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Abstract

We establish, for the first time, a connection between stochastic games and mul-
tiparameter eigenvalue problems, using the theory developed by Shapley and Snow
(1950). This connection provides new results, new proofs, and new tools for studying
stochastic games.
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1 Introduction

Stochastic games were introduced in the 1950’s by Shapley [12]. They are played by
two opponents over a finite set of states: the state variable follows a Markov chain
controlled by both players, to each state corresponds a matrix game that determines
a stage payoff, and the first player maximises a discounted sum of the stage payoffs
while the second player minimises the same amount. Stochastic games have a value
vkλ ∈ R for any discount factor λ ∈ (0, 1] and any initial state k. Moreover, for each λ,
the vector of values vλ = (v1λ, . . . , v

n
λ) ∈ Rn is the unique fixed point of the so-called

Shapley operator Φ(λ, · ) : Rn → Rn, where n ∈ N∗ denotes the number of states. The
convergence of the values as λ vanishes was established by Bewley and Kohlberg [3]
in the late 70’s using Tarski-Seidenberg elimination theorem from mathematical logic
and the Puiseux theorem. Three alternative proofs have been provided since then, by
Szczechla, Connell, Filar and Vrieze [14], Oliu-Barton [9] and Attia and Oliu-Barton
[2]. Besides the convergence, the latter provided a characterisation of the limit values.

But let us go back to matrix games. In the late 1920’s, Von Neumann proved the
celebrated minmax theorem: “Every matrix game G has a value, denoted by val(G), and
both players have optimal strategies”. The set of optimal strategies was characterised
in the 1950’s by Shapley and Snow [13] as a polytope, and each of its extreme points
corresponds to a square sub-matrix Ġ of G, for which the following formula holds:

val(G) =
det(Ġ)

S(co(Ġ))
(1.1)

For any matrix M , co(M) denotes its co-factor matrix and S(M) denotes the sum of
its entries. The sub-matrices characterising the extreme points of the set of optimal
strategies are the so-called Shapley-Snow kernels of the game. Szczechla, Connell, Filar
and Vrieze [14] noted, in the late 1990’s, that applying the theory of Shapley and Snow
to stochastic games provides, for any fixed discount factor λ, a system of n polynomial
equalities (in n variables) that is satisfied by the vector of values vλ. Indeed, for each
1 ≤ k ≤ n and z ∈ Rn, the k-th coordinate of Shapley’s operator Φk(λ, z) is the value
of a matrix game, denoted by Gk(λ, z), whose entries depend polynomially in (λ, z).
By considering a Shapley-Snow kernel of each of these games at z = vλ and by setting:

P k(λ, z) := det(Ġk(λ, z)) − zkS(co(Ġk(λ, z)) (1.2)
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one deduces from (1.1) that vλ satisfies the polynomial equality P k(λ, vλ) = 0. Al-
though initially defined for the variables (λ, z) ∈ (0, 1] × Rn, the polynomial system

P 1(λ, z) = · · · = Pn(λ, z) = 0 (1.3)

can also be seen as an analytical variety in Cn+1. To every choice of a square sub-
matrix of Gk(λ, z) for each 1 ≤ k ≤ n thus corresponds an analytical variety, so that
their union C is an analytical variety too. Szczechla et al. [14] prove that the set
{(λ, vλ), λ ∈ (0, 1]} is a regular 1-dimensional connected component of C, from which
they deduce the convergence of the values vλ as λ vanishes.

In the present paper, we propose to apply the theory of Shapley and Snow to
stochastic games in a different manner, namely through multiparameter eigenvalue
problems (MEP), a terminology introduced by Atkinson in the 1960’s. As we will show,
our approach considerably simplifies the analysis of stochastic games and provides
several new results. The connection between MEP, the theory of Shapley and Snow
and stochastic games can be described as follows. First of all, represent the stochastic
game by an n× (n+ 1) array of matrices:

D =



M1

0 M1
1 . . . M1

n
...

...
. . .

...
Mn

0 Mn
1 . . . Mn

n




that contains all the relevant data of the stochastic game, namely, the matrices cor-
responding to each state, the transition probabilities and the discount factor. The
array representation is reminiscent of MEP, except that the matrices in D might be
rectangular while MEP are only defined for arrays of square matrices. Indeed, for each
1 ≤ k ≤ n, the matrices Mk

0 , . . . ,M
k
n are square matrices of equal size, then D defines

a MEP, that is, the problem of finding a vector z ∈ Cn which satisfies:

det(Mk
0 + z1Mk

1 + · · ·+ znMk
n) = 0, 1 ≤ k ≤ n (1.4)

MEP can be tacked by introducing n + 1 auxiliary matrices, denoted by ∆0, . . . ,∆n,
which allow to transform (1.4) into the following uncoupled system:

det(∆k − zk∆0) = 0, 1 ≤ k ≤ n (1.5)

System (1.5) is simpler to solve, as each variable appears in a separate equation. More-
over, Atkinson [1] proved that (1.4) and (1.5) have the same solutions under suitable
assumptions, such as the invertibility of the matrix ∆0. Applying the theory of MEP
to stochastic games has two important consequences: on the one hand, it allows to
transform the polynomial system (1.3) satisfied by the vector vλ into an uncoupled a
polynomial system, that is, a polynomial equation P k(λ, zk) = 0 satisfied by vkλ, for
each 1 ≤ k ≤ n; on the other hand, it provides new algebraic insight on the values. The
bridge between MEP and stochastic games is provided by the theory of Shapley and
Snow. Indeed, by considering a Shapley-Snow kernel of each of the games Gk(λ, vλ),
1 ≤ k ≤ n, like in Szczechla et al. [14], we restrict our attention to a n× (n+1) array
Ḋ of square (and relevant) matrices.
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1.1 Main results

The combination of these two theories (Shapley and Snow [13] and Atkinson [1]),
and their application to stochastic games is the main novelty of this paper, since
our approach provides new tools, new results and simpler proofs of important known
results. Our main results are the following:

Result 1. For any fixed λ ∈ (0, 1] and 1 ≤ k ≤ n one has:

(i) vkλ is the unique w ∈ R satisfying val((−1)n(∆̇k − w∆̇0)) = 0.

(ii) rank(∆̇k − vkλ∆̇
0) < maxw∈R rank(∆̇k −w∆̇0).

(iii) There exists a polynomial P k ∈ Ek such that P k(λ, vkλ) = 0.

(iv) If the stage payoffs, the transition probabilities and the discount factor are ratio-
nal, then vkλ is algebraic of order at most rank(∆̇0).

In this result, Ek denotes a finite set of bi-variate polynomials and ∆̇k and ∆̇0

denote two square sub-matrices of ∆k and ∆0 respectively. An explicit construction
of Ek, ∆̇k and ∆̇0 will be provided. Moreover, the bound of (iv) is tight.

Result 2. For any fixed 1 ≤ k ≤ n one has:

(i) Any accumulation point of (vkλ), as λ vanishes, belongs to a finite set V k. As a
consequence, the values converge and the limit vk0 := limλ→0 v

k
λ belongs to V k.

(ii) If the stage payoffs, the transition probabilities and the discount factor are ratio-
nal, then vk0 is algebraic of order at most rank(∆̇0).

In this result, the set V k is constructed explicitly: it is the set of the real roots
of finitely many polynomials obtained from the set of polynomials Ek. The set V k

provides an alternative method to compute the value of vk0 exactly, provided that all
the data of the game is rational.

Result 3. For any fixed 1 ≤ k ≤ n one has:

(i) There exists P k ∈ Ek and λk
0 > 0 such that P k(λ, vkλ) = 0, for all λ ∈ (0, λk

0).

(ii) There exists λk
0 > 0 and a finite set W k of Puiseux series on (0, λk

0) such that the
value function λ 7→ vkλ, λ ∈ (0, λk

0) belongs to W k.

(iii) As λ vanishes one has: |vkλ − vk0 | = O(λ1/a), where a = rank(∆̇0).

In this result, the main novelty is the explicit construction of Ek and W k, from
which one can deduce new upper bounds for the speed of convergence of the discounted
values as the discount factor vanishes. Moreover, these results are obtained without
invoking neither Tarski-Seidenberg elimination principle nor the geometry of complex
analytic varieties.
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Comments

• Result 1 refines the characterisation of vkλ provided by the authors in [2], which
states that “vkλ is the unique w ∈ R satisfying val((−1)n(∆k − w∆0)) = 0”.

• In the sequel, stochastic games with state-dependent actions sets will be consid-
ered. If K denotes some finite set of states and pk and qk denote the number
of actions of Player 1 and 2, respectively, in state k ∈ K, then it is worth men-
tioning that ∆̇0 is a square matrix whose size is bounded by

∏
k∈K min(pk, qk).

Consequently, one has the following more explicit bound:

rank(∆̇0) ≤
∏

k∈K
min(pk, qk)

1.2 Outline of the paper and notation

The paper is organised as follows. Section 2 is devoted to a brief presentation of
the three theories we are concerned with: stochastic games, the theory of Shapley
and Snow and multiparameter eigenvalue problems. For the former, we propose two
presentations (a classical one, and a new one) and some relevant known results. Section
3 is devoted to establishing a link between the three theories, for a fixed discount factor,
and to prove Result 1. In Section 4, we consider the case where the discount factor
vanishes, and prove Results 2 and 3. Section 5 is devoted to some additional remarks
concerning the tightness of the bounds, the exact computation of the limit values and
an alternative construction of the so-called characterising polynomials. Section 6 is an
Appendix.

Notation. The following notation will be used throughout the paper:

• For any finite set Z, we denote its cardinality by |Z| and ∆(Z) denotes the set
of probability distributions over Z, i.e. {α : Z → [0, 1],

∑
z∈Z α(z) = 1}.

• For any matrix M , tM denotes its transpose, S(M) denotes the sum of its entries
by S(M) and Ṁ denotes a sub-matrix of M . By M ≥ 0 we indicate that all the
entries of M are nonnegative.

• For any square matrix M , we denote its trace by tr(M) :=
∑

iMii and its co-
factor matrix by co(M). For each (i, j), the (i, j)-th entry of co(M) is equal
to (−1)i+jMij where Mij is the determinant of the matrix obtained by deleting
the i-th row and j-th column. The matrices M and co(M) are of same size and
satisfy the following well-known formula:

M tco(M) = det(M) Id

where co(M) = 1 for any 1× 1-matrix M , by convention.

• We denote by 1 and U , respectively, a column vector and a matrix of 1’s. Their
dimension will depend on the context.

