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Abstract
We propose a model in which dividend payments occur at regular, deterministic
intervals in an otherwise continuous model. This contrasts traditional models where
either the payment of continuous dividends is controlled or the dynamics are given
by discrete time processes. Moreover, between two dividend payments, the structure
allows for other types of control; we consider the possibility of equity issuance at any
point in time. The value is characterized as the fixed point of an optimal control
problem with periodic initial and terminal conditions. We prove the regularity and
uniqueness of the corresponding dynamic programming equation, and the convergence
of an efficient numerical algorithm that we use to study the problem. The model
enables us to find the loss caused by infrequent dividend payments. We show that
under realistic parameter values this loss varies from around 1% to 24% depending
on the state of the system, and that using the optimal policy from the continuous
problem further increases the loss.

1 Introduction
Continuous time decision making is prevalent and of great importance, but some phe-
nomena only occur at discrete intervals. In models for asset trading, these intervals are
typically sufficiently short to justify a continuous time model. However, other types of
events take place on larger time scales and thus weakens the basis for a continuous time
approximation. One such example is dividend payments that we study in this paper.
Variation of the dividend frequency typically ranges from monthly to annually, far less
frequently than, for instance, trading on a large exchange.

Our approach for tackling this discrepancy between the models and practise is
to consider a continuous time model in which dividends may only be paid out at
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predetermined, discrete time points. This is reminiscent of models where the dividend
payment times are discrete and random, as seen in [6], but the mathematical structure is
significantly different in the random and predetermined models. Moreover, the distinction
between our model and a traditional discrete time model lies in the possibility to
model other continuous decision-making problems in-between the dividend payments. In
particular, we allow for the possibility to issue equity. Since we do not wish to restrict
equity issuance to predetermined time points—as would be the case in a discrete time
model—we model this issuance as a continuous time control problem. In other words,
equity can be issued at any point in time. Although our choice of continuous time control
is equity issuance, the same methodology can also be used for other types of decisions
and models, for instance capital investments. Notwithstanding, the model at hand is not
only a good example for the method, but our numerical results facilitates an interesting
comparison to the continuous time counterpart. More specifically, we show that under
realistic parameter values the difference between the value function of discrete time
dividends and the corresponding value function with continuous time dividends is often
around 1–3% relative to the continuous dividend case, but increases to 24% depending
on the state of the system.

Moreover, this type of structure does not only appear in problems with control
decisions at discrete times. In fact, problems in which monitoring occurs at discrete
time points readily fit into the same framework. One example of such a model is that of
leveraged exchange traded funds (leveraged ETFs or LETFs). The goal of an LETF is to
track the returns of some index on some time scale—typically daily—by a predetermined
multiple. In [10], the authors model this tracking problem by imposing a ‘monitoring
condition’ at the end of each trading day; at the end of the day, it incurs a penalty
depending how closely it tracks the underlying index. From a structural point of view,
the trading and transaction cost payment, happening in continuous time, is akin to the
equity issuance, whereas the ‘monitoring’ takes the role of the dividend payment (despite
not being actively controlled).

Our main focus is to characterize the value function as the solution to a parabolic
PDE with a fixed point structure. To numerically find a solution, one needs to iteratively
solve a related control problem without the discrete time element, i.e., without the
dividends/monitoring. In our model, we do not otherwise make any specific assumptions
on the cash flow process other than that the cash flow process cannot be too large. In
particular, the results hold for both the commonly studied jump models, cf. [13], as well
as their diffusion model counterparts, cf. e.g. [12, 14].

In the context of dividend problems specifically, one common point of criticism of
many optimal dividend problems is their irregular dividend payments when following
the optimal policy. One way to alleviate this is to consider dividend policies that are
proportional or affine as a function of the current reserves, cf. [2, 5]. Although we do not
explicitly consider any such models, they still fit naturally into the framework presented
in this paper. For further references on optimal dividend problems, we refer the reader
to [3, 4].

The structure of the paper is given as follows: For the purpose of showcasing the
main idea, we begin with a nonrigorous description of the general structure in Section 2.
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We thereafter give an account of how an optimal dividend problem with continuous
issuance and discrete dividends fit into this framework in Section 3. We also prove a
regularity result for the one period problem with only equity issuance as control, which
could be of interest. In this context we present the structure of the main equation and
describe a numerical scheme for finding its solution. In Section 4, we extend the optimal
dividend model and the convergence results to a multidimensional model in the spirit of
[17], but here with discretized dividend payments. Numerical studies on the value and
policy impact of dividend discretization is conducted in both settings. Finally, Section 5
provides a summary of our findings along with our interpretations and conclusions.

2 General structure
Although the focus of the paper is on optimal dividend problems, the core idea extends
to a wider class of problems and is best showcased in a general setting. What follows in
this section is a formal discussion of the ideas that will later be made rigorous for two
dividend problems.

We consider a specific type of infinite horizon (possibly singular) stochastic optimal
control problem with discounting. What distinguishes these problems is that they, at
regular, equidistant intervals, involve a singular action and/or monitoring or a singular
jump in the payoff function. In this sense, the structure can be considered as a mix of
continuous and discrete time control problems.

The structure of the problem can thus be separated into two components: one for
what happens at the discrete time points and one for what happens in-between. For
simplicity, we will represent these components by incremental operators that represent
the equations determining the solution across these time regions.

In particular, we allow for two controls α and β that represent the continuous control
and the discrete control respectively. For a given choice of α and β, we denote by
Xα,β = (Xα,β

t )t≥0 the state process corresponding to this choice. It is here implicit that
the process does not depend on β in-between the discrete time points. Similarly, we
consider two types of cost structures: Fαt = F (αt, Xα,β

t ) for the cumulative (undiscounted)
continuous cost and Gβt = G(βt, Xα,β

t− ) for the cost incurred at the discrete points. Note
that α may be a singular control process. Finally, let T be the time between two of the
discrete time points.

With this structure, we can write the control problem as

V (x) = sup
α,β

Ex

[ ∫ ∞
0

e−ρt dFαt +
∞∑
n=0

e−ρnGβn

]
,

where Ex denotes expectation with respect to a measure under which the state process
starts at x (before any control is activated), the supremum is over some set of admissible
controls, and ρ is the discounting rate. To proceed, we require the discrete time dynamic
programming principle (DTDPP) to hold, i.e., dynamic programming at the discrete
time points t ∈ TN = {0, T, 2T, . . . }. This and that the value function is universally
measurable are established by Bertsekas and Shreve [9].
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Now suppose there exists a space X such that the composition of the following two
‘incremental’ operators are well-defined. First, the continuous operator is given by

Lφ(x) = sup
α

Ex

[ ∫ T

0
e−ρt dFαt + e−ρTφ(Xα,0

T−)
]
.

Second, the discrete operator is given by

Dφ(x) = sup
β

(
φ(x+ β) +G(β, x)

)
.

In other words, there exists a space X such that D ◦ L : X → X or L ◦ D : X → X .1
Without loss of generality, assume that it holds for T := D ◦ L. Note that the universal
measurability of the value function V makes the operators well-defined on V , and the
DTDPP states precisely that V = T V . Our goal is to show that the value function can
be found by iteratively applying T . To do so, we seek a complete metric space (X , d)
such that T is a strict contraction and V ∈ X . If such a space exists, T will have a
(unique) fixed point, provided the space is not empty. Then, by the DTDPP, the value
function is the fixed point, and limn→∞(D ◦ L)nφ = V for every φ ∈ X .2

In the rest of this paper, we will show how X and d can be chosen for the two optimal
dividend problems.

