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Abstract

Partially Observable Markov Decision Processes (POMDPs) is a standard model for dy-
namic systems with probabilistic and nondeterministic behaviour in uncertain environments.
We prove that in POMDPs with long-run average objective, the decision-maker has approx-
imately optimal strategies with finite memory. This implies notably that approximating the
long-run value is recursively enumerable, as well as a characterization of the continuity prop-
erty of the value with respect to the transition function.
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1 Introduction

In a Partially Observable Markov Decision Process (POMDP), at each stage, the decision-maker
chooses an action that determines, together with the current state, a stage reward and the dis-
tribution over the next state. The state dynamic is imperfectly observed by the decision-maker,
who receives a stage signal on the current state before playing. Thus, POMDPs generalize the
Markov Decision Process (MDP) model of Bellman [3].

POMDPs are widely used in prominent applications such as in computational biology [10],
software verification [8], reinforcement learning [16], to name a few. Even special cases of
POMDPs, namely, probabilistic automata or blind MDPs, where there is only one signal, is
also a standard model in several applications [20, 19, 7].

In many of these applications, the duration of the problem is huge. Thus, considerable
attention has been devoted to the study of POMDPs with long duration. A standard way is to
consider the long-run objective criterion, where the total reward is the expectation of the inferior
limit average reward (see [1] for a survey). The value for this problem is known to coincide with
several classical definitions of long-run values (asymptotic value, uniform value, general uniform
value, long-run average value, uncertain-duration process value [23, 21, 22, 18, 27]) and has been
characterized in [22]. In this paper, we will simply name this common object value. Thus, strong
results are available concerning the existence and characterization of the value.

This is in sharp contrast with the study of long-run optimal strategies. Indeed, before our
work, little was known about the sophistication of strategies that approximate the value. It has
been shown that:(i) stationary strategies approximate the value in MDPs [4]; and (ii) belief-
stationary strategies approximate the value in blind MDPs [23] and POMDPs with an ergodic
structure [6].

Our main contributions are:

• Strategy complexity. We show that for every POMDP with long-run average objectives, for
every ε > 0, there is a finite-memory strategy (i.e. generated by a finite state automaton)
that achieves expected reward within ε of the optimal value. In the case of blind MDP finite
memory is equivalent to finite recall (i.e. decisions are defined using only the last actions),
but finite recall cannot achieve ε-approximations in general POMDPs.

• Computational complexity. An important consequence of our above result is that the deci-
sion version of the approximation problem for POMDPs with long-run average objectives
(see Definition 3.1) is recursively enumerable (r.e.) but not decidable. Our results on strat-
egy complexity imply the recursively enumerable upper bound and the lower bound is a
consequence of [17].

• Value property. The long-run reward of a finite-memory strategy is robust upon small
perturbations of the transition function, where the notion of perturbation over the transition
function is defined as in Solan [25] and Solan and Vieille [26]. This implies lower semi-
continuity of the value function upon such small perturbations. This result is tight in the
sense that there is an example with a discontinuous value function (see Example 4.4).

A natural question would be to ask for an upper bound on the size of the memory needed to
generate ε-optimal strategies, in terms of the data of the POMDP. In fact, a previous undecid-
ability result [17] shows that such an upper bound can not exist (see Subsection 3.1). Thus, the
existence of ε-optimal strategies with finite memory is, in some sense, the best possible result one
can have in terms of strategy complexity.
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2 Model and statement of results

2.1 Model

Throughout the paper we mostly use the following notation: (i) sets are denoted by calli-
graphic letters, e.g. A,H,K,S; (ii) elements of these sets are denoted by lowercase letters, e.g.
a, h, k, s; and (iii) random elements with values in these sets are denoted by uppercase letters,
e.g. A,H,K, S. For a set C, denote ∆(C) the set of probability measure distributions over C, and
δc the Dirac measure at some element c ∈ C. We will slightly abuse notation by not making a dis-
tinction between a probability measure (which can be evaluated on events) and its corresponding
probability density (which can be evaluated on elements).

Consider a POMDP Γ = (K,A,S, q, g), with finite state space K, finite action set A, finite
signal set S, transition function q : K ×A → ∆(K× S) and reward function g : K ×A → [0, 1].

Given p1 ∈ ∆(K), called initial belief, the POMDP starting from p1 is denoted by Γ(p1) and
proceeds as follows:

• An initial state K1 is drawn from p1. The decision-maker knows p1 but does not know K1.