• Any matrix M is identified with a matrix game, also denoted by M . The value
of M is denoted by val(M). Mixed strategies of both players are considered as
column vectors. For any couple of mixed strategies (x, y), the expected payoff is
given by txMy.
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• Suppose that M is a p× q-matrix, and that (x, y) ∈ Rp×Rq. For any sub-matrix
Ṁ of M , we denote by ẋ and ẏ the restrictions of x and y to the row and column
indices of Ṁ , respectively.

2 Preliminaries

The aim of this section is to provide a brief presentation of stochastic games, the
theory of Shapley and Snow and multiparameter eigenvalue problems. For the former,
we propose two presentations: the classical one, due to Shapley [12], along with the
results obtained therein; and a new presentation recently proposed by the authors in a
previous work [2]. Some examples will be provided, in order to help the reader getting
acquainted with each of these theories.

2.1 Standard stochastic games

Stochastic games are described by a tuple Γk
λ = (K, I, J, g, q, λ, k), where K is the set

of states, I and J are the action sets of Player 1 and 2 respectively, g : K× I × J → R

is the payoff function, q : K × I × J → ∆(K) is the transition function, λ ∈ (0, 1] is a
discount factor and k ∈ K is an initial state.

We assume throughout the paper that K, I and J are finite sets, and K = {1, . . . , n}.

The game Γk
λ is defined as follows. At every stage m ≥ 1, knowing the current state

km, the players choose simultaneously and independently actions im ∈ I and jm ∈ J .
The triplet (km, im, jm) has two effects: it produces a stage payoff gm = g(km, im, jm)
and determines the law q( · |km, im, jm) of the state at stage m+1. Player 1 maximises
the expectation of

∑
m≥1 λ(1 − λ)m−1gm given k1 = k, whereas Player 2 minimizes

the same amount. By Shapley [12], this game has a value, denoted by vkλ. For both
players, a strategy is a mapping from the set of finite histories into his own set of mixed
actions. A strategy is optimal if it guarantees the value against any strategy of the
opponent.

As already observed by Shapley [12], the assumption that the current state is ob-
served implies the existence of optimal stationary strategies, that is, strategies that
depend only on the current state. For this reason, we will restrict our attention to
stationary strategies throughout the paper. The set of stationary strategies are de-
noted, respectively, by ∆(I)n and ∆(J)n. For any couple of stationary strategies (x, y)
and any initial state k, we denote by Pk

x,y the unique probability on the set of plays

(K × I × J)N induced by a couple (x, y) on the σ-algebra generated by the cylinders.
Similarly, we denote by Ek

x,y the expectation with respect to Pk
x,y. Finally, we denote

by γkλ(x, y) the corresponding expected payoff, i.e.:

γkλ(x, y) := E
k
x,y

[∑
m≥1

λ(1− λ)m−1g(km, im, jm)
]

(2.1)

The following useful notions were introduced in [12].
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Definition 2.1.1 For each λ ∈ (0, 1], 1 ≤ k ≤ n and z ∈ Rn, the local game Gk(λ, z)
is an I × J-matrix game whose entries are given by:

(Gk(λ, z))ij := λg(k, i, j) + (1− λ)
n∑

ℓ=1

q(ℓ|k, i, j)zℓ

Definition 2.1.2 For each λ ∈ (0, 1], the Shapley operator Φ(λ, · ) : Rn → Rn is
defined as follows. For each 1 ≤ k ≤ n and z ∈ Rn:

Φk(λ, z) := val(Gk(λ, z))

The main results of [12] can be stated as follows:

1. For each λ ∈ (0, 1] and 1 ≤ k ≤ n, the stochastic game Γk
λ has a value, denoted

by vkλ, and both players have optimal stationary strategies. Moreover:

vkλ = max
x∈∆(I)n

min
y∈∆(J)n

γkλ(x, y) = min
y∈∆(J)n

max
x∈∆(I)n

γkλ(x, y)

2. For each λ ∈ (0, 1], the vector of values vλ ∈ Rn is the unique fixed point of
Φ(λ, · ), which is a strict contraction of Rn with respect to the L∞-norm, i.e.
maxk |Φ

k(λ, z) − Φk(λ, z̄)| ≤ (1− λ)maxk |z
k − z̄k|, for all z, z̄ ∈ Rn.

3. For each λ ∈ (0, 1] and 1 ≤ k ≤ n, one has |vkλ| ≤ ‖g‖ := max(k,i,j) |g(k, i, j)| and

the map λ 7→ vkλ is ‖g‖-Lipschitz continuous.

2.2 A new presentation of stochastic games

It is customary to present stochastic games as a tuple (K, I, J, g, q, λ, k), like we did
in Section 2.1. Consider now an alternative presentation of the game as the following
n× (n+ 1) array of matrices:

D(λ) :=




λG1 (1− λ)Q1
1 − U (1− λ)Q1

2 . . . (1− λ)Q1
n

λG2 (1− λ)Q2
1 (1− λ)Q2

2 − U . . . (1− λ)Q2
n

...
...

...
λGn (1− λ)Qn

1 (1− λ)Qn
2 . . . (1− λ)Qn

n − U


 (2.2)

where for each 1 ≤ k, ℓ ≤ n, we have set Qk
ℓ and Gk to be the following |I|×|J |-matrices:

Qk
ℓ := (q(ℓ|k, i, j))i,j and Gk := (g(k, i, j))i,j (2.3)

and where U stands for a |I| × |J | matrix of ones. We will refer to D(λ) as the data
array, as it carries all the data of the game, just like the tuple (K, I, J, g, q, λ), where
the initial state is not specified. Let us go one step further. For any 1 ≤ k ≤ n and
0 ≤ ℓ ≤ n, set:

Mk
ℓ :=





λGk if ℓ = 0

(1− λ)Qk
k − U if k = ℓ

(1− λ)Qk
ℓ if 1 ≤ k 6= ℓ ≤ n

(2.4)
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where the dependence on λ has been omitted in order to simplify the notation. By
doing so, the stochastic games (K, I, J, g, q, λ, k), 1 ≤ k ≤ n are now presented in the
following form:

D(λ) =



M1

0 M1
1 . . . M1

n
...

...
. . .

...
Mn

0 Mn
1 . . . Mn

n


 (2.5)

Note that, by construction, the array D(λ) satisfies the following two properties:

(H1) For each 1 ≤ k ≤ n, the matrices Mk
0 , . . . ,M

k
n are of same size

(H2) For all 1 ≤ k, ℓ ≤ n and k 6= ℓ one has:

Mk
k ≤ 0, Mk

ℓ ≥ 0 and Mk
1 + · · · +Mk

n ≤ −λU

Remark 2.2.1 In our setting, all the Mk
ℓ are of same size, namely |I|×|J |. However,

for later purposes, it is more convenient to state the less restrictive property (H1), which
corresponds to the situation where the sets of actions are state-dependent.

To the array D(λ) one can associate n+ 1 auxiliary matrices, denoted by ∆0, . . . ,∆n.

Definition 2.2.2 For each 0 ≤ ℓ ≤ n, let D(ℓ)(λ) be the n × n array of matrices
obtained by deleting the (ℓ+ 1)-th column from D(λ). Then, set:

∆ℓ := (−1)ℓ det⊗D(ℓ)(λ)

where det⊗ stands for the Kronecker determinant.

The Kronecker determinant is very similar to the usual determinant except that 1) the
usual product of scalars is replaced by the so-called Kronecker product of matrices and
2) rows and columns do not play symmetric roles. We refer the reader to the Appendix
A for more details on Kronecker products and determinants. The matrices ∆0, . . . ,∆n

are well-defined thanks to (H1), are of equal size1 and each of their entries depends
polynomially on λ of degree at most n.

Let us recall two useful results from [2]. The following elementary lemma, which is
a consequence of the diagonally dominant aspect of (H2), will be used in the sequel.

Lemma 2.2.3 All the entries of (−1)n∆0 are greater or equal than λn.

Remark 2.2.4 For any couple of matrices A and B of equal size, the fact that all the
entries of B are nonzero and of same sign implies the existence of a unique w ∈ R such
that val(A − wB) = 0. Thus, Lemma 2.2.3 implies, in particular, that the equation
val(∆k − w∆0) = 0 admits a unique solution.

The following result is the building stone of [2] in obtaining a characterisation for the
limit values. None of the results of the present manuscript rely on this result; rather,
a refinement is proposed in Theorem 3.4.2, stated as Result 1 in the introduction.

1If pk×qk denotes the common size of Mk
0 , . . . ,M

k
n then ∆0, . . . ,∆n are of equal size

∏n

k=1
pk×

∏n

k=1
qk.

In the present context, pk = |I| and qk = |J | for all k so that ∆0, . . . ,∆n are |I|n × |J |n-matrices.
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Theorem 2.2.5 Fix λ ∈ (0, 1] and 1 ≤ k ≤ n. Then vkλ is the unique w ∈ R satisfying
val((−1n)(∆k − w∆0)) = 0.

Remark 2.2.6 The definition of the auxiliary matrices ∆0,∆1, . . . ,∆n was slightly
different in [2]. However, the two constructions coincide, up to a sign (−1)n.

Example 2.2.7 To illustrate the data array representation of a stochastic game, con-
sider the following game introduced by Kohlberg [7]. Consider a stochastic game with
4 states. States 3 and 4 are absorbing, that is, once they are reached, these states
are never left. The payoff in theses states is, respectively, 1 and −1, regardless of the
player’s actions. By simplicity, we will assume that the players have only one action in
these states. States 1 and 2 have action sets I = {T,B} and J = {L,R}. The payoff
functions are defined by g(1, i, j) = 1{(i,j)=(T,L)} and g(2, i, j) = −1{(i,j)=(T,L)}, and
the transitions, which are all deterministic, are described as follows:

1 2

2 3

L R

T

B

2 1

1 4

L R

T

B

1 2

where the numbers stand for states. In state 1, for instance, both (T,R) and (B,L)
lead to state 2, whereas (B,R) leads to state 1 and (T,L) induces no transition. The
corresponding array D(λ) is given by:




(
λ 0
0 0

) (
−λ − 1
−1 −1

) (
0 1− λ

1− λ 0

) (
0 0
0 1− λ

) (
0 0
0 0

)

(
−λ 0
0 0

) (
0 1− λ

1− λ 0

) (
−λ − 1
−1 −1

) (
0 0
0 0

) (
0 0
0 1− λ

)

λ 0 0 −λ 0
−λ 0 0 0 −λ




where we have identified the 1× 1 matrices of the last two rows with scalars. The first
auxiliary matrix is given by:

∆0 = λ2




λ2 λ λ λ(2− λ)
λ λ λ(2− λ) 1
λ λ(2− λ) λ 1

λ(2− λ) 1 1 1




As states 1 and 2 are similar to each other, let us focus on state 1. The auxiliary
matrix ∆1 is given by:

∆1 = λ2




λ2 λ −λ(1− λ) 0
λ λ 0 −(1− λ)2

−λ(1− λ) 0 λ(1− λ) 1
0 −(1− λ)2 1− λ 1− λ



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Hence, for any w ∈ R:

∆1−w∆0 = λ2




λ2(1− w) λ(1− w) −λ(1− λ)− λw −(2λ− λ2)w
λ(1− w) λ(1− w) −(2λ− λ2)w −(1− λ)2 − w

−λ(1− λ)− λw −(2λ− λ2)w λ(1− λ)− λw 1− λ− w
−(2λ− λ2)w −(1− λ)2 − w 1− λ− w 1− λ− w




We will come back to this example later on.

