=1

1(Xn
t = e1),

N
∑

n=1

1(Xn
t = e2), . . . ,

N
∑

n=1

1(Xn
t = em)

]

∈ S,

as well as the empirical distribution of the controls:

(60) ν(α1
t , . . . , α

N
t ) :=

1

N

N
∑

n=1

δαn
t
∈ P(A),

where δa(·) is the Dirac measure on a. The total expected cost of player n in the game with N players, denoted
by Jn,N(α1, . . . , αN ), is defined as:

(61) Jn,N (α1, . . . ,αN ) := EQ(α1,...,αN )

[

∫ T

0

f(t,Xn
t , α

n
t , p

N
t , ν(α

1
t , . . . , α

N
t ))dt+ g(Xn

T , p
N
T )

]

.

Now let us consider a Nash equilibrium (α∗,p∗,ν∗) of the mean field game in the sense of Definition 2.8. Recall
that
balpha∗ is a predictable process with respect to the natural filtration generated by the canonical process X. For
each n = 1, . . . , N , we may define the control α̂n of player n by:

(62) α̂
n(w1, . . . , wN ) := α∗(wn).

Clearly, α̂n is Fn,N -predictable. In other words, it only depends on the observation of player n’s own path.

Therefore the strategy profile α̂(N) := (α̂1, . . . , α̂N ) is a distributed strategy profile, which means that every
player’s strategy is only based on the observation of its own path.

In the following, we will show that α̂(N) is an approximate Nash equilibrium in a sense to be made clear later
on. To this end, we first give a result on the propagation of chaos, which compare players n’s total expected cost
in the mean field game versus its total expected cost in the finite player game. To simplify the notations, we use

the abbreviation (β, α̂−n,N) for (α̂1, . . . , α̂n−1,β, α̂n+1, . . . , α̂N ), Q̂(N) for Qα̂(N)

, Ê(N)for EQ̂(N)

, and finally Ê(N)

for Eα̂(N)

. We start from the following lemmas:

Lemma 6.2. There exists a sequence (δN )N≥0 such that δN → 0 as N → +∞, and such that for all N ≥ 1, n ≤ N
and t ≤ T we have:

(63) max
{

Ê(N)[W2
1 (ν(βt, α̂

−1,N
t ), ν∗t )], ÊN [‖pNt − p∗t ‖2]

}

≤ δN .

Proof. Since Q̂(N) = Qα̂(N)

and the fact that (α∗,p∗,ν∗) is an equilibrium of the mean field game, we deduce that

under the measure Q̂(N), the statesX1
t , . . . , X

N
t are independent and have the same distribution characterized by p∗t ,

and that the controls α1
t , . . . , α

N
t are independent and have the same distribution ν∗t . Therefore, for i ∈ {1, . . . ,M},

we have:

Ê(N)





(

1

N

N
∑

n=1

1(Xn
t = ei)− Q̂N [X1

t = ei]

)2


 =
1

N
(Q̂(N)[X1

t = ei]− (Q̂(N)[X1
t = ei])

2) ≤ 1

4N
,

which leads to:

Ê(N)[‖pNt − p∗t ‖2] =
M
∑

i=1

Ê(N)





(

1

N

N
∑

n=1

1(Xn
t = ei)− Q̂N [X1

t = ei]

)2


 ≤ M

4N
.

On the other hand, ν(βt, α̂
−1,N
t ) and ν∗t are in P(A) with A being a compact subset of Rd. We have:

Ê(N)[W2
1 (ν(βt, α̂

−1,N
t ), ν∗t )] ≤ CÊ(N)[W1(ν(βt, α̂

−1,N
t ), ν∗t )]
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≤ CÊ(N)[W1(ν(βt, α̂
−1,N
t ), ν(α̂

(N)
t )) +W1(ν(α̂

(N)
t ), ν∗t )]

≤ C(Ê(N)[
1

N
‖βt − α̂1,N

t ‖] + Ê(N)[W1(ν(α̂
(N)
t ), ν∗t )])

≤ C(
1

N
+ Ê(N)[W1(ν(α̂

(N)
t ), ν∗t )]),

where C is a constant only depending on supa∈A ‖a‖ which changes its value from line to line. Now applying
Theorem 1 in [12], we have:

Ê(N)[W1(ν(α̂
(N)
t ), ν∗t )] ≤ sup

a∈A
‖a‖ · [1(d ≤ 2)(N−1/2 log(1 +N) +N−2/3) + 1(d > 2)(N−1/d +N−1/2)].

