
ar
X

iv
:1

81
1.

09
04

5v
3

 [
cs

.D
S]

 8
 J

ul
 2

02
0

Tight Approximation for Unconstrained XOS Maximization

Yuval Filmus∗ Yasushi Kawase† Yusuke Kobayashi‡ Yutaro Yamaguchi§

Abstract

A set function is called XOS if it can be represented by the maximum of additive functions.
When such a representation is fixed, the number of additive functions required to define the
XOS function is called the width.

In this paper, we study the problem of maximizing XOS functions in the value oracle model.
The problem is trivial for the XOS functions of width 1 because they are just additive, but it is
already nontrivial even when the width is restricted to 2. We show two types of tight bounds
on the polynomial-time approximability for this problem. First, in general, the approximation
bound is between O(n) and Ω(n/ logn), and exactly Θ(n/ logn) if randomization is allowed,
where n is the ground set size. Second, when the width of the input XOS functions is bounded
by a constant k ≥ 2, the approximation bound is between k − 1 and k − 1− ǫ for any ǫ > 0. In
particular, we give a linear-time algorithm to find an exact maximizer of a given XOS function
of width 2, while we show that any exact algorithm requires an exponential number of value
oracle calls even when the width is restricted to 3.

Keywords XOS functions, Value oracles, Approximation algorithms.

∗Technion - Israel Institute of Technology, Haifa, Israel. Email: yuvalfi@cs.technion.ac.il
†Tokyo Institute of Technology, Tokyo 152-8550, Japan. Email: kawase.y.ab@m.titech.ac.jp
‡Kyoto University, Kyoto 606-8502, Japan. Email: yusuke@kurims.kyoto-u.ac.jp
§Kyushu University, Fukuoka 819-0395, Japan. Email: yutaro yamaguchi@inf.kyushu-u.ac.jp

http://arxiv.org/abs/1811.09045v3

Contents

1 Introduction 1

2 Algorithms 3

2.1 Deterministic (ǫn)-approximation for general XOS maximization 3
2.2 Randomized (ǫn/ log n)-approximation for general XOS maximization 4
2.3 Maximizing 2-XOS functions exactly . 5
2.4 (k − 1)-Approximation for k-XOS maximization . 6
2.5 Finding all maximal cliques and its application . 8

3 Hardness 10

3.1 Inapproximability within n1−ǫ and o(n/ log n) for general XOS maximization 10
3.2 Inapproximability within k − 1− ǫ for k-XOS maximization 11

4 The Number of XOS Functions 13

A Classes of Set Functions 16

1 Introduction

Maximizing a set function is a fundamental task in combinatorial optimization as well as algorithmic
game theory. For example, when an agent has a valuation v : 2V → R on an item set V , a demand
of the agent under prices p ∈ RV is a bundle that maximizes her utility, and computing a demand
amounts to maximizing a set function f(X) := v(X) −

∑

x∈X px. We remark that, even if the
valuation is monotone (i.e., X ⊆ Y =⇒ v(X) ≤ v(Y)), the utility f may not be monotone.

One of the most extensively studied classes of set functions in the context of maximization is the
class of submodular functions, which naturally captures the so-called diminishing returns property.
Buchbinder et al. [4] gave a very simple, randomized 2-approximation algorithm for maximizing
nonnegative submodular functions in the value oracle model, in which we can access a set function
only by querying the oracle for the function value of each set. This is tight in the sense that an ex-
ponential number of value oracle calls are required to achieve (2−ǫ)-approximation (in expectation)
for any positive constant ǫ [7], and moreover the 2-approximation algorithm was derandomized later
in [2]. Meanwhile, submodular functions can be exactly minimized in polynomial time in the value
oracle model [8, 9, 11, 21].

In this paper, we study the maximization problem for another basic class of set functions called
XOS functions1, which generalize submodular functions (see also Appendix A). A set function
f : 2V → R is called XOS if it can be represented by the maximum of additive functions, i.e., there
are set functions fi : 2

V → R (i ∈ [k] := {1, 2, . . . , k}) with fi(X) =
∑

v∈X fi(v) for each X ⊆ V
such that

f(X) = max
i∈[k]

fi(X) = max
i∈[k]

∑

v∈X

fi(v) (∀X ⊆ V),

where fi(v) means fi({v}) (we often denote a singleton {x} by its element x). We remark that each
fi as well as f can take negative values. When such a representation is fixed, k is called the width
of f . An XOS function admitting a representation of width k is called k-XOS. A 1-XOS function
is just an additive function. The width of an XOS function could be exponential in |V |, and we
may assume that it is at most 2|V |.

If we are given an XOS function f : 2V → R explicitly as the maximum of additive functions fi
(i ∈ [k]), it is easy to maximize f because we have

max
X⊆V

f(X) = max
i∈[k]

max
X⊆V

fi(X) = max
i∈[k]

∑

v∈V

max{fi(v), 0}.

However, if an XOS function f is given by a value oracle like in submodular function maximization,
maximization of f becomes nontrivial even when the width of f is restricted to 2. Our goal is to
clarify what can and cannot be done in polynomial time for maximizing XOS functions given by
value oracles.

Our contributions

The main contribution in this paper is to give two tight bounds on polynomial-time approximation
for maximizing XOS functions f : 2V → R given by value oracles. Throughout the paper, we

1XOS stands for XOR-of-OR-of-Singletons, where XOR means max and OR means sum. While XOS functions
are assumed to be monotone in most existing literature, we allow non-monotone XOS functions. We remark that our
problem (unconstrained non-monotone XOS maximization) and monotone XOS maximization under some constraint
seem quite different, and it is difficult to compare the results across the two problems.

1

denote by n the cardinality of the ground set V . We also remark that, for simple representation,
the running time of each presented algorithm is shown by the number of value oracle calls, which
asymptotically dominates the total computational time for the remaining parts.

First, for the general case, we prove that the optimal approximation ratio is almost linear
in n. More precisely, we show the following three theorems. Here, for α ≥ 1, a set X̃ ⊆ V is
called an α-maximizer if f(X̃) ≥ 1

α · maxX⊆V f(X). A deterministic algorithm is said to be an
α-approximation algorithm if it always returns an α-maximizer. A randomized algorithm is so if it
is true in expectation, i.e., the expected function value of its output is at least 1

α ·maxX⊆V f(X).

Theorem 1. For any ǫ > 0, there exists a deterministic (ǫn)-approximation algorithm for XOS
maximization that runs in O(n⌈1/ǫ⌉) time.

Theorem 2. For any ǫ > 0, there exists a randomized (ǫn/log n)-approximation algorithm for XOS
maximization that runs in O(n1/ǫ+1 log n) time.2

On the hardness side, roughly speaking, we show that any n1−ǫ-approximation algorithm re-
quires exponentially many oracle calls and any o(n/log n)-approximation algorithm requires super-
polynomially many oracle calls. The following theorem is stated for randomized algorithms, which
immediately implies the hardness in the deterministic sense (Corollary 17).