2.3 The theory of Shapley and Snow

The aim of this section is to briefly present the theory developed by Shapley and Snow
[13]. Throughout this section, G will denote a fixed |I| × |J |-matrix game with value
v = val(G). The set of optimal strategies for player 1 and 2 in G will be denoted
by X∗ ⊂ ∆(I) and Y ∗ ⊂ ∆(J), respectively. These sets are compact, non-empty
polytopes, so that they can be described by their (finitely many) extreme points. A
characterisation of the extreme points of X∗ × Y ∗, called basic solutions of G, was
the main result in Shapley and Snow [13]. The following theorem is a convenient
restatement of their results.

Theorem 2.3.1 (Shapley and Snow 1950) A couple (x, y) ∈ X∗ × Y ∗ is a basic
solution of G if and only if there exists a square sub-game Ġ satisfying:

(1) S(co(Ġ)) 6= 0

(2) ẋ = co(Ġ)

S(co(Ġ))
1̇ and ẏ =

tco(Ġ)

S(co(Ġ))
1̇

In this case, the following additional properties hold:

(3) val(G) = val(Ġ) = det(Ġ)

S(co(Ġ))

(4) tẋĠ = val(G)
t
1̇ and Ġẏ = val(G)1̇

Remark 2.3.2 Note that the ẋ and ẏ appearing in Theorem 2.3.1 are strategies, as
their components are nonnegative and add up to 1 (see Theorem 2.3.1 (2)). Hence,
(x, y) and (ẋ, ẏ) are equal, up to completing the latter with zeros.

Definition 2.3.3 A Shapley-Snow kernel (SSK) of G is a square sub-matrix Ġ satis-
fying the four conditions of Theorem 2.3.1, for some basic solution (x, y). Let İ ⊂ I
and J̇ ⊂ J be the subsets of actions that define the sub-matrix Ġ.

Theorem 2.3.1 has many consequences. Among them, the next statement gathers those
that will be used in the sequel. Its proof can be found in Section 6. For any vector
z ∈ Rd, we denote its span by < z >:= {tz, t ∈ R}.

Proposition 2.3.4 Let Ġ be a Shapley-Snow kernel of G, corresponding to a basic
solution (x, y). Then:

(i) S(co(Ġ− vU̇)) 6= 0

(ii) det(Ġ− vU̇) = val(Ġ− vU̇) = val(G− vU) = 0
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(iii) Ker(Ġ− vU̇) =< ẏ > and Ker(
t
(Ġ− vU̇ )) =< ẋ >

(iv) co(Ġ− vU̇) = S(co(Ġ− vU̇)) ẋ tẏ.

The following example illustrates the notion of a Shapley-Snow kernel.

Example 2.3.5 Consider the following 3× 3 matrix game:

G =



1 0 1
0 1 2
3 2 0




Clearly, Player 1 does not have any pure optimal strategy so that none of the entries of
G is an SSK. Let us show that the following sub-matrix, obtained by setting İ = {2, 3}
and J̇ = {1, 3} is one:

Ġ =

(
0 2
3 0

)

By Theorem 2.3.1 it is enough to check that Ġ satisfies S(co(Ġ)) 6= 0, and that com-

pleting ẋ = co(Ġ)

S(co(Ġ))
1̇ and ẏ =

tco(Ġ)

S(co(Ġ))
1̇ with zeros (outside İ and J̇ , respectively) gives

a pair of optimal strategies. An easy computation gives:

co(Ġ) =

(
0 −3

−2 0

)
, S(co(Ġ)) = −5, ẋ =

(
3

5
,
2

5

)
, ẏ =

(
2

5
,
3

5

)

A quick verification gives that, indeed, x = (0, 35 ,
2
5) and y = (25 , 0,

3
5) are optimal

strategies, so that Ġ is an SSK corresponding to the basic solution (x, y). The value of
G can be obtained using the formula of Theorem 2.3.1 (3):

val(G) = val(Ġ) =
det(Ġ)

S(co(Ġ))
=

6

5

2.4 Multiparameter eigenvalue problems

Consider an n× (n+ 1) array of real matrices:

D =



M1

0 M1
1 . . . M1

n
...

...
. . .

...
Mn

0 Mn
1 . . . Mn

n


 (2.6)

where for each 1 ≤ k ≤ n, the matrices Mk
0 , . . . ,M

k
n are square matrices of equal size.

Multiparameter eigenvalue problems (MEP), a terminology introduced by Atkinson
[1], is the problem of finding z = (z1, . . . , zn) ∈ Cn satisfying2:





det(Mn
0 + z1Mn

1 + · · ·+ znMn
n )

...
det(M1

0 + z1M1
1 + · · ·+ znM1

n)

=

=

0

0
(2.7)

2It is worth mentioning that Atkinson [1] considered the homogenous version of this problem, namely the
problem of finding (z0, . . . , zn) ∈ Cn+1 satisfying det(z0Mk

0 + · · ·+ znMk
n) = 0 for all 1 ≤ k ≤ n. Solutions

to an homogeneous MEP are determined only up to a multiplicative factor. Moreover, there is a one-to-one
map between the solutions to (2.7) and solutions to the homogeneous MEP satisfying z0 6= 0. For this
reason, Atkinson’s results can be easily transposed to the non-homogeneous case, more relevant for us.
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Remark 2.4.1 The array D differs from the array representation D(λ) of stochastic
games in two aspects:

• In addition to (H1), all matrices in the array are supposed to be square matrices.

• The array D may or may not satisfy (H2).

Each row 1 ≤ k ≤ n of (2.7) defines polynomial in n variables whose degree is the com-
mon size of Mk

0 , . . . ,M
k
n . In particular, when all the Mk

ℓ are of size 1× 1 (i.e. scalars)
the system (2.7) boils down to an affine system of equations. In this case, the auxiliary
matrices are also scalars and (2.7) admits a unique solution if and only if ∆0 6= 0.
When this is the case, the unique z ∈ Rn satisfying (2.7) is given by zk = ∆k/∆0 for
1 ≤ k ≤ n, by Cramer’s rule.

The extension of Cramer’s rule to an arbitrary n × (n + 1) array of matrices, due
to Atkinson [1], relies on the n + 1 auxiliary matrices ∆0, . . . ,∆n of Definition 2.2.2.
Namely, introduce the so-called generalised MEP, which consists in finding z ∈ Cn

satisfying: 



det(∆n − zn∆0)

...
det(∆1 − z1∆0)

=

=

0

0
(2.8)

Note that, unlike (2.7), where the unknown z appears in every equation, in (2.8) each
coordinate of z appears in a separate equation. In this sense, the latter system is an
uncoupled system, and thus much simpler to tackle.

Throughout this section, we denote by SM and S∆ the set of solutions of (2.7) and
(2.8), respectively.

One distinguishes between singular and regular MEP according to whether some of
the polynomials P k(w) := det(∆k − w∆0) are identically zero or not. The case where
∆0 is invertible is the so-called nonsingular case, for which the problem can be easily
solved. The following result can be found in Atkinson [1, Chapter 6].

Theorem 2.4.2 If ∆0 is invertible, then SM = S∆.

Remark 2.4.3 The set SM = S∆ can be easily described in this case. Indeed, the
non-singularity of ∆0 implies that z ∈ S∆ if and only if det(∆k(∆0)−1− zk Id) = 0 for
all 1 ≤ k ≤ n, so that SM is entirely described by the set of eigenvalues of the matrices
∆k(∆0)−1, 1 ≤ k ≤ n. In particular, S is a finite set and can be computed efficiently.

When some polynomial P k is identically zero, the problem is a singular MEP. This
occurs, for instance, when Ker(∆k) and Ker(∆0) share a non-zero vector. The vacuous
equality P k(w) = 0 is then replaced by the rank drop condition:

rank(∆k − zk∆0) < max
w∈R

rank(∆k − w∆0)
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The auxiliary system (2.8) is thus replaced by the following one:



rank(∆n − zn∆0)

...
rank(∆1 − z1∆0)

<

<

maxw∈R rank(∆n − w∆0)

maxw∈R rank(∆1 − w∆0)
(2.9)

Let SR denote the set of solutions of (2.9). This set refines the set S∆ in the sense that
the two coincide in the nonsingular case, but the inclusion SR ⊂ S∆ holds in general.
Muhič and Plestenjak [8, Theorems 3.5 and 3.7] establish the equality SM = SR under
the assumption that n = 2 and that SM has finitely many solutions, each of which
is algebraically and geometrically simple3. Instead, we will use the following result,
proved in the Appendix (Section 6).

Proposition 2.4.4 Suppose that all the entries of ∆0 are nonzero and of same sign.
Let z ∈ SM . Suppose that for each 1 ≤ k ≤ n there exists a couple of vectors (xk, yk)
satisfying: {

xk ∈ Ker
t
(Mk

0 + z1Mk
1 + · · ·+ znMk

n), xk > 0

yk ∈ Ker(Mk
0 + z1Mk

1 + · · ·+ znMk
n), yk > 0

Then z ∈ SR.

The following example illustrates the relation between MEP and generalised MEP.