Combining with the estimates previously shown, we obtain the desired result. �

Lemma 6.3. There exists a constant C which only depends on the bound of the transition rate q, such that for all
N > 0 and β ∈ A we have:

(64) Ê(N)





(

E(β,α̂−1,N )
T

Ê(N)
T

)2


 ≤ C.

Proof. Let us denote Wt := E(β,α̂−1,N )
t /Ê(N)

t . By Ito’s formula we have:

dWt =
dE(β,α̂−1,N )

t −∆E(β,α̂−1,N )
t

Ê(N)
t−

− E(β,α̂−1,N )
t− (dÊ(N)

t −∆Ê(N)
t )

(Ê(N)
t− )2

+∆Wt

=Wt−

(

dE(β,α̂−1,N )
t −∆E(β,α̂−1,N )

t

E(β,α̂−1,N )
t−

− dÊ(N)
t −∆Ê(N)

t

Ê(N)
t−

)

+∆Wt

Recall that:

dÊ(N)
t

Ê(N)
t−

=

N
∑

n=1

(Xn
t−)

∗ · (Q(t, α̂n
t )−Q0) · (ψn

t )
+ · dMn

t ,

dE(β,α̂−1,N )
t

E(β,α̂−1,N )
t−

= (X1
t−)

∗ · (Q(t, βt)−Q0) · (ψ1
t )

+ · dM1
t +

N
∑

n=2

(Xn
t−)

∗ · (Q(t, α̂n
t )−Q0) · (ψn

t )
+ · dMn

t ,

and dMn
t = ∆Mn

t − Q0Xn
t−dt. Noticing that for n 6= 1, the jumps of Mn

t do not result in the jumps of Wt, we
obtain:

∆Wt = ∆

(

E(β,α̂−1,N )
t

Eα̂
t

)

=
E(β,α̂−1,N )
t−

Eα̂
t−

·
(

1 + (X1
t−)

∗ · (Q(t, βt)−Q0) · (ψ1
t )

+ ·∆M1
t

1 + (X1
t−)

∗ · (Q(t, α̂1
t )−Q0) · (ψ1

t )
+ ·∆M1

t

− 1

)

= Wt−
(X1

t−)
∗ · (Q(t, βt)−Q(t, α̂1

t )) · (ψ1
t )

+ ·∆M1
t

1 + (X1
t−)

∗ · (Q(t, α̂1
t )−Q0) · (ψ1

t )
+ ·∆M1

t

.

Piggybacking on the computation in equation (6), we see that when X1
t− = ei 6= ej = Xt, we have ∆M1

t = ∆X1
t =

ej − ei and:

∆Wt =Wt−
q(t, i, j, βt)− q(t, i, j, α̂1

t )

q(t, i, j, α̂1
t )

.

Let us define Ξβ
t to be an m by m matrix where the diagonal elements are 0 and the element on the i-th row and

the j-th column is
q(t,i,j,βt)−q(t,i,j,α̂1

t )

q(t,i,j,α̂1
t )

. Then it is clear that ∆Wt = e∗i · Ξβ
t · (ej − ei). It follows that:

∆Wt =Wt− · (X1
t−)

∗ · Ξβ
t ·∆M1

t .
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Injecting the above equation into the Itô decomposition of Wt, we obtain:

dWt = Wt−[(Q(t, α̂1
t )−Q(t, βt)) · (ψ1

t )
+ ·Q0 ·X1

t−dt+ (X1
t−)

∗ · Ξβ
t ·∆M1

t ]

= Wt−[(Q(t, α̂1
t )−Q(t, βt)) · (ψ1

t )
+ ·Q0 ·X1

t−dt+ (X1
t−)

∗ · Ξβ
t · (dM̂1

t +Q∗(t, α̂1
t ) ·X1

t−dt)].