Theorem 3. For any ǫ > 0, there exist a constant c > 0 and a distribution of instances of XOS
maximization such that any randomized n1−ǫ-approximation algorithm calls the value oracle at least
δ ·2Ω(nc) times with probability at least 1−δ for any 0 < δ < 1. Moreover, there exists a distribution
of instances of XOS maximization such that any randomized o(n/log n)-approximation algorithm
calls the value oracle at least δ · nω(1) times with probability at least 1− δ for any 0 < δ < 1.

As general XOS functions are too hard to maximize, we analyze the problem by restricting the
width of the input XOS functions. When the width is bounded by k ≥ 2, we prove that the optimal
approximation ratio is k − 1. More precisely, we show the following two theorems.

Theorem 4. There exists a deterministic algorithm to find a (k− 1)-maximizer of a given k-XOS
function in O(k2n) time for any k ≥ 2 (even if k is unknown). In particular, when k = 2, it finds
an exact maximizer in O(n) time.

Theorem 5. For any k ≥ 3 and any ǫ > 0, there exist a constant c > 0 and a distribution of
instances of k-XOS maximization such that any randomized (k − 1 − ǫ)-approximation algorithm
calls the value oracle at least δ · 2Ω(nc) times with probability at least 1− δ for any 0 < δ < 1.

In addition to the 2-XOS functions, we also show another special class of k-XOS functions that
can be exactly maximized in polynomial time (Theorem 13).

Finally, we see that the number of order-different3 XOS functions with bounded width is only
single exponential in n, specifically 2Θ(n2) (Theorems 22 and 23), whereas there are doubly expo-

nentially many, specifically 22
Θ(n)

, order-different XOS functions in general (Corollary 21). In this
sense, k-XOS functions look much more tractable than general XOS functions. Thus, Theorem 5 is
somewhat counterintuitive, because it shows that there is no polynomial-time algorithm for finding
a maximizer of a k-XOS function even when k = 3 if it is given by the value oracle.

2In this paper, we always use the natural logarithm without explicitly indicating the base e.
3Two set functions f, g : 2V → R are order-equivalent if [f(X) ≤ f(Y) if and only if g(X) ≤ g(Y)] for every

X,Y ⊆ V , and order-different otherwise.

2

Related work

The problem of maximizing monotone set functions under cardinality constraint has received much
attention. For the submodular case, which is a special case of the XOS case, the greedy algorithm is
the best possible and returns an e/(e−1)-maximizer [17, 18]. For the XOS case, no polynomial-time
algorithm can achieve n1/2−ǫ-approximation for any fixed ǫ > 0 in the value oracle model [16, 22].
For the subadditive case, which includes the XOS case (see also Appendix A), Badanidiyuru et
al. [1] gave a tight 2-approximation algorithm in the demand oracle model, in which we can access
a set function by asking the function for a demand S ∈ argmaxX⊆V {f(X)−

∑

v∈X pv} under each
price vector p ∈ RV . It should be noted that their algorithm does not imply a 2-approximation
algorithm in the value oracle model.

Polynomial-time approximation for submodular function maximization in the value oracle model
has been studied under various combinatorial constraints. Sviridenko [23] gave an e/(e − 1)-
approximation algorithm for maximizing a monotone submodular function subject to a knapsack
constraint. Kulik et al. [14] extended the result to the multiple knapsack constraints case. For
maximizing a monotone submodular function subject to a matroid constraint, Calinescu et al. [5]
provided an e/(e−1)-approximation algorithm. The last one is randomized and achieves the optimal
approximation ratio in expectation, and the current best guarantee by a deterministic algorithm is
slightly better than 2 [3].

Organization

The rest of this paper is organized as follows. First, in Section 2, we prove Theorems 1, 2, and 4 by
presenting and analyzing polynomial-time approximation (or sometimes exact) algorithms. Next,
in Section 3, we show the hardness results, Theorems 3 and 5. Finally, in Section 4, we discuss the
number of order-different XOS functions.

2 Algorithms

Let V be a nonempty finite set of size n. Throughout this section, for the input XOS function
f : 2V → R, we may assume that f(v) > 0 for all v ∈ V , because any v ∈ V with f(v) ≤ 0 does
not contribute to increasing the function values. This assumption can be tested in linear time, and
when it is violated, one can modify the instance just by removing such unnecessary elements.

For each X ⊆ V , we define I(X) := { i | fi(X) = f(X) }. In addition, for each index i, we call
V ∗
i := { v ∈ V | fi(v) = f(v) } a clique with respect to i. A subset of V is called a clique if it is a

clique with respect to some i.

2.1 Deterministic (ǫn)-approximation for general XOS maximization

In this section, we prove Theorem 1. In short, for any ǫ > 0, an (ǫn)-maximizer is obtained just
by taking the best one among all subsets of V of size at most ⌈1/ǫ⌉. A formal description is given

in Algorithm 1, which clearly calls the value oracle
∑min{⌈1/ǫ⌉, n}

i=0

(n
i

)

= O(n⌈1/ǫ⌉) times. We take
the maximum in Line 2 while successively updating X ∈ X in constant time per set, i.e., adopt an
appropriate generator for X (cf. [13, § 7.2.1.3]).

The following claim completes the proof of Theorem 1.

Claim 6. The output X̃ ⊆ V of Algorithm 1 is an (ǫn)-maximizer of f .

3

Algorithm 1: A deterministic (ǫn)-approximation algorithm for XOS maximization

Input: An XOS function f on V (with f(v) > 0 for all v ∈ V)
Output: An (ǫn)-maximizer X̃ ⊆ V of f

1 Let X ← {X ⊆ V | |X| ≤ ⌈1/ǫ⌉ }; /* Construct an appropriate generator. */

2 return X̃ ∈ argmaxX∈X f(X);

Proof. Let X∗ ⊆ V be a maximizer of f . If |X∗| ≤ ⌈1/ǫ⌉, then X∗ ∈ X and hence f(X̃) = f(X∗).
Otherwise, fix an index i ∈ I(X∗) and let X̂ be the set of top ⌈1/ǫ⌉ items in X∗ with the highest
values according to fi. Then, we have fi(X̂)/|X̂ | ≥ fi(X

∗)/|X∗| and X̂ ∈ X by |X̂ | = ⌈1/ǫ⌉. Since
|X∗| ≤ n, we have

f(X̃) ≥ f(X̂) ≥ fi(X̂) ≥
|X̂ |

|X∗|
· fi(X

∗) ≥
1

ǫn
· fi(X

∗) =
1

ǫn
· f(X∗).

2.2 Randomized (ǫn/ log n)-approximation for general XOS maximization

In this section, we prove Theorem 2. We provide a polynomial-time randomized algorithm whose
approximation ratio is ρ := ǫn/ log n. Without loss of generality, we assume ρ ≥ 2e/(e − 2) since
otherwise n is bounded by a constant depending on ǫ and hence we can find a maximizer in constant
time.