Example 2.4.5 Consider the following 2× 3 array:

D =

(
M1

0 M1
1 M1

2

M2
0 M2

1 M2
2

)
=




2 1 1(
1 0
0 1

) (
−1 0
−1 −1

) (
2 1
3 2

)



The associated MEP is the problem of finding (u,w) ∈ C2 satisfying:

det
(
2 + u+ w

)
= 0, det

(
1− u+ 2w w
−u+ 3w 1− u+ 2w

)
= 0

By definition, the auxiliary matrices ∆0, ∆1 and ∆2 are given by:

∆0 = M1
2⊗M2

1−M1
1⊗M2

2 , ∆1 = −(M1
0⊗M2

2−M1
2⊗M2

0 ), ∆2 = M1
0⊗M2

1−M1
1⊗M2

0

The Kronecker product A⊗B coincides with the usual product when A or B (or both)
are scalars so that one can easily compute:

∆0 =

(
3 1
4 3

)
, ∆1 =

(
−3 −2
−6 −3

)
, ∆2 =

(
−3 0
−2 −3

)

The generalised MEP consists then in finding (u,w) ∈ C2 satisfying:

det

(
3 + 3u 2 + u
6 + 4u 3 + 3u

)
= 0, det

(
3 + 3w w
2 + 4w 3 + 3w

)
= 0

These equalities determine two separate polynomial equations of degree 2 which have
roots (u1, u2) and (w1, w2), respectively. The matrix ∆0 being nonsingular, the MEP
and the generalised MEP have the same solutions, i.e.

SM = SR = S∆ = {(u1, w1), (u1, w2), (u2, w1), (u2, w2)}

3See [8] for more details.
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3 Stochastic games, SSK and MEP

3.1 From stochastic games to MEP

Let D(λ) be an n×(n+1) array representation of some stochastic game. Fix 1 ≤ k ≤ n.
By Shapley and Snow [13], the local game Gk(λ, vkλ) introduced in Definition 2.1.1
admits a Shapley-Snow kernel, defined by some subsets of actions İk ⊂ I and J̇k ⊂ J
satisfying |İk| = |J̇k|. By construction, for any z ∈ Rn one has:

Gk(λ, z) − zkU = Mk
0 + z1Mk

1 + · · · + znMk
n (3.1)

Let Ṁk
0 , Ṁ

k
1 , . . . , Ṁ

k
n denote, respectively, the İk×J̇k sub-matrices of Mk

0 ,M
k
1 , . . . ,M

k
n ,

and let Ḋ(λ) be the corresponding n× (n+ 1) array of matrices, that is:

Ḋ(λ) =



Ṁ1

0 Ṁ1
1 . . . Ṁ1

n
...

...
. . .

...

Ṁn
0 Ṁn

1 . . . Ṁn
n


 (3.2)

Let ∆̇0, ∆̇1, . . . , ∆̇n be the auxiliary matrices associated to Ḋ(λ) which, by construc-
tion, are sub-matrices of ∆0,∆1, . . . ,∆n, respectively. Moreover, they are all square
and of equal size

∏n
k=1 |İ

k|. Note that their dependence on λ, which is polynomial of
degree at most n, and on the choice of the couples (İk, J̇k), 1 ≤ k ≤ n is omitted from
the notation.

Consider now the following four systems in the variable z ∈ Rn, where 1 ≤ k ≤ n:

val(Ṁk
0 + z1Ṁk

1 + · · ·+ znṀk
n) = 0

det(Ṁk
0 + z1Ṁk

1 + · · · + znṀk
n) = 0

rank(∆̇k − zk∆̇0) < maxw∈R rank(∆̇k − w∆̇0)

det(∆̇k − zk∆̇0) = 0

Let T Ṁ , SṀ , SṘ and S∆̇ denote, respectively, the set of solutions of each these
systems. Next paragraph is devoted to the relation between these subsets of Rn.

3.2 From MEP to stochastic games

Applying the theory of MEP to stochastic games one obtains the following result.

Proposition 3.2.1 {vλ} = T Ṁ ⊂ SṀ and {vλ} ⊂ SṘ ⊂ S∆̇.

Proof. By Shapley [12], the discounted value vλ ∈ Rn is the unique solution to the
system:

val(Gk(λ, z) − zkU) = 0, 1 ≤ k ≤ n (3.3)
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Indeed, this system is a restatement of Shapley’s fixed-point formulation Φ(λ, vλ) = vλ
using the fact that val(M + wU) = val(M) + w for any matrix M and any w ∈ R.
Similarly, the system

val(Ṁk
0 + z1Ṁk

1 + · · · + znṀk
n) = 0, 1 ≤ k ≤ n

has a unique solution, namely the value of the stochastic game in which, for each
1 ≤ k ≤ n, the players are restricted to play actions in the set İk × J̇k. Hence T Ṁ is a
singleton. Fix 1 ≤ k ≤ n now. The game Gk(λ, z) − zkU has the same set of optimal
strategies as the local game Gk(λ, z) for all (λ, z) (see Lemma B2 in the Appendix).
Therefore, Ġk(λ, z) − vkλU̇ = Ṁk

0 + v1λṀ
k
1 + · · · + vnλṀ

k
n is a Shapley-Snow kernel of

Gk(λ, vkλ)− vkλU . Consequently, by (3.3) and Proposition 2.3.4 (ii) one has:

0 = val(Gk(λ, vλ)− vkλU)

= val(Ṁk
0 + v1λṀ

k
1 + · · · + vnλṀ

k
n)

= det(Ṁk
0 + v1λṀ

k
1 + · · ·+ vnλṀ

k
n)

As these equalities hold for every 1 ≤ k ≤ n, it follows that {vλ} = T Ṁ ⊂ SṀ .

The inclusion {vλ} ⊂ SṘ follows from Proposition 2.4.4, which can be applied since:
first, all the entries of ∆̇0 are non-zero and of same sign by Lemma 2.2.3; second, the
optimal strategies (ẋk, ẏk) ∈ ∆(İk)×∆(J̇k) corresponding to the Shapley-Snow kernel
Ġk(λ, vλ) − vkλU satisfy ẋk > 0 and ẏk > 0 because they are strategies; and third, by
Proposition 2.3.4 (iii) one has:

{
ẋk ∈ Ker(

t
(Ġk(λ, vλ)− vkλU̇))

ẏk ∈ Ker(Ġk(λ, vλ)− vkλU̇)

To prove the last inclusion SṘ ⊂ S∆̇, let z ∈ SṘ. By definition of SṘ, for all 1 ≤ k ≤ n
one has rank(∆̇k − zk∆̇0) < maxw∈R rank(∆̇k −w∆̇0), so that ∆̇k − zk∆̇0 is not of full

rank or, equivalently, det(∆̇k − zk∆̇0) = 0. Consequently, z ∈ S∆̇.

3.3 The inclusions in Proposition 3.2.1

Let us illustrate the relations obtained in Proposition 3.2.1 via an easy example where
vλ is not the unique element neither of SṀ nor of SṘ, so that the inclusions are strict.

Remark 3.3.1 These strict inclusions also hold for Example 2.2.7, but the analysis
is more intricate. For this reason, we have preferred to illustrate this particular point
with another example.

Example 3.3.2 Consider the following absorbing game:

1∗ 0

0 1∗

L R

T

B
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where ∗ indicates an absorbing payoff. That is, the stage payoff is 0 until (T,L) or
(B,R) is played, in which case the stage payoffs are equal to 1 forever after. This game
can be represented by the following array:

D(λ) =



(
λ 0
0 λ

) (
−1 −λ
−λ −1

) (
1− λ 0
0 1− λ

)

λ 0 −λ




The so-called “normalised local games” at (u,w) ∈ R2 are given by:



G1(λ, (u,w)) − uU =

(
λ+ (1− λ)w − u −λu

−λu λ+ (1− λ)w − u

)

G2(λ, (u,w)) − wU = λ(1− w)

Any square sub-matrix of G1(λ, vλ) is a possible candidate for being a Shapley-Snow
kernel of this game, so that there are 5 of them: the entire matrix and each of its en-
tries. To see that the entire matrix is the unique SSK, we proceed as follows. Suppose
that the top-left entry is a Shapley-Snow kernel, and define Ḋ(λ) and SṀ accordingly.

In this case, (u,w) ∈ SṀ if and only if λ+ (1− λ)w− u = 0 and λ(1−w) = 0, which
has a unique solution (1, 1). But this cannot be the vector of values vλ because one
has v1λ ∈ (0, 1) for each λ ∈ (0, 1]; to see this, let Player 2 choose L and R with equal
probability and independently at every stage. A similar reasoning rules out the three
other entries of the matrix, so that the unique kernel of the game is the entire matrix.

As Ḋ(λ) = D(λ), one can omit the “dots” from the notation. By definition, SM is
given by the following system of equations in the unknown (u,w) ∈ R2:




det

(
λ+ (1− λ)w − u −λu

−λu λ+ (1− λ)w − u

)
= 0

det(λ(1− w)) = 0

Clearly, this system admits two solutions, namely ( 1
1+λ , 1) and ( 1

1−λ , 1). Consider now

the auxiliary systems SR and S∆. An easy calculation gives:

∆0 =

(
λ λ2

λ2 λ

)
, ∆1 =

(
λ 0
0 λ

)
, and ∆2 = ∆0

The last equality is in fact a more general property: for any absorbing state k with
payoff gk one has ∆k = gk∆0. Note that ∆0 is invertible here, so that the corresponding
MEP is nonsingular and, consequently, one has SR = S∆. To compute this set one
solves the following uncoupled system:




det

(
λ(1− u) −λ2u

−λ2u λ(1− u)

)
= 0

det((1− w)∆0) = 0

which, again, has two solutions, ( 1
1+λ , 1) and ( 1

1−λ , 1). We have thus obtained:

vλ =

(
1

1 + λ
, 1

)
∈ SM = SR = S∆ =

{(
1

1 + λ
, 1

)
,

(
1

1− λ
, 1

)}
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3.4 A characterising polynomial

In the previous example we showed that, for any λ ∈ (0, 1], the value v1λ is one of the
two real roots of the univariate polynomial:

P 1(u) = det

(
λ(1− u) −λ2u
−λ2u λ(1− u)

)
= λ2((1− u)2 − λ2u2)

The next result states that this property holds in general as a consequence of Propo-
sition 3.2.1.

