
ar
X

iv
:2

00
4.

13
35

6v
1

 [
m

at
h.

O
C

]
 2

8
A

pr
 2

02
0

PROXIMAL GRADIENT METHODS WITH ADAPTIVE SUBSPACE SAMPLING

DMITRY GRISHCHENKO⋆ , FRANCK IUTZELER⋆, AND JÉRÔME MALICK◦

Abstract. Many applications in machine learning or signal processing involve nonsmooth optimization problems. This

nonsmoothness brings a low-dimensional structure to the optimal solutions. In this paper, we propose a randomized prox-

imal gradient method harnessing this underlying structure. We introduce two key components: i) a random subspace

proximal gradient algorithm; ii) an identification-based sampling of the subspaces. Their interplay brings a significant

performance improvement on typical learning problems in terms of dimensions explored.

1. Introduction

In this paper, we consider composite optimization problems of the form

min
x ∈�n

f (x) + д(x) (1)

where f is convex and differentiable, and д is convex and nonsmooth. This type of problem appears extensively
in signal processing and machine learning applications; we refer to e.g. [7], [9], [1], among a vast literature. Large
scale applications in these fields call for first-order optimization, such as proximal gradient methods (see e.g. the
recent [40]) and coordinate descent algorithms (see e.g. the review [46]).

In these methods, the use of a proximity operator to handle the nonsmooth part д plays a prominent role, as it
typically enforces some “sparsity” structure on the iterates and eventually on optimal solutions, see e.g. [43]. For
instance, the popular ℓ1-norm regularization (д = ‖ · ‖1) promotes optimal solutions with a few nonzero elements,
and its associated proximity operator (called soft-thresholding, see [12]) zeroes entries along the iterations. This
is an example of identification: in general, the iterates produced by proximal algorithms eventually reach some
sparsity pattern close to the one of the optimal solution. For ℓ1-norm regularization, this means that after a finite
but unknown number of iterations the algorithm “identifies” the final set of non-zero variables. This active-set
identification property is typical of constrained convex optimization (see e.g. [44]) and nonsmooth optimization (see
e.g. [21]).

The study of identification dates back at least to [3] who showed that the projected gradient method identifies a
sparsity pattern when using non-negative constraints. Such identification has been extensively studied in more gen-
eral settings; we refer to [6], [22], [13] or the recent [23], among other references. Recent works on this topic include:
i) extended identification for a class of functions showing strong primal-dual structure, including TV-regularization
and nuclear norm [15]; ii) identification properties of various randomized algorithms, such as coordinate descent
[45] and stochastic methods [34, 14, 39].

The knowledge of the optimal substructure would allow to reduce the optimization problem in this substructure
and solve a lower dimension problem. While identification can be guaranteed in special cases (e.g. using duality for
ℓ1-regularized least-squares [32, 16]), it is usually unknown beforehand and proximal algorithms can be exploited
to obtain approximations of this substructure. After some substructure identification, one could switch to a more
sophisticated method, e.g. updating parameters of first-order methods ([24]). Again, since the final identification
moment is not known, numerically exploiting identification to accelerate the convergence of first-order methods
has to be done with great care.

In this paper, we propose randomized proximal algorithms leveraging on structure identification: our idea is to
sample the variable space according to the structure ofд. To do so, we first introduce a randomized descent algorithm
going beyond separable nonsmoothness and associated coordinate descent methods: we consider “subspace descent"
extending “coordinate descent" to generic subspaces. Then, we use a standard identification property of proximal
methods to adapt our sampling of the subspaces with the identified structure. This results in a structure-adapted

⋆ Univ. Grenoble Alpes, Laboratoire Jean Kuntzmann
◦ CNRS, Laboratoire Jean Kuntzmann

E-mail addresses: firstname.lastname@univ-grenoble-alpes.fr.
1

http://arxiv.org/abs/2004.13356v1
mailto:firstname.lastname@univ-grenoble-alpes.fr

randomized method with automatic dimension reduction, which performs better in terms of dimensions explored
compared standard proximal methods and the non-adaptive version.

Thoughourmain concern is the handling of non-separable nonsmooth functionsд, wemention that our identification-
based adaptive approach is different from existing adaptation strategies restricted to the particular case of coordinate
descent methods. Indeed, adapting coordinate selection probabilities is an important topic for coordinate descent
methods as both theoretical and practical rates heavily depend on them (see e.g. [36, 28]). Though the optimal theo-
retical probabilities, named importance sampling, often depend on unknown quantities, these fixed probabilities can
sometimes be computed and used in practice, see [48, 37]. The use of adaptive probabilities is more limited; some
heuristics without convergence guarantees can be found in [25, 18], and greedy coordinates selection are usually ex-
pensive to compute [11, 31, 30]. Bridging the gap between greedy and fixed importance sampling, [33, 27, 38] propose
adaptive coordinate descent methods based on the coordinate-wise Lipschitz constants and current values of the gra-
dient. The methods proposed in the present paper, even when specialized in the coordinate descent case, are the first
ones where the iterate structure enforced by a non-smooth regularizer is used to adapt the selection probabilities.

The paper is organized as follows. In Section 2, we introduce the formalism for subspace descent methods. First,
we formalize how to sample subspaces and introduce a first random subspace proximal gradient algorithm. Then,
we show its convergence and derive its linear rate in the strongly convex case. Along the way, we make connections
and comparisons with the literature on coordinate descent and sketching methods, notably in the special cases of ℓ1
and total variation regularization. In Section 3, we present our identification-based adaptive algorithm. We begin by
showing the convergence of an adaptive generalization of our former algorithm; next, we show that this algorithm
enjoys some identification property and give practical methods to adapt the sampling, based on generated iterates,
leading to refined rates. Finally, in Section 4, we report numerical experiments on popular learning problems to
illustrate the merits and reach of the proposed methods.

2. Randomized subspace descent

The premise of randomized subspace descent consists in repeating two steps: i) randomly selecting some subspace;
and ii) updating the iterate over the chosen subspace. Such algorithms thus extend usual coordinate descent to
general sampling strategies, which requires algorithmic changes and an associated mathematical analysis. This
section presents a subspace descent algorithm along these lines for solving (1). In Section 2.1, we introduce our
subspace selection procedure. We build on it to introduce, in Section 2.2, our first subspace descent algorithm, the
convergence of which is analyzed in Section 2.3. Finally, we put this algorithm into perspective in Section 2.4 by
connecting and comparing it to related work.

2.1. Subspace selection. We begin by introducing the mathematical objects leading to the subspace selection used
in our randomized subspace descent algorithms. Though, in practice, most algorithms rely on projection matrices,
our presentation highlights intrinsic subspaces associated to these matrices; this opens the way to a finer analysis,
especially in Section 3.1 when working with adaptive subspaces.

We consider a family C = {Ci }i of (linear) subspaces of �n . Intuitively, this set represents the directions that will
be favored by the random descent; in order to reach a global optimum, we naturally assume that the sum1 of the
subspaces in a family matches the whole space.

Definition 1 (Covering family of subspaces). Let C = {Ci }i be a family of subspaces of�n . We say that C is covering
if it spans the whole space, i.e. if

∑
i Ci = �

n .

Example 1. The family of the axes Ci = {x ∈ �n : x j = 0 ∀j , i} for i = 1, ..,n is a canonical covering family for �n .

From a covering family C, we call selection the random subspace obtained by randomly choosing some subspaces
in C and summing them. We call admissible the selections that include all directions with some positive probability;
or, equivalently, the selections to which no non-zero element of �n is orthogonal with probability one.

Definition 2 (Admissible selection). Let C be a covering family of subspaces of �n . A selection S is defined from
the set of all subsets of C to the set of the subspaces of �n as

S(ω) =
s∑
j=1

Ci j for ω = {Ci1 , . . . , Cis }.

1In the definition and the following, we use the natural set addition (sometimes called the Minkowski sum): for any two sets C, D ⊆ �n , the
set C +D is defined as {x + y : x ∈ C, y ∈ D } ⊆ �n .

2

The selectionS is admissible if �[x ∈ S⊥] < 1 for all x ∈ �n \ {0}.

Admissibility of selections appears on spectral properties of the average projection matrix onto the selected sub-
spaces. For a subspace F ⊆ �n , we denote by PF ∈ �n×n the orthogonal projection matrix onto F . The following
lemma shows that the average projection associated with an admissible selection is positive definite; this matrix and
its extreme eigenvalues will play a major role in our developments.

Lemma 1 (Average projection). If a selection S is admissible then

P := �[PS] is a positive definite matrix. (2)

In this case, we denote by λmin(P) > 0 and λmax(P) ≤ 1 its minimal and maximal eigenvalues.

Proof. Proof. Note first that for almost all ω, the orthogonal projection PS(ω) is positive semi-definite, and therefore
so is P. Now, let us prove that if P is not positive definite, thenS is not admissible. Take a nonzero x in the kernel
of P, then

x⊤Px = 0 ⇐⇒ x⊤�[PS]x = 0 ⇐⇒ �[x⊤PSx] = 0.

Since x⊤PS(ω)x ≥ 0 for almost all ω, the above property is further equivalent for almost all ω to

x⊤PS(ω)x = 0 ⇐⇒ PS(ω)x = 0 ⇐⇒ x ∈ S(ω)⊥.
Since x , 0, this yields that x ∈ S(ω)⊥ for almost all ω which is in contradiction withS being admissible. Thus, if a
selectionS is admissible, P := �[PS] is positive definite (so λmin(P) > 0).

Finally, using Jensen’s inequality and the fact that PS is a projection, we get ‖Px ‖ = ‖�[PS]x ‖ ≤ �‖PSx ‖ ≤ ‖x ‖,
which implies that λmax(P) ≤ 1. �

Although the framework, methods, and results presented in this paper allow for infinite subspace families (as in
sketching algorithms); the most direct applications of our results only call for finite families for which the notion of
admissibility can be made simpler.

Remark 1 (Finite Subspace Families). For a covering family of subspaces C with a finite number of elements, the
admissibility condition can be simplified to �[Ci ⊂ S] > 0 for all i .