3 Discrete dividend payments with capital injections
This section is devoted to the optimal dividend problem for which the fixed point idea
from Section 2 can be applied. An equity capital constrained firm pays dividends to its
shareholders at discrete, predetermined time intervals. The firm may also choose to issue
equity at any point in time.

3.1 Problem

Consider a firm endowed with some cash flow that are placed in the firm’s cash reserves.
Dividends may be paid from these reserves periodically at times T, 2T, . . . until the time
of ruin or bankruptcy. Simultaneously, it can issue equity at any time of its choice to
increase its reserves and avoid ruin. The aim of the firm is to maximize the discounted
value of dividends, net of capital injections.

To formulate the problem mathematically, let (Ω,P) be a probability space with a
filtration F = (Ft)t≥0 satisfying the usual conditions [16] and W be a one-dimensional
Brownian motion. Let x denote the initial cash reserve, L = (Lt)t≥0 the cumulative
dividends paid, and I = (It)t≥0 the cumulative equity issued. We refer to these two
processes as dividend and issuance policies, strategies, and controls interchangeably. We

1Note that the first operator in these compositions may map to an intermediate space.
2In fact, this is in fact so-called value iteration [8].
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assume that (L, I) are RCLL (right-continuous with left-limits), and are adapted to F .
Then, the net cash reserves Xν := (Xν

t )t≥0 are given by,

Xν
t := x+ Ct − Lt + It, with Ct = µt+ σWt,

where ν = (x, L, I) denotes the dependence on these processes, given positive constants
σ and µ, σ is the volatility and µ is the profitability of the firm. Note that Xν is also
RCLL and the initial condition is interpreted as Xν

0− = x. Similarly, we also think that
L0− = I0− = 0.

Dividends are paid from reserves periodically at times T, 2T, . . . until the time of ruin,

θν := inf{t > 0 : Xν
t < 0}.

The firm closes its operations after ruin, and hence all admissible dividend and issuance
policies should satisfy ∆Lt = ∆It = 0 for all t > θν , where for an RCLL process Y ,
∆Yt := Yt − Yt−. Also, dividends must be fully covered by reserves of the firm. This
imposes the condition ∆Lt ≤ Xν

t−, for all t ≥ 0. In particular, as (Ct)t≥0 is continuous,
Xν
θν = 0. Additionally, each non-zero issuance results in a fixed cost, and thus there can

be at most finitely many such actions in a finite time. Hence, for an admissible issuance
process I, the set {t ≥ 0 : ∆It > 0} is countable. We call any pair of processes (L, I)
satisfying these requirements admissible and Ax is the set of all admissible processes.

The aim of the firm is to maximize the discounted value of dividends, net of capital
injections. We follow [11] to model the cost of equity issuance and with a given discounting
rate of ρ > 0, fixed and proportional issuance costs λf > 0 and λp > 0 respectively, the
value of the firm is given by

V (x) := sup
(L,I)∈Ax

J(ν), J(ν) := Ex

 ∞∑
n=0

e−ρnT∆Lt −
∑
t≥0

e−ρtc(∆It)

,
where as before ν = (x, L, I) and c(ζ) := (λf + (1 + λp)ζ)1{ζ>0}, Ex denotes expectation
conditioned on Xν

0− = x. For continuously paid dividends, this problem was first
formulated in [11] and later further studied in [1, 17].

Remark 3.1. The strict positivity of λp is used only in the proof Lemma 3.11 below,
to show that any issuance is necessarily bounded. Therefore, our proof would also be
valid for models with λp = 0 but the issuance sizes are bounded by a given constant.
This is the case in our numerical examples. In fact, more tedious analysis yields
the result without any assumption on λp. However, to simplify the presentation we
choose to assume λp > 0.

3.2 Fixed-point Structure

For φ : R≥0 → R≥0 and x ≥ 0, set I(φ)(x) := supζ>0
(
φ(x+ ζ)− c(ζ)

)
.

Definition 3.2. Define the following spaces.
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• Let ĈA be the set of all continuous, non-decreasing functions φ : R≥0 → R≥0
satisfying (I(φ)(x))+ ≤ φ(x) ≤ x+A and

φ(0) = I(φ)(0) ∨ 0 =: (I(φ)(0))+. (3.1)

• Let CA be the set of all φ ∈ ĈA such that ϕ(x) := φ(x)− x is bounded by A
and non-decreasing on R≥0. In particular, this implies that every φ ∈ CA is
uniformly continuous on R≥0 and x ≤ φ(x) ≤ x+A.

Following the procedure outlined in Section 2, define L, D, T on ĈA by

Lφ(x) := sup
I∈Âx

Ex
(
−
∑

0≤s<T
e−ρsc(∆Is) + e−ρTφ(Xα

T )1{T<θα}
)
, (3.2)

Dφ(x) := sup
0≤`≤x

(φ(x− `) + `), (3.3)

where for α = (x, I), Xα := X(x,0,I), θα = θ(x,0,I), and I ∈ Âx provided that (0, I) ∈ Ax.
Set T := D ◦ L.

Note that all above operators are monotone. Also, for any constant c and φ ∈ ĈA,
D(c+ φ)(x) = c+Dφ(x) and L(c+ φ)(x) ≤ e−ρT c+ Lφ(x).

Theorem 3.3. For each A ≥ 0, D : ĈA → CA. Furthermore, there exists A∗ > 0
such that for every A ≥ A∗, L : CA → ĈA and T : CA → CA is a strict contraction.

Proof. Fix A ≥ 0. Set φ∗(x) := x for x ≥ 0, and φ∗ := A+ φ∗.
Step 1. Fix φ ∈ ĈA and ζ ≥ 0. Since c(ζ) ≥ ζ, for any ` ∈ [ζ, x+ ζ],

φ(x+ ζ − `) + ` ≤ φ(x− (`− ζ)) + (`− ζ) + c(ζ) ≤ Dφ(x) + c(ζ).

Since φ ∈ ĈA, φ(x+ ζ̂) ≤ φ(x) + c(ζ̂) for any x, ζ̂ ≥ 0. Then for an arbitrary ` ∈ [0, ζ],
set ζ̂ = ζ − ` and use this inequality to obtain

φ(x+ ζ − `) + ` ≤ φ(x) + c(ζ − `) + ` ≤ φ(x) + c(ζ) ≤ Dφ(x) + c(ζ), ∀` ∈ [0, ζ + x].

The above two inequalities imply that Dφ(x+ ζ) ≤ Dφ(x) + c(ζ) for every x, ζ ≥ 0. Since
Dφ ≥ 0, we conclude that Dφ ≥ I(Dφ)+. As φ ∈ ĈA, φ(0) = I(Dφ)(0)+. Additionally,
Dφ(0) = φ(0) for any φ. Hence, Dφ(0) = I(Dφ)(0)+.

For h ≥ 0,

Dφ(x+ h) = sup
0≤̂̀≤x+h

(φ(x+ h− ̂̀) + ̂̀) = sup
−h≤`=̂̀−h≤x(φ(x− `) + `) + h

≥ sup
0≤`≤x

(φ(x− `) + `) + h = Dφ(x) + h.