Proposition 3.4.1 Fix λ ∈ (0, 1] and 1 ≤ k ≤ n. Then, there exists a polynomial Ṗ k

satisfying:
Ṗ k(vkλ) = 0, Ṗ k 6≡ 0 and degṖ k ≤ rank(∆̇0)

Proof. By definition, the rank of A is the size of the largest invertible square sub-
matrix Ȧ of A. Similarly, for two matrices A and B of equal size, maxw∈R rank(A+wB)
is the size of the largest square sub-matrix Ȧ+wḂ of A+wB such that the polynomial
w 7→ det(A + wB) is not identically 0. Let rk := maxw∈R rank(∆̇k − w∆̇0). By the
definition of the rank, there exists some rk × rk sub-matrix of ∆̇k −w∆̇0 such that its
determinant is a polynomial which is not identically 0. Denote this polynomial by Ṗ k.
The inclusion vλ ∈ SṘ obtained in Proposition 3.2.1 implies rank(∆̇k − vkλ∆̇

0) < rk,
so that Ṗ k(vkλ) = 0. The bound on the degree of Ṗ k follows from [4, Proposition
4.6] which states that, for any couple of square matrices A and B of equal size, the
polynomial P (w) := det(A + wB) is either identically 0, or of degree rank(B). By
definition, Ṗ k is the determinant of some sub-matrix of ∆̇k − w∆̇0 so that its degree
is bounded by the rank of ∆̇0.

Determining the polynomial P k of Proposition 3.4.1 may be difficult, as it requires
knowing the value vλ ∈ Rn, computing a Shapley-Snow kernel of each local game
Gk(λ, vkλ), and then finding a sub-matrix of maximal rank. One way to overcome this
difficulty is to note that Ṗ k is the determinant of some square sub-matrix of ∆̇k−w∆̇0,
which is a square sub-matrix of ∆k − w∆0. Hence, by considering the determinant of
all possible square sub-matrices of ∆k−w∆0 one obtains a finite family of polynomials
containing Ṗ k. Among them, let Ek denote the set of polynomials which are nonzero
and degree at most rank(∆̇0).

Summing up, we have obtained the following results, which refine the characterisa-
tion of the values given by Theorem 2.2.5.

Theorem 3.4.2 Fix λ ∈ (0, 1] and 1 ≤ k ≤ n. Then:

(i) vkλ is the unique w ∈ R satisfying val(∆̇k −w∆̇0) = 0

(ii) rank(∆̇k − vkλ∆̇
0) < maxw∈R rank(∆̇k −w∆̇0)

(iii) There exists P k ∈ Ek such that P k(vkλ) = 0.

(iv) If all the entries of D(λ) are rational, vkλ is algebraic of order at most rank(∆̇0)
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Remark 3.4.3 The novelty in (iii) with respect to the so-called semi-algebraic ap-
proach is the identification of the finite set of polynomials Ek. Also, it is important to
note that the polynomial satisfying (iii) depends on λ so that different polynomials may
correspond to different discount factors. Finally note that, because ∆k −w∆0 depends
polynomially on λ, every coefficient of every polynomial in Ek is a polynomial in λ, so
that the elements of Ek can be seen as bi-variate polynomials in (λ,w).

3.5 Consequences: back to the examples

Back to Example 3.3.2. Let P 1(λ, u) denote the characterising polynomial for state 1,
seen as a bi-variate polynomial. Namely,

P 1(λ, u) = λ2((1 − u)2 − λ2u2)

Let us show that the polynomial equality satisfied by v1λ, namely P 1(λ, v1λ) = 0, for
every λ ∈ (0, 1], implies its convergence. First of all, note that r := degλP

1(λ, u) = 4,
so that there exist unique univariate polynomials P0, . . . P4 such that:

P 1(λ,w) = P0(u) + P1(u)λ+ P2(u)λ
2 + P3(u)λ

3 + P4(u)λ
4

Namely, P0 = P1 = P3 ≡ 0, P2(u) = (1− u)2 and P4(u) = −u2. Hence, for any u ∈ R:

P 1(λ, u) = P2(u)λ
2 +O(λ4), as λ → 0

Let us show that the polynomial P2 and the term O(λ4) determine the limit value
v10 := limλ→0 v

1
λ, and the speed of convergence of v1λ to v10 . Let w0 be some accumulation

point of (v1λ)λ along some vanishing sequence (λm). Then:

lim
m→+∞

P 1(λm, v1λm
)

λ2
m

= lim
m→+∞

P2(w0) +O(λ2
m) = P2(w0) = 0 (3.4)

Consequently, w0 is a root of P2. As this is true for any accumulation point, and P2

has a unique root at 1, one obtains limλ→0 v
1
λ = 1. Moreover, the relation

0 =
P 1(λ, v1λ)

λ2
= (1− v1λ)

2 +O(λ2), as λ → 0

implies |v1λ − 1| = O(λ).

Comments

1. The fact that P2 has a unique root is not important. Indeed, suppose that
w0 < w1 are two different accumulation points. The continuity of λ 7→ v1λ implies
then that every w ∈ [w0, w1] is an accumulation point of (v1λ). But, by (3.4),
every accumulation point of (v1λ) is a root of P2. A contradiction, since by the
choice of P2, this polynomial is nonzero, and has thus finitely many roots.

2. The bound on the convergence rate is not given by the degree, nor the subindex
of P2. Rather, it is given by the algebraic order of v10 as a root of P2.
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3. The fact that the values converge is not a surprise, as the values converge for any
stochastic game. Note, however, that this approach differs from all previously
known proofs of convergence4. A new proof of convergence, which extends the
ideas exposed here, is provided in Section 4.1.

For completeness, let us also illustrate these arguments on our standing example. Back
to Example 2.2.7. The characterising polynomial of state 1 is given by:

P 1(λ, u) = det(∆1 − u∆0)

For all u ∈ R, this polynomial satisfies:

P 1(λ, u) = 16u2λ10 +O(λ11), as λ → 0

Therefore, the asymptotic behavior of v1λ can be deduced from P10(u) = 16u2 and
O(λ11). Like before, one obtains:

{
v10 := limλ→0 v

1
λ = 0

|v1λ − v10| = O(λ1/2)

3.6 The rank drop condition

As the following example shows, vkλ does not necessarily drop the rank of ∆k − w∆0.
Hence, the rank drop property of Theorem 3.4.2 (ii) gives a tighter characterisation
for the values.

Example 3.6.1 Consider the following array:

D =

(
1 −3

4
1
4

A 1
4U −3

4U

)

where A =

(
1 −3 −3

−3 1 −3

)
and U stands for a 2 × 3 matrix of ones. It corresponds

to a stochastic game with 2 states and state-dependent actions sets: both players have
one action in state 1, while in state 2 the players have 2 and 3 actions, respectively.
More precisely, it is a specific instance of the array:

D(λ) =

(
λG1 (1− λ)Q1

1 − U (1− λ)Q1
2

λG2 (1− λ)Q2
1 (1− λ)Q2

2 − U

)

for λ = 1
2 , G

1 = 2, Q1
1 = Q1

2 =
1
2 , Q

2
1 = Q2

2 =
1
2U and G2 = 2A.

A straightforward calculation gives:

∆0 =
1

2

(
1 1 1
1 1 1

)
, ∆1 =

(
1 0 0
0 1 0

)
and ∆2 =

(
1 −2 −2

−2 1 −2

)

4In chronological order, the convergence of the values has been established by Bewley and Kohlberg [3],
Szczechla, Connell, Filar and Vrieze [14], Oliu-Barton [9] and Attia and Oliu-Barton [2].
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Consequently, for all w ∈ R one has:

∆1−w∆0 =

(
1− w

2 −w
2 −w

2
−w

2 1− w
2 −w

2

)
and ∆2−w∆0 =

(
1− w

2 −2− w
2 −2− w

2
−2− w

2 1− w
2 −2− w

2

)

Clearly, rank(∆1 − w∆0) = rank(∆1 − w∆0) = 2 for all w ∈ R, so that the rank drop
condition is never satisfied.

Consider now the reduced array Ḋ constructed in Section 3. Recall that, in order
to compute a Shapley-Snow kernel for each local game, one needs to know the vector of
values vλ = (v1λ, v

2
λ). To do so, first note that the third action is dominant for player 2

in both games ∆1 − w∆0 and ∆2 − w∆0, for all w ∈ R, so that:

val(∆1 − w∆0) = −
w

2
and val(∆2 − w∆0) = −2−

w

2

As val(∆1−v1λ∆
0) = val(∆2−v2λ∆

0) = 0 by Theorem 2.2.5, it follows that vλ = (0,−4).
The local game at state 1 is a scalar, so it is trivially a Shapley-Snow kernel. At state
2, the “normalised local game” G2(λ, vλ)− v2λU is given by:

A+
1

4
Uv1λ −

3

4
Uv2λ =

(
4 0 0
0 4 0

)

which admits several Shapley-Snow kernels, the simplest being the scalar matrix 0 cor-
responding to the top-right corner. By selecting this kernel one obtains the following
reduced array (of scalars):

Ḋ =

(
1 −3

4
1
4

−3 1
4 −3

4

)

As Ḋ is a real matrix, the auxiliary matrices ∆̇0, ∆̇1 and ∆̇2 are scalars. A calculation
gives ∆̇0 = 1

2 , ∆̇
1 = 0 and ∆̇2 = −2 so that ∆̇1−w∆̇0 = −w

2 and ∆̇2−w∆̇0 = −2− w
2 .

Hence, the rank drops at the values:
{
0 = rank(∆̇1) < maxw∈R rank(∆̇1 − w∆̇0) = 1

0 = rank(∆̇2 + 4∆̇0) < maxw∈R rank(∆̇2 − w∆̇0) = 1

4 Asymptotic behaviour of the values

The aim of this section is to derive from Theorem 3.4.2 several consequences on the
asymptotic behavior of the discounted values. In order to state our results with the best
possible bounds, we will no longer assume that the action sets are state-independent.
Rather, let Ik × Jk denote the action set at state k, for all 1 ≤ k ≤ n, and let the
payoff function g and transition function q be defined over the set

Z := {(k, i, j) | 1 ≤ k ≤ n, (i, j) ∈ Ik × Jk}

All the results obtained so far can the extended word for word to the case of state-
dependent action sets. Let D(λ) be the array representation of the game, which satisfies
the properties (H1) and (H2), and let ∆0, . . . ,∆n denote the corresponding auxiliary
matrices, which are of equal size

∏n
k=1 |I

k| ×
∏n

k=1 |J
k|.
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Notation. Set L :=
∏n

k=1min(|Ik|, |Jk|)

Set g− := min(k,i,j)∈Z g(k, i, j) and g+ := max(k,i,j)∈Z g(k, i, j)

Let Ḋ(λ) be the reduced array, and let ∆̇0, . . . , ∆̇n be the corresponding auxiliary
matrices, which are square matrices of size less or equal than L. Hence, in particular,
rank(∆̇0) ≤ min(L, rank(∆0)), a bound which does not require knowing the values,
nor computing a Shapley-Snow kernel for each local game.