A formal description is given in Algorithm 2, which clearly calls the value oracle O(n1/ǫ+1 log n)
times. Intuitively, our algorithm first guesses the cardinality of a maximizer X∗, and then returns
the best one among polynomially many samples of size m = ⌈2|X∗|/ρ⌉. Since a uniformly random
subset of X∗ of size m has the expected function value m

|X∗| · f(X
∗) ≥ 2

ρ · f(X
∗), if such a subset

is sampled with probability at least 1/2, then the output is a ρ-maximizer in expectation. The
following claim gives an upper bound on the number of sufficient samples, which completes the
proof of Theorem 2.

Algorithm 2: A randomized (ǫn/ log n)-approximation algorithm for XOS maximization

Input: An XOS function f on V (with f(v) > 0 for all v ∈ V)
Output: An (ǫn/ log n)-maximizer X̃ ⊆ V of f in expectation

1 Let X ← ∅;
2 for m← 1, 2, . . . , ⌈(2 log n)/ǫ⌉ do
3 for t← 1, 2, . . . , ⌈n1/ǫ+1⌉ do
4 Sample Xm,t uniformly at random among the subsets of V of size m;
5 X ← X ∪ {Xm,t};

6 return X̃ ∈ argmaxX∈X f(X);

Claim 7. For any subset X∗ ⊆ V with |X∗| ≥ 2, if we sample a subset of V of size m = ⌈2|X∗|/ρ⌉
uniformly at random ⌈n1/ǫ+1⌉ times independently, then at least one sample is a subset of X∗ with
probability at least 1/2.

4

Proof. The probability that a uniformly random subset of V of size m is a subset of X∗ is

(|X∗|
m

)

(n
m

) =
|X∗|

n
·
|X∗| − 1

n− 1
· · · · ·

|X∗| −m+ 1

n−m+ 1
≥

(

|X∗|(1 − 2/ρ)

n

)m

≥

(

2|X∗|

en

)m

≥

(

2|X∗|

en

)2|X∗|/ρ+1

≥
1

n
·

(

2|X∗|

en

)

2|X∗| log n
ǫn

≥
1

n
·

(

1

e

)
logn

ǫ

=
1

n
1
ǫ
+1

,

where the second inequality follows from ρ ≥ 2e/(e − 2) and the last holds as xx ≥ (1/e)1/e for all
x ∈ [0, 1]. Hence, at least one among ⌈n1/ǫ+1⌉ samples is a subset of X∗ with probability at least

1−

(

1−
1

n1/ǫ+1

)n1/ǫ+1

≥ 1−
1

e
≥

1

2
.

We remark that we can obtain a ρ-maximizer with high probability if we take more samples.
Let X be a uniformly random subset of X∗ of size m. Then, f(X) is at least f(X∗)/ρ with
probability at least 1/ρ, because f(X) is a random variable that takes a value in [0, f(X∗)] and
whose expectation is at least 2f(X∗)/ρ. Hence, if we take ⌈2ρ log n⌉ = ⌈2ǫn⌉ times more samples,
then we obtain a ρ-maximizer with probability at least

1−

(

1−
1

2
·
1

ρ

)⌈2ρ logn⌉

≥ 1−

(

1

e

)logn

= 1−
1

n
.

It remains open whether this algorithm can be derandomized, i.e., whether one can achieve the
approximation ratio O(n/ log n) by a deterministic algorithm.

2.3 Maximizing 2-XOS functions exactly

In this section, as a step toward (k − 1)-approximation for k-XOS maximization, we present a
linear-time algorithm for finding an exact maximizer of a given 2-XOS function f .

The algorithm is formally described in Algorithm 3, which is intuitively as follows. First, in
Lines 1–3, it computes a clique V ∗

1 = { v ∈ V | f1(v) = f(v) } (cf. Lemma 8). If V ∗
1 = V , then it is

a maximizer of f because for every X ⊆ V ,

f(X) ≤
∑

v∈X

f(v) =
∑

v∈X

f1(v) ≤
∑

v∈V

f1(v) = f1(V) ≤ f(V).

Otherwise, it successively computes the other clique V ∗
2 = { v ∈ V | f2(v) = f(v) } in Lines 5–7

(cf. Lemma 8). Finally, in Line 8, it creates a candidate Yi for a maximizer of f from each clique
V ∗
i by adding all the elements which have additional positive contributions to the function value

f(V ∗
i) (cf. Lemma 9).
The running time is clearly bounded by O(n), and the correctness is assured as follows. First,

we see that V1 and V2 computed in Algorithm 3 are indeed the cliques.

Lemma 8. At the end of Algorithm 3, V1 is a clique, and V2 is the other clique with V1 ∪ V2 = V
if it is computed (i.e., unless V = V1).

5

Algorithm 3: An exact algorithm for 2-XOS maximization

Input: A 2-XOS function f on V (with f(v) > 0 for all v ∈ V)
Output: An exact maximizer X̃ ⊆ V of f

1 Pick v1 ∈ V and let V1 ← {v1};
2 for each u ∈ V − v1 do

3 if f(V1 + u) = f(V1) + f(u) then let V1 ← V1 + u;

4 if V1 = V then return V1;
5 Pick v2 ∈ V \ V1 and let V2 ← {v2};
6 for each u ∈ V − v2 do

7 if f(V2 + u) = f(V2) + f(u) then let V2 ← V2 + u;

8 Let Yi ← Vi ∪ { v ∈ V \ Vi | f(Vi + v) > f(Vi) } for each i = 1, 2;

9 return X̃ ∈ argmaxX∈{Y1,Y2} f(X);

Proof. Each Vi (i = 1, 2) is created as a singleton {vi} in Line 1 or 5, and successively updated
by adding u ∈ V − vi if f(Vi + u) = f(Vi) + f(u) in Line 3 or 7. The condition is satisfied if and
only if I(Vi) ∩ I(u) 6= ∅, and if satisfied, then I(Vi + u) = I(Vi) ∩ I(u) holds. Hence, after the
iteration, I(Vi) =

⋂

u∈Vi
I(u) and I(Vi) ∩ I(u′) = ∅ for each u′ ∈ V \ Vi. This means that Vi = V ∗

i′

for each i′ ∈ I(Vi). When V1 6= V , since v2 ∈ V2 is picked out of V1, we have V2 6= V1. Moreover,
since at least one of f(v) = f1(v) and f(v) = f2(v) holds for each v ∈ V by definition, we have
V1 ∪ V2 = V .

Suppose that V1 = V ∗
1 6= V (where exchange V1 and V2 if necessary), and then the following

lemma implies the correctness of Algorithm 3.

Lemma 9. At the end of Algorithm 3, Y1 or Y2 is a maximizer of f .