In the second equality, we use the fact that under the measure Q̂(N), the state process X1
t has the canonical

decomposition dX1
t = dM̂1

t +Q∗(t, α̂1
t ) ·X1

t dt where M̂1 is a Q̂(N)-martingale. We also use the equality ∆M1
t =

∆X1
t = dX1

t . In addition, by replacing X1
t with ei for i = 1, . . . ,M , it is plain to check the following equality:

(Q(t, α̂1
t )−Q(t, βt)) · (ψ1

t )
+ ·Q0 ·X1

t + (X1
t )

∗ · Ξβ
t ·Q∗(t, α̂1

t ) ·X1
t = 0.

This leads to the following representation of Wt:

dWt =Wt−(X
1
t )

∗ · Ξβ
t · dM̂1

t ,

which is a local martingale under the measure Q̂(N). At this stage, the rest of the proof is exactly the same as
the proof of Proposition 4.10. In particular, we make use of Assumption 2.2, that is the transition rate q being
bounded uniformly with regard to the controls. �

We are now ready to prove the form of the propagation of chaos result which we need.

Proposition 6.4. There exists a sequence (ǫN )N≥0 such that ǫN → 0 as N → +∞ and such that for all N ≥ 0,
n ≤ N and β ∈ A:

(65)

∣

∣

∣

∣

∣

Jn,N(β, α̂−n,N )− EQ(β,α̂−n,N )

[

∫ T

0

f(t,Xn
t , βt, p

∗
t , ν

∗
t )dt+ g(Xn

T , p
∗
T )

]∣

∣

∣

∣

∣

≤ ǫN .

Proof. Due to symmetry, we only need to show the claim for n = 1. Let N > 0 and β ∈ A. Using successively
Cauchy-Schwartz inequality, Assumption 2.7, Lemma 6.2 and Lemma 6.3, we have:
∣

∣

∣

∣

Jn,N (β, α̂−1,N )− EQ(β,α̂−1,N )
[∫ T

0
f(t, X1

t , βt, p
∗

t , ν
∗

t )dt + g(X1
T , p∗T )

]∣

∣

∣

∣

≤ EQ(β,α̂−1,N )
[∫ T

0
|f(t, X1

t , βt, p
∗

t , ν
∗

t )− f(t, X1
t , βt, p

N
t , ν(βt, α̂

−1,N
t ))|dt + |g(X1

T , p∗T )− g(X1
T , pNT )|

]

= Ê(N)





E
(β,α̂−1,N )
T

Ê
(N)
T

∫ T

0
|f(t, X1

t , βt, p
∗

t , ν
∗

t )− f(t, X1
t , βt, p

N
t , ν(βt, α̂

−1,N
t ))|dt + |g(X1

T , p∗T )− g(X1
T , pNT )|





≤ Ê(N)









E
(β,α̂−1,N )
T

Ê
(N)
T





2



1/2

Ê(N)

[

(∫ T

0
|f(t, X1

t , βt, p
∗

t , ν
∗

t ) − f(t, X1
t , βt, p

N
t , ν(βt, α̂

−1,N
t ))|dt + |g(X1

T , p∗T )− g(X1
T , pNT )|

)2
]1/2

≤ CÊ(N)









E
(β,α̂−1,N )
T

Ê
(N)
T





2



1/2
[∫ T

0
(Ê(N)[‖pNt − p∗t ‖

2] + Ê(N)[W2
1 (ν(βt, α̂

−1,N
t ), ν∗t )])dt + Ê(N)[‖pNT − p∗T ‖2]

]1/2

≤ C
√

δN ,

where δN is as appeared in Lemma 6.2, and C is a constant only depending on T , the Lipschitz constant of f and
g and the constant appearing in Lemma 6.3. this gives us the desired inequality. �

As a direct consequence of the above result on the propagation of chaos, we show that the Nash equilibrium of
the mean field game consists of an approximate Nash equilibrium for the game with finite many players.