4.1 A new proof for the convergence of the values

Let 1 ≤ k ≤ n be fixed throughout this section. As already noted, see Remark 3.4.3,
the polynomials in Ek are bi-variate polynomials in (λ,w). By construction, for all
P k ∈ Ek one has: {

degλP
k(λ,w) ≤ Ln

degwP
k(λ,w) ≤ rank(∆̇0)

For each P k ∈ Ek there exists unique 0 ≤ s ≤ Ln and a unique (uni-variate) polynomial
ϕ(P k) 6≡ 0 satisfying the following relation for all w ∈ R:

P k(λ,w) = λsϕ(P k)(w) + o(λs), as λ → 0

Indeed, like we did in Section 3.5, let r := degλP
k(λ,w) and let P0, . . . , Pr be the unique

univariate polynomials satisfying P k(λ,w) =
∑r

ℓ=0 Pℓ(w)λ
ℓ. Then, ϕ(P k) = Ps, where

s is the smallest integer m such that Pm 6≡ 0.

Let V k denote the set of all roots of ϕ(P k) that lie on the interval [g−, g+] as P k

ranges over all polynomials of Ek. The following result formalises what was obtained
in the two examples of Section 3.5.

Proposition 4.1.1 The limit vk0 := limλ→0 v
k
λ exists. Moreover, vk0 ∈ V k.

Proof. Let w0 be an accumulation point of (vkλ) along the sequence (λm), that
is limm→+∞ λm = 0 and limm→+∞ vkλn

= w0. Accumulation points exist because

vkλ ∈ [g−, g+] for all λ ∈ (0, 1]. By Theorem 3.4.2, for each m ≥ 1 there exists a
polynomial P k

m ∈ Ek such that P k
m(λm, vkλm

) = 0. The set Ek being finite, up to

extracting a sub-sequence we can assume that P k
m = P k for all m ≥ 1 and some fixed

polynomial P k ∈ Ek. Hence:

P k(λm, vkλm
) = 0, ∀m ≥ 1

By the definition of ϕ(P k), for all w ∈ R one has:

P k(λ,w) = λsϕ(P k)(w) + o(λs), as λ → 0

Consequently, dividing by λs and taking λ to 0 one obtains:

0 = lim
m→+∞

P k(λm, vkλm
)

λs
m

= ϕ(P k)(w0)
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Thus, any accumulation point of (vkλ) belongs to V k. Yet, λ 7→ vkλ is a real continuous
function, and the set of accumulation points of a real continuous function is either a
singleton or an interval. The finiteness of V k implies that it is necessarily a singleton,
which gives the desired result.

The next result follows directly from Proposition 4.1.1, and the fact that, for any
P k ∈ Ek one has degϕ(P k) ≤ rank(∆̇0).

Corollary 4.1.2 Suppose that the payoff function g and the transition function q take
only rational values. Then vk0 is algebraic of degree at most rank(∆̇0).

4.2 Speed of convergence and Puiseux expansion

Fix 1 ≤ k ≤ n throughout this section. Let us start by recalling the definition of a
Puiseux series. A map f : (0, ε) → C is a Puiseux series if there exists N ∈ N∗, m0 ∈ Z

and a sequence (bm)m≥m0
in C such that:

f(λ) =
∑

m≥m0

bmλm/N

Any bounded Puiseux series satisfies m0 ≥ 0 so that, in particular, it converges as
λ vanishes. The following result, due to Puiseux [11], will be referred as the Puiseux
theorem. For any bi-variate polynomial P (λ,w) satisfying degwP ≥ 1, there exists
λ0 > 0 such that the roots of P (λ, · ) are Puiseux series in the interval (0, λ0).

By the Puiseux theorem, the set of roots of all polynomials P k ∈ Ek satisfying
degwP ≥ 1, is a finite set of Puiseux series. Let this set of series be denoted by W k.
Our next result follows directly from Theorem 3.4.2 (iii) and the Puiseux theorem.

Proposition 4.2.1 The following assertions hold:

(i) There exists P k ∈ Ek and λk
0 > 0 satisfying: P k(λ, vkλ) = 0, for all λ ∈ (0, λk

0).

(ii) There exists λk
0 such that λ 7→ vkλ belongs to W k on (0, λk

0).

(iii) As λ vanishes one has: |vkλ − vk0 | = O(λ1/a), where a = rank(∆̇0).

Remark 4.2.2 The main novelty of (i) and (ii) is the explicit construction of Ek

and W k, and the fact that we use directly the Puiseux theorem, that is, without invok-
ing Tarski-Seidenberg elimination principle. Concerning (iii), not only this bound is
sharper than all previously obtained bounds, there are also good reasons to expect it to
be tight (see Section 5.1).

Proof. (i) and (ii) By finiteness of the set Ek, there exists a common interval
(0, ε) where all the Puiseux series of W k are well-defined. By Theorem 3.4.2 (iii), for
each λ ∈ (0, 1] there exists P k ∈ Ek satisfying P k(λ, vkλ) = 0. Consequently, for any
λ ∈ (0, ε), the point (λ, vkλ) ∈ R2 lies on the graph of one of the Puiseux series in
W k. The continuity of λ 7→ vkλ implies that, as λ goes to 0, vkλ may change from one
Puiseux series to another only at points where two series intersect. As two different
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Puiseux series cannot intersect infinitely many times on (0, ε), so that there exist some
0 < ε′ < ε such that any two Puiseux series are either congruent or disjoint in (0, ε′).
Consequently, λ 7→ vkλ is one of them on (0, ε′), which proves (i) and (ii), for λk

0 := ε′.
(iii) Let P k ∈ Ek and λk

0 be given by (i). By definition, ϕ(P k) is a uni-variate
polynomial whose degree is bounded by degwP

k. Moreover, there exists 0 ≤ s ≤ Ln
and t ≥ 1 such that, for all w ∈ R:

P k(λ,w) = λsϕ(P k)(w) +O(λs+t), as λ → 0

Since one also has P k(λ, vkλ) = 0 for all λ ∈ (0, λk
0), it follows that ϕ(P k)(vkλ) = O(λt)

as λ → 0. Thus, in particular one has ϕ(P k)(vk0 ) = 0. Consequently, there exists an
integer 1 ≤ b ≤ degϕ(P k) ≤ rank(∆̇0) and a polynomial Rk such that Rk(vk0 ) 6= 0
and:

ϕ(P k)(w) = (w − vk0 )
bRk(w), ∀w ∈ R

Hence, taking w = vkλ one has:

0 = P k(λ, vkλ) = λs(vkλ − vk0 )
bRk(vkλ) +O(λs+t), as λ → 0

which implies |vkλ− vk0 | = O(λt/b) for λ close to 0. The result follows, as t/b is minimal
for t = 1 and b = rank(∆̇0).

5 Concluding remarks

5.1 Tightness of the bounds

Simple stochastic games. A simple stochastic game is one satisfying

min(|Ik|, |Jk|) = 1, for all 1 ≤ k ≤ n

In particular, Markov decision processes are simple stochastic games, as they can be
modeled as a stochastic game where |Jk| = 1 for all 1 ≤ k ≤ n. For these games, one
has L =

∏n
k=1min(|Ik|, |Jk|) = 1 so that by Proposition 4.2.1, vkλ converges to vk0 at a

rate O(λ) and there exist polynomials ak0(λ) and ak1(λ) of degree at most n such that
vkλ is a root of ak1(λ)w + ak0(λ) = 0 for all sufficiently small λ.

Absorbing games. An absorbing game is one satisfying |Ik| = |Jk| = 1 for all
2 ≤ k ≤ n, as one can assume with no loss of generality that state 1 is the unique
non-absorbing state and that both players have one action at every other state. Hence,
L = min(|I1|, |J1|). By Proposition 4.2.1 the characterising polynomial P 1(λ,w) of v1λ
is of degree at most L in w. The following example, due to Kohlberg [7] shows that
this bound is tight.

Example 5.1.1 For any p ≥ 1, consider the following absorbing game of size p × p
introduced by Kohlberg [7]: 



1∗ 0∗ . . . 0∗

0 1∗
. . .

...
...

. . .
. . . 0∗

0 . . . 0 1∗



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where c∗ indicates a stage payoff of c and a certain transition to an absorbing state with
payoff c. For every λ ∈ (0, 1), the entire matrix is the unique Shapley-Snow kernel of
G1(λ, v1λ) so that the characterising polynomial for v1λ is given by the following equation:

P 1(λ,w) = det




1− w −w . . . −w

−λw 1− w
...

...
. . . −w

−λw . . . −λw 1− w




= (1− w)p + λR(w) + o(λ)

for some univariate polynomial R satisfying R(1) 6= 0. From the equality P 1(λ, v1λ) = 0
one deduces:

v1λ = 1− λ1/p(R(v1λ))
1/p + o(λ1/p)

Hence, v1λ converges to 1 at a rate λ1/p. As p = L, this example hits the bound of

Corollary 4.1.2, namely |v1λ − v10 | = O(λ
1

L ).

The general case. Hansen et al. [5] proved that, for a game with state-independent
action sets I and J of common size m and rational data, the algebraic degree of vkλ
(and, similarly, of the limit vk0 ) is bounded by (2m+5)n, the best known bound so far.
An example is also provided in [5] of a game with n+1 states satisfying |I1| = |J1| = 1
and |Ik| = |Jk| = m for 2 ≤ k ≤ n+1, and where the algebraic degree of the discounted
values is mn. Note that mn coincides with L :=

∏n+1
k=1 min(|Ik|, |Jk|) in this example.

Hence, there exists a family of stochastic games of arbitrary size, both in states and
in actions, such that the algebraic degree of vkλ is L. In this sense, Theorem 3.4.2 (iv)
provides a tight bound for the algebraic degrees of vkλ. Because the algebraic degree
of vkλ, the algebraic degree of vk0 and the speed of convergence of vkλ to vk0 are closely
related to each other, it is natural to think that the bounds we have obtained for the
latter are tight too. However, we have not been able to establish these results.

5.2 Computing the exact values

Fix 1 ≤ k ≤ n. By Proposition 4.1.1, the limit value vk0 belongs to V k, which is a set of
roots of finitely many polynomials. The finiteness of this set was crucial in determining
a new proof for the convergence of the values. We argue here that the set V k can also
be used for algorithmic purposes, namely, if we are looking for the exact value of vk0 in
the case where all the entries of g and q are rational.