Indeed, take x ∈ �n \ {0}; then, since C is covering and x , 0, there is a subspace Ci such that PCix , 0. Observe
now that Ci ⊂ S yields PSx , 0 (sinceS⊥ ⊂ C⊥i , the property PSx = 0 would give PCix = 0 which is a contradiction
with PCix , 0). Thus, we can write

�[x ∈ S⊥] = �[PSx = 0] = 1 − �[PSx , 0] ≤ 1 − �[Ci ⊂ S] < 1.

Building on this property, two natural ways to generate admissible selections from a finite covering family C =

{Ci }i=1, ...,c are:
• Fixed probabilities: Selecting each subspace Ci according to the outcome of a Bernoulli variable of parameter
pi > 0. This gives admissible selections as �[Ci ⊆ S] = pi > 0 for all i ;
• Fixed sample size: Drawing s subspaces in C uniformly at random. This gives admissible selections since
�[Ci ⊆ S] = s/c for all i .

Example 2 (Coordinate-wise projections). Consider the family of the axes fromExample 1 and the selection generated
with fixed probabilities as described in Remark 1. The associated projections amount to zeroing entries at random and
the average projection P is the diagonal matrix with entries (pi); trivially λmin(P) = mini pi and ≤ λmax(P) = maxi pi .

2.2. A random subspace proximal gradient algorithm. An iteration of the proximal gradient algorithm decom-
poses in two steps (sometimes called “forward” and “backward”):

zk = xk − γ∇ f (xk) (3a)

xk+1 = proxγд(zk) (3b)

where proxγд stands for the proximity operator defined as the mapping from �n to �n

proxγд(x) = argmin
y∈�n

{
д(y) + 1

2γ
‖y − x ‖22

}
. (4)

This operator is well-defined when д is a proper, lower semi-continuous convex function [2, Def. 12.23]. Further-
more, it is computationally cheap to compute in several cases, either from a closed form (e.g. for ℓ1-norm, ℓ1/ℓ2-norm,

3

see among others [8] and references therein), or by an efficient procedure (e.g. for the 1D-total variation, projection
on the simplex, see [47, 10]).

In order to construct a “subspace” version of the proximal gradient (3), one has to determine which variable will
be updated along the randomly chosen subspace (which we will call a projected update). Three choices are possible:

(a) a projected update of xk , i.e. projecting after the proximity operation;
(b) a projected update of ∇ f (xk), i.e. projecting after the gradient;
(c) a projected update of zk , i.e. projecting after the gradient step.

Choice (a) has limited interest in the general case where the proximity operator is not separable along subspaces and
thus a projected update of xk still requires the computations of the full gradient. In the favorable case of coordinate
projection and д = ‖ · ‖1, it was studied in [35] using the fact that the projection and the proximity operator commute.
Choice (b) is considered recently in [20] in the slightly different context of sketching. A further discussion on related
literature is postponed to Section 2.4.

In this paper, we will consider Choice (c), inspired by recent works highlighting that combining iterates usually
works well in practice (see [26] and references therein). However, taking gradient steps along random subspaces
introduce bias and thus such a direct extension fails in practice. In order to retrieve convergence to the optimal
solution of (1), we slightly modify the proximal gradient iterations by including a correction featuring the inverse

square root of the expected projection denoted by Q = P−1/2 (note that as soon as the selection is admissible, Q is
well defined from Lemma 1).

Formally, our Random Proximal Subspace Descent algorithm RPSD, displayed as Algorithm 1, replaces (3a) by

yk = Q

(
xk − γ∇ f

(
xk

))
and zk = PSk

(
yk

)
+ (I − PSk)

(
zk−1

)
. (5)

That is, we propose to first perform a gradient step followed by a change of basis (by multiplication with the positive
definite matrix Q), giving variable yk ; then, variable zk is updated only in the random subspaceSk : to P

Sk

(
yk

)
in

S
k , and keeping the same value outside. Note that yk does not actually have to be computed and only the “PSkQ-

sketch” of the gradient (i.e. PSkQ∇ f
(
xk

)
) is needed. Finally, the final proximal operation (3b) is performed after

getting back to the original space (by multiplication with Q−1):

xk+1 = proxγд

(
Q−1

(
zk

))
. (6)

Contrary to existing coordinate descent methods, our randomized subspace proximal gradient algorithm does not
assume that the proximity operator proxγд is separable with respect to the projection subspaces. Apart from the

algorithm of [20] in a different setting, this is an uncommon but highly desirable feature to tackle general composite
optimization problems.

Algorithm 1: Randomized Proximal Subspace Descent - RPSD

1: Input: Q = P−
1
2

2: Initialize z0, x 1 = proxγд(Q−1(z0))
3: for k = 1, . . . do
4: yk = Q

(
xk − γ∇ f

(
xk

))
5: zk = PSk

(
yk

)
+ (I − PSk)

(
zk−1

)
6: xk+1 = proxγд

(
Q−1

(
zk

))
7: end for

Let us provide a first example, before moving to the analysis of the algorithm in the next section.

Example 3 (Interpretation for smooth problems). In the case where д ≡ 0, our algorithm has two interpretations.
First, using proxγд = I , the iterations simplify to

zk+1 = zk − γP
SkQ

(
∇ f

(
Q−1

(
zk

)))
= zk − γP

SkQ
2Q−1

(
∇ f

(
Q−1

(
zk

)))
︸ ︷︷ ︸

∇f ◦Q−1(zk)

.

4

As �[PSkQ2] = I , this corresponds to a random subspace descent on f ◦
(
Q−1

)
with unbiased gradients. Second, we

can write it with the change of variable uk = Q−1zk as

uk+1 = uk − γQ−1PSkQ
(
∇ f

(
uk

))
.

As �[Q−1PSkQ] = P, this corresponds to random subspace descent on f but with biased gradient. We note that the
recent work [17] considers a similar set-up and algorithm; however, the provided convergence result does not lead
to the convergence to the optimal solution (due to the use of the special semi-norm).

2.3. Analysis and convergence rate. In this section, we provide a theoretical analysis for RPSD, showing linear
convergence for strongly convex objectives. Tackling the non-strongly convex case requires extra-technicalities; we
thus choose to postpone the corresponding convergence result to the appendix for clarity.

Assumption 1 (On the optimization problem). The function f is L-smooth and µ-strongly convex and the function
д is convex, proper, and lower-semicontinuous.

Note that this assumption implies that Problem (1) has a unique solution that we denote x⋆ in the following.

Assumption 2 (On the randomness of the algorithm). Given a covering family C = {Ci } of subspaces, we consider
a sequenceS1,S2, ..,Sk of admissible selections, which is i.i.d.

In the following theorem, we show that the proposed algorithm converges linearly at a rate that only depends on
the function properties and on the smallest eigenvalue of P. We also emphasize that the step size γ can be taken in
the usual range for the proximal gradient descent.

Theorem 1 (RPSD convergence rate). Let Assumptions 1 and 2 hold. Then, for any γ ∈ (0, 2/(µ +L)], the sequence (xk)
of the iterates of RPSD converges almost surely to the minimizer x⋆ of (1) with rate

�

[
‖xk+1 − x⋆‖22

]
≤

(
1 − λmin(P)

2γ µL

µ + L

)k
C,

where C = λmax(P)‖z0 −Q(x⋆ − γ∇ f (x⋆))‖22 .
To prove this result, we first demonstrate two intermediate lemmas respectively expressing the distance of zk

towards its fixed points (conditionally to the filtration of the past random subspacesFk
= σ ({Sℓ}ℓ≤k)), and bounding

the increment (with respect to ‖x ‖2
P
= 〈x , Px〉 the norm associated to P).

Lemma 2 (Expression of the decrease as a martingale). From the minimizer x⋆ of (1), define the fixed points z⋆ =

y⋆ = Q
(
x⋆ − γ∇ f

(
x⋆

))
of the sequences (yk) and (zk). If Assumption 2 holds, then

�

[
‖zk − z⋆‖22 |Fk−1

]
= ‖zk−1 − z⋆‖22 + ‖yk − y⋆‖2P − ‖zk−1 − z⋆‖2P.

Proof. Proof. By taking the expectation onSk (conditionally to the past), we get

�

[
‖zk − z⋆‖22 |Fk−1

]
= �

[
‖zk−1 − z⋆ + P

Sk (yk − zk−1)‖22 |Fk−1
]

= ‖zk−1 − z⋆‖22 + 2�
[
〈zk−1 − z⋆, PSk (yk − zk−1)〉|Fk−1

]
+ �

[PSk (yk − zk−1)2 |Fk−1
]

= ‖zk−1 − z⋆‖22 + 2〈zk−1 − z⋆, P(yk − zk−1)〉 + �
[
〈PSk (yk − zk−1), PSk (yk − zk−1)〉|Fk−1

]
= ‖zk−1 − z⋆‖22 + 2〈zk−1 − z⋆, P(yk − zk−1)〉 + �

[
〈yk − zk−1, PSk (yk − zk−1)〉|Fk−1

]
= ‖zk−1 − z⋆‖22 + 〈zk−1 + yk − 2z⋆, P(yk − zk−1)〉,

where we used the fact that zk−1 andyk areFk−1-measurable and that PSk is a projection matrix so PSk = P⊤
Sk
= P2
Sk

.

Then, using the fact y⋆ = z⋆, the scalar product above can be simplified as follows

〈zk−1 + yk − 2z⋆, P(yk − zk−1)〉 = 〈zk−1 + yk − z⋆ − y⋆, P(yk − zk−1 + y⋆ − z⋆)〉
= −〈zk−1 − z⋆, P(zk−1 − z⋆)〉 + 〈zk−1 − z⋆, P(yk − y⋆)〉
+ 〈yk − y⋆, P(yk − y⋆)〉 − 〈yk − y⋆, P(zk−1 − z⋆)〉
= 〈yk − y⋆, P(yk − y⋆)〉 − 〈zk−1 − z⋆, P(zk−1 − z⋆)〉

5

where we used in the last equality that P is symmetric. �

Lemma 3 (Contraction property in P-weighted norm). From the minimizer x⋆ of (1), define the fixed points z⋆ =

y⋆ = Q
(
x⋆ − γ∇ f

(
x⋆

))
of the sequences (yk) and (zk). If Assumptions 1 and 2 hold, then

‖yk − y⋆‖2P − ‖zk−1 − z⋆‖2P ≤ −λmin(P)
2γ µL

µ + L
‖zk−1 − z⋆‖22 .