Hence, Dφ(x)−x is monotone. Also, it is clear that Dφ is continuous and Dφ ≤ Dφ∗ = φ∗.
So we have proved that D maps ĈA into CA.
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Step 2. Recall that for x ≥ 0 and I ∈ Âx, θα is the exit time and α = (x, I). Set
τα := θα ∧ T . Then, when θα ≤ T , Xα

τα = Xα
θα = 0. Hence, Xα

T1{T<θα} = Xα
τα . Since

ζ + ζ̃ ≤ c(ζ + ζ̃) ≤ c(ζ) + c(ζ̃) for every ζ, ζ̃ ≥ 0, and since ∆It = 0 for every t > θα,

−
∑

0≤s<T
e−ρsc(∆It) + e−ρTXα

T1{T<θα} ≤ −
∑

0≤s<T
e−ρT c(∆It) + e−ρTXα

τα

≤ −
∑

0≤s<T
e−ρT∆It + e−ρTXα

τα

= e−ρT [−Iτα +Xα
τα ] = e−ρT [x+ Cτα ] .

This implies that Lφ∗(x) ≤ Exe−ρT [x+ Cτα ] ≤ e−ρT (x+ µT ). Therefore,

Lφ∗(x) = L(A+ φ∗)(x) ≤ e−ρTA+ L(φ∗)(x) ≤ e−ρT (A+ x+ µT ) ≤ e−ρTx+A,

provided that e−ρT (A+µT ) ≤ A which is equivalent to A ≥ A∗ := µT (eρT −1)−1. Hence,
0 ≤ Lφ(x) ≤ e−ρTx+A for every x ≥ 0 and φ ∈ CA whenever A ≥ A∗.

For x ≥ 0, by making an immediate issuance of size ζ > 0, we conclude that
Lφ(x) ≥ Lφ(x+ ζ)− c(ζ). Hence, Lφ ≥ I(Lφ). Theorem 3.6 below proves that Lφ is
continuous for every φ ∈ CA and satisfies (3.1). Hence, L maps CA into ĈA for all A ≥ A∗.

Step 3. Fix A ≥ A∗. Then, T = D ◦ L : CA → CA. We continue by showing that T
is a strict contraction with the metric d(φ, ϕ) := supx≥0 |φ(x)− ϕ(x)|. Indeed, for any
φ, ϕ ∈ CA, d(φ, ϕ) ≤ A and L(φ, ϕ)(x) ≤ e−ρTd(φ, ϕ). Hence,

sup
x≥0

(T φ− T ϕ)(x) ≤ sup
x≥0

sup
0≤`≤x

L(φ− ϕ)(x− `) ≤ e−ρTd(φ− ϕ).

Therefore, d(T f, T g) ≤ e−ρTd(f, g) and T is a strict contraction.

The following verification result is the main characterization of the value function. It
also provides a computational method provided that an efficient method for the operator
L is constructed. However, we emphasize that Theorem 3.3 above and consequently the
below verification theorem use crucially the regularity of the operator L that will be
proved in the next subsection in Theorem 3.6.

Theorem 3.4 (Verification). The value function V ∈ CA∗ is the unique fixed point
of T .

Proof. Since T is a strict contraction on CA∗ , it has a unique fixed-point Φ ∈ CA∗ . The
definitions of L and D imply that

Φ(x) = sup
(L,I)∈Ax

Ex
[
∆L0 −

∑
0≤t≤T

e−ρtc(∆It) + e−ρTΦ(Xα
T )1{θα>T}

]
.

Since Φ is continuous, standard selection theorems imply that

Φ(x) = sup
(L,I)∈Ax

Ex
[
∆L0 + e−ρT∆LT −

∑
0≤t≤2T

e−ρtc(∆It) + e−ρTΦ(Xα
2T )1{θα>2T}

]

= sup
(L,I)∈Ax

Ex
[N−1∑
n=0

e−ρnT∆LnT −
∑

0≤t≤(N−1)T
e−ρtc(∆It) + e−ρNTΦ(Xα

NT )1{θα>NT}
]
.
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We now use the upper bound Φ(x) ≤ a+A∗ to pass to the limit as N tends to infinity
to show that Φ = V .

3.3 One-period problem

In this subsection, we prove the properties of the operator L used in Theorem 3.3
and provide a technique for its computation. We fix A ≥ A∗, φ ∈ CA and set Q :=
(0, T )× (0,∞).

The nonlinear operator Lφ corresponds to an optimal issuance problem with a given
terminal data. As we study this problem by dynamic programming, we need to consider
it with an arbitrary maturity. So for t ∈ [0, T ] and x ≥ 0, we define

v(t, x) := sup
I∈Âx

J(t, x, I;φ), J(t, x, I;ϕ) := Ex
[
−
∑

0≤u<t
e−ρuc(∆Iu) + e−ρtϕ(Xα

t )1{θα≥t}
]
,

where as before α = (x, I), Xα
s = x+ µs+ σWs + Is, and θα = inf{s > 0 : Xα

s < 0}. It
is clear that v(T, x) = Lφ(x).

Definition 3.5. Let CTA be the set of all functions u : Q → R such that the map
x ∈ R≥0 7→ u(t, x)− e−ρtx is non-decreasing and for every (t, x) ∈ Q,

e−ρtx ≤ u(t, x) ≤ e−ρt(x+A+ µt).

Note that the monotonicity of u(t, x)− e−ρtx is equivalent to ∂xu(t, x) ≥ e−ρt in the
distributional sense.

Theorem 3.6. For φ ∈ CA, the value function v is the unique function in the space
v ∈ C∞(Q) ∩ C(Q) ∩ CTA satisfying,

ρv(t, x) + (∂t − µ∂x −
1
2σ

2∂xx)v(t, x) = 0, (t, x) ∈ Q, (3.4)

v(t, 0) = (I(v(t, ·))(0))+ = sup
ζ>0

(
v(t, ζ)− c(ζ)

)+
, t ∈ [0, T ], (3.5)

v(0, x) = φ(x), x ≥ 0. (3.6)

We prove the existence of a solution by an iterative construction that converges to
the solution. To prove that the limit is indeed the solution, we first establish a number
of regularity results for the constructed sequence. The proof of Theorem 3.6 is given
later in this section, after these constructions and intermediate results. The following
definition simplifies the presentation.

Definition 3.7. A modulus (of continuity) is an increasing, functionm : R≥0 → R≥0,
continuous at zero, and with m(0) = 0.
Since φ ∈ CA, 0 ≤ ϕ := φ(x) − x ≤ A and ϕ is increasing. Therefore, ϕ and

consequently φ are uniformly continuous. Consequently, there exists a modulus mφ such
that |φ(x) − φ(y)| ≤ mφ(|x − y|) for every x, y ≥ 0. Also, since |φ(x) − φ(y)| ≤ A for
every x, y ≥ 0, we take mφ ≤ A. For future reference, we set

m∗φ(t) := E[mφ(µt+ σ|Wt|)], t ≥ 0.
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It is clear that m∗φ is also a modulus.
Let v0 be the solution of (3.4), (3.6) with v0(t, 0) = 0 for all t ∈ [0, T ]. By standard

parabolic regularity theory v0 ∈ C∞(Q)∩C(Q\{(0, 0)}). LetXx
s := X

(x,0)
s and θx := θ(x,0).