Theorem 6.5. There exists a sequence ǫN converging to 0 such that for all N > 0, β ∈ A and n ≤ N , we have:

Jn,N (β, α̂−n,N ) ≤ Jn,N(α̂(N)) + ǫN .
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Proof. Recall that the strategy profile is α̂(N) = (α̂1, . . . , α̂N ) is defined as:

α̂
n(w1, w2, . . . , wN ) := α∗(wn),

where α∗ is the strategy of the mean field game equilibrium, together with p∗ as the mean field of states and ν∗

as the mean field of control. For a strategy profile (α1, . . . ,αN ) we use the notation:

Kn,N (α1, . . . ,αN ) := EQ(α1,...,αN )

[

∫ T

0

f(t,Xn
t , α

n
t , p

∗
t , ν

∗
t )dt+ g(Xn

T , p
∗
T )

]

.

Now taking n = 1, we observe that K1,N(α̂(N)) = EP
N

[Y
(α̂(N))
0 ], where Y

(α̂N )
0 is the solution (at time t = 0) of the

following BSDE:

(66) Yt = g(X1
T , p

∗
T ) +

∫ T

t

H(s,X1
s−, Z

1
s , α̂

1
s, p

∗
s, ν

∗
s )ds−

∫ T

t

(Z1
s )

∗ · dM1
s.

By the optimality of the equilibrium, we know that for all t ∈ [0, T ], α̂1
t minimizes the mapping α→ H(t,X1

t−, Z
1
t , α, p

∗
t , ν

∗
t ).

Clearly, the solution of the above BSDE (66) is also the unique solution to the following BSDE:
(67)

Yt = g(X1
T , p

∗
T ) +

∫ T

t

[

H(s,X1
s−, Z

1
s , α̂

1
s, p

∗
s, ν

∗
s ) +

N
∑

n=2

(Xn
t )

∗ · (Q(s, α̂n
s )−Q0) · Zn

s

]

ds−
∫ T

t

N
∑

n=1

∫ T

t

(Zn
s )

∗ · dMn
s ,

with Zn
t = 0 for n = 2, . . . , N . Indeed, the existence and uniqueness of the BSDE (67) can be checked easily by

applying Theorem 6.7. On the other hand, by following exactly the same argument as in the proof of Lemma 3.8,

we can show that K1,N (β, α̂−1,N ) = EPN

[Y
(β,α̂−1,N )
0 ], where Y

(β,α̂−1,N )
0 is the solution (at time t = 0) of:

(68)

Yt = g(X1
T , p

∗
T ) +

∫ T

t

[

H(s,X1
s−, Z

1
s , βs, p

∗
s, ν

∗
s ) +

N
∑

n=2

(Xn
t )

∗ · (Q(s, α̂n
s )−Q0) · Zn

s

]

ds−
∫ T

t

N
∑

n=1

∫ T

t

(Zn
s )

∗ · dMn
s .

Notice thatH(s,X1
s−, Z

1
s , α, p

∗
s, ν

∗
s ) = f(s,X1

s−, α, p
∗
s , ν

∗
s )+(X1

s−)
∗·(Q(s, α)−Q0)·Z1

s , andH(s,X1
s−, Z

1
s , α̂

1
s, p

∗
s, ν

∗
s ) ≥

H(s,X1
s−, Z

1
s , βs, p

∗
s, ν

∗
s ). Applying the comparison principle as stated in Theorem 6.8 to the BSDEs (67) and

(68), we conclude that K1,N(β, α̂−1,N ) ≤ K1,N (α̂(N)) for all β ∈ A. Now thanks to symmetry, we have

Kn,N(β, α̂−n,N ) ≤ K1,N(α̂(N)) for all β ∈ A and n = 1, . . . , N . The desired results immediately follows by
applying Proposition 6.4. �

Appendix: BSDEs Driven by Multiple Independent Continuous-Time Markov Chains

Let us consider a probability space (Ω,F ,P) supportingN independent continuous-timeMarkov chainsX1, . . . ,XN .
For each n = 1, . . . , N , we assume that Xn takes only mn states, which are represented by the basis vectors of the
space Rmn . We assume that under P, the transition rate matrix of Xn is Q0,n, which is an mn ×mn matrix where
all the diagonal elements equal −(mn − 1) and all the off-diagonal elements equal 1. We denote by F = (Ft)t∈[0,T ]

the natural filtration generated by (X1, . . . ,XN ). It is clear that for each n, we can decompose the Markov chain