Proof. Proof. First, using the definition of yk and y⋆,

‖yk − y⋆‖2P = 〈Q(xk − γ∇ f (xk) − x⋆ + γ∇ f (x⋆)), PQ(xk − γ∇ f (xk) − x⋆ + γ∇ f (x⋆))〉
= 〈xk − γ∇ f (xk) − x⋆ + γ∇ f (x⋆),Q⊤PQ(xk − γ∇ f (xk) − x⋆ + γ∇ f (x⋆))〉

=

xk − γ∇ f (xk) − (x⋆ − γ∇ f (x⋆))2
2
.

Using the standard stepsize range γ ∈ (0, 2/(µ + L)], one has (see e.g. [5, Lemma 3.11])

‖yk − y⋆‖2P =
xk − γ∇ f (xk) − (x⋆ − γ∇ f (x⋆))2

2
≤

(
1 − 2γ µL

µ + L

)
‖xk − x⋆‖22 .

Using the non-expansiveness of the proximity operator of convex l.s.c. function д [2, Prop. 12.27] along with the fact
that as x⋆ is a minimizer of (1) so x⋆ = proxγд(x⋆ − γ∇ f (x⋆)) = proxγд(Q−1z⋆) [2, Th. 26.2], we get

‖xk − x⋆‖22 = ‖proxγд(Q−1(zk−1)) − proxγд(Q−1(z⋆))‖22
≤ ‖Q−1(zk−1 − z⋆)‖22 = 〈Q−1(zk−1 − z⋆),Q−1(zk−1 − z⋆)〉
= 〈zk−1 − z⋆, P(zk−1 − z⋆)〉 = ‖zk−1 − z⋆‖2P

where we used that Q−⊤Q−1 = Q−2 = P. Combining the previous equations, we get

‖yk − y⋆‖2P − ‖zk−1 − z⋆‖2P ≤ −
2γ µL

µ + L
‖zk−1 − z⋆‖2P.

Finally, the fact that ‖x ‖2
P
≥ λmin(P)‖x ‖22 for positive definite matrix P enables to get the claimed result. �

Relying on these two lemmas, we are now able to prove Theorem 1. by showing that the distance of zk towards
the minimizers is a contracting super-martingale.

Proof. Proof.[Proof of Theorem 1.] Combining Lemmas 2 and 3, we get

�

[
‖zk − z⋆‖22 |Fk−1

]
≤

(
1 − λmin(P)

2γ µL

µ + L

)
‖zk−1 − z⋆‖22

and thus by taking the full expectation and using nested filtrations (Fk), we obtain

�

[
‖zk − z⋆‖22

]
≤

(
1 − λmin(P)

2γ µL

µ + L

)k
‖z0 − z⋆‖22 =

(
1 − λmin(P)

2γ µL

µ + L

)k
‖z0 − Q(x⋆ − γ∇ f (x⋆))‖22 .

Using the same arguments as in the proof of Lemma 3, one has

‖xk+1 − x⋆‖22 ≤ ‖zk − z⋆‖2P ≤ λmax(P)‖zk − z⋆‖22
which enables to conclude

�

[
‖xk+1 − x⋆‖22

]
≤

(
1 − λmin(P)

2γ µL

µ + L

)k
λmax(P)‖z0 −Q(x⋆ − γ∇ f (x⋆))‖22 .

Finally, this linear convergences implies the almost sure convergence of (xk) to x⋆ as

�

[
+∞∑
k=1

‖xk+1 − x⋆‖2
]
≤ C

+∞∑
k=1

(
1 − λmin(P)

2γ µL

µ + L

)k
< +∞

6

implies that
∑
+∞
k=1 ‖xk+1 − x⋆‖2 is finite with probability one. Thus we get

1 = �

[
+∞∑
k=1

‖xk+1 − x⋆‖2 < +∞
]
≤ �

[
‖xk − x⋆‖2 → 0

]

which in turn implies that (xk) converges almost surely to x⋆. �

2.4. Examples and connections with the existing work. In this section, we derive specific cases and discuss the
relation between our algorithm and the related literature.

2.4.1. Projections onto coordinates. A simple instantiation of our setting can be obtained by considering projections
onto uniformly chosen coordinates (Example 2); with the family

C = {C1, .., Cn} with Ci = {x ∈ �n : x j = 0 ∀j , i}

and the selectionS consisting of taking Ci according to the output of a Bernoulli experiment of parameter pi . Then,
the matrices P = diag([p1, ..,pn]), PSk and Q commute, and, by a change of variables z̃k = Q−1zk and ỹk = Q−1yk ,
Algorithm 1 boils down to

ỹk = xk − γ∇ f
(
xk

)
z̃k = PSk

(
ỹk

)
+ (I − PSk)

(
z̃k−1

)
, xk+1 = proxγд

(
z̃k

)
i.e. no change of basis is needed anymore, even if д is non-separable. Furthermore, the convergence rates simplifies
to (1 − 2mini piγ µL/(µ + L)) which translates to (1 − 4mini piµL/(µ + L)2) for the optimal γ = 2/(µ + L).

In the special case where д is separable (i.e. д(x) = ∑n
i=1дi (xi)), we can further simplify the iteration. In this case,

projection and proximal steps commute, so that the iteration can be written

xk+1 = P
Sk proxγд

(
xk − γ∇ f (xk)

)
+ (I − P

Sk)xk

i.e. xk+1i =

proxγдi
(
xki − γ∇i f (xk)

)
= argmin

w

дi (w) + 〈w,∇i f (xk)〉 +
1

2γ
‖w − xki ‖22 if i ∈ Sk

xki elsewhere

which boils down to the usual (proximal) coordinate descent algorithm, that recently knew a rebirth in the context of
huge-scale optimization, see [42], [29], [36] or [46]. In this special case, the theoretical convergence rate of RPSD is
close to the existing rates in the literature. For clarity, we compare with the uniform randomized coordinate descent
of [36] (more precisely Th. 6 with Li = L, Bi = 1, µL ≤ 2) which can be written as (1 − µL/4n) in ℓ2-norm. The rate

of RPSD in the same uniform setting (Example 2 with pi = p = 1/n) is
(
1 − 4µL

n(µ+L)2
)
with the optimal step-size.

2.4.2. Projections onto vectors of fixed variations. The vast majority of randomized subspace methods consider the
coordinate-wise projections treated in 2.4.1. This success is notably due to the fact that most problems onto which
they are applied have naturally a coordinate-wise structure; for instance, due to the structure of д (ℓ1-norm, group
lasso, etc). However, many problems in signal processing and machine learning feature a very different structure. A
typical example is when д is the 1D-Total Variation

д(x) =
n∑
i=2

|xi − xi−1 | (7)

featured for instance in the fused lasso problem [41]. In order to project onto subspaces of vectors of fixed variation
(i.e. vectors for which x j = x j+1 except for a prescribed set of indices), one can define the following covering family

C = {C1, .., Cn−1} with Ci =
{
x ∈ �n : x j = x j+1 for all j ∈ {1, ..,n − 1} \ {i}

}
and an admissible selectionS consisting in selecting uniformly s elements in C. Then, ifS selects Cn1 , ..., Cns , the up-
date will live in the sum of these subspaces, i.e. the subspace of the vectors having jumps at coordinates n1,n2, ..,ns .
Thus, the associated projection in the algorithm writes

7

PS =

©
«

n1︷ ︸︸ ︷
1
n1

. . . 1
n1

0 . . .

n − ns︷ ︸︸ ︷
. 0

.

.

.
. . .

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

1
n1

. . . 1
n1

0
. . .

. . .
. . .

.

.

.

0 . . . 0
. . .

. . .
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . .

. . . 0 . . . 0

.

.

.
. . .

. . .
. . . 0 1

n−ns . . . 1
n−ns

.

.

.
. . .

. . .
. . .

.

.

.
.
.
.

. . .
.
.
.

0 0 1
n−ns . . . 1

n−ns

ª®®®®®®®®®®®®®®®®®®®®®®
¬

n1

n − ns

(8)

Note also that PSx has the same value for coordinates [ni ,ni+1), equal to the average of these values.
As mentioned above, the similarity between the structure of the optimization problem and the one of the subspace

descent is fundamental for performance in practice. In Section 3.3, we exploit the identification properties of the
proximity operator in order to automatically adapt the subspace selection, which leads to a tremendous gain in
performance.

2.4.3. Comparison with sketching. In sharp contrast with the existing literature, our subspace descent algorithm
handles non-separable regularizers д. A notable exception is the algorithm called SEGA [20], a random sketch-and-
project proximal algorithm, that can also deal with non-separable regularizers. While the algorithm shares similar
components with ours, the main differences between the two algorithms are

• biasedness of the gradient: SEGA deals with unbiased gradients while they are biased for RPSD;
• projection type: SEGA projects the gradient while we project after a gradient step (option (b) vs. option (c) in
the discussion starting Section 2.2).

These differences are fundamental and create a large gap in terms of target, analysis and performance between the
two algorithms. The practical comparison is illustrated in Section 4.2.2.

3. Adaptive subspace descent

This section presents an extension of our randomized subspace descent algorithm where the projections are
iterate-dependent. Our aim is to automatically adapt to the structure identified by the iterates along the run of
the algorithm.

The methods proposed here are, up to our knowledge, the first ones where the iterate structure enforced by a
nonsmooth regularizer is used to adapt the selection probabilities in a randomized first-order method. As discussed
in the introduction, even for the special case of coordinate descent, our approach is different from existing tech-
niques that use fixed arbitrary probabilities [36, 28], greedy selection [11, 31, 30], or adaptive selection based on the
coordinate-wise Lipschitz constant and coordinates [33, 27, 38].

We present our adaptive subspace descent algorithm in two steps. First, we introduce in Section 3.1 a generic
algorithm with varying selections and establish its convergence. Second, in Section 3.2, we provide a simple general
identification result. We then combine these two results to provide an efficient adaptive method in Section 3.3.