Proof. Let X∗ ⊆ V be a maximizer of f . Without loss of generality, we may assume that X∗ =
{ v ∈ V | f1(v) > 0 } by symmetry, and we show that then Y1 = X∗. Since V1 = V ∗

1 = { v ∈ V |
f1(v) = f(v) > 0 }, we have V1 ⊆ X∗. In addition, since f(V1 + v) ≥ f1(V1 + v) = f1(V1) + f1(v) >
f1(V1) = f(V1) for each v ∈ X∗ \ V1, we have X∗ ⊆ Y1 = V1 ∪ { v ∈ V \ V1 | f(V1 + v) > f(V1) }.

To show Y1 = X∗, suppose to the contrary that there exists v ∈ Y1 \ X
∗. Then, v ∈ Y1 \ V1

implies f(V1 + v) > f(V1) = f1(V1), and v 6∈ X∗ implies f1(v) ≤ 0 and hence f1(V1) ≥ f1(V1 + v).
Thus, we have f(V1 + v) > f1(V1 + v), which implies f2(V1 + v) = f(V1 + v) > f1(V1). Since
X∗ \ V1 ⊆ V2 = V ∗

2 implies f2(X
∗ \ V1) ≥ f1(X

∗ \ V1), we have

f(X∗ + v) ≥ f2(X
∗ + v) = f2(V1 + v) + f2(X

∗ \ V1) > f1(V1) + f1(X
∗ \ V1) = f1(X

∗) = f(X∗),

which contradicts that X∗ is a maximizer of f .

2.4 (k − 1)-Approximation for k-XOS maximization

In this section, we prove Theorem 4. That is, we present a deterministic (k − 1)-approximation
algorithm for maximizing k-XOS functions f that runs in O(k2n) time for any k ≥ 2 (even if k
is unknown). In particular, when k = 2, it almost coincides with Algorithm 3. In addition, when
k = o(n), it achieves a better approximation ratio than Algorithm 1 in subcubic time.

6

The algorithm is shown in Algorithm 4. It is worth remarking that the algorithm does not
use the information of the width k. As with Algorithm 3, it first computes a family of cliques
V that covers V . As we will see below, V contains a k-maximizer (more precisely, it contains a
|V|-maximizer). The difficulty is to improve k-approximation to (k− 1)-approximation. To resolve
this, the algorithm enumerates polynomially many candidates Z that would be good in addition
to Y like in Algorithm 3.

Algorithm 4: A (k − 1)-approximation algorithm for k-XOS maximization

Input: A k-XOS function f on V (with f(v) > 0 for all v ∈ V)
Output: A (k − 1)-maximizer X̃ ⊆ V of f

1 Let R← ∅ and ℓ← 0;
2 while R 6= V do

3 Let ℓ← ℓ+ 1;
4 Pick v ∈ V \R and let Vℓ ← {v} and R← R+ v;
5 foreach u ∈ V − v do

6 if f(Vℓ + u) = f(Vℓ) + f(u) then let Vℓ ← Vℓ + u and R← R ∪ {u};

7 For each i ∈ [ℓ], let Yi ← Vi ∪ { v ∈ V \ Vi | f(Vi + v) > f(Vi) };

8 For each {i, j} ∈
([ℓ]
2

)

= {J ⊆ [ℓ] | |J | = 2 } and v ∈ V , let Zv
ij ← Vi ∪ Vj ∪ {v};

9 Let V ← {V1, . . . , Vℓ}, Y ← {Y1, . . . , Yℓ}, and Z ← {Z
v
ij | {i, j} ∈

(

[ℓ]
2

)

, v ∈ V };

10 return X̃ ∈ argmaxX∈V∪Y∪Z f(X);

We first analyze the running time and then show the correctness. In what follows, let ℓ denote
its value at the end of Algorithm 4.

Lemma 10. At the end of Algorithm 4, each Vi (i ∈ [ℓ]) is a clique. In particular, ℓ ≤ k holds.

Proof. The first part is proved in the same way as Lemma 8. Since Vi (i ∈ [ℓ]) are pairwise distinct
due to the choice of v in Line 4 and update of R in Lines 4 and 6, we conclude ℓ ≤ k.

The following two lemmas complete the proof of Theorem 4.

Lemma 11. Algorithm 4 can be implemented to run in O(k2n) time.

Proof. For the while-loop (Lines 2–6), the number of iterations is ℓ ≤ k (Lemma 10). In each
iteration step, the algorithm chooses an element v ∈ V and just checks whether f(X + u) =
f(X) + f(u) or not for some X ⊆ V once for each element u ∈ V − v. It requires O(n) time
(including O(n) value oracle calls), and hence O(kn) time in total.

In Line 7, the algorithm computes Yi \ Vi = { v ∈ V \ Vi | f(Vi + v) > f(Vi) } for each i ∈ [ℓ]. It
takes O(n) time (including O(n) value oracle calls) for each i, and hence O(kn) time in total.

In Line 8 (for Z), instead of keeping all Zv
ij directly, we first construct Vi ∪ Vj ({i, j} ∈

([ℓ]
2

)

) in

O(k2n) time. Then, each Zv
ij 6= Vi ∪ Vj can be successively constructed from Vi ∪ Vj in constant

time when taking the maximum in Line 10.
In Lines 9–10, the algorithm just finds a maximizer of f over the family V ∪ Y ∪ Z, whose

cardinality is at most ℓ+ ℓ+
(

ℓ
2

)

n = O(k2n).
Thus the total computational time is bounded by O(k2n).

7

Lemma 12. Algorithm 4 returns a (k − 1)-maximizer X̃ of f .

Proof. Let X∗ ⊆ V be a maximizer of f .
If ℓ < k, then we have

f(X̃) ≥ max
i∈[ℓ]

f(Vi) ≥
1

ℓ
·
∑

i∈[ℓ]

f(Vi) =
1

ℓ
·
∑

i∈[ℓ]

∑

v∈Vi

f(v) ≥
1

ℓ
·
∑

v∈V

f(v) ≥
1

ℓ
· f(X∗) ≥

1

k − 1
· f(X∗),

where note that f(Vi) =
∑

v∈Vi
f(v) by Lemma 10, f(v) > 0 for each v ∈ V by the assumption,

and
⋃

i∈[ℓ] Vi = V due to the condition of the while-loop (Line 2). Hence, X̃ is indeed a (k − 1)-
maximizer.

By Lemma 10, in what follows, we consider the case when ℓ = k, and let us relabel the indices
of Vi (i ∈ [k]) so that Vi = V ∗

i = { v ∈ V | fi(v) = f(v) } for each i ∈ [k]. Without loss of generality,
suppose that X∗ = { v ∈ V | fp(v) > 0 } for some p ∈ [k] (i.e., maxX⊆V f(X) = f(X∗) = fp(X

∗)).
Then, we have Vp ⊆ X∗ ⊆ Yp (recall the proof of Lemma 9).