Xn as Xn
t = Xn

0 +
∫ t

0 Q
0,n ·Xn

s−ds+ dMn
t , where M

n is an F-martingale. In addition, due to the independence of
the Markov chains, for all n1 6= n2 and t ≤ T , P-almost surely we have ∆Xn1

t = 0 or ∆Xn2
t = 0. In other words,

any two Markov chains cannot jump simultaneously.
Let us consider the process X̃ defined by X̃t := X1

t ⊗X2
t ⊗ · · ·⊗XN

t where ⊗ stands for the Kronecker product.

Indeed, X̃ is a Markov chain encoding the joint states of the the N independent Markov chains, and X̃ only takes
values among the unit vectors of the space Rm1×···×mN . We have the following result on the decomposition of X̃.
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Lemma 6.6. X̃ is a continuous-time Markov chain with transition rate matrix Q̃0 given by:

(69) Q̃0 :=
N
∑

n=1

Im1 ⊗ · · · ⊗ Imn−1 ⊗Q0,n ⊗ Imn+1 ⊗ · · · ⊗ ImN
.

In addition it has the canonical decomposition:

(70) dX̃t = Q̃0 · X̃t−dt+ dM̃t,

where M̃ is a F-martingale which satisfies:

(71) dM̃t =

N
∑

n=1

(X1
t− ⊗ · · · ⊗Xn−1

t− ⊗ Imn
⊗Xn+1

t− ⊗ · · · ⊗XN
t−) · dMn

t .

Proof. In order to keep the notation to a reasonable level of complexity, we only argue the proof for N = 2.
Applying Itô’s formula to X1

t ⊗X2
t and noticing that X1

t and X2
t have no simultaneous jumps, we obtain:

d(X1
t ⊗X2

t ) = dX1
t ⊗X2

t− +X1
t− ⊗ dX2

t

= (Q0,1 ·X1
t−)⊗X2

t−dt+ dM1
t ⊗X2

t− +X1
t− ⊗ (Q0,2 ·X2

t−)dt+X1
t− ⊗ dM2

t .

Using the properties of the Kronecker product, we have:

(Q0,1 ·X1
t−)⊗X2

t− = (Q0,1 ·X1
t−)⊗ (Im2 ·X2

t−) = (Q0,1 ⊗ Im2) · (X1
t− ⊗X2

t−)

dM1
t ⊗X2

t− = (Im1 · dM1
t )⊗ (X2

t− · 1)
= (Im1 ⊗X2

t−) · (dM1
t ⊗ 1) = (Im1 ⊗X2

t−) · dM1
t

X1
t− ⊗ (Q0,2 ·X2

t−) = (Im1 ·X1
t−)⊗ (Q0,2 ·X2

t−) = (Im1 ⊗Q0,2) · (X1
t− ⊗X2

t−)

X1
t− ⊗ dM2

t = (X1
t− · 1)⊗ (Im2 · dM2

t )

= (X1
t− ⊗ Im2) · (1⊗ dM2

t ) = (X1
t− ⊗ Im2) · dM2

t .

Plugging the above equalities into the Itô decomposition yields the desired result for N = 2. The case N > 2 can
be treated by applying a simple argument of induction, which we will not detail here. �

As in the case of a single Markov chain, we define the stochastic matrix ψn
t := diag(Q0,n · Xn

t−) − Q0,n ·
diag(Xn

t−)− diag(Xn
t−) ·Q0,n for n = 1, . . . , N as well as ψ̃t := diag(Q̃0 · X̃t−)− Q̃0 · diag(X̃t−)− diag(X̃t−) · Q̃0.