3.1. Randomsubspace descentwith time-varying selection. For any randomized algorithm, using iterate-dependent
sampling would automatically break down the usual i.i.d. assumption. In our case, adapting to the current iterate
structure means that the associated random variable depends on the past. We thus need further analysis and notation.

In the following, we use the subscript ℓ to denote the ℓ-th change in the selection. We denote by L the set of time
indices at which an adaptation is made, themselves denoted by kℓ = min{k > kℓ−1 : k ∈ L}.

In practice, at each time k , there are two decisions to make (see Section 3.3): (i) if an adaptation should be
performed; and (ii) how to update the selection. Thus, we replace the i.i.d. assumption of Assumption 2 with the
following one.

Assumption 3 (On the randomness of the adaptive algorithm). For all k > 0,Sk is Fk -measurable and admissible.
Furthermore, if k < L, (Sk) is independent and identically distributed on [kℓ,k]. The decision to adapt or not at time
k is Fk -measurable, i.e. (kℓ)ℓ is a sequence of Fk -stopping times.

8

Under this assumption, we can prove the convergence of the varying-selection random subspace descent, Algo-
rithm 2. A generic result is given in Theorem 2 and a simple specification in the following example. The rationale
of the proof is that the stability of the algorithm is maintained when adaptation is performed sparingly.

Algorithm 2: Adaptive Randomized Proximal Subspace Descent - ARPSD

1: Initialize z0, x 1 = proxγд(Q−10 (z0)), ℓ = 0, L = {0}.
2: for k = 1, . . . do
3: yk = Qℓ

(
xk − γ∇ f

(
xk

))
4: zk = P

Sk

(
yk

)
+ (I − P

Sk)
(
zk−1

)
5: xk+1 = proxγд

(
Q−1

ℓ

(
zk

))
6: if an adaptation is decided then

7: L← L ∪ {k + 1}, ℓ ← ℓ + 1
8: Generate a new admissible selection

9: Compute Qℓ = P
− 1

2

ℓ
and Q−1

ℓ

10: Rescale zk ← QℓQ
−1
ℓ−1z

k

11: end if

12: end for

Theorem 2 (ARPSD convergence). Let Assumptions 1 and 3 hold. For any γ ∈ (0, 2/(µ + L)], let the user choose its
adaptation strategy so that:

• the adaptation cost is upper bounded by a deterministic sequence: ‖QℓQ
−1
ℓ−1‖

2
2 ≤ aℓ ;

• the inter-adaptation time is lower bounded by a deterministic sequence: kℓ − kℓ−1 ≥ cℓ ;

• the selection uniformity is lower bounded by a deterministic sequence: λmin(Pℓ−1) ≥ λℓ−1;

then, from the previous instantaneous rate 1 − αℓ−1 := 1 − 2γ µLλℓ−1/(µ + L), the corrected rate for cycle ℓ writes

(1 − βℓ) := (1 − αℓ−1)a1/cℓℓ
. (9)

Then, we have for any k ∈ [kℓ,kℓ+1)

�

[
‖xk+1 − x⋆‖22

]
≤ (1 − αℓ)k−kℓ

ℓ∏
m=1

(1 − βm)cm ‖z0 −Q0

(
x⋆ − γ∇ f

(
x⋆

))
‖22 .

This theorem means that by balancing the magnitude of the adaptation (i.e. am) with the time before adaptation
(i.e. cm) from the knowledge of the current rate (1 − αm−1), one can retrieve the exponential convergence with a
controlled degraded rate (1 − βm). This result is quite generic, but it can be easily adapted to specific situations. For
instance, we provide a simple example with a global rate on the iterates in the forthcoming Example 4.

For now, let us turn to the proof of the theorem. To ease its reading, themain notations andmeasurability relations
are depicted in Figure 1.

iterations

kℓ

adaptation

kℓ + cℓ+1

new adaptation possible

zk−1, xk ,yk

k

S
k

Fk−1 zk → xk+1 → yk+1

{kℓ+1 = k + 1}
Fk

k + 1

S
k+1

Figure 1: Summary of notations about iteration, adaptation and filtration. The filtration Fk−1 is the sigma-

algebra generated by {Sℓ}ℓ≤k−1 encompassing the knowledge of all variables up to yk (but not zk).

9

Proof. Proof. We start by noticing that, for a solution x⋆ of (1), the proof of Theorem 1 introduces the companion
variable z⋆ = Q

(
x⋆ − γ∇ f

(
x⋆

))
which directly depends on Q , preventing us from a straightforward use of the

results of Section 2.3. However, defining z⋆
ℓ
= Qℓ

(
x⋆ − γ∇ f

(
x⋆

))
, Lemmas 2 and 3 can be directly extended and

combined to show for any k ∈ [kℓ,kℓ+1)

�

[
‖zk − z⋆

ℓ
‖22 |Fk−1

]
≤

(
1 − 2γ µLλmin(Pℓ)

µ + L

)
︸ ︷︷ ︸

≤1−αℓ

‖zk−1 − z⋆
ℓ
‖22 . (10)

Since the distribution of the selection has not changed since kℓ , iterating (10) leads to

�

[
‖zk − z⋆

ℓ
‖22 | Fkℓ−1

]
≤ (1 − αℓ)k−kℓ ‖zkℓ−1 − z⋆ℓ ‖

2
2 . (11)

We focus now on the term ‖zkℓ−1 − z⋆
ℓ
‖22 corresponding to what happens at the last adaptation step. From the

definition of variables in the algorithm and using the deterministic bound on ‖QℓQ
−1
ℓ−1‖, we write

�

[
‖zkℓ−1 − z⋆

ℓ
‖22 |Fkℓ−2

]
≤ �

[
‖QℓQ

−1
ℓ−1(z

kℓ−2
+ Pkℓ−1(ykℓ−1 − zkℓ−2) −QℓQ

−1
ℓ−1z

⋆
ℓ−1‖

2
2 |Fkℓ−2

]

≤ �
[
‖QℓQ

−1
ℓ−1‖

2
2 ‖zkℓ−2 + Pkℓ−1(ykℓ−1 − zkℓ−2) − z⋆ℓ−1‖

2
2 |Fkℓ−2

]
(12)

≤ aℓ(1 − αℓ−1)‖zkℓ−2 − z⋆ℓ−1‖
2
2 .

Repeating this inequality backward to the previous adaptation step zkℓ−1 , we get

�

[
‖zkℓ−1 − z⋆

ℓ
‖22 |Fkℓ−1

]
≤ aℓ(1 − αℓ−1)kℓ−kℓ−1 ‖zkℓ−1 − z⋆ℓ−1‖

2
2

≤ aℓ(1 − αℓ−1)cℓ ‖zkℓ−1 − z⋆ℓ−1‖
2
2 , (13)

using the assumption of bounded inter-adaptation times. Combining this inequality and (11), we obtain that for any
k ∈ [kℓ,kℓ+1),

�

[
‖zk − z⋆

ℓ
‖22

]
≤ (1 − αℓ)k−kℓ

ℓ∏
m=1

am(1 − αm−1)cm ‖z0 − z⋆0 ‖22 .

Using now (9), we get

�

[
‖zk − z⋆

ℓ
‖22

]
≤ (1 − αℓ)k−kℓ

ℓ∏
m=1

(1 − βm)cm ‖z0 − z⋆0 ‖22

Finally, the non-expansiveness of the prox-operator propagates this inequality to xk , since we have

‖xk − x⋆‖22 = ‖proxγд(Q−1ℓ (z
k−1)) − proxγд(Q−1ℓ (z

⋆
ℓ
))‖22

≤ ‖Q−1
ℓ
(zk−1 − z⋆

ℓ
)‖22 ≤ λmax(Q−1ℓ)

2‖zk−1 − z⋆
ℓ
‖22 = λmax(Pℓ)‖zk−1 − z⋆ℓ ‖

2
2 ≤ ‖zk−1 − z⋆ℓ ‖

2
2 .

This concludes the proof. �

Example 4 (Explicit convergence rate). Let us specify Theorem 2 with the following simple adaptation strategy. We
take a fixed upper bound on the adaptation cost and a fixed lower bound on uniformity:

‖QℓQ
−1
ℓ−1‖

2
2 ≤ a λmin(Pℓ) ≥ λ. (14)

Then from the rate 1 − α = 1 − 2γ µLλ/(µ + L), we can perform an adaptation every

c = ⌈log(a)/log
(
(2 − α)/(2 − 2α)

)
⌉ (15)

iterations, so that a(1 − α)c = (1 − α/2)c and kℓ = ℓc. A direct application of Theorem (2) gives that, for any k ,

�

[
‖xk+1 − x⋆

ℓ
‖22

]
≤

(
1 − γ µLλ

µ + L

)k
C

where C = ‖z0 −Q0(x⋆ − γ∇ f (x⋆))‖22 . That is the same convergence mode as in the non-adaptive case (Theorem 1)
with a modified rate. Note the modified rate provided here (of the form (1 − α/2) to be compared with the 1 − α

10

of Theorem 1) was chosen for clarity; any rate strictly slower than 1 − α can bring the same result by adapting c

accordingly.

Remark 2 (On the adaptation frequency). Theorem 2 and Example 4 tell us that we have to respect a prescribed
number of iterations between two adaptation steps. We emphasize here that if this inter-adaptation time is violated,
the resulting algorithm may be highly unstable. We illustrate this phenomenon on a TV-regularized least squares
problem: we compare two versions of ARPSDwith the same adaptation strategy verifying (14) but with two different
adaptation frequencies

• at every iteration (i.e. taking cℓ = 1)
• following theory (i.e. taking cℓ = c as per Eq. (15))

On Figure 2, we observe that adapting every iteration leads to a chaotic behavior. Second, even though the theoretical
number of iterations in an adaptation cycle is often pessimistic (due to the rough bounding of the rate), the iterates
produced with this choice quickly become stable (i.e. identification happens, which will be shown and exploited in
the next section) and show a steady decrease in suboptimality.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·105

10

15

20

25

30

Iteration

It
er
at
es

st
ru
ct
u
ra
l
sp
ar
si
ty

every iteration as in theory

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·105

10−10

10−7

10−4

10−1

102

Iteration

Su
b
o
p
ti
m
al
it
y

every iteration as in theory

Figure 2: Comparisons between theoretical and harsh updating time for ARPSD.