Then,
v0(t, x) = Ex

[
e−ρtφ(Xx

t )1{θx≥t}
]
, (t, x) ∈ Q.

Lemma 3.8. v0 ∈ C∞(Q) ∩ C(Q \ {(0, 0)}) ∩ CTA and for every ζ∗ > 0, there exits a
modulus m0(·; ζ∗) such that∣∣∣eρtv0(t, x)− φ(x)

∣∣∣ ≤ m0(t; ζ∗), 0 ≤ t ≤ T, x ≥ ζ∗.

In particular, the map t 7→ (I(v0(t, ·))(0))+ is continuous on [0, T ].

Proof. Set v̄0(t, x) := eρtv0(t, x). Then, v̄0 solves

Lv̄0(t, x) := (∂t − µ∂x −
1
2σ

2∂xx)v̄0(t, x) = 0, (t, x) ∈ Q. (3.7)

Step 1. Set w(t, x) := x + A + µt. Then, w is a solution of (3.7) and as φ ∈ CA,
w(0, x) ≥ φ(x) = v̄0(0, x). Moreover, w(t, 0) ≥ 0 = v̄0(t, 0). Then, by maximum principle,
w ≥ v̄0 on Q. Similarly, u(t, x) := x is a sub-solution of (3.7) and u(0, x) ≤ φ(x) =
v̄0(0, x), u(t, 0) = 0 = v̄0(t, 0). Again by maximum principle, u ≤ v̄0 on Q.

For h > 0, set w̄(t, x) := v̄0(t, x + h) − v̄0(t, x) − h. Then, w̄(t, 0) = v̄0(t, h) − h =
(v̄0 − u)(t, h) ≥ 0. Also, since φ ∈ CA, w̄(0, x) = φ(x+ h)− φ(x)− h ≥ 0. Since w̄ solves
(3.7), we conclude that w̄ ≥ 0 on Q. Hence, the map x ∈ R≥0 7→ v̄0(t, x)−x is increasing.

Step 2. By the representation of v0,

|v̄0(t, x)− φ(x)| ≤ Ex[|φ(Xx
t )− φ(x)|1{θx≥t} + φ(x)1{θx<t}]

≤ Ex[mφ(Xx
t − x)1{θx≥t}] + φ(x)P(θx < t).

For any ζ∗ > 0, m̂(t; ζ∗) := supx≥ζ∗ φ(x)P(θx < t) is a modulus. Hence,

|v̄0(t, x)− φ(x)| ≤ Ex[mφ(µt+ σ|Wt|)] + φ(x)P(θx < t)
≤ m∗φ(t) + m̂(t; ζ∗) =: m0(t; ζ∗), ∀x ≥ ζ∗.

As both m∗φ and m̂(·; ζ∗) are moduli, so is m0(·; ζ∗).
Step 3. Since v0(t, x) ≤ e−ρt(x+A+µt) and c(ζ) ≥ ζ, for every h > 0 there is ζh > 0

such that
I(v0(t, 0))(0) = sup

0<ζ≤ζh
v0(t, ζ)− c(ζ), ∀t ∈ [h, T ].

Because v0 is uniformly continuous on [h, T ] × [0, ζh] for any h > 0, we conclude that
t 7→ I(v0(t, ·))(0) is continuous on (0, T ].

Step 4. Next we prove the continuity at the origin. Indeed, for any t > 0 and ζ > 0,
v0(t, ζ) ≤ Eζ [e−ρtφ((Xζ

t )+)] ≤ E[φ(ζ + µt+ σ|Wt|)] and φ(0) ≥ φ(ζ) + c(ζ). Hence,

v0(t, ζ)− c(ζ)− φ(0) ≤ E[φ(ζ + µt+ σ|Wt|)]− φ(ζ) ≤ E[mφ(µt+ σ|Wt|)] = m∗φ(t).
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Therefore, I(v0(t, ·))(0) = supζ>0(v0(t, ζ) − c(ζ)) ≤ φ(0) + m∗φ(t). Since φ ≥ 0, we
conclude that lim supt↓0(I(v0(t, ·))(0))+ ≤ φ(0).

Step 5. Suppose φ(0) > 0. Then, φ(0) = I(φ)(0). For ε > 0, choose ζε > 0 such that
φ(0) ≤ φ(ζε)− c(ζε) + ε. Thus,

lim inf
t↓0

I(v0(t, ·))(0) ≥ lim
t↓0

v0(t, ζε)− c(ζε) = φ(ζε)− c(ζε) ≥ φ(0)− ε.

The above estimate and Step 4 imply that limt↓0(I(v0(t, ·))(0))+ = φ(0).

The following result is the iterative procedure.
Proposition 3.9. For n ≥ 1, there are vn ∈ C∞(Q) ∩ C(Q) ∩ CTA solving the
parabolic equation (3.4), terminal data (3.6), and the lateral boundary condition,

vn(t, 0) = (I(vn−1(t, ·))(0))+, t ∈ [0, T ]. (3.8)

The unique solution satisfies vn(t, x) ≥ I(vn−1(t, ·))(x) and the representation

vn(t, x) = Ex
[
e−ρtφ(Xt)1{θx≥t} + e−ρθ

x
vn(t− θx, 0)1{θx<t}

]
, n = 0, 1, . . . . (3.9)

Moreover for every ζ∗ > 0, there exits a modulus m(·; ζ∗) such that

sup
n≥0

sup
x≥ζ∗

∣∣∣eρtvn(t, x)− φ(x)
∣∣∣ ≤ m(t; ζ∗), ∀t ∈ [0, T ].

Proof. We complete the proof in several steps.
Step 1. In view of the Lemma 3.8, I(v0(t, ·))(0)+ is continuous. Then, by parabolic

regularity theory, there exists a unique function v1 ∈ C∞(Q)∩C(Q) solving the parabolic
equation (3.4), terminal data (3.6), and the lateral boundary condition v1(t, 0) =
I(v0(t, ·))(0)+. The representation (3.9) for n = 1 follows from the regularity of v1.
As in Step 1 of the proof of Lemma 3.8, set w(t, x) := x+A+ µt. Then, for every ζ > 0,

v0(t, ζ)− c(ζ) ≤ e−ρt(ζ +A+ µt)− c(ζ) ≤ e−ρt(A+ µt).

Hence, v1(t, 0) = I(v0(t, ·))(0)+ ≤ e−ρtw(t, 0). We now proceed exactly as in Step 1 of
Lemma 3.8, to prove that v1 ∈ CTA.

Step 2. Suppose that for n ≥ 1, vn ∈ C∞(Q) ∩ C(Q) ∩ CTA and the representation
(3.9) holds for n. Then, we proceed as in Step 2 of the proof of Lemma 3.8 using the
inequality |eρtvn(t, 0) − φ(x)| ≤ x + A + µT to obtain the following for t ∈ [0, T ] and
x ≥ ζ∗,

|eρtvn(t, x)− φ(x)| ≤ Ex[mφ(µt+ σ|Wt|)] + sup
x≥ζ∗

(x+A+ µT )P(θx < t)

≤ m∗φ(t) + sup
x≥ζ∗

(x+A+ µT )P(θx < t) =: m(t; ζ∗).