For n = 1, . . . , N , we define the stochastic seminorm ‖ · ‖Xn
t−

by ‖Z‖2Xn
t−

:= Z∗ · ψn
t · Z where Z ∈ Rmn . We then

define the stochastic seminorm ‖ · ‖X̃t−
by ‖Z̃‖2

X̃t−
:= Z̃∗ · ψ̃t · Z̃ where Z̃ ∈ Rm1×···×mN . Our objective is to show

existence and uniqueness of the following BSDE:

(72) Yt = ξ +

∫ T

t

F (w, s, Ys, Z
1
s , . . . , Z

n
s )ds−

N
∑

n=1

∫ T

t

(Zn
s )

∗ · dMn
s .

Here ξ is a FT -measurable P-square integrable random variable and the driver F : Ω×[0, T ]×R×Rm1×· · ·×RmN →
R is a function such that the process t → F (w, t, y, z1, . . . , zN ) is predictable for all y, z1, . . . , zN ∈ R × Rm1 ×
· · · × RmN . The unknowns of the equation are a càdlàg process Y taking values in R and predictable processes
Z1, . . . ,ZN taking valus in Rm1 , . . . ,RmN respectively.

Theorem 6.7. Assume that there exists a constant C > 0 such that dt× P-a.s., we have:

(73) |F (w, t, y, z1, . . . , zN )− F (w, t, ỹ, z̃1, . . . , z̃N )| ≤ C

(

|y − ỹ|+
N
∑

n=1

‖zn − z̃n‖Xn
t−

)

.
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Then the BSDE (72) admits a solution (Y,Z1, . . . ,ZN ) satisfying:

E

[

∫ T

0

|Yt|2dt
]

< +∞, E

[

N
∑

n=1

∫ T

0

‖Zn
t ‖2Xn

t−
dt

]

< +∞

Moreover, the solution is unique in the sense that if (Y(1),Z(1),1, . . . ,Z(1),N ) and (Y(2),Z(2),1, . . . ,Z(2),N ) are two

solutions, then Y(1) and Y(2) are indistinguishable and we have E[
∫ T

0
‖Z̃(1)

t − Z̃
(2)
t ‖2

X̃t−
dt] = 0.

Proof. For simplicity of the presentation, we give the proof for N = 2. It can be easily generalized to any N > 2.
Our first step is to show that the following equality holds for all Z̃ ∈ Rm1×m2 :

(74) ‖Z̃‖2
X̃t−

= ‖(Im1 ⊗ (X2
t−)

∗) · Z̃‖2X1
t−

+ ‖((X1
t−)

∗ ⊗ Im2) · Z̃‖2X2
t−

By the definition of the semi-norm ‖ · ‖X1
t−
, we have:

‖(Im1 ⊗ (X2
t−)

∗) ·Z‖2X1
t−

= Z∗ · (Im1 ⊗X2
t−) · ψ1

t · (Im1 ⊗ (X2
t−)

∗) ·Z

= Z∗ · (Im1 ⊗X2
t−) · (ψ1

t ⊗ 1) · (Im1 ⊗ (X2
t−)

∗) ·Z = Z∗ · (ψ1
t ⊗X2

t−) · (Im1 ⊗ (X2
t−)

∗) ·Z
= Z∗ · [ψ1

t ⊗ (X2
t− · (X2

t−)
∗)] ·Z = Z∗ · (ψ1

t ⊗ diag(X2
t−)) ·Z.

Similarly we have ‖((X1
t−)

∗ ⊗ Im2) ·Z‖2
X2

t−

= Z∗ · (diag(X1
t−)⊗ ψ2

t ) ·Z. Now by the definition of ψ̃t, we have:

ψ̃t = diag(Q̃0 · X̃t−)− Q̃0 · diag(X̃t−)− diag(X̃t−) · Q̃0

= diag((Im1 ⊗Q0,2 +Q0,1 ⊗ Im2) · (X1
t− ⊗X2

t−))− (Im1 ⊗Q0,2 +Q0,1 ⊗ Im2) · diag(X1
t− ⊗X2

t−)

− diag(X1
t− ⊗X2

t−) · (Im1 ⊗Q0,2 +Q0,1 ⊗ Im2)

= diag(X1
t− ⊗ (Q0,2 ·X2

t−)) + diag((Q0,1 ·X1
t−)⊗X2

t−)

− diag(X1
t−)⊗ (Q0,2 · diag(X2

t−))− (Q0,1 · diag(X1
t−))⊗ diag(X2

t−)