A drawback of Theorem 2 is that the adaptation cost, inter-adaptation time, and selection uniformity have to be
bounded by deterministic sequences. This can be restrictive if we do not have prior knowledge on the problem or if
the adaptation cost varies a lot. This drawback can be circumvented to the price of loosing the rate per iteration to
the rate per adaptation, as formalized in the following result.

Theorem 3 (ARPSD convergence: practical version). Let Assumptions 1 and 3 hold. Take γ ∈ (0, 2/(µ + L)], choose
λ > 0, and set β = γ µLλ/(µ + L). Consider the following adaptation strategy:

1) From the observation of xkℓ−1, choose a new sampling with Pℓ and Qℓ , such that λmin(Pℓ) ≥ λ;

2) Compute cℓ so that ‖QℓQ
−1
ℓ−1‖

2
2 (1 − αℓ−1)cℓ ≤ 1 − β where αℓ−1 = 2γ µLλmin(Pℓ−1)/(µ + L);

3) Apply the new sampling after cℓ iterations (kℓ = kℓ−1 + cℓ).

Then, we have for any k ∈ [kℓ,kℓ+1)

�

[
‖xk+1 − x⋆‖22

]
≤ (1 − αℓ)k−kℓ (1 − β)ℓ ‖z0 −Q0

(
x⋆ − γ∇ f

(
x⋆

))
‖22 .

Proof. Proof. The proof follows the same pattern as the one of Theorem 2. The only difference is that the three
control sequences (adaptation cost, inter-adaptation time, and selection uniformity) are now random sequences since
they depend on the iterates of the (random) algorithm. This technical point requires a special attention. In (12), the
adaptation introduces a cost by a factor ‖QℓQ

−1
ℓ−1‖

2
2 , which is not deterministically upper-bounded anymore. However

11

it is Fkℓ−1 -measurable by construction of Qℓ , so we can write

�

[
‖zkℓ−1 − z⋆

ℓ
‖22 |Fkℓ−1

]

= �

[
�

[
‖zkℓ−1 − z⋆

ℓ
‖22 |Fkℓ−2

]
|Fkℓ−1

]

≤ �
[
�

[
‖QℓQ

−1
ℓ−1(z

kℓ−2
+ Pkℓ−1(ykℓ−1 − zkℓ−2) − QℓQ

−1
ℓ−1z

⋆
ℓ−1‖

2
2 |Fkℓ−2

]
|Fkℓ−1

]

≤ �
[
‖QℓQ

−1
ℓ−1‖

2
2 (1 − αℓ−1)‖zkℓ−2 − z⋆ℓ−1‖

2
2 |Fkℓ−1

]

= ‖QℓQ
−1
ℓ−1‖

2
2 (1 − αℓ−1)�

[
‖zkℓ−2 − z⋆

ℓ−1‖
2
2 |Fkℓ−1

]
.

Using Eq. (10), this inequality yields

�

[
‖zkℓ−1 − z⋆

ℓ
‖22 |Fkℓ−1

]
≤ ‖QℓQ

−1
ℓ−1‖

2
2 (1 − αℓ−1)kℓ−kℓ−1�

[
‖zkℓ−1−1 − z⋆

ℓ−1‖
2
2 |Fkℓ−1

]

≤ (1 − β)�
[
‖zkℓ−1−1 − z⋆

ℓ−1‖
2
2 |Fkℓ−1

]
.

where we used points 2) and 3) of the strategy to bound the first terms deterministically. Finally, we obtain

�

[
‖zkℓ−1 − z⋆

ℓ
‖22

]
= �

[
�

[
‖zkℓ−1 − z⋆

ℓ
‖22 |Fkℓ−1

]]

≤ (1 − β)�
[
‖zkℓ−1−1 − z⋆

ℓ−1‖
2
2

]
then the rest of the proof follows directly by induction. �

3.2. Identificationof proximal algorithms. As discussed in the introduction, identification of some optimal struc-
ture has been extensively studied in the context of constrained convex optimization (see e.g. [44]) and nonsmooth
optimization (see e.g. [21]). In this section, we provide a general identification result for proximal algorithms useful
for our developments, using the notion of sparsity vector.

Definition 3 (Sparsity vector). LetM = {M1, . . . ,Mm} be a family of subspaces of�n withm elements. We define
the sparsity vector on M for point x ∈ �n as the {0, 1}-valued2 vector SM(x) ∈ {0, 1}m verifying

[SM(x)]i = 0 if x ∈Mi and 1 elsewhere. (16)

An identification result is a theorem stating that the iterates of the considered algorithm eventually belong to
some – but not all – subspaces in M. We formulate such a result for almost surely converging proximal-based
algorithms as follows. This very simple result is inspired from the extended identification result of [15] (but does not
rely on strong primal-dual structures as presented in [15]).

Theorem 4 (Enlarged identification). Let (uk) be an �n-valued sequence converging almost surely to u⋆ and define

sequence (xk) as xk = proxγд(uk) and x⋆ = proxγд(u⋆). Then (xk) identifies some subspaces with probability one;

more precisely for any ε > 0, with probability one, after some finite time,

SM(x⋆) ≤ SM(xk) ≤
⋃

u ∈B(u⋆,ε)
SM(proxγд(u)). (17)

Proof. Proof. The proof is divided between the two inequalities. We start with the right inequality. As uk → u⋆

almost surely, for any ε > 0, uk will belong to a ball centered around u⋆ of radius ε in finite time with probability
one. Then, trivially, it will belong to a subspace if all points in this ball belong to it, which corresponds to the second
inequality.

Let us turn now to the proof of the left inequality. Consider the sets to which x⋆ belongs i.e. M⋆
= {Mi ∈M :

x⋆ ∈ Mi }; as M is a family of subspaces, there exists a ball of radius ε ′ > 0 around x⋆ such that no point x in it

2For two vectors a, b ∈ {0, 1}m , we use the following notation and terminology: (1) if [a]i ≤ [b]i for all i = 1, . .,m, we say that b is greater

than a , noted a ≤ b ; and (2) we define the union c = a ∪ b as [c]i = 1 if [a]i = 1 or [b]i = 1 and 0 elsewhere.

12

belong to more subspaces than x⋆ i.e. x <M \M⋆. As xk → x⋆ almost surely, it will reach this ball in finite time
with probability one and thus belong to fewer subspaces than x⋆. �

This general theorem explains that iterates of any converging proximal algorithm will eventually be sandwiched
between two extremes families of subspaces controlled by the pair (x⋆,u⋆). This identification can be exploited
within our adaptive algorithm ARPSD for solving Problem (1). Indeed, assuming that the two extreme subspaces of
(17) coincide, the theorem says that the structure of the iterate SM(xk) will be the same as the one of the solution
SM(x⋆). In this case, if we choose the adaptation strategy of our adaptive algorithm ARPSD deterministically from
SM(xk), then, after a finite time with probability one, the selection will not be adapted anymore. This allows us to
recover the rate of the non-adaptive case (Theorem 1), as formalized in the next theorem.

Theorem 5 (Improved asymptotic rate). Under the same assumptions as in Theorems 2 and 3, if the solution x⋆ of (1)
verifies the qualification constraint3

SM(x⋆) =
⋃

u ∈B(x⋆−γ ∇f (x⋆),ε)
SM(proxγд(u)) (QC)

for any ε > 0 small enough, then, using an adaptation deterministically computed from (SM(xk)), we have

�[‖xk − x⋆‖22] = O

((
1 − λmin(P⋆)

2γ µL

µ + L

)k)

where P⋆ is the average projection matrix of the selection associated with SM(x⋆).

Proof. Proof. Let u⋆ = x⋆ − γ∇ f (x⋆) and observe from the optimality conditions of (1) that x⋆ = proxγд(u⋆). We

apply Theorem 4 and the qualification condition (QC) yields that SM(xk) will exactly reach SM(x⋆) in finite time.
Now we go back to the proof of Theorem 3 to see that the random variable defined by

X k
=

{
xkℓ if k ∈ (kℓ,kℓ + cℓ]
xk if k ∈ (kℓ + cℓ,kℓ+1]

for some ℓ

also converges almost surely to x⋆. Intuitively, this sequence is a replica of (xk) except that it stays fixed at the
beginning of adaptation cycles when no adaptation is admitted. This means that SM(X k) which can be used for
adapting the selection will exactly reach SM(x⋆) in finite time. From that point on, since we use an adaptation
technique that deterministically relies on SM(xk), there are no more adaptations and thus the rate matches the
non-adaptive one of Theorem 1. �

This theoremmeans that ifд,M, and C are chosen in agreement, the adaptive algorithm ARPSD eventually reaches
a linear rate in terms of iterations as the non-adaptive RPSD. In addition, the term λmin(P) present in the rate now
depends on the final selection and thus on the optimal structure which is much better than the structure-agnostic
selection of RPSD in Theorem 1. In the next section, we develop practical rules for an efficient interlacing of д, M,
and C.

3.3. Identification-based subspace descent. In this section, we provide practical rules to sample efficiently sub-
spaces according to the structure identified by the iterates of our proximal algorithm. According to Theorem 5, we
need to properly choose C with respect to д and M to have a good asymptotic regime. According to Theorem 3,
we also need to follow specific interlacing constraints to have a good behavior along the convergence. These two
aspects are discussed in Section 3.3.1 and Section 3.3.2, respectively.

3The qualifying constraint (QC) may seem hard to verify at first glance but for most structure-enhancing regularizers, it simplifies greatly

and reduces to usual nondegeneracy assumptions. Broadly speaking, this condition simply means that the point u⋆
= x⋆ − γ ∇f (x⋆) is not

borderline to be put to an identified value by the proximity operator of the regularizer proxγд . For example, when д(x) = λ1 ‖x ‖1, the qualifying
constraint (QC) simply rewrites x⋆

i = 0⇔ ∇i f (x⋆) ∈] − λ1, λ1[; for д is the TV-regularization (7), the qualifying constraint means that there is

no point u (in any ball) around x⋆ −γ ∇f (x⋆) such that proxγд (u) has a jump that x⋆ does not have. In general, this corresponds to the relative

interior assumption of [22]; see the extensive discussion of [43].