It is clear that m(·; ζ∗) is a modulus.
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Step 3. We follow the Steps 3, 4 and 5 of Lemma 3.8 mutadis mutandis to show that
(I(vn(t, ·))(0))+ is continuous on [0, T ].

We now use the parabolic regularity theory to conclude that there exists a unique
solution vn+1 ∈ C∞(Q) ∩ C(Q) solving (3.4), (3.6) and (3.8). Also the representation
(3.9) for n+ 1 follows from the regularity.

Step 4. Fix ζ > 0 and set u(t, x) := vn−1(t, x + ζ) − c(ζ). We directly verify that
u(0, ·) ≤ φ = vn(0, ·) and u(·, 0) ≤ vn(·, 0). As u solves (3.4), we conclude that u ≤ vn
on Q. Since ζ > 0 is arbitrary, I(vn−1(t, ·))(x) ≤ vn(t, x). Finally, the argument used in
the first step to prove that v1 ∈ CTA applies directly to show that vn+1 ∈ CTA. Then, we
complete the proof of this proposition by induction.

Let Ânx be the set of all I ∈ Âx that have at most n issuances. Since vn is smooth and
vn(t, x) ≥ I(vn−1(t, ·))(x), by a standard verification theorem, we obtain the following
representation of vn,

vn(t, x) = sup
I∈Ânx

J(t, x, I;φ).

Lemma 3.10. There exist a modulus m̂ such that for s ∈ [0, T ],

sup
n≥1

∣∣∣eρtvn(t, x)− φ(x)
∣∣∣ ≤ m̂(t), ∀(t, x) ∈ Q.

Proof. Set v̄n(t, x) := eρtvn(t, x).
Fix t ∈ [0, T ], x ≥ 0. On {θα < t}, Xα

θα = 0 and Φ(0) ≥ 0. Therefore, φ(Xα
t )1{θα≥t} ≤

φ(Xα
θα∧t) and eρtJ(t, x, I;φ) ≤ Ex[−

∑
0≤u<t e

ρ(t−u)c(∆Iu) + φ(Xα
θα∧t)]. As c is super-

additive and positive,∑
0≤u<t

eρ(t−u)c(∆Iu) ≥
∑

0≤u<t
c(∆Iu) ≥ c(

∑
0≤u<t

∆Iu) = c(Iθα∧t).

Moreover, because φ ≥ I(φ),

φ(Xα
θα∧t)− c(Iθα∧t) ≤ φ((Xα

θα∧t − Iθα∧t)+) ≤ φ(x+ µ(θα ∧ t) + σ|Wθα∧t|).

Recall that m∗φ(t) := E[mφ(µt+ σ|Wt|)]. We combine these inequalities to arrive at the
following estimate,

eρtJ(t, x, I;φ)− φ(x) ≤ Ex
[
φ(x+ µ(θα ∧ t) + σ|Wθα∧t|)− φ(x)

]
≤ m∗φ(t).

Therefore, v̄n(t, x)− φ(x) ≤ m∗φ(t).
We continue by using (3.9) which is equivalent to

v̄n(t, x) = Ex
[
φ(Xt)1{θx≥t} + v̄n(t− θx, 0)1{θx<t}

]
.

Since on {θx < t}, φ(Xx
θx∧t) = φ(0),

φ(x)− v̄n(t, x) = φ(x)− Ex[φ(Xx
t )1{θx≥t} + v̄n(t− θx, 0)1{θx<t}]

= φ(x)− Ex[φ(Xx
θx∧t) + (v̄n(t− θx, 0)− φ(0))1{θx<t}]

= Ex[(φ(x)− φ(Xx
θx∧t)) +

(
φ(0)− v̄n(t− θx, 0)

)
1{θx<t}].
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If φ(0) = 0, then φ(x) − v̄n(t, x) ≤ Ex[|φ(x) − φ(Xx
θx∧t)|] ≤ m∗φ(t). Suppose φ(0) > 0.

Then, φ(0) = I(φ)(0)+ = I(φ)(0). Recall that c(ζ) = λf + (1 +λp)ζ with λf > 0 and φ is
continuous. Hence, there is ζ∗ > 0 such that φ(0) = I(φ)(0) = sup{φ(ζ)− c(ζ) : ζ ≥ ζ∗}.
For ε > 0, choose ζε ≥ ζ∗ such that φ(0) ≤ φ(ζε) − c(ζε) + ε. Therefore, we have
vn(t− θx, 0) ≥ vn−1(t− θx, ζε)− c(ζε). By Proposition 3.9, on {θx < t} we have

φ(0)− vn(t− θx, 0) ≤ φ(ζε)− vn−1(t− θx, ζε) + ε ≤ m(t− θx; ζ∗) + ε ≤ m(t; ζ∗) + ε.

Therefore,

φ(0)− v̄n(t− θx, 0) = eρt(φ(0)− vn(t− θx, 0)) + (eρt− 1)φ(0) ≤ eρTm(t; ζ∗) +A(eρt− 1).

Hence, in both cases φ(x)− v̄n(t, x) ≤ m∗φ(t) + [eρTm(t; ζ∗) +A(eρt − 1)] =: m̂(t).

Proposition 3.11. There exists a modulus m̃(·) such that

sup
n≥1

∣∣∣vn(t, x)− vn(t+ h, x)
∣∣∣ ≤ (1 + x)m̃(h), ∀t ∈ [0, T − h], x ≥ 0.

Proof. As before, set v̄n(t, x) := eρtvn(t, x).
Step 1. Since vn ∈ CTA, there is a constant c0 ≥ 1, independent of n, such that

0 ≤ vn(t, x) ≤ c0(1 + x). Moreover, because λp, λf > 0 and vn ∈ CTA, there is ζ∗ > 0
again independent of n, such that for every (t, x) ∈ Q,

I(vn(t, ·)(x) = sup
ζ∈[0,ζ∗]

vn(t, x+ ζ)− c(ζ).

Step 2. Fix (t, x) ∈ Q, h > 0 and set τ := θx ∧ t. By Feynman–Kac formula, for any
u ≥ t, vn(u, x) = Ex[e−ρτvn(u− τ,Xx

τ )]. We use this identity with the choices u = t and
u = t+ h, which implies that

vn(t, x)− vn(t+ h, x) = Ex[e−ρτ (vn(t− τ,Xx
τ )− vn(t+ h− τ,Xx

τ ))].

Separating into the two cases τ = t and τ = θx < t and dropping the exponential factor,
we obtain ∣∣vn(t, x)− vn(t+ h, x)

∣∣ ≤ Ex
[
An1{θx≥t} +Bn1{θx≤t}

]
, (3.10)

where

An :=
∣∣φ(Xx

t )− vn(h,Xx
t )
∣∣ , Bn :=

∣∣vn(t− θx, 0)− vn(t+ h− θx, 0)
∣∣.

Step 3. Let c0 be as in Step 1 and set c := c0e
ρT . Then by Lemma 3.10,

An =
∣∣∣[φ(Xx

t )− v̄n(h,Xx
t )] + (eρh − 1)vn(h,Xx

t )
∣∣∣ ≤ m̂(h) + c(1 +Xx

t )ρh.