− diag(X1
t−)⊗ (diag(X2

t−) ·Q0,2)− (diag(X1
t−) ·Q0,1)⊗ diag(X2

t−)

= ψ1
t ⊗ diag(X2

t−) + diag(X1
t−)⊗ ψ2

t ,

where we have used the fact that for any two vectors X1, X2 we have diag(X1⊗X2) = diag(X1)⊗diag(X2). This
immediately leads to the equality (74). Now we consider the BSDE driven by the continuous-time Markov chain

X̃ with terminal condition ξ and the driver function F̃ defined by:

F̃ (w, t, Y, Z̃) := F (w, t, Y, (Im1 ⊗ (X2
t−)

∗) · Z̃, ((X1
t−)

∗ ⊗ Im2) · Z̃).
By equality (74) and the assumption on the regularity of F , we have:

|F̃ (w, t, Y1, Z̃1)− F̃ (w, t, Y2, Z̃2)|
≤ C(|Y1 − Y2|+ ‖(Im1 ⊗ (X2

t−)
∗) · (Z̃1 − Z̃2)‖X1

t−
+ ‖((X1

t−)
∗ ⊗ Im2) · (Z̃1 − Z̃2)‖X2

t−
)

≤ C(|Y1 − Y2|+
√
2‖Z̃1 − Z̃2‖X̃t−

).

Applying Lemma 3.1 we obtain the existence of the solution to the BSDE:

Yt = ξ +

∫ T

t

F̃ (s, Ys, Z̃s)ds+

∫ T

t

Z̃∗
s · dM̃s

Now we set Z1
t := (Im1 ⊗ (X2

s−)
∗) · Z̃s and Z2

t := ((X1
s−)

∗ ⊗ Im2) · Z̃s. From the definition of the driver F̃ and M̃
in equation (71), we see that:

Yt = ξ +

∫ T

t

F (w, s, Ys, (Im1 ⊗ (X2
s−)

∗) · Z̃s, ((X
1
s−)

∗ ⊗ Im2) · Z̃s)ds



34 RENÉ CARMONA AND PEIQI WANG

+

∫ T

t

Z̃∗
s · [(Im1 ⊗X2

t−) · dM1
t + (X1

t− ⊗ Im2) · dM2
t ]

= ξ +

∫ T

t

F (w, s, Ys, Z
1
s , Z

2
s )ds+

∫ T

t

(Z1
s )

∗ · dM1
t +

∫ T

t

(Z2
s )

∗ · dM2
t

This shows that (Y, Z1, Z2) is a solution to BSDE (72). �

We also state a comparison principle for linear BSDEs driven by multiple independent Markov chains.

Theorem 6.8. For each n ∈ {1, . . . , N}, let γn be a bounded predictable process in Rmn such that
∑mn

i=1[γ
n
t ]i = 0

for all t ∈ [0, T ], and β a bounded predictable process in R. Let φ be a non-negative predictable process in R such

that E[
∫ T

0 ‖φt‖2dt] < +∞ and ξ a non-negative square-integrable FT measurable random variable in R. Let (Y, Z)
be the solution of the linear BSDE:

(75) Yt = ξ +

∫ T

t

(φs + βsYs +

N
∑

n=1

(γns )
∗ · Zn

s )ds−
N
∑

n=1

∫ T

t

(Zn
s )

∗ · dMn
s .

Assume that for all n = 1, . . . , N , t ∈ (0, T ] and j such that (enj )
∗ ·Q0,n ·Xn

t− > 0, we have 1+ (γnt )
∗ · (ψn

t )
+ · (enj −

Xn
t−) ≥ 0 where (ψn

t )
+ is the Moore-Penrose inverse of the matrix ψn

t . Then Y is nonnegative.