• At each stage m ≥ 1, the decision-maker takes some action Am ∈ A. This action determines
a stage reward Gm := g(Km, Am), where Km is the (random) state at stage m. Then, the
pair (Km+1, Sm) is drawn from q(Km, Am). The next state is Km+1 and the decision-maker
is informed of the signal Sm, but neither of the reward Gm nor of the state Km+1.

At stage m, the decision-maker remembers all the past actions and signals, which is called
history before stage m. Let Hm := (A×S)m−1 be the set of histories before stage m, with the con-
venient notation (A×S)0 := {∅}. A strategy is a mapping σ : ∪m≥1Hm → A. The set of strategies
is denoted by Σ. The randomness introduced by the transition function, q : K ×A → ∆(K × S),
suggests that a history hm ∈ Hm can occur under many sequences of states (k1, k2, . . . , km−1).
The infinite sequence (k1, a1, s1, k2, a2, s2, . . .) is called a play, and the set of all plays is denoted
by Ω.

For p1 ∈ ∆(K) and σ ∈ Σ, define Pp1
σ the law induced by σ and the initial belief p1 on the set

of plays of the game Ω = (K × A × S)N, and E
p1
σ the expectation with respect to this law. For

simplicity, identify K with the set of extremal points of ∆(K).
Let

γp1∞(σ) := E
p1
σ

(

lim inf
n→+∞

1

n

n
∑

m=1

Gm

)

,

and
v∞(p1) := sup

σ∈Σ
γp1∞(σ) .

The term γp1∞(σ) is the long-term reward given by strategy σ and v∞(p1) is the optimal long-term
reward, called value, defined as the supremum long-term reward over all strategies.

Remark 2.1. It has been shown that v∞ coincides with the limit of the value of the n-stage
problem and λ-discounted problem, as well as the uniform value and weighted uniform value (see
[23, 21, 22, 27]). In particular, we have:

v∞(p1) = lim
n→+∞

sup
σ∈Σ

E
p1
σ

(

1

n

n
∑

m=1

Gm

)

= lim
λ→0

sup
σ∈Σ

E
p1
σ





∑

m≥1

λ(1− λ)m−1Gm





= sup
σ∈Σ

lim inf
n→+∞

E
p1
σ

(

1

n

n
∑

m=1

Gm

)

.
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Remark 2.2. In the literature, the concept of strategy that we defined is often called pure strat-
egy, by contrast with behavior strategies that use randomness by allowing strategies of the form
σ : ∪m≥1 Hm → ∆(A). By Kuhn’s theorem, enlarging the set of pure strategies to behaviour
strategies does not change v∞ (see [27, 11]), and thus does not change our results.

Definition 2.3 (Blind MDP). A POMDP is called blind MDP if the signal set is a singleton.

Note that in a blind MDP, signals do not convey any relevant information. Therefore, a
strategy is simply an infinite sequence of actions (a1, a2, . . . ) ∈ AN.

2.2 Contribution

We start by defining several classes of strategies. Recall that Γ(p1) is the POMDP Γ starting
from p1, which is known to the player.

Definition 2.4 (ε-optimal strategy). Let p1 ∈ ∆(K) and ε > 0. A strategy σ ∈ Σ is ε-optimal
in Γ(p1) if

γp1∞(σ) ≥ v∞(p1)− ε .

Definition 2.5 (finite-memory strategy). A strategy σ is said to have finite memory if it can be
modeled by a finite-state transducer. Formally, σ = (σu, σa,M,m0), where M is a finite set of
memory states, m0 is the initial memory state, σa : M → A is the action selection function and
σu : M×A× S → M is the memory update function.

Definition 2.6 (Finite-recall strategy). A strategy σ is said to have finite recall if there exists
a constant M > 0 such that for all hM ∈ HM , and for all m > M and hm−M ∈ Hm−M , we have
that σ(hm−M , hM ) does not depend on hm−M .

Remark 2.7. For blind MDPs, finite-recall and finite-memory strategies coincide with the set of
eventually periodic strategies: a strategy σ = (a1, a2, . . .) is eventually periodic if there exists
T ≥ 1 and N ≥ 1 such that for all m ≥ N , am+T = am. This property does not extend to general
POMDPs (see Proposition 2.12): any finite-recall strategy has finite-memory, but the inverse is
not true.

Remark 2.8. Finite-memory strategies and finite-recall strategies have been investigated in the
Shapley zero-sum stochastic game model [24]. In this framework, none of these strategies is
enough to approximate the value, and a long-standing open problem is whether finite-memory
strategies with a clock are good enough (see [14, 13] for more details on this topic).

Our main result is the following theorem.