An efficient algorithm. For an algebraic number w ∈ R its minimal polynomial
is the unique monic polynomial of least degree satisfying P (w) = 0. By Kannan,
Lenstra and Lovasz [6], there exists an algorithm (referred in the sequel as the KLL
algorithm) that computes the minimal polynomial P of w, given a bound on the degree
of P , a bound on the bit-size5 of the coefficients of P and an ε-approximation of w,
for ε small enough. A precise upper bound for ε is provided in [6], as a function of the

5For any integer p ∈ Z, its bit-size is given by bit(p) := log2(⌊p⌋) + 1. For any rational number p/q one
defines bit(p/q) := bit(p) + bit(q).
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bounds on the coefficients and the degree of the minimal polynomial.

As already noted by one of the authors [10], the approach proposed in this
manuscript yields to the best known bounds concerning the algebraic degree of vk0
and the coefficients of its minimal polynomial. Plugging them into the KLL algorithm,
together with some approximation vkλ yields a method for computing the exact values
of vk0 . A precise upper bound for λ so that vkλ is a good enough approximation of vk0
in the KLL algorithm, is obtained in [10, Proposition 4.1].

An alternative algorithm. Consider now the following alternative method for
computing vk0 exactly. First, compute the separation of V k, that is:

δ := min{|w −w′| |w,w′ ∈ V k, w′ 6= w}

Second, compute a δ/2-approximation for vk0 , that is, vkλ for an appropriate λ such that
|vkλ − v0| ≤ δ/2, where a precise explicit expression for λ is given in [10, Proposition
4.1]. By the choice of δ one clearly has:

[
vkλ −

δ

2
, vkλ +

δ

2

]
∩ V k = {vk0}

Hence, the exact value of vk0 is obtained.

Remark 5.2.1 Though the computation of V k may be problematic for large games,
the alternative algorithm has the advantage of being easy and self-contained.

5.3 Another characterising polynomial

For a given λ ∈ (0, 1] and 1 ≤ k ≤ n, we proved in Section 3.4 the existence of a
characterising polynomial for vkλ, that is, one that satisfies P k(λ, vkλ) = 0. Our con-
struction requires two steps: first, we define a reduced matrix game ∆̇k − w∆̇0 by
taking a Shapley-Snow kernel of each local game Gk(λ, vλ); second, we use the rank
drop condition of the values for this game. In this paragraph, we propose the following
different method for determining a characterising polynomial, based on 1) the theory
of Shapley and Snow, but this time applied to the game ∆k−w∆0 directly, and 2) the
equality val((−1)n(∆k − vkλ∆

0)) = 0 established by the authors in [2] (see Theorem
2.2.5).

Fix 1 ≤ k ≤ n. Set I := I1×· · ·×In and J := J1×· · ·×Jn. The game ∆k−vkλ∆
0

is a I × J -matrix game, so that it admits a Shapley-Snow kernel. Let I
k
⊂ I and

J
k
⊂ J be the subsets of actions that define one of its Shapely-Snow kernels. Let ∆

0

and ∆
k

be the I
k
× J

k
sub-matrices of ∆0 and ∆k, respectively, and for any w ∈ R

set: 



Gk(w) := (−1)n(∆k − w∆0)

G
k
(w) := (−1)n(∆

k
− w∆

0
)

P
k
(w) := det(∆

k
− w∆

0
)

The polynomial thus obtained is another characterising polynomial of vkλ.
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Proposition 5.3.1 The polynomial P
k

satisfies:

P
k
(vkλ) = 0, P

k
6≡ 0, and degP

k
= rank(∆

0
)

Proof. (i) By Theorem 2.2.5, one has val(Gk(vkλ)) = 0. By Proposition 2.3.4 (iii)
one then has:

val(Gk(vkλ)) = val(G
k
(vkλ)) = det(G

k
(vkλ)) = 0 (5.1)

Therefore, P
k
(vkλ) = 0. To prove P

k
6≡ 0 it is enough to show that its derivative (P

k
)′

is not identically 0. For any two square matrices M and H of same size, by Jacobi’s
formula one has:

det(M + εH) = det(M) + ε tr(tco(M)H) + o(ε), as ε → 0

Equivalently, the directional derivative of det(M) in the direction H is tr(tco(M)H).

Applying this result to M = ∆
k
− w∆

0
and H = −∆

0
one obtains:

(P
k
)′(vkλ) = tr(

t
co(G

k
(vkλ))(−∆

0
))

By Proposition 2.3.4 (i) and (iv), the matrix co(G
k
(vkλ)) is not identically zero and

has all its entries of same sign. Similarly, by Lemma 2.2.3, all the entries of −∆
0

are

non-zero and of same sign. Consequently, (P
k
)′(vkλ) 6= 0, so that Ṗ k 6≡ 0. To obtain

the degree of P
k
, we proceed like in the proof of Proposition 3.4.1. By [4, Proposition

4.6], for any square matrices A and B the polynomial P (w) := det(A+ wB) is either
identically 0 or of degree rank(B).

Remark 5.3.2 The bound on the degree of Ṗ k is considerably better than the bound

we obtained for P
k
. Indeed, one has:

{
degṖ k ≤ rank(∆̇0) ≤

∏n
k=1min(|Ik|, |Jk|)

degP
k
= rank(∆

0
) ≤ min(

∏n
k=1 |I

k|,
∏n

k=1 |J
k|)

Remark 5.3.3 We have exhibited two different constructions that lead to a charac-
terising polynomial for vkλ, that is: either we consider a Shapley-Snow Kernel of the
game (−1)n(∆k − vkλ∆

0) and use the fact that this game has value 0, or we consider
a sub-matrix of maximal rank of the reduced game ∆̇k − vkλ∆̇

0 obtained by taking a
Shapley-Snow kernel at each local game. If the following condition holds:

S(co(∆̇k − vkλ∆̇
0)) 6= 0

then (−1)n(∆̇k − vkλ∆̇
0) is a Shapley-Snow kernel of (−1)n(∆k − vkλ∆

0), in which case
the same polynomial can be obtained with the two constructions.

6 Appendix

Appendix A: Kronecker products

Let us start by recalling the definition of the Kronecker product of two matrices and
of the Kronecker determinant of an array of matrices.
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Definition A1. The Kronecker product of two matrices A and B of sizes m × n
and p × q respectively, denoted by A ⊗ B, is an mp × nq matrix defined by blocks as
follows:

A⊗B =




a11B · · · a1nB
...

. . .
...

am1B · · · amnB




Definition A2. The Kronecker determinant of an n× n array of matrices:


A1

1 . . . A1
n

...
. . .

...
An

n . . . An
n




is well-defined if and only for each 1 ≤ k ≤ n, the matrices Ak
1 , . . . , A

k
n are of same

size. In this case, it is given by:

det⊗



A1

1 . . . A1
n

...
. . .

...
An

n . . . An
n


 :=

∑

σ∈Σ(n)

ǫ(σ)A1
σ(1) ⊗ · · · ⊗An

σ(n)

where Σ(n) is the set of permutations of {1, . . . , n} and ǫ(σ) is the signature of σ.

Properties A3. The following well-known properties have been used in this
manuscript:

(K1) The Kronecker product ⊗ is bilinear and associative, but not commutative.

(K2) Let A1, . . . , An and B1, . . . , Bn be some matrices such that the products AkBk

are well-defined. Then (A1 ⊗ · · · ⊗An)(B1 ⊗ · · · ⊗Bn) = (A1B1)⊗ · · · ⊗ (AnBn).

(K3) The Kronecker determinant det⊗ has similar properties as the usual determinant,
that is: it is multilinear and alternating, but only with respect to the columns.
Indeed, because of the non-commutativity of the Kronecker product, rows and
columns do not play the same role, and the determinant needs to be developed
by columns.

In order to express the last two properties we need to introduce the canonical bijec-
tion mapping the product set {1, . . . , p1}×· · ·×{1, . . . , pn} into the set {1, . . . ,

∏n
ℓ=1 pℓ}

using the lexicographical order. That is, for any p1, . . . , pn ∈ N∗ set:

{1, . . . , p1} × · · · × {1, . . . , pn} → {1, . . . ,
∏n

ℓ=1
pℓ}

(i1, . . . , in) 7→ (i1 − 1)C1 + · · · + (in − 1)Cn + 1

where Cℓ :=
∏n

r:=ℓ+1 pr for each 1 ≤ ℓ < n and Cn = 1.

(K4) Let Ak be a pk × qk, for all 1 ≤ k ≤ n. Let r and s be, respectively, the images
of (i1, . . . , in) ∈ {1, . . . , p1} × · · · × {1, . . . , pn} and (j1, . . . , jn) ∈ {1, . . . , q1} ×
· · · × {1, . . . , qn} with respect to the canonical bijection. Then the entry (r, s) of
A1 ⊗ · · · ⊗An is given by:

(A1 ⊗ · · · ⊗An)
rs = Ai1j1

1 · · ·Ainjn
n
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(K5) Let A11, . . . , Ann be an n × n array of matrices such that for all 1 ≤ k ≤ n,
the matrices on the k-th row Ak1, . . . , Akn are of same size pk × qk. Let r and s
be, respectively, the images of (i1, . . . , in) ∈ {1, . . . , p1} × · · · × {1, . . . , pn} and
(j1, . . . , jn) ∈ {1, . . . , q1}×· · ·×{1, . . . , qn} with respect to the canonical bijection.
Then the entry (r, s) of the matrix det⊗(A11, . . . , Ann) satisfies:

det⊗



A11 . . . A1n
...

. . .
...

An1 . . . Ann




rs

= det



Ai1j1

11 . . . Ai1j1
1n

...
. . .

...

Ainjn
n1 . . . Ainjn

nn




Appendix B: Proof of Proposition 2.3.4

Let us start by recall its statement (see Section 2.3)

Proposition 2.3.4. Let Ġ be a Shapley-Snow kernel of G, corresponding to a
basic solution (x, y). Then:

(i) S(co(Ġ− vU̇)) 6= 0

(ii) det(Ġ− vU̇) = val(Ġ− vU̇) = val(G− vU) = 0

(iii) Ker(Ġ− vU̇) =< ẏ > and Ker(
t
(Ġ− vU̇ )) =< ẋ >

(iv) co(Ġ− vU̇) = S(co(Ġ− vU̇)) ẋ tẏ.

The proof is based on three easy lemmas.

Lemma B1. For any square matrix M one has:

(i) det(M + wU) = det(M) + wS(co(M)), for all w ∈ R

(ii) The map w 7→ S(co(M + wU)) is constant

(iii) The maps w 7→ co(M + wU)1 and z 7→ tco(M + wU)1 are constant

Proof. (i) Let M be some square matrix. The function w 7→ det(M + wU) is a
polynomial in w. Subtracting one row from all other rows of M + wU , it is clear
that its degree is at most 1. From the formulae tr(tMU) = S(M) and from Jacobi’s
formula:

det(M + εH) = det(M) + ε tr(tco(M)H) + o(ε), as ε → 0

which hold for any square matrix M , one deduces ∂
∂w det(M + wU)(0) = S(co(M)).