Proof. As before we treat the case for N = 2, for which the argument can be trivially generalized to any N > 2.
Since γn and β are bounded processes and

∑mn

i=1[γ
n
t ]i = 0 for all t ≤ T and n ≤ N , we easily verify that the

Lipschitz condition (73) stated in Theorem 6.7 is satisfied and therefore the BSDE (76) admits a unique solution.
Now consider the following BSDE driven by M:

(76) Yt = ξ +

∫ T

t

(φs + βsYs + γ
∗
s ·Zs)ds−

2
∑

n=1

∫ T

t

Z∗
s · dMs,

where γt := (γ1t ⊗ X2
t−) + (X1

t− ⊗ γ2t ). It is easy to verify the BSDE (76) admits a unique solution (Y, Z) and
following the same argument as in the proof of Theorem 6.7, we verify that (Yt, Z

1
t , Z

2
t ) := (Yt, (Im1 ⊗ (X2

s−)
∗) ·

Zs, ((X
1
s−)

∗ ⊗ Im2) ·Zs) solves the BSDE (18), which is also its unique solution. Therefore we only need to show
that the solution Y to BSDE (18) is nonnegative. To this ends, we need to apply the comparison principal for the
case of a single Markov chain, as is stated in Lemma 3.3. Note that X1 and X2 do not jump simultaneously and
Xt = X1

t ⊗X2
t . For the jump of X resulting from the jump of X1, we need to show that for k = 1, . . . ,m1:

(77) 1 + γ∗
t · ψ+

t · (e1k ⊗X2
t− −X1

t− ⊗X2
t−) ≥ 0.

Let us assume that X1
t− = e1i , X

2
t− = e2j . If k = i, the above equality is trivial. In the following, we consider the

case k 6= i. Then by the assumption of the theorem, we have:

(78) 1 + (γ1t )
∗ · (ψ1

t )
+ · (e1k − e1i ) ≥ 0.

It can be easily verified that:

(diag(e1i )⊗ ψ2
t + ψ1

t ⊗ diag(e2j)) ·



(m1 +m2 − 2)e1k ⊗ e2j −
∑

k0 6=k

e1k0
⊗ e2j −

∑

j0 6=j

e1i ⊗ e2j0





= e1k ⊗ e2j − e1i ⊗ e2j ,

so that we have:

ψ+
t · (e1k ⊗X2

t− −X1
t− ⊗X2

t−)

=
1

m1 +m2 − 1



(m1 +m2 − 2)e1k ⊗ e2j −
∑

k0 6=k

e1k0
⊗ e2j −

∑

j0 6=j

e1i ⊗ e2j0



 .
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It follows that:

γ∗
t ·ψ+

t · (e1k ⊗X2
t− −X1

t− ⊗X2
t−)

=
1

m1 +m2 − 1
(γ1t ⊗ e2j + e1i ⊗ γ2t )

∗ ·



(m1 +m2 − 2)e1k ⊗ e2j −
∑

k0 6=k

e1k0
⊗ e2j −

∑

j0 6=j

e1i ⊗ e2j0





=
1

m1 +m2 − 1



(m1 +m2 − 2)(e1k)
∗ · γ1t −

∑

k0 6=k

(e1k0
)∗ · γ1t − (e2j)

∗ · γ2t −
∑

j0 6=j

(e2j0)
∗ · γ2t





=
1

m1 +m2 − 1



(m1 +m2 − 1)(e1k)
∗ · γ1t −

∑

k0

(e1k0
)∗ · γ1t − (e2j)

∗ · γ2t −
∑

j0

(e2j0)
∗ · γ2t





= (e1k)
∗ · γ1t ,

where in the last equality we used the assumption that
∑mn

i=1[γ
n
t ]i = 0 for n = 1, 2. Now noticing that (e1k)

∗ · γ1t =
(γ1t )

∗ · (ψ1
t )

+ · (e1k − e1i ), we obtain:

1 + γ∗
t ·ψ+

t · (e1k ⊗X2
t− −X1

t− ⊗X2
t−) = 1 + (γ1t )

∗ · (ψ1
t )

+ · (e1k − e1i ).

Combining this with the inequality (78), we obtain the inequality (77). Proceeding in a similar way we can also
show that for k = 1, . . . ,m2:

1 + γ∗
t · ψ+

t · (X1
t− ⊗ e2k −X1

t− ⊗X2
t−) ≥ 0.

Applying Lemma 3.3 to the BSDE (76), we obtain the desired result. �
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