Case 1: Suppose that X∗ = Yp. We then have f(X̃) ≥ f(Yp) = f(X∗) ≥ f(X̃), and hence the
output X̃ is also a maximizer of f .

Case 2: Suppose that X∗ (Yp. Fix any v ∈ Yp \X
∗ and any q ∈ I(Vp + v). Since

fp(Vp + v) = fp(Vp) + fp(v) ≤ fp(Vp) = f(Vp) < f(Vp + v) = fq(Vp + v),

we have q 6= p. Then, we have

f(X∗) = fp(X
∗) = fp(Vp) + fp((X

∗ \ Vp) ∩ Vq) + fp(X
∗ \ (Vp ∪ Vq))

< fq(Vp + v) + fq((X
∗ \ Vp) ∩ Vq) +

∑

i∈[k]\{p,q}

fi(Vi)

= fq(Vp ∪ (X∗ ∩ Vq) ∪ {v}) +
∑

i∈[k]\{p,q}

fi(Vi)

≤ fq(Z
v
pq) +

∑

i∈[k]\{p,q}

fi(Vi) ≤ (k − 1) · f(X̃),

where the first inequality holds since fp(Vp) < fq(Vp + v) and

fp(X
∗ \ (Vp ∪ Vq)) ≤

∑

u∈X∗\(Vp∪Vq)

f(u) ≤
∑

i∈[k]\{p,q}

fi(Vi).

Thus, X̃ is indeed a (k − 1)-maximizer.

2.5 Finding all maximal cliques and its application

In this section, we show another special class of k-XOS functions that can be maximized exactly
in polynomial time. In particular, we prove the following theorem.

Theorem 13. There exists a deterministic algorithm to find an exact maximizer of a given k-XOS
function f with the condition

8

(∗) for every v ∈ V and every i ∈ [k], either fi(v) = f(v) or fi(v) ≤ 0

in O(nk+1) time for any k ≥ 2 (even if k is unknown).

Fix k ≥ 2 and let f be a k-XOS function with the condition (∗), i.e., for every v ∈ V and every
i ∈ [k], either fi(v) = f(v) > 0 or fi(v) ≤ 0.

Lemma 14. If an XOS function f satisfies the condition (∗), then there exists an inclusion-wise
maximal clique that maximizes f .

Proof. Let X∗ ⊆ V be an inclusion-wise minimal maximizer of f . Then, for some i ∈ [k], we have
X∗ = { v ∈ V | fi(v) > 0 } = { v ∈ V | fi(v) = f(v) } = V ∗

i . Since X∗ maximizes f , such a clique
V ∗
i must be inclusion-wise maximal.

By this lemma, it suffices to find all inclusion-wise maximal cliques. This can be done by
enumerating sufficiently large subsets of cliques and greedily expanding them like Algorithms 3 and
4. The algorithm is formally shown in Algorithm 5, which does not use the information of the
width k.

Algorithm 5: Finding all maximal cliques

Input: A k-XOS function f on V (with f(v) > 0 for all v ∈ V)
Output: The family of all inclusion-wise maximal cliques V ∗

i

1 Let V ← ∅;
2 for ℓ = 1, 2, . . . do

3 Let Xℓ ← {X ⊆ V | f(X) =
∑

v∈X f(v), |X| = ℓ };
4 foreach X ∈ Xℓ do

5 Let VX ← X;
6 foreach u ∈ V \X do

7 if f(VX + u) = f(VX) + f(u) then let VX ← VX + u;

8 V ← V ∪ {VX};

9 if |V| = ℓ then return V;

Lemma 15. For any k ≥ 2 and any k-XOS function f , Algorithm 5 returns the family V of all
inclusion-wise maximal cliques in O(nk+1) time.

Proof. After the first for-loop with ℓ = 1, it is obvious that |V| ≥ ℓ. Since we increase ℓ by one in
each iteration, Algorithm 5 terminates in finite steps. In what follows, let ℓ denote its value when
the algorithm terminates, i.e., ℓ = |V|.

We first confirm that each VX ∈ V is indeed a maximal clique. In Line 5, we have VX ⊆ V ∗
i

for i ∈ I(VX) =
⋂

v∈X I(v) because f(X) =
∑

v∈X f(v) holds. Hence, as with Lemma 8, in
Line 7, the condition f(VX + u) = f(VX) + f(u) holds if and only if I(VX) ∩ I(u) 6= ∅, and then
I(VX + u) = I(VX) ∩ I(u). Thus, after the innermost for-loop (Lines 6–7), I(VX) ⊆ I(u) for each
u ∈ VX and I(VX) ∩ I(u′) = ∅ for each u′ ∈ V \ VX . This means that VX = V ∗

i for each i ∈ I(VX),
i.e., VX is a clique. Furthermore, VX is a maximal clique because VX \V

∗
j 6= ∅ for each j ∈ [k]\I(VX)

by the definition of I(VX).

9

To show that the output contains all the maximal cliques, suppose to the contrary that some
maximal clique V ∗

i is not contained in the output V = {V1, . . . , Vℓ}. Since each Vj ∈ V is a
clique as shown above, we have V ∗

i \ Vj 6= ∅. Fix any xi,j ∈ V ∗
i \ Vj for each j ∈ [ℓ], and let

Xi := {xi,j | j ∈ [ℓ] }. Since Xi ⊆ V ∗
i , we have f(Xi) = fi(Xi) =

∑

v∈Xi
fi(v) =

∑

v∈Xi
f(v). This

shows that Xi ∈ Xℓ′ for some ℓ′ ∈ [ℓ], because |Xi| ≤ ℓ. Then, we have VXi ∈ V. However, VXi 6= Vj

for each j ∈ [ℓ] because xi,j ∈ Xi \ Vj ⊆ VXi \ Vj , which is a contradiction.
Finally, we analyze the computational time. The algorithm requires O(n) time to check whether

f(X) =
∑

v∈X f(v) or not for each X ⊆ V with |X| ≤ ℓ = |V| ≤ k (recall that every VX ∈ V is
a clique V ∗

i for some i ∈ [k]), and O(n) time (including O(n) value oracle calls) in Lines 5–8 for

each X ∈ Xℓ′ (ℓ
′ ∈ [ℓ]). The number of candidates for X is

∑ℓ
i=1

(n
i

)

= O(nk), and hence the total
computational time is bounded by O(nk+1).

By Lemmas 14 and 15, we obtain Theorem 13.

3 Hardness

In this section, we prove two hardness results on XOS maximization (Theorems 3 and 5), which
claim that an exponential (or super-polynomial) number of value oracle calls are required to beat
the approximation ratios of Algorithms 1, 2, and 4. All hardness results are based on a probabilistic
argument. A key tool is the following lemma.

Lemma 16. Let V̂ = [n̂] and let s, t be integers such that 1 ≤ t ≤ s ≤ n̂. Suppose that we pick,

uniformly at random, a set S ⊆ V̂ such that |S| = s. Let f̂ : 2V̂ → R be the function defined as

f̂(X) =

{

1 (if X ⊆ S and |X| ≥ t),

0 (otherwise).