Hence, det(M+wU) = det(M)+wS(co(M)) for any square matrix M and any w ∈ R.
(ii) Applying (i) to M + wU and −w yields:

det(M) = det((M + wU)− wU) = det(M + wU)− wS(co(M + wU))

Comparing with (i), one obtains S(co(M)) = S(co(M +wU)) for any M and w.
(iii) By the symmetric role of both players, it is enough to prove the first statement. Let
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m ∈ N∗ be the size of M , and let M1, . . . ,Mm be its rows. Then, for each ℓ = 1, . . . ,m
the ℓ-th component of the vector co(M)1 satisfies:

(co(M)1)ℓ = det(M1, . . . ,Mℓ−1,1,Mℓ+1, . . . ,Mm)

= det(M1 + w1, . . . ,Mℓ−1 + w1,1,Mℓ+1 + w1, . . . ,Mm + w1)

= (co(M + wU)1)ℓ

where the second equality follows from the properties of the determinant, as we added
w times the ℓ-th column to the other columns.

Lemma B2. Let Ġ be a Shapley-Snow kernel for G. Then Ġ+ wU̇ is a Shapley-
Snow kernel of the translated game G+ wU , for any w ∈ R.

Proof. To prove that Ġ+wU̇ is a Shapley-Snow kernel, it is enough to check properties
(1) and (2) of Theorem 2.3.1. On the one hand, S(co(Ġ + wU̇)) = S(co(Ġ)) 6= 0 by
Lemma B1 (ii). On the other hand, it follows from Lemma B1 (iii) that the following
strategies do not depend on w:

ẋ(w) =
co(Ġ+ wU̇ )

S(co(Ġ+ wU̇))
1, ẏ(w) =

tco(Ġ+ wU̇ )

S(co(Ġ+ wU̇ ))
1

which completes the proof.

Lemma B3. Let M be a square matrix of size a ∈ N∗ and rank a−1, and let x and
y be such that Ker(tM) =< x > and Ker(M) =< y >. Then there exists a constant
α 6= 0 such that co(M) = αx ty.

Proof. Using the relation tA co(A) = det(A) Id, which is valid for any matrix
A, and det(M) = 0, we get tMco(M) = 0. Moreover since Ker(M) =< y >, all
the rows of co(M) are proportional to y. Hence, there exists x′ such that co(M) =
x′ ty. This equality shows that the columns of co(M) are proportional to x′, and a
symmetric argument gives that the columns are proportional to x. Therefore, x and
x′ are proportional. Let α ∈ R be such that x′ = αx so that co(M) = αx ty. As M is
of rank n− 1, the matrix co(M) is non-zero, so that α 6= 0, which proves the result.

Proof of Proposition 2.3.4. (i) By Lemma B2, Ġ−vU̇ is a Shapley-Snow kernel
for G− vU so that, in particular, S(co(Ġ− vU̇)) 6= 0.

(ii) For any matrix M and z ∈ R, clearly val(M + zU) = val(M) + z. Hence, the
formulae of Theorem 2.3.1 (3) yield:

0 = val(G− vU) = val(Ġ− vU̇ ) =
det(Ġ− vU̇)

S(co(Ġ− vU̇ ))

(iii) By the symmetric role of both players, it is enough to prove the first statement.
The matrix Ġ − vU̇ is not invertible by (ii), and its matrix of cofactors co(Ġ − vU̇)
is non-zero, thanks to (i). Hence, if 1 ≤ b ≤ min(|I|, |J |) denotes its size, one has
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rank(Ġ−vU̇) = b−1 or, equivalently dim(Ker(Ġ−vU̇)) = 1. Yet by Theorem 2.3.1 (4),
one has Ġẏ = v1̇ and ẏ 6= 0, so that (Ġ−vU̇)ẏ = 0. Consequently Ker(Ġ−vU̇) =< ẏ >.

(iv) It follows from Lemma B3, as the hypotheses are satisfied thanks to (iii). Hence,
co(Ġ − vU̇ ) = α ẋ tẏ for some α 6= 0, so that S(co(Ġ − vU̇)) = S(α ẋ tẏ) = α because
S(ẋ tẏ) = 1. �

Appendix C: Proof Proposition 2.4.4

Let us start by recalling the statement this result (see Section 2.4). Recall that an
n× (n+ 1) array of matrices D = (Mk

ℓ ) is given, where for all 1 ≤ k ≤ n the matrices
Mk

0 , . . . ,M
k
n are square and of equal size.

Proposition 2.4.4. Suppose that all the entries of (−1)n∆0 are strictly positive,
and that there exists z ∈ SM ⊂ Rn and (x1, y1), . . . , (xn, yn) satisfying, for each 1 ≤
k ≤ n: {

xk ∈ Ker
t
(Mk

0 + z1Mk
1 + · · ·+ znMk

n), xk > 0

yk ∈ Ker(Mk
0 + z1Mk

1 + · · ·+ znMk
n), yk > 0

Then z ∈ SR.

Our proof relies on two lemmas: the first one comes from Muhič and Plestenjak [8,
Lemma 3.4]; the second is borrowed from Atkinson [1, Chapter 6]. We include both
proofs for completeness, as the results are stated slightly differently in [8] and [1].

Lemma C1. Let A,B be two square matrices of the same size m, and let
v ∈ R be such that det(A + vB) = 0. Suppose there exists x ∈ Ker(t(A+ vB)) and
y ∈ Ker(A+ vB) such that txBy 6= 0. Then rank(A+ vB) < maxw∈R rank(A+wB).

Proof. Let r := rank(A + vB) and suppose that r = maxw∈R rank(A + wB). Note
that r < m, as the kernel of A + vB contains at least one non-zero vector. As the
rank of a matrix is the size of the largest invertible square sub-matrices, A + vB
admits some invertible r × r sub-matrix. By the continuity of the determinant, there
exists ε > 0 such that this sub-matrix is invertible in the interval (v − ε, v + ε), so
that rank(A + wB) ≥ r in this interval. As we have supposed that r is the maximal
rank, the converse inequality also holds, so that rank(A + wB) = r on (v − ε, v + ε).
This implies the existence of a vector y(w) ∈ Rm with polynomial entries satisfying
(A + wB)y(w) = 0 on (v − ε, v + ε) and y(v) = y. Derivating the first equality with
respect to w, one obtains:

By(w) + (A+ zB)y′(w) = 0

Multiplication by tx and taking w = v yields then:

txBy + tx(A+ vB)y′(v) = 0

where tx(A+ vB) = 0 by the choice of x. Hence txBy = 0, a contradiction.

30



Lemma C2. Let z ∈ SM and let yk 6= 0 belong to Ker(Mk
0 + z1Mk + · · ·+ znMk),

for all 1 ≤ k ≤ n. Then z ∈ S∆ and (y1⊗· · ·⊗yn) ∈ Ker(∆k−zk∆0) for all 1 ≤ k ≤ n.

Proof. Let z = (z1, . . . , zn) ∈ SM . The existence of yk 6= 0 such that yk ∈ Ker(Mk
0 +

z1Mk
1 + · · · + znMk

n) for all 1 ≤ k ≤ n follows from the fact that the matrices Mk
0 +

z1Mk
1 + · · · + znMk

n are singular. Moreover, one has y1 ⊗ · · · ⊗ yn 6= 0, as A⊗B = 0
if and only if either A = 0 or B = 0. Fix 1 ≤ k ≤ n and let ̂ the omission of the k-th
column. Then:

∆k(y1 ⊗ · · · ⊗ yn) = (−1)k det⊗



M1

0 y
1 . . . M̂1

ky
1 . . . M1

ny
1

...
...

...

Mn
0 y

n . . . M̂n
k y

n . . . Mn
n y

n




= (−1)k+1
n∑

ℓ=1

zℓ det⊗



M1

ℓ y
1 . . . M̂1

ky
1 . . . M1

ny
1

...
...

...

Mn
ℓ y

n . . . M̂n
k y

n . . . Mn
n y

n




= (−1)k+1zk det⊗



M1

ky
1 . . . M̂1

ky
1 . . . M1

ny
1

...
...

...

Mn
k y

n . . . M̂n
k y

n . . . Mn
n y

n




= zk∆0(y1 ⊗ · · · ⊗ yn)

Indeed, the first equality follows from (K2), the second is a consequence of the equalities
M ℓ′

0 yℓ
′

= −
∑n

ℓ=1 z
ℓM ℓ′

ℓ y
ℓ′ which hold for all 1 ≤ ℓ′ ≤ n and (K3), the third follows

from the fact that, for all ℓ 6= k, the array of matrices has two equal columns so that
its Kronecker determinant vanishes, and finally the last equality is obtained by taking
a cyclic permutation of the columns (of matrices) which has signature (−1)k+1. Hence

(∆k − zk∆0)(y1 ⊗ · · · ⊗ yn) = 0

or, equivalently, y1 ⊗ · · · ⊗ yn ∈ Ker(∆k − zk∆0) and det(∆k − zk∆0) = 0. The result
follows as this holds for every 1 ≤ k ≤ n.

We are now ready to prove Proposition 2.4.4. For any matrix M , we write M > 0
to indicate M ≥ 0 and M 6= 0.

Proof of Proposition 2.4.4. On the one hand, x1 ⊗ · · · ⊗ xn > 0 since for any
pair of matrices A,B > 0 implies A ⊗ B > 0. Similarly, y1 ⊗ · · · ⊗ yn > 0. Together
with the assumption that all entries of (−1)n∆0 are strictly positive, it follows that:

t
(x1 ⊗ · · · ⊗ xn)∆0(y1 ⊗ · · · ⊗ yn) 6= 0

On the other hand, by Lemma C2, one has z ∈ S∆ and y1⊗· · ·⊗yn ∈ Ker(∆k−zk∆0)
for all 1 ≤ k ≤ n. Reversing the roles of the players, one similarly has x1 ⊗ · · · ⊗ xn ∈
Ker(

t
(∆k − zk∆0)) for all 1 ≤ k ≤ n. The result follows then from Lemma C1, applied

to ∆k, ∆0, −zk, x1 ⊗ · · · ⊗ xn and y1 ⊗ · · · ⊗ yn, for all 1 ≤ k ≤ n. �
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