Hence, for any t ∈ [0, T − h], x ≥ 0,

Ex[An1{θx≥t}] ≤ (m̂(h) + cρh)P(θx ≥ t) + cρhEx[Xx
t 1{θx≥t}]. (3.11)
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Step 4. We now establish a modulus bound for Bn. Since vn is continuous,

m̃n(h) := sup
t∈[0,T−h],x∈[0,ζ∗]

∣∣vn(t, x)− vn(t+ h, x)
∣∣

is a modulus for n ≥ 1. Then, for n > 1, in view of the boundary condition (3.8),

Bn ≤ sup
ζ∈[0,ζ∗]

∣∣vn−1(t− θx, ζ)− vn−1(t+ h− θx, ζ)
∣∣ ≤ m̃n−1(h).

We show that m̃n is uniformly bounded by a modulus. First, there exists c∗ > 0 depending
on ζ∗ such that for all t ∈ [0, T − h] and x ∈ [0, ζ∗] we have Ex[Xx

t 1{θx≥t}] ≤ c∗P(θx ≥ t).
Therefore,

Ex[An1{θx≥t}] ≤ [m̂(h) + c(1 + c∗)ρh]P(θx ≥ t), ∀ t ∈ [0, T − h], x ∈ [0, ζ∗].

The combination of (3.10) and the above two estimates implies that

m̃n(h) ≤ [m̂(h) + c(1 + c∗)ρh]P(θx ≥ t) + m̃n−1(h)(1− P(θx ≥ t))
≤ sup

λ∈[0,1]
[m̂(h) + c(1 + c∗)ρh]λ+ m̃n−1(h)(1− λ))

= max{m̂(h) + c(1 + c∗)ρh , m̃n−1(h)}, n > 1.

By induction, we conclude that

Bn ≤ m̃n(h) ≤ max{m̂(h) + c(1 + c∗)ρh , m̃1(h)} =: mB(h), n ≥ 1. (3.12)

Step 5. Returning to (3.11), Ex[Xx
t 1{θx≥t}] ≤ c(1 + x) for all x ≥ 0. Thus, for all

x ≥ 0,
Ex[An1{θx≥t}] ≤ (m̂(h) + cρh)P(θx ≥ t) + cρhEx[Xx

t 1{θx≥t}]
≤ (m̂(h) + cρh) + cρh[c(1 + x)]
≤ (m̂(h) + c(1 + c)ρh)(1 + x) =: mA(h)(1 + x).

(3.13)

Plugging (3.12) and (3.13) into (3.10) thus yields∣∣vn(t, x)− vn(t+ h, x)
∣∣ ≤ mA(h)(1 + x) +mB(h).

We can now complete the proof of Theorem 3.6.

Proof of Theorem 3.6. By their definitions, v1(t, 0) ≥ 0 = v0(t, 0) and v1(T, ·) = v0(T, ·) =
φ. As both v1 and v0 solve (3.4) and v1 ≥ v0 on the boundary, v1 ≥ v0 on Q. Suppose
that vn ≥ vn−1 on Q for some n ≥ 1. Then,

vn+1(t, 0) = I(vn(t, ·))(0)+ ≥ I(vn−1(t, ·))(0)+ = vn(t, 0), t ∈ [0, T ].

We now argue as in the case of v1 to conclude that vn+1 ≥ vn on Q. By induction,
we conclude that vn is increasing in n. Suppose that the sequence {vn}n is uniformly
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locally continuous. Then, {vn}n converges locally uniformly to v ∈ C(Q). As {vn}n all
solve (3.4), so does v, and by parabolic regularity, v ∈ C∞(Q). Moreover, local uniform
convergence of {vn}n implies that v ∈ C(Q) ∩ CTA. Since vn(t, x) ≥ I(vn−1(t, ·))(x) for
every (t, x) ∈ Q, we conclude that v(t, x) ≥ I(v(t, ·))(x) as well. The regularity of v
together with (3.4) and the boundary conditions allow us to prove by standard verification
arguments that v is the value function. Hence, it suffices the sequence {vn}n is locally
uniformly continuous. In the remainder of this proof we establish this property.

By Proposition 3.11, vn(t, 0) = I(vn−1(t, ·))(0)+ is uniformly continuous, i.e., |vn(t, 0)−
vn(t+ h, 0)| ≤ m̃(h). Fix (t, x) ∈ Q. Since vn(0, 0) = φ(0), by (3.9),

vn(t, h)− vn(t, 0) = Eh[e−ρtφ(Xh
t )1{θh≥t} + e−ρθ

h
vn(t− θh, 0)1{θh<t}]− vn(t, 0)

≤ Eh[(φ(Xh
θh∧t)− φ(0))1{θh≥t} + (vn((t− θh)+, 0)− vn(t, 0))]

≤ Eh[mφ(h+ µt+ σ|Wt|)1{θh≥t} + m̃(θh)].

Note that m(h) := supt∈[0,T ] Eh[mφ(h + µt + σ|Wt|)1{θh≥t}] + Eh[m̃(θx)] is a modulus.
Moreover, by (3.9),

vn(t, x+ h)− vn(t, x) = Ex
[
e−ρt(φ(Xt + h)− φ(0, Xt))1{θx≥t}
+ e−ρθ

x(vn(t− θx, h)− vn(t− θx, 0))1{θx<t}
]

≤ mφ(h) +m(h).

This together with Proposition 3.11 imply that the sequence {vn}n is locally uniformly
continuous.

Finally, let u be any C1,2(Q) ∩ C(Q) ∩ CTA solution. Then there exists a δ > 0 such
that in a δ-neighborhood of [0, T ]× {0} it holds that u < λf . Hence, the maximizers

ζ∗· ∈ arg max
ζ≥0

(
u(·, y)− u(·, 0)− λf − (1 + λp)y

)
1{y>0}

generate an issuance policy I∗ by issuing ζ∗τ at a time τ when the reserves reach zero.
Moreover, ∆I∗ ≥ δ whenever non-zero. Hence, the jump times of I∗ do not have cluster
points P -a.s., and I∗ is thus an admissible control. The usual verification arguments
then show that u is the value function.

3.4 Numerical results

To compute the value function, the two operators D in (3.3) and L in (3.2) need to be
implemented. The former is straight-forward to implement, but the latter requires a bit
more work.

For a model without equity issuance, L can for instance easily be implemented by
means of Monte Carlo simulations. This is particularly convenient for cash flow processes
without diffusion, like Cramér–Lundberg model. The reason for this is that to evaluate
the indicator function in (3.2), a test for ruin only has to be made at the time of a jump.

14



On the other hand, in a diffusion model, this has to be estimated by making increasingly
smaller time steps.

Fortunately, also with equity issuance, alternative methods can be employed to
solve the problem. We use the PDE representation (3.4), (3.6), (3.8) and opt for the
semi-Lagrangian method presented in [7]. Since we wish to compute the solution on
a bounded domain, an artificial boundary condition has to also be specified. At any
time point, any additional inflow of cash at the upper boundary is paid out as dividends
at the next opportunity, provided the reserves do not fall below the dividend barrier.
As the computational domain is chosen larger, it is therefore increasingly unlikely that
additional cash is not paid out. Hence, if the domain is chosen sufficiently large, the
present value of ∆x at the boundary is its discounted value e−ρ(T−t)∆x. The boundary
condition vx(x, t) = e−ρ(T−t) is therefore a good approximation.