Then, for any positive real δ (< 1), any algorithm (including a randomized one) to find X ⊆ V̂
with f̂(X) = 1 calls the value oracle at least δ · (n̂/s)t times with probability at least 1− δ.

Proof. Suppose to the contrary that there exists an algorithm to find X ⊆ V̂ with f̂(X) = 1 that
calls the value oracle less than δ · (n̂/s)t times with probability more than δ. By Yao’s principle, we
may assume that it is deterministic, and suppose that it calls the value oracle for X1,X2, . . . ⊆ V̂
in this order. Note that f(Xi) = 1 if and only if S ∈ Xi := {X | Xi ⊆ X ⊆ V̂ , |X| = s } and
|Xi| ≥ t. Since |Xi| ≤

(n̂−t
s−t

)

holds for any Xi ⊆ V̂ with |Xi| ≥ t, the probability that the algorithm

finds X ⊆ V̂ with f̂(X) = 1 before m oracle calls is at most

|
⋃m

i=1 Xi|
(n̂
s

) ≤
m ·

(

n̂−t
s−t

)

(n̂
s

) = m ·
s

n̂
·
s− 1

n̂− 1
· · · · ·

s− t+ 1

n̂− t+ 1
≤ m ·

(s

n̂

)t
,

which contradicts that the probability is larger than δ when m = δ · (n̂/s)t.

3.1 Inapproximability within n1−ǫ and o(n/ logn) for general XOS maximization

In this section, we prove Theorem 3, which is restated for the sake of convenience as follows.

10

Theorem 3. For any ǫ > 0, there exist a constant c > 0 and a distribution of instances of XOS
maximization such that any randomized n1−ǫ-approximation algorithm calls the value oracle at least
δ ·2Ω(nc) times with probability at least 1−δ for any 0 < δ < 1. Moreover, there exists a distribution
of instances of XOS maximization such that any randomized o(n/log n)-approximation algorithm
calls the value oracle at least δ · nω(1) times with probability at least 1− δ for any 0 < δ < 1.

Proof. For the first part, let ǫ′ := ǫ/2, and V = [n]. We pick, uniformly at random, a set S ⊆ V such
that |S| = n/2 (where we assume that n is even). Suppose that f(X) = max{ fi(X) | i ∈ [n+ 1] },
where

fi(v) =

{

nǫ′/2 (if v = i),

0 (if v 6= i),
for i ∈ [n], and fn+1(v) =

{

1 (if v ∈ S),

−n (if v 6∈ S).

We then have maxX⊆V f(X) = fn+1(S) = n/2 and

f(X) =











|X| (if X ⊆ S and |X| > nǫ′/2),

0 (if X = ∅),

nǫ′/2 (otherwise).

Hence, by Lemma 16 (with n̂ = n, s = n/2, and t = nǫ′/2), any algorithm to obtain an n1−ǫ-

maximizer of f calls the value oracle at least δ · 2n
ǫ′/2 times with probability at least 1− δ.

For the second part, if we replace nǫ′/2 in the definition of fi with τ = ω(log n), then we derive
from Lemma 16 (with n̂ = n, s = n/2, and t = τ) that any algorithm to obtain an o(n/log n)-
maximizer of f calls the value oracle at least δ · nω(1) times with probability at least 1− δ.

This theorem shows that an exponential or super-polynomial number of oracle calls are required
with high probability, which implies the following corollary.

Corollary 17. Let ǫ > 0. Then, for any randomized n1−ǫ-approximation (resp. o(n/log n)-
approximation) algorithm for XOS maximization, the expected number of value oracle calls is ex-
ponential (resp. super-polynomial) in the ground set size n for the worst instance.

Remark. The hardness result holds also for the problem of maximizing a function that is represented
by the maximum of an additive function and a constant, i.e., f(X) = max{g(X), a} (∀X ⊆ V)
for an additive function g : 2V → R and a constant a ∈ R.4 To see this, let ǫ′ and S be as in the
proof of Theorem 3 and consider the function f defined as f(X) = max{g(X), nǫ′/2}, where g is
an additive function such that g(v) = 1 if v ∈ S and g(v) = −n if v 6∈ S. Then, by the same
argument, we see that an exponential number of oracle calls are required with high probability
to find an n1−ǫ-maximizer. Similarly, a super-polynomial number of oracle calls are required with
high probability to find an o(n/log n)-maximizer.

3.2 Inapproximability within k − 1− ǫ for k-XOS maximization

In this section, we prove Theorem 5, which we restate here.

4In contrast, for such a function, one can find an (ǫn)-maximizer and an (ǫn/ log n)-maximizer in expectation by
the same algorithms as Algorithms 1 and 2, respectively.

11

Theorem 5. For any k ≥ 3 and any ǫ > 0, there exist a constant c > 0 and a distribution of
instances of k-XOS maximization such that any randomized (k − 1 − ǫ)-approximation algorithm
calls the value oracle at least δ · 2Ω(nc) times with probability at least 1− δ for any 0 < δ < 1.

Proof. Let ñ be a sufficiently large integer and γ be a sufficiently small positive rational number,
such that (k − 1)(1 − γ)2 > k − 1 − ǫ holds and γñ is an integer. Suppose that V is the union of
k − 1 disjoint sets V1, V2, . . . , Vk−1 with |Vi| = ñi for each i ∈ [k − 1]. Then, n = Θ(ñk−1) as well
as ñ = Θ(n1/(k−1)). For each i ∈ [k − 1], we pick, uniformly at random, a set Si ⊆ Vi such that
|Si| = (1− γ)|Vi| = (1− γ)ñi.

Suppose that f(X) = maxi∈[k] fi(X), where

fi(v) =

{

ñk−i (if v ∈ Vi),

0 (otherwise),
for i ∈ [k − 1], and

fk(v) =

{

(1− γ)ñk−i (if v ∈ Si for some i ∈ [k − 1]),

−ñk+1 (otherwise).

Then, we have maxX⊆V f(X) = fk(
⋃k−1

i=1 Si) = (k − 1)(1− γ)2ñk > (k − 1− ǫ)ñk.

Claim 18. If a nonempty subset X ⊆ V satisfies that f(X) = fk(X), then there exists i ∈
{2, 3, . . . , k − 1} such that X ∩ Vi ⊆ Si and |X ∩ Vi| ≥

γ
k−2 · ñ.

Proof. Assume that f(X) = fk(X). Then, it is clear that X ∩ Vi ⊆ Si for each i ∈ [k − 1].
Let j ∈ [k − 1] be the minimum index such that X ∩ Vj 6= ∅. Since fj(X) = ñk−j|X ∩ Vj| and
fk(X) =

∑

i≥j(1− γ)ñk−i|X ∩ Vi|, we derive from fk(X) = f(X) ≥ fj(X) that

∑

i>j

(1− γ)ñk−i|X ∩ Vi| ≥ γñk−j|X ∩ Vj |.

Since |X∩Vj|/(1−γ) ≥ 1, this shows that
∑

i>j |X ∩Vi| ≥ γñ, which implies that |X∩Vi| ≥
γ

k−2 · ñ
for some i ∈ {j + 1, j + 2, . . . , k − 1}.

This claim shows that we cannot obtain a nonempty subset X ⊆ V with f(X) = fk(X) unless
we find a subset of Si of size

γ
k−2 · ñ for some i. For fixed i ∈ {2, 3, . . . , k − 1}, by Lemma 16 (with

V̂ = Vi as well as n̂ = ñi, S = Si as well as s = (1− γ)ñi, and t = γ
k−2 · ñ), any algorithm to find a

set X ⊆ V such that X ∩ Vi ⊆ Si and |X ∩ Vi| ≥
γ

k−2 · ñ calls the value oracle at least

δ′ ·

(

1

1− γ

)γñ/(k−2)

= δ′ · 2Θ(ñ) = δ′ · 2Θ(n1/(k−1))

times with probability at least 1 − δ′, where 0 < δ′ < 1. By setting δ = (k − 2)δ′, we see that
any algorithm to find a set X ⊆ V such that X ∩ Vi ⊆ Si and |X ∩ Vi| ≥

γ
k−2 · ñ for some

i ∈ {2, 3, . . . , k − 1} calls the value oracle at least δ′ · 2Θ(n1/(k−1)) = δ · 2Θ(n1/(k−1)) times with
probability at least 1− (k − 2)δ′ = 1− δ by the union bound. The same number of oracle calls are
required for obtaining X ⊆ V such that f(X) > ñk, because maxX⊆V fi(X) = ñk for i ∈ [k − 1].
By combining this with maxX⊆V f(X) > (k − 1− ǫ)ñk, we complete the proof of Theorem 5.

12

This theorem shows that an exponential number of oracle calls are required with high proba-
bility, which implies the following corollary.

Corollary 19. Let k ≥ 3 and ǫ > 0. Then, for any randomized (k−1−ǫ)-approximation algorithm
for k-XOS maximization, the expected number of value oracle calls is exponential in the ground set
size n for the worst instance.

It is worth mentioning that the hardness results for k-XOS maximization (Theorem 5 and
Corollary 19) hold only when k is a fixed constant. The approximability when k = ω(1) remains
open.

4 The Number of XOS Functions

In this section, we show that the number of order-different XOS functions with bounded width is
single exponential in the ground set size n, whereas there are doubly-exponentially many order-
different XOS functions in general. Recall that, for set functions f, g : 2V → R on the common
ground set V , we say that f and g are order-equivalent if f(X) ≤ f(Y) if and only if g(X) ≤ g(Y)
for all X,Y ⊆ V , and that f and g are order-different if they are not order-equivalent.

First, we observe that the number of order-different XOS functions is doubly exponential in n.
In particular, even if we are restricted to the rank functions of matroids, which are normalized and
submodular, and hence XOS (see Appendix A), the number is so large. For the basics on matroids,
we refer the readers to [19].

Theorem 20 (Knuth [12]). The number of distinct matroids on V = [n] is 22
Θ(n)

.

Corollary 21. The number of order-different XOS functions on V = [n] is 22
Θ(n)

.

Proof. As the number of binary relations on m elements is 2m
2
and the order-equivalence classes of

set functions on V correspond one-to-one to the total preorders on 2V , the number of order-different
XOS functions on V = [n] is at most 2(2

n)2 = 22
O(n)

.
The matroids on V are uniquely defined by their rank functions f : 2V → R, which are XOS

(as normalized, monotone, and submodular). Moreover, if two matroid rank functions f1 and f2
on V are distinct, then there exist X (V and e ∈ V \X such that f1(X) = f2(X) = f2(X + e) =
f1(X + e) − 1 (or the symmetric condition obtained by exchanging the indices 1 and 2), which
implies that f1 and f2 are order-different.

Next, we show that, for any fixed k, the number of order-different k-XOS functions is single
exponential in n.

Theorem 22. The number of order-different k-XOS functions on V = [n] is 2O(k2n2).

Proof. Let f be a k-XOS function with additive functions f1, . . . , fk such that f(X) = maxi∈[k] fi(X)

(∀X ⊆ V). Fix a function ι : 2V → [k] that represents a maximizer index, i.e., ι(X) ∈ I(X) for
each X ⊆ V . Let us consider the following polyhedron P [f]:

P [f] :=







w

∣

∣

∣

∣

∣

∣

∑

v∈X wι(X),v −
∑

u∈Y wι(Y),u ≥ 1 (∀X,Y ∈ 2V with f(X) > f(Y)),
∑

v∈X wι(X),v −
∑

u∈Y wι(Y),u = 0 (∀X,Y ∈ 2V with f(X) = f(Y)),
∑

v∈X wι(X),v −
∑

v∈X wi,v ≥ 0 (∀X ∈ 2V , ∀i ∈ [k] \ {ι(X)})







.

13

Here, we have kn variables and O(22n) linear constraints. For any feasible weight w ∈ P [f], the
function g defined by g(X) = maxi∈[k]

∑

v∈X wi,v for all X ⊆ V is order-equivalent to f .
The constraint matrix of the polyhedron P [f] is full-rank, because we have one of wι(v),v ≥ 1,

−wι(v),v ≥ 1, and wι(v),v = 0 for any v ∈ V by the first and second inequalities, and wι(v),v−wi,v ≥ 0
for any v ∈ V and any i ∈ [k] \ {ι(v)} by the third inequality. Also, a vector w defined by
wi,v := β · fi(v) (i ∈ [k], v ∈ V) with a sufficiently large β is in P [f], and hence P [f] is feasible
(nonempty). Thus, P [f] has a basic solution (vertex) (see, e.g., [20, § 8.5]).

Let ŵ be a basic solution of P [f]. Then, by considering the corresponding inequalities, we have
Aŵ = b (i.e., ŵ = A−1b) for a nonsingular matrix A ∈ {−1, 0, 1}kn×kn and a vector b ∈ {0, 1}kn.

Thus, for any k-XOS function f , there exists an order-equivalent k-XOS function g that is
defined by a weight ŵ := A−1b with A ∈ {−1, 0, 1}kn×kn and b ∈ {0, 1}kn. As the number of
possible such weights is at most 3(kn)

2
· 2kn = 2O(k2n2), the proof is complete.

Comparing Corollary 21 and Theorem 22, we get that almost all XOS functions on the ground
set of size n have width Ω(2n/n). It may be of interest to explore a better lower bound on the
threshold t such that most XOS functions have width at least t.

It is worth mentioning that the upper bound on the number of order-different k-XOS functions
given in Theorem 22 is tight with respect to n.

Theorem 23. The number of order-different additive (1-XOS) functions on V = [n] is 2Ω(n2).

Proof. Consider additive functions f such that f(v) = 2v−1 if v = 1, 2, . . . , ⌊n/2⌋ and f(v) ∈
{0, 1, 2, . . . , 2⌊n/2⌋ − 1} if v = ⌊n/2⌋ + 1, . . . , n. There are (2⌊n/2⌋)⌈n/2⌉ = 2Ω(n2) possibilities and
all the functions are order-different (consider binary expansion of f(v) (v > ⌊n/2⌋) using f(v)
(v ≤ ⌊n/2⌋)). Thus the theorem holds.

Acknowledgments

We thank Tomomi Matsui for useful discussion on the number of order-different set functions.
We are grateful to the anonymous reviewers for giving insightful comments and suggestions. YF
is a Taub Fellow — supported by the Taub Foundations. His research was funded by ISF grant
1337/16. YK, YK, and YY were supported by JST ACT-I Grant Numbers JPMJPR17U7 and
JPMJPR17UB, and by JSPS KAKENHI Grant Numbers JP15H05711, JP16H03118, JP16K16005,
JP16K16010, and JP18H05291. Most of this work was done when YY was with Osaka University.

References

[1] Ashwinkumar Badanidiyuru, Shahar Dobzinski, and Sigal Oren. Optimization with demand
oracles. In Proceedings of the 13th ACM Conference on Electronic Commerce, pages 110–127.
ACM, 2012.

[2] Niv Buchbinder and Moran Feldman. Deterministic algorithms for submodular maximization
problems. ACM Transactions on Algorithms, 14(3), 2018. No. 32, 20pp.

[3] Niv Buchbinder, Moran Feldman, and Mohit Garg. Deterministic (1/2 + ǫ)-approximation
for submodular maximization over a matroid. In Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 241–254, 2019.

14

[4] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM Journal on Computing,
44(5):1384–1402, 2015.

[5] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a mono-
tone submodular function subject to a matroid constraint. SIAM Journal on Computing,
40(6):1740–1766, 2011.

[6] Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM Journal on
Computing, 29(1):122–142, 2007.

[7] Uriel Feige, Vahab S Mirrokni, and Jan Vondrák. Maximizing non-monotone submodular
functions. SIAM Journal on Computing, 40(4):1133–1153, 2011.

[8] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[9] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and Com-
binatorial Optimization. Springer, 1988.

[10] Faruk Gul and Ennio Stacchetti. Walrasian equilibrium with gross substitutes. Journal of
Economic Theory, 87(1):95–124, 1999.

[11] Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polynomial algo-
rithm for minimizing submodular functions. Journal of the ACM, 48(4):761–777, 2001.

[12] Donald E Knuth. The asymptotic number of geometries. Journal of Combinatorial Theory,
Series A, 16(3):398–400, 1974.

[13] Donald E Knuth. The Art of Computer Programming, Volume 4, Fascicle 3: Generating all
Combinations and Partitions. Addison-Wesley, 2005.

[14] Ariel Kulik, Hadas Shachnai, and Tami Tamir. Approximations for monotone and nonmono-
tone submodular maximization with knapsack constraints. Mathematics of Operations Re-
search, 38(4):729–739, 2013.

[15] Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreasing
marginal utilities. Games and Economic Behavior, 55(2):270–296, 2006.

[16] Vahab Mirrokni, Michael Schapira, and Jan Vondrák. Tight information-theoretic lower
bounds for welfare maximization in combinatorial auctions. In Proceedings of the 9th ACM
Conference on Electronic Commerce, pages 70–77. ACM, 2008.

[17] George L Nemhauser and Laurence AWolsey. Best algorithms for approximating the maximum
of a submodular set function. Mathematics of Operations Research, 3(3):177–188, 1978.

[18] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approxima-
tions for maximizing submodular set functions—I. Mathematical Programming, 14(1):265–294,
1978.

[19] James G Oxley. Matroid Theory, 2nd Ed. Oxford University Press, 2011.

15

[20] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, 1998.

[21] Alexander Schrijver. A combinatorial algorithm minimizing submodular functions in strongly
polynomial time. Journal of Combinatorial Theory, Series B, 80(2):346–355, 2000.

[22] Yaron Singer. Budget feasible mechanisms. In Proceedings of the 51st Annual IEEE Symposium
on Foundations of Computer Science, pages 765–774. IEEE, 2010.

[23] Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Operations Research Letters, 32(1):41–43, 2004.

A Classes of Set Functions

The following classes are well-studied in combinatorial optimization and recently also in algorithmic
game theory as valuations of agents.

Definition 24. A set function f : 2V → R is

• normalized, if f(∅) = 0.

• monotone, if f(X) ≤ f(Y) for every X ⊆ Y ⊆ V .

• additive, if f(X) =
∑

v∈X f(v) for every X ⊆ V .

• gross-substitute, if for every p, q ∈ RV with p ≤ q and every X ∈ argmax{ f(S) −
∑

v∈S pv |
S ⊆ V }, there exists Y ∈ argmax{ f(S)−

∑

v∈S qv | S ⊆ V } such that { v ∈ X | pv = qv } ⊆
Y .

• submodular, if f(X) + f(Y) ≥ f(X ∪ Y) + f(X ∩ Y) for every X,Y ⊆ V .

• fractionally subadditive: f(T) ≤
∑

i αif(Si) for every T, Si ⊆ V whenever αi ≥ 0 and
∑

i : v∈Si
αi ≥ 1 (∀v ∈ T).

• subadditive if f(X ∪ Y) ≤ f(X) + f(Y) for every X,Y ⊆ V .

Let us denote by Add, GS, SubM, FSubA, SubA, and XOS the sets of (normalized) additive func-
tions, of normalized gross-substitute functions, of normalized submodular functions, of normalized
fractionally subadditive functions, of normalized subadditive functions, and of (normalized) XOS
functions, respectively. Also, we add ∗ to each of them to assume the monotonicity in addition to
each property. We then have the following relations [6, 10, 15]:

Add ⊆ GS ⊆ SubM ⊆ XOS,

Add∗ ⊆ GS∗ ⊆ SubM∗ ⊆ XOS∗ = FSubA∗ (= FSubA) ⊆ SubA∗.

16

	1 Introduction
	2 Algorithms
	2.1 Deterministic (epsilon n)-approximation for general XOS maximization
	2.2 Randomized (epsilon n)-approximation for general XOS maximization
	2.3 Maximizing 2-XOS functions exactly
	2.4 (k-1)-Approximation for k-XOS maximization
	2.5 Finding all maximal cliques and its application

	3 Hardness
	3.1 Inapproximability within n-epsilon and o-n-log-n for general XOS maximization
	3.2 Inapproximability within k-1-epsilon for k-XOS maximization

	4 The Number of XOS Functions
	A Classes of Set Functions