13

3.3.1. How to update the selection. We provide here general rules to sample in the family of subspaces C according
to the structure identified with the family of M. To this end, we need to consider the two families C and M that
closely related. We introduce the notion of generalized complemented subspaces.

Definition 4 (Generalized complemented subspaces). Two families of subspaces M = {M1, . . . ,Mm} and C =

{C1, . . . , Cm} are said to be (generalized) complemented subspaces if for all i = 1, . . . ,m{
(Ci

⋂
Mi) ⊆

⋂
j Cj

Ci +Mi = �
n

Example 5 (Complemented subspaces and sparsity vectors for axes and jumps). For the axes subspace set (see Sec-
tion 2.4.1)

C = {C1, . . . , Cn} with Ci = {x ∈ �n : x j = 0 ∀j , i}, (18)

a complemented identification set is

M = {M1, . . . ,Mn} with Mi = {x ∈ �n : xi = 0}, (19)

asMi
⋂

Ci = {0} =
⋂

j Cj and Ci +Mi = �
n . In this case, the sparsity vector SM(x) corresponds to the support of x

(indeed [SM(x)]i = 0 iff x ∈Mi ⇔ xi = 0). Recall that the support of a point x ∈ �n is defined as the size-n vector
supp(x) such that supp(x)i = 1 if xi , 0 and 0 otherwise. By a slight abuse of notation, we denote by |supp(x)| the
size of the support of x , i.e. its number of non-null coordinates and |null(x)| = n − |supp(x)|.

For the jumps subspace sets (see Section 2.4.2)

C = {C1, .., Cn−1} with Ci =
{
x ∈ �n : x j = x j+1 for all j , i

}
(20)

a complemented identification set is

M = {M1, ..,Mn−1} with Mi = {x ∈ �n : xi = xi−1} , (21)

asMi
⋂

Ci = span({1}) = ⋂
j Cj and Ci+Mi = �

n . Here SM(xk) corresponds to the jumps of x (indeed [SM(xk)]i =
0 iff xk ∈Mi ⇔ xki = xki+1). . The jumps of a point x ∈ �n is defined as the vector jump(x) ∈ �(n−1) such that for
all i we have: jump(x)i = 1 if xi , xi+1 and 0 otherwise.

The practical reasoning with using complemented families is the following. If the subspace Mi is identified at
time K (i.e. [SM(xk)]i = 0 ⇔ xk ∈ Mi for all k ≥ K), then it is no use to update the iterates in Ci in preference,
and the next selection Sk should not include Ci anymore. Unfortunately, the moment after which a subspace is
definitively identified is unknown in general; however, subspaces Mi usually show a certain stability and thus Ci
may be “less included” in the selection. This is the intuition behind our adaptive subspace descent algorithm: when
the selectionSk is adapted to the subspaces inM to which xk belongs, this gives birth to an automatically adaptive
subspace descent algorithm, from the generic ARPSD.

Table 1 summarizes the common points and differences between the adaptive and non-adaptive subspace descent
methods. Note that the two options introduced in this table are examples on how to generate reasonably performing
admissible selections. Their difference lies in the fact that for Option 1, the probability of sampling a subspace outside
the support is controled, while for Option 2, the number of subspaces is controlled (this makes every iteration com-
putationally similar which can be interesting in practice). Option 2 will be discussed in Section 3.3.2 and illustrated
numerically in Section 4.

Notice that, contrary to the importance-like adaptive algorithms of [38] for instance, the purpose of these methods
is not to adapt each subspace probability to local steepness but rather to adapt them to the current structure. This is
notably due to the fact that local steepness-adapted probabilities can be difficult to evaluate numerically and that in
heavily structured problems, adapting to an ultimately very sparse structure already reduces drastically the number
of explored dimensions, as suggested in [19] for the case of coordinate-wise projections.

3.3.2. Practical examples and discussion. We discuss further the families of subspaces of Example 5 when selected
with Option 2 of Table 1.

14

(non-adaptive) subspace descent adaptive subspace descent
RPSD ARPSD

Subspace family C = {C1, .., Cc }

Algorithm

yk = Q
(
xk − γ∇ f

(
xk

))
zk = P

Sk

(
yk

)
+ (I − P

Sk)
(
zk−1

)
xk+1 = proxγд

(
Q−1

(
zk

))

Selection

Option 1
Ci ∈ Sk with probability

Ci ∈ Sk with probability p

{
p if xk ∈Mi ⇔ [SM(xk)]i = 0
1 elsewhere

Option 2

Sample s elements uniformly in

Sample s elements uniformly in C {Ci : xk ∈Mi i.e. [SM(xk)]i = 0}
and add all elements in

{Cj : xk <Mj i.e. [SM(xk)]j = 1}
Table 1: Strategies for non-adaptive vs. adaptive algorithms

Coordinate-wise projections. Using the subspaces (18) and (19), a practical adaptative coordinate descent can be
obtained from the following reasoning at each adaptation time k = kℓ−1:

• Observe SM(xk) i.e. the support of xk .
• Take all coordinates in the support and randomly select s coordinates outside the support. Compute4 associ-
ated Pℓ , Qℓ , and Q−1

ℓ
. Notice that λmin(Pℓ) = pℓ = s/|null(xk)|.

• Following the rules of Theorem 3, compute

cℓ =

log

(
‖QℓQ

−1
ℓ−1‖

2
2

)
+ log(1/(1 − β))

log(1/(1 − αℓ−1))

with αℓ−1 = 2pℓ−1γ µL/(µ + L)

for some small fixed 0 < β ≤ 2γ µL/(n(µ + L)) ≤ infℓ αℓ .
Apply the new sampling after cℓ iterations (i.e. kℓ = kℓ−1 + cℓ).

Finally, we notice that the above strategy with Option 2 of Table 1 produces moderate adaptations as long as the
iterates are rather dense. To see this, observe first that QℓQ

−1
ℓ−1 is a diagonal matrix, the entries of which depend

on the support of the corresponding coordinates at times kℓ−1 and kℓ−2. More precisely, the diagonal entries are
described in the following table:

i is in the support at

kℓ−1 kℓ−2
[
QℓQ

−1
ℓ−1

]
ii

yes yes 1

no yes 1
pℓ
=
|null(xkℓ−1) |

s

yes no pℓ−1 =
s

|null(xkℓ−2) |

no no
pℓ−1
pℓ
=
|null(xkℓ−1) |
|null(xkℓ−2) |

4Let us give a simple example in �4:

for xk =
©
«

1.23

−0.6
0

0

ª®®®¬
, SM(xk) =

©
«

1

1

0

0

ª®®®¬
, then

�[C1 ⊆ Sk] = �[C2 ⊆ Sk] = 1

�[C3 ⊆ Sk] = �[C4 ⊆ Sk] = pℓ := s/ |null(xk) | = s/2

Pℓ =

©
«

1

1

pℓ
pℓ

ª®®®
¬
Qℓ =

©
«

1

1

1/√pℓ
1/√pℓ

ª®®®
¬
Q
−1
ℓ
=

©
«

1

1 √
pℓ √

pℓ

ª®®®
¬

15

Thus, as long as the iterates are not sparse (i.e. in the first iterations, when |null(xk)| ≈ s is small), the adaptation
cost is moderate so the first adaptations can be done rather frequently. Also, in the frequently-observed case when
the support only decreases (SM(xkℓ−2) ≤ SM(xkℓ−1)), the second line of the table is not active and thus ‖QℓQ

−1
ℓ−1‖ = 1,

so the adaptation can be done without waiting.
Vectors of fixed variations. The same reasoning as above can be done for vectors of fixed variation by using the
families (20) and (21). At each adaptation time k = kℓ−1:

• Observe SM(xk) i.e. the jumps of x ;
• The adapted selection consists in selecting all jumps present in xk and randomly selecting s jumps that are
not in xk . Compute Pℓ , Qℓ , and Q−1

ℓ
(to the difference of coordinate sparsity they have to be computed

numerically).
• For a fixed β > 0, compute

cℓ =

log

(
‖QℓQ

−1
ℓ−1‖

2
2

)
+ log(1/(1 − β))

log(1/(1 − αℓ−1))

.

Apply the new sampling after cℓ iterations (i.e. kℓ = kℓ−1 + cℓ).

4. Numerical illustrations

We report preliminary numerical experiments illustrating the behavior of our randomized proximal algorithms
on standard problems involving ℓ1/TV regularizations. We provide an empirical comparison of our algorithms with
the standard proximal (full and coordinate) gradient algorithms and a recent proximal sketching algorithm.

4.1. Experimental setup. We consider the standard regularized logistic regression with three different regulariza-
tion terms, which can be written for given (ai ,bi) ∈ �n+1 (i = 1, . . . ,m) and parameters λ1, λ2 > 0

+ λ1‖x ‖1 (22a)

min
x ∈�n

1

m

m∑
i=1

log
(
1 + exp

(
−bia⊤i x

))
+

λ2

2
‖x ‖22 + λ1‖x ‖1,2 (22b)

+ λ1TV(x) (22c)

We use two standard data-sets from the LibSVM repository: the a1a data-set (m = 1, 605 n = 123) for the TV regu-
larizer, and the rcv1_train data-set (m = 20, 242 n = 47, 236) for the ℓ1 and ℓ1,2 regularizers. We fix the parameters
λ2 = 1/m and λ1 to reach a final sparsity of roughly 90%.

The subspace collections are taken naturally adapted to the regularizers: by coordinate for (22a) and (22b), and
by variation for (22c). The adaptation strategies are the ones described in Section 3.3.2.

We consider five algorithms:

Name Reference Description Randomness

PGD vanilla proximal gradient descent None
x5 RPCD [29] standard proximal coordinate descent x coordinates selected for each update

x SEGA [20] Algorithm SEGA with coordinate sketches rank(Sk) = x
x RPSD Algorithm 1 (non-adaptive) random subspace descent Option 2 of Table 1 with s = x
x ARPSD Algorithm 2 adaptive random subspace descent Option 2 of Table 1 with s = x

For the produced iterates, we measure the sparsity of a point x by ‖SM(xk)‖1, which corresponds to the size of
the supports for the ℓ1 case and the number of jumps for the TV case. We also consider the quantity:

Number of subspaces explored at time k =
k∑
t=1

‖SM(x t)‖1.