With means for calculating both operators D and L, we may proceed to iteratively
apply T to any arbitrary initial function. Our choice of parameters for the computations
in this section comes from [15] and are listen in Figure 1. For our purposes, we consider
all parameters to be in fractions of their so-called regulatory risk-weighted assets.

The results without equity issuance is presented in Figure 1. The loss due to
discretization of dividend payments quickly falls to a level below 1.4%. The primary
impression of the result is that the loss is relatively small. Note that for larger values of x,
the absolute loss stays constant, so the relative loss decays as the value function increases
linearly. Although the change in the value function is not very large, the dividend barrier
moves considerably, decreasing by 14% (slightly more than 0.005 units) in Figure 1. We
attribute this mainly to paying out some of the expected income during the next period.
Note, however, that due to the need of keeping a buffer, only a bit more than half of the
expected cash flow is paid out in advance.

One important aspect of discretization of dividends is that the use of the continuous
time optimal dividend threshold in the discrete problem induces further losses, since it is
no longer optimal in the discrete model. To shed some light on the effect of using the
wrong policy in this way, Figure 1 also shows the value function resulting from using
the continuous time dividend barrier of the discrete dividend payments (the smallest of
the three functions). We also plot the relative losses in comparison to the continuous
dividend model. For the parameters in the figure, we observe that using the wrong policy
adds a bit more than 0.8 percentage points to the losses.

Figures 2 and 3 both show the effect of varying some of the parameters. The loss
comparisons are all made at the optimal barrier of the continuous continuous model,
x̄c. The rationale for this is that it is the level of reserves of a healthy firm. Changes
to µ and σ that increase the value of the continuous model also raises the relative loss
from discretizing the dividend strategy. We also observe that for all parameter values
in the ranges considered, there is a significant shift in the optimal strategy. In Figure 3
we solve the problem for different values of T . This is the only parameter that does not
affect the continuous time problem. As expected, the size of T has a strong impact on
the losses. The figure suggests that the loss in the value function is low for quarterly
dividend payments, but still the dividend strategy is quite different.

Figure 4 shows the value function for the model with issuance. As expected for
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Figure 1: Value functions and dividend policies without equity issuance. On
the left axis are plots of the value function V in the discrete model (blue, dashed), the
value function for the problem with continuous (singular) dividend payments (black,
solid), and the value obtained from (suboptimally) using the optimal continuous strategy
in the discrete model (red, dotted). On the right axis are the losses in percent due
to discretization of dividend payments, relative to the continuous model. The two
lines denote the losses using the optimal discrete strategy as well as the (suboptimal)
continuous strategy. The cash flow is given by Ct = µt+ σWt and the parameters values
are ρ = 0.04, T = 1, σ = 0.01, and µ = 0.01. The values x̄d and x̄c at the bottom are
the dividend barriers in the discrete and continuous models respectively. The difference
corresponds to 14% lower reserves in the discrete model.
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Figure 2: Effect of the parameters µ and σ without issuance. The change in
strategy in terms of the relative distance between the continuous dividend strategy and
the discrete one. The loss is evaluated at the optimal dividend barrier for the continuous
problem. The fixed parameters are the same as in Figure 1.
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Figure 3: Effect of the parameter T without issuance. The change in strategy
measures the relative distance between the continuous dividend strategy and the discrete
one. The loss is evaluated at the optimal dividend barrier for the continuous problem.
The fixed parameters are the same as in Figure 1.
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Figure 4: Surface plots of the value function v(x, t) with issuance, and the
optimal issuance target for t ∈ [0, 1). Issuance only occurs at the boundary x = 0,
and the issuance target is presented as the white line on the surface. The issuance costs
are λp = 0, λf = 0.0025, and the remaining parameters are the same as in Figure 1.
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issuance costs independent of t and x, issuance only occurs at the boundary. Note that
since λp = 0, the optimal issuance target3 coincides with the dividend barrier, in this
case roughly 0.0125. We observe that the size of issued equity grows as time passes, with
the exception of the period right before the time of dividend payment where it drops to
its initial value.

4 Discrete dividends with random profitability
Instead of the constant drift considered in Section 3.4, one could consider the drift—the
profitability—to be described by another random process. Suppose that the cash flow
dCt = µt dt+ σ dWt depends on some profitability process (µt)t≥0. The net cash reserves
X = (Xt)t≥0 depends on the initial cash reserve x ≥ 0, the initial profitability µ ∈ R and
the control process (I, L). With abuse of notation we use ν = (x, µ, L, I) to denote these
dependences and

Xν
t = x+ Cµt − Lt + It, Cµu =

∫ t

0
µu du+ σWt.

Let F = (Ft)t≥0 be the filtration generated by (Cµ, µ). Again, we restrict dividends to
be fully covered by reserves of the firm, i.e., ∆Lt ≤ XL,I

t− , and the ruin time is given by
θν = inf{t > 0 : Xν

t < 0}.
Just as before, the aim of the firm is to maximize the discounted value of dividends

net of equity issuance and the value function V (x, µ) and J(ν) are given as before. The
main difference is the dependence on the initial profitability.

4.1 Periodization and numerical convergence

We define the operators L, D and T exactly as before. In the proof of Theorem 3.3,
the equity issuance poses no extra obstacle. However, for the sake of simplifying the
exposition, we present the results without equity issuance. In particular, we do not prove
the regularity of the value function as we did in the previous section. Instead we work
within the class of universally measurable functions.

We make the following assumption on Cµ and (µt)t≥0 and it ensures that the effect of
random profitability is sufficiently well behaved. In particular, it restricts the profitability
process from having too strong growth.

Assumption 4.1. There exists an α : R→ [1,∞) so that for all µ we have

1. Ex,µ[(x+ CµT−)+] ≤ x+Aα(µ), for some A ≥ 0;

2. Ex,µ[α(µT−)] ≤ eρT/2α(µ).

Now we can give the following result.
3Because λp = 0, the target is not unique at time points coinciding with dividend payments, since

excessive issuance can be offset by dividend payments at no cost. At these points we consider the optimal
issuance target to be the smallest optimizer.
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Theorem 4.2. There exists a metric space (Xα, dα) such that the operator T maps
Xα into itself and is a strict contraction. Moreover, the value function is the unique
fixed-point of T .

Proof. We prove the statements for the following subspace of universally measurable
functions:

Xα :=
{
x ≤ φ(x, µ) ≤ x+Aφα(µ) for some Aφ

}
with metric

dα(φ, ψ) := sup
x≥0,µ∈R

|φ(x, µ)− ψ(x, µ)|
α(µ) .

Note that this implies that |φ(x, µ)− ψ(x, µ)| ≤ dα(φ, ψ)α(µ).
Then, for φ ∈ Xα,

eρTLφ(x, µ) ≤ Ex,µ[(XT− +Aφα(µT−))1{θ≥T}]
≤ Ex,µ[(x+ CµT−)+] +AφEx,µ[α(µT−)]
≤ x+Aα(µ) + eρT/2Aφα(µ)
≤ x+A′α(µ).