Theorem 2.9. For every POMDP Γ, initial belief p1 and ε > 0, there exists an ε-optimal finite-
memory strategy in Γ(p1).

Remark 2.10. A previous complexity result [17] shows that the size of the memory can not be
bounded from above in terms of the data of the POMDP (see Subsection 3.1).

Corollary 2.11. For every blind MDP Γ, initial belief p1 and ε > 0, there exists an ε-optimal
finite-memory strategy in Γ(p1), and thus the strategy is eventually periodic and has finite recall.

Lastly, finite-recall is not enough to ensure ε-optimality in general POMDPs.

Proposition 2.12. There exists a POMDP, and ε > 0, with no ε-optimal finite-recall strategy.

The rest of the paper is organized as follows. Section 3 explains the consequences of our
result in terms of complexity and model robustness. Section 4 introduces examples used to prove
negative results and to illustrate our techniques. Section 5 introduces two key lemmata, and
shows that they imply Theorem 2.9. Section 6 proves one of the two lemmata and develops what
we call super-support based strategies in details. Missing proofs are in the appendices.
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3 Consequences of the results

3.1 Complexity

Decidability. A decision problem consists in deciding between two options given an input (ac-
cepting or rejecting) and its complexity is characterized by Turing machines. A Turing machine
takes an input and, if it halts, it either accepts or rejects it. If it halts for all possible inputs in a
finite number of steps, then the Turing machine is considered an algorithm. An algorithm solves
a decision problem if it takes the correct decision for all inputs. The class of decision problems
that are solvable by an algorithm is called decidable. Two natural generalizations of decidable
problems are: recursively enumerable (r.e.) and co-recursively enumerable (co-r.e.). The decision
problems in r.e. (resp., co-r.e.) are those for which there is a Turing machine that accepts (resp.,
rejects) every input that should be accepted (resp., rejected) according to the problem, but, on
other inputs, it needs not to halt.

Notice that the class of decidable problems is the intersection of r.e. and co-r.e. In this work,
the algorithmic problem of interest is the following.

Definition 3.1 (Decision version of approximating the value). Let p1 ∈ ∆(K). Given x ∈ [0, 1],
ε > 0 such that v∞(p1) > x+ ε or v∞(p1) < x− ε, the problem consists in deciding which one is
the case: to accept means to prove that v∞(p1) > x+ ε holds, while to reject means to prove the
opposite.

Previous results and implication of our result. It is known that the decision version of the ap-
proximation problem is not decidable [17] (even for blind MDPs). However, the complexity
characterization has been open. Thanks to Theorem 2.9, we can design a Turing machine that
accepts every input that should be accepted for this problem.

Consider playing a finite-memory strategy σ. Then, the dynamics of the game can be described
by a finite Markov chain. Therefore, the reward obtained by playing σ (i.e. γp1∞(σ)) can be
deduced from its stationary measure, which can be computed in polynomial time by solving a
linear programming problem [12, Section 2.9, page 70]. Our protocol checks the reward given
by every finite-memory strategy to approximate the value of the game v∞(p1). By Theorem
2.9, if v∞(p1) > x + ε holds, a finite-memory strategy that achieves a reward strictly greater
than (x + ε) will be eventually found and our protocol will accept the input. On the other
hand, if v∞(p1) < x − ε, the protocol will never find out that this is the case because there are
infinitely many finite-memory strategies, so it will not halt. Thus, our result establishes that the
approximation version of the problem is in r.e., and the previously known results imply that the
problem is not decidable. Formally, we have the following result.

Corollary 3.2. The decision version of approximating the value is r.e. but not decidable.

Remark 3.3. The former paragraph shows that no upper bound on the size of the memory used by
ε-optimal strategies can be proved. Indeed, if such a bound existed, one could modify the previous
algorithm in the following way: reject the input if every finite-memory strategy of size lower than
the bound has been enumerated. This would imply that the decision version of approximating
the value is decidable, which is a contradiction.

3.2 Objective comparison

In this section, we contrast our results with other natural objectives.
Recall that the value of Γ(p1) is defined as

v∞(p1) = sup
σ∈Σ

E
p1
σ

(

lim inf
n→∞

1

n

n
∑

m=1

Gm

)

.
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We say this is a liminf-average objective. Consider replacing lim infn→∞
1
n

∑n
m=1Gm by: (i)

lim supn→∞
1
n

∑n
m=1 Gm, which we call limsup-average objective; (ii) lim supn→∞Gn, which we

call limsup objective.

Proposition 3.4. For both limsup-average and limsup objective, there exists