We then compare the performance of the algorithms on three criteria:

5In the following, x is often given in percentage of the possible subspaces, i.e. x% of |C |, that is x% of n for coordinate projections and x% of

n − 1 for variation projections.

16

• functional suboptimality vs iterations (standard comparison);
• size of the sparsity pattern vs iterations (showing the identification properties);
• functional suboptimality vs number of subspaces explored (showing the gain of adaptivity).

4.2. Illustrations for coordinate-structured problems.

4.2.1. Comparison with standard methods. We consider first ℓ1-regularized logistic regression (22a); in this setup, the
non-adaptive RPSD boils down to the usual randomized proximal gradient descent (see Section 2.4.1). We compare
the proximal gradient to its adaptive and non-adaptive randomized counterparts.

First, we observe that the iterates of PGD and ARPSD coincide. This is due to the fact that the sparsity of iterates
only decreases (SM(xk) ≤ SM(xk+1)) along the convergence, and according to Option 2 all the non-zero coordinates
are selected at each iteration and thus set to the same value as with PGD. However, a single iteration of 10%-ARPSD
costs less in terms of number of subspaces explored, leading the speed-up of the right-most plot. Contrary to the
adaptive ARPSD, the structure-blind RPSD identifies much later then PGD and shows poor convergence.

0 0.5 1 1.5 2 2.5 3
·104

0

20

40

60

80

100

Iteration

It
er
at
e
sp
ar
si
ty

PGD

10% RPSD
10% ARPSD

0 0.5 1 1.5 2 2.5 3
·104

10−8

10−6

10−4

10−2

100

Iteration

Su
b
o
p
ti
m
al
it
y

PGD

10% RPSD
10% ARPSD

0 0.2 0.4 0.6 0.8 1
·109

10−7

10−5

10−3

10−1

101

Number of Subspaces explored

Su
b
o
p
ti
m
al
it
y

PGD

10% RPSD
10% ARPSD

Figure 3: ℓ1-regularized logistic regression (22a)

4.2.2. Comparison with SEGA. In Figure 4, we compare ARPSD algorithm with SEGA algorithm featuring coordinate
sketches [20]. While the focus of SEGA is not to produce an efficient coordinate descent method but rather to use
sketched gradients, SEGA and RPSD are similar algorithmically and reach similar rates (see Section 2.4). As men-
tioned in [20, Apx. G2], SEGA is slightly slower than plain randomized proximal coordinate descent (10% RPSD) but
still competitive, which corresponds to our experiments. Thanks to the use of identification, ARPSD shows a clear
improvement over other methods in terms of efficiency with respect to the number of subspaces explored.

0 1,000 2,000 3,000 4,000 5,000
0

20

40

60

80

100 s s

s

Iteration

It
er
at
e
sp
ar
si
ty

PGD

s 10% SEGA
10% RPSD
10% ARPSD

0 1,000 2,000 3,000 4,000 5,000

10−3

10−1

101

103
s

s

s

Iteration

Su
b
o
p
ti
m
al
it
y

PGD

s 10% SEGA
10% RPSD
10% ARPSD

0 0.5 1 1.5 2 2.5
·107

10−3

10−1

101

103
s

s

s

number of subspaces explored

Su
b
o
p
ti
m
al
it
y

PGD

s 10% SEGA
10% RPSD
10% ARPSD

Figure 4: ℓ1,2 regularized logistic regression (22b)

4.3. Illustrations for total variation regularization. We focus here on the case of total variation (22c) which is a
typical usecase for our adaptive algorithm and subspace descent in general. Figure 5 displays a comparison between
the vanilla proximal gradient and various versions of our subspace descent methods.

17

We observe first that RPSD, not exploiting the problem structure, fails to reach satisfying performances as it
identifies lately and converges slowly. In contrast, the adaptive versions ARPSD perform similarly to the vanilla
proximal gradient in terms of sparsification and suboptimality with respect to iterations. As a consequence, in terms
of number of subspaces explored, ARPSD becomes much faster once a near-optimal structure is identified. More
precisely, all adaptive algorithms (except 1 ARPSD, see the next paragraph) identify a subspace of size ≈ 8% (10 jumps
in the entries of the iterates) after having explored around 105 subspaces. Subsequently, each iteration involves
a subspace of size 22,32,62 (out of a total dimension of 123) for 10%,20%,50% ARPSD respectively, resulting in the
different slopes in the red plots on the rightmost figure.

0 1,000 2,000 3,000 4,000

20

40

60

80

10%

10% 10% 10%

20%

20% 20% 20%

50%

50% 50% 50%

Iteration

It
er
at
e
sp
ar
si
ty

PGD

20% RPSD
1 ARPSD

10% 10% ARPSD
20% 20% ARPSD
50% 50% ARPSD

0 1,000 2,000 3,000 4,000
10−11

10−8

10−5

10−2

101
10%

10%

10%

10%

20%

20%

20%

20%

50%

50%

50%

50%

Iteration

Su
b
o
p
ti
m
al
it
y

PGD

20% RPSD
1 ARPSD

10% 10% ARPSD
20% 20% ARPSD
50% 50% ARPSD

0 1 2 3 4
·105

10−11

10−8

10−5

10−2

101
10%

10%

10%

10%

20%

20%

20%

20%

50%

50%

50%

50%

Number of Subspaces explored

Su
b
o
p
ti
m
al
it
y

PGD

20% RPSD
1 ARPSD

10% 10% ARPSD
20% 20% ARPSD
50% 50% ARPSD

Figure 5: 1D-TV-regularized logistic regression (22c)

Finally, Figure 6 displays 20 runs of 1 and 20% ARPSD as well as the median of the runs in bold. We notice that
more than 50% of the time, a low-dimensional structure is quickly identified (after the third adaptation) resulting
in a dramatic speed increase in terms of subspaces explored. However, this adaptation to the lower-dimensional
subspace might take some more time (either because of poor identification in the first iterates or because a first
heavy adaptation was made early and a pessimistic bound on the rate prevents a new adaptation in theory). Yet,
one can notice that these adaptations are more stable for the 20% than for the 1 ARPSD, illustrating the “speed versus
stability” tradeoff in the selection.

0 1 2 3 4
·105

10−12

10−9

10−6

10−3

100

Number of Subspaces explored

Su
b
o
p
ti
m
al
it
y

1 ARPSD

0 1 2 3 4
·105

10−12

10−9

10−6

10−3

100

Number of Subspaces explored

Su
b
o
p
ti
m
al
it
y

20% ARPSD

Figure 6: 20 runs of ARPSD and their median (in bold) on 1D-TV-regularized logistic regression (22c)

Appendix A. Convergence in the non-strongly convex case

In this appendix, we study the convergence of the subspace descent algorithms, when the smooth function f

is convex but not strongly convex. Removing the strong convexity from Assumption 1, we need existence of the
optimal solutions of (1) and thus we make the following assumption.

Assumption 4. The function f is convex L-smooth and the function д is convex, proper, and lower-semicontinuous.
Let X⋆

, ∅ denote the set of minimizers of Problem (1).

With Assumption 4 replacing Assumption 1, the convergence results (Theorems 1 and 2) extend from similar
rationale. Let us here formalize the result and its proof for the non-adaptive case: the next theorem establishes the
convergence of RPSD, still with the usual fixed stepsize in (0, 2/L).

18

Theorem 6 (RPSD convergence). Let Assumptions 4 and 2 hold. Then, for any with γ ∈ (0, 2/L), the sequence (xk) of
the iterates of RPSD converges almost surely to a point in the set X⋆ of the minimizers of (1).

To prove this result, one can first notice that Lemma 2 still holds, contrary to Lemma 3. Thus, let us provide a
replacement for Lemma 3 in the non-strongly convex setup.

Lemma 4. If Assumptions 4 and 2 holds, then for γ ∈ (0, 2/L) and for any x⋆ ∈ X⋆ (with associated z⋆ = y⋆ =

Q
(
x⋆ − γ∇ f

(
x⋆

))
), one has

‖yk − y⋆‖2P − ‖zk−1 − z⋆‖2P ≤ −
2 − γL
γL

‖∇ f (xk) − ∇ f (x⋆)‖22 .

Proof. Proof. Using the same arguments as in the proof of Lemma 3, we can also show that

‖yk − y⋆‖2P =
xk − γ∇ f (xk) − (x⋆ − γ∇ f (x⋆))2

2
; (23)

and ‖xk − x⋆‖22 ≤ ‖zk−1 − z⋆‖2P. (24)

Now, using the Baillon-Haddad theorem (see [2, Cor. 18.16]), for γ ∈ (0, 2/L), one has

‖xk − γ∇ f (xk) − (x⋆ − γ∇ f (x⋆))‖22 ≤ ‖xk − x⋆‖22 −
2 − γL
γL

‖∇ f (xk) − ∇ f (x⋆)‖22 .

Combining with (23),(24) directly leads to the result. �

Proof. Proof.(of Theorem 6)Combining Lemmas 2 and 4, we get for anyx⋆ ∈ X⋆ and associated z⋆ = Q
(
x⋆ − γ∇ f

(
x⋆

))
�

[
‖zk − z⋆‖22 |Fk−1

]
≤ ‖zk−1 − z⋆‖22 −

2 − γL
γL
‖∇ f (xk) − ∇ f (x⋆)‖22 . (25)

Taking the expectation on both sides and telescoping, we get that �[∑∞k=1 ‖∇ f (xk) − ∇ f (x⋆)‖22] < ∞ and thus

∇ f (xk) → ∇ f (x⋆) with probability one.
Eq. (25) also implies that, as in the strongly convex case, the sequence (‖zk − z⋆‖22) is a non-negative super-

martingale with respect to the filtration (Fk) and thus converges to a finite random variable (in fact, that is a com-
mon observation for randomized monotone operators; see e.g. [4, Apx. B]). As a consequence, the sequence (zk) is
bounded almost surely. Let z be an accumulation point of (zk); it verifies ∇ f (proxγд(Q−1z)) = ∇ f (x⋆) and is thus

in Z⋆
= {Q (x − γ∇ f (x)) : x ∈ X⋆}. Denote x ∈ X⋆ such that z = Q (x − γ∇ f (x)).