Hence, T φ(x, µ) ≤ x+ e−ρTA′α(µ), so T φ ∈ Xα.
It is left to show that T is a strict contraction. By the properties of T and the

construction of dα,

|T φ(x, µ)− T ψ(x, µ)| ≤ e−ρTEx,µ[dα(φ, ψ)α(µT−)]
≤ e−ρT eρT/2dα(ψ, φ)α(µ)
≤ e−ρT/2dα(φ, ψ)α(µ).

This implies that dα(T φ, T ψ) ≤ e−ρT/2dα(φ, ψ), showing that T is indeed a strict
contraction.

The statement about the value function is proved exactly as in the proof of Theorem 3.4.

Remark 4.3. Assumption 4.1 is satisfied by Cµt =
∫ t

0 µs ds+ σWt, where µ is the
Ornstein–Uhlenbeck processes

dµt = k(µ̄− µt) dt+ σ̃ dW̃t,

where k, µ̄, and σ̃ are positive constants. By the time-scaled representation of
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Ornstein–Uhlenbeck processes, for t ∈ [0, 1] we have

Ex,µ[(µt)+] = Ex,µ

(µe−kt + µ̄(1− e−kt) + σ̃√
2k
e−ktW̃e2kt−1

)+


≤ µ+ + µ̄+ σ̃√
2k

Ex,µ

 sup
t∈[0,e2k−1]

W̃t


= µ+ + µ̄+ σ̃

√
e2k − 1
kπ

.

Hence, α(µ) = µ+ +A satisfies the second condition of Assumption 4.1 for any

A ≥
µ̄+ σ

√
e2k−1
kπ

eρT/2 − 1
∨ 1.

However, this estimate is also sufficient for the first condition, since

Ex,µ

[(
x+

∫ 1

0
µt dt+ σWt

)+
]
≤ x+ +

∫ 1

0
Ex,µ[(µt)+] dt+ σ

√
2
π
.

We therefore conclude that the conditions of Assumption 4.1 are satisfied for this
choice of Cµ and µ.

4.2 Numerical results

Assuming the dynamic programming principle holds, it follows that the value function
solves

min
{
−(∂t +A− ρ)v(t, x, µ), v(t, x, µ)− sup

i≥0
(v(t, x+ i, µ)− (1 + λp)i− λf )

}
= 0,

(4.1)
with the boundary condition v(t, 0, µ) = 0 in the viscosity sense, i.e.,

v(t, 0, µ) = max{0, (∂t +A+ 1− ρ)v(t, 0, µ), sup
i≥0

(v(t, i, µ)− (1 + λp)i− λf}. (4.2)

Like in the one-dimensional case, we will employ this PDE formulation for the numerical
solution of the problem.

We solve the model for dCµt = µt dt + σ dWt, where µ is an Ornstein–Uhlenbeck
process.4 This model was explored for continuous dividend payments in [17]. Also
in this case, we opt for a semi-Lagrangian scheme, and for the same reason as in the
one-dimensional model, we place the same boundary condition vx = e−ρ(T−t) on the
upper boundary in the x-dimension. In the µ-dimension boundary conditions also have
to be set. For the sake of our calculations, we mirror the process µ at the boundary.
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Figure 5: State space and the free boundaries of (4.1)–(4.2) (black lines). The
left panel is without equity issuance and the right panel is with equity issuance. Between
the two lines, it is optimal to not pay dividends, whereas outside it is. The gray area
corresponds the same model, but allowing for continuous payments of dividends. The
interpretation is the same, but the area between the lines is filled. The cash flow is
given by Cµt =

∫ t
0 µs ds + σWt, where dµt = k(µ̄ − µt) dt + σ̃ dW̃t. Parameter values

are λf = 0.1, λp = 0.2, ρ = 0.05, T = 1, σ = 0.1, k = 0.5, µ̄ = 0.15, σ̃ = 0.3, and
Cov(Wt, W̃t) = 0.

There are better choices, but we expect it to have a relatively small impact due to the
Ornstein–Uhlenbeck process’ strong inward drift at the boundary.5

The dividend boundaries can be seen for models with and without equity issuance
in Figure 5. As in [17], we interpret the two lines constituting the dividend boundary
in different ways. The upper line has the same interpretation as the dividend barrier in
the one-dimensional setting: whenever the reserves are above it at the time of dividend
payments, dividends are paid out such that the reserves move down to the line. The
lower boundary has a more subtle interpretation. Mathematically seen, dividends are
paid out whenever the reserves lie below this line. Since the new state will still lie below
the line, dividends must be paid until the reserves reach zero. The interpretation of this
is that the firm liquidates whenever the reserves dip below the line. We will call these
two lines the dividend boundary and the liquidation boundary. For points to the left of
these lines, the profitability is so low that liquidation is optimal regardless of reserves.

The general effect of dividend discretization is consistent in the two figures; the
dividend boundary moves downwards for most values of the profitability, with the
exception of points close to where it meets the liquidation boundary. Just like with

4Recall from Remark 4.3 that this class of processes satisfies Assumption 4.1 required for numerical
convergence.

5The results are consistent with disregarding the diffusion at the µ-boundary. In fact, disregarding the
diffusion at the lower boundary and mirroring at the upper seems to allow the smallest domain without
impacting the free boundaries, i.e., retaining stability with respect to choosing a larger domain.
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Figure 6: Heatmap of the relative loss from discrete dividends relative to
continuously paid dividends. The left panel is without issuance and the right panel
is with issuance. The scale is given in percent. Parameters are the same as in Figure 5.
The white curves constitute the dividend/liquidation boundaries for the discrete problem.

constant profitability, we ascribe the lower dividend boundary to paying out profits in
advance. The liquidation boundary, on the other hand, moves upwards/inwards for all
points. This is likely due to the reduction in the prospective future value in the event of
higher profitability, thus reducing today’s value of not liquidating. In both the continuous
and discrete models, issuance only occurs at the boundary for the chosen parameter
values.

Figure 6 shows the relative loss of discrete dividends to continuous dividends for the
various points in the state space. The losses peak around the liquidation boundary for
the discrete solution. At these points, the losses are close to 25% without issuance and a
bit above 8% with issuance. For higher profitability and larger reserves, the losses soon
dip below 3% without issuance and 1% with, decaying to 0 as x increases. In particular
in the model with equity issuance, we see that the loss from discrete dividend payments
is relatively small. The average loss for all the points of the shown domain is less than
0.8%.

5 Concluding remarks
For the one-dimensional dividend problem of Section 3, we find that the losses from
dividend discretization are relatively low. We have observed the same, relatively small
losses also for other parameter choices, and believe that it extends to most reasonable
choices in this one-dimensional setting. In particular, for quarterly or more frequent
dividends, the losses are especially small. The overall small losses provide justification for
using a continuous model as a substitute, if the goal is to find the value function/value
for the cash flow.

On the other hand, the richer model presented in Section 4 paints another picture.

23



For the parameters considered, we see that the total losses increase to almost 24% in
some parts of the state space. This suggests that the dividend discretization can have a
strong impact on the firm value. Thus, whether the traditional continuous modelling is
appropriate in a given setting is highly model-dependent. In particular, the choice of
dividends modelling has to be made on a case-by-case basis.

Finally, in the presented models, there is a pronounced shift in the optimal strategy.
This implies that using the optimal continuous dividend policy would induce further
losses, as is illustrated in Figure 1, possibly further affecting the performance loss.
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