Using for x the same rationale as above for x⋆, we can prove that the sequence ‖zk − z‖22 converges. Therefore,

we deduce that with probability one, lim ‖zk − z‖22 = lim inf ‖zk − z‖22 = 0. This shows that (zk) converges almost
surely to z. Applying the map proxγд ◦ Q−1 to this result leads to the claimed result. �

Acknowledgments.

The authors benefited from the support of IDEX Grenoble Alpes IRS grant DOLL.

References

[1] Bach, Francis, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, et al. 2012. Optimization with sparsity-inducing

penalties. Foundations and Trends® in Machine Learning 4(1) 1–106.

[2] Bauschke, Heinz H, Patrick L Combettes. 2011. Convex analysis and monotone operator theory in Hilbert spaces. Springer

Science & Business Media.

[3] Bertsekas, Dimitri. 1976. On the goldstein-levitin-polyak gradient projection method. IEEE Transactions on automatic control

21(2) 174–184.

[4] Bianchi, Pascal, Walid Hachem, Franck Iutzeler. 2016. A coordinate descent primal-dual algorithm and application to dis-

tributed asynchronous optimization. IEEE Transactions on Automatic Control 61(10) 2947–2957.

[5] Bubeck, Sébastien, et al. 2015. Convex optimization: Algorithms and complexity. Foundations and Trends® in Machine

Learning 8(3-4) 231–357.

[6] Burke, James V, Jorge J Moré. 1988. On the identification of active constraints. SIAM Journal on Numerical Analysis 25(5)

1197–1211.

[7] Candes, Emmanuel J, Michael B Wakin, Stephen P Boyd. 2008. Enhancing sparsity by reweighted ℓ 1 minimization. Journal

of Fourier analysis and applications 14(5-6) 877–905.

19

[8] Combettes, Patrick L, Jean-Christophe Pesquet. 2007. Proximal thresholding algorithm for minimization over orthonormal

bases. SIAM Journal on Optimization 18(4) 1351–1376.

[9] Combettes, Patrick L, Jean-Christophe Pesquet. 2011. Proximal splitting methods in signal processing. Fixed-point algorithms

for inverse problems in science and engineering. Springer, 185–212.

[10] Condat, Laurent. 2013. A direct algorithm for 1-d total variation denoising. IEEE Signal Processing Letters 20(11) 1054–1057.

[11] Dhillon, Inderjit S, Pradeep K Ravikumar, Ambuj Tewari. 2011. Nearest neighbor based greedy coordinate descent. Advances

in Neural Information Processing Systems. 2160–2168.

[12] Donoho, David L. 1995. De-noising by soft-thresholding. IEEE transactions on information theory 41(3) 613–627.

[13] Drusvyatskiy, Dmitriy, Adrian S Lewis. 2014. Optimality, identifiability, and sensitivity. Mathematical Programming 147(1-2)

467–498.

[14] Fadili, Jalal, Guillaume Garrigos, Jérome Malick, Gabriel Peyré. 2019. Model consistency for learning with mirror-stratifiable

regularizers. International Conference on Artificial Intelligence and Statistics (AISTATS).

[15] Fadili, Jalal, Jerome Malick, Gabriel Peyré. 2018. Sensitivity analysis for mirror-stratifiable convex functions. SIAM Journal

on Optimization 28(4) 2975–3000.

[16] Fercoq, Olivier, Alexandre Gramfort, Joseph Salmon. 2015. Mind the duality gap: safer rules for the lasso. International

Conference on Machine Learning. 333–342.

[17] Frongillo, Rafael, MarkDReid. 2015. Convergence analysis of predictionmarkets via randomized subspace descent. Advances

in Neural Information Processing Systems. 3034–3042.

[18] Glasmachers, Tobias, Urun Dogan. 2013. Accelerated coordinate descent with adaptive coordinate frequencies. Asian Con-

ference on Machine Learning. 72–86.

[19] Grishchenko, Dmitry, Franck Iutzeler, Jérôme Malick, Massih-Reza Amini. 2018. Asynchronous distributed learning with

sparse communications and identification. arXiv preprint arXiv:1812.03871 .

[20] Hanzely, Filip, Konstantin Mishchenko, Peter Richtarik. 2018. Sega: Variance reduction via gradient sketching. Advances in

Neural Information Processing Systems. 2083–2094.

[21] Hare, WL, Adrian S Lewis. 2004. Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex

Analysis 11(2) 251–266.

[22] Lewis, Adrian S. 2002. Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization 13(3) 702–725.

[23] Lewis, Adrian S, Jingwei Liang. 2018. Partial smoothness and constant rank. arXiv preprint arXiv:1807.03134 .

[24] Liang, J., J. Fadili, G. Peyré. 2017. Activity identification and local linear convergence of forward–backward-type methods.

SIAM Journal on Optimization 27(1) 408–437.

[25] Loshchilov, Ilya, Marc Schoenauer, Michèle Sebag. 2011. Adaptive coordinate descent. Proceedings of the 13th annual confer-

ence on Genetic and evolutionary computation. ACM, 885–892.

[26] Mishchenko, Konstantin, Franck Iutzeler, Jérôme Malick. 2020. A distributed flexible delay-tolerant proximal gradient algo-

rithm. SIAM Journal on Optimization 30(1) 933–959.

[27] Namkoong, Hongseok, Aman Sinha, Steve Yadlowsky, John C Duchi. 2017. Adaptive sampling probabilities for non-smooth

optimization. International Conference on Machine Learning. 2574–2583.

[28] Necoara, Ion, Andrei Patrascu. 2014. A random coordinate descent algorithm for optimization problems with composite

objective function and linear coupled constraints. Computational Optimization and Applications 57(2) 307–337.

[29] Nesterov, Yu. 2012. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM Journal on Opti-

mization 22(2) 341–362.

[30] Nutini, Julie, Issam Laradji, Mark Schmidt. 2017. Let’s make block coordinate descent go fast: Faster greedy rules, message-

passing, active-set complexity, and superlinear convergence. preprint arXiv:1712.08859 .

[31] Nutini, Julie, Mark Schmidt, Issam Laradji, Michael Friedlander, Hoyt Koepke. 2015. Coordinate descent converges faster

with the gauss-southwell rule than random selection. International Conference on Machine Learning. 1632–1641.

[32] Ogawa, Kohei, Yoshiki Suzuki, Ichiro Takeuchi. 2013. Safe screening of non-support vectors in pathwise svm computation.

International Conference on Machine Learning. 1382–1390.

[33] Perekrestenko, Dmytro, Volkan Cevher, Martin Jaggi. 2017. Faster coordinate descent via adaptive importance sampling.

International Conference on Artificial Intelligence and Statistics (AISTATS).

[34] Poon, Clarice, Jingwei Liang, Carola Schoenlieb. 2018. Local convergence properties of SAGA/Prox-SVRG and acceleration.

International Conference on Machine Learning. 4124–4132.

[35] Qu, Zheng, Peter Richtárik. 2016. Coordinate descent with arbitrary sampling i: Algorithms and complexity. Optimization

Methods and Software 31(5) 829–857.

20

[36] Richtárik, Peter, Martin Takáč. 2014. Iteration complexity of randomized block-coordinate descent methods for minimizing

a composite function. Mathematical Programming 144(1-2) 1–38.

[37] Richtárik, Peter, Martin Takáč. 2016. On optimal probabilities in stochastic coordinate descent methods. Optimization Letters

10(6) 1233–1243.

[38] Stich, Sebastian U, Anant Raj, Martin Jaggi. 2017. Safe adaptive importance sampling. Advances in Neural Information

Processing Systems. 4381–4391.

[39] Sun, Yifan, Halyun Jeong, Julie Nutini, Mark Schmidt. 2019. Are we there yet? manifold identification of gradient-related

proximal methods. 22nd International Conference on Artificial Intelligence and Statistics. 1110–1119.

[40] Teboulle, Marc. 2018. A simplified view of first order methods for optimization. Mathematical Programming 1–30.

[41] Tibshirani, Robert, Michael Saunders, Saharon Rosset, Ji Zhu, Keith Knight. 2005. Sparsity and smoothness via the fused

lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67(1) 91–108.

[42] Tseng, Paul. 2001. Convergence of a block coordinate descent method for nondifferentiable minimization. Journal of opti-

mization theory and applications 109(3) 475–494.

[43] Vaiter, S., M. Golbabaee, J. Fadili, G. Peyré. 2015. Model selection with low complexity priors. Information and Inference: A

Journal of the IMA 4(3) 230.

[44] Wright, Stephen J. 1993. Identifiable surfaces in constrained optimization. SIAM Journal on Control and Optimization 31(4)

1063–1079.

[45] Wright, Stephen J. 2012. Accelerated block-coordinate relaxation for regularized optimization. SIAM Journal on Optimization

22(1) 159–186.

[46] Wright, Stephen J. 2015. Coordinate descent algorithms. Mathematical Programming 151(1) 3–34.

[47] Yuan, Lei, Jun Liu, Jieping Ye. 2011. Efficient methods for overlapping group lasso. Advances in Neural Information Processing

Systems. 352–360.

[48] Zhao, Peilin, Tong Zhang. 2015. Stochastic optimization with importance sampling for regularized loss minimization. inter-

national conference on machine learning. 1–9.

21

	1. Introduction
	2. Randomized subspace descent
	2.1. Subspace selection
	2.2. A random subspace proximal gradient algorithm
	2.3. Analysis and convergence rate
	2.4. Examples and connections with the existing work

	3. Adaptive subspace descent
	3.1. Random subspace descent with time-varying selection
	3.2. Identification of proximal algorithms
	3.3. Identification-based subspace descent

	4. Numerical illustrations
	4.1. Experimental setup
	4.2. Illustrations for coordinate-structured problems
	4.3. Illustrations for total variation regularization

	Appendix A. Convergence in the non-strongly convex case
	Acknowledgments.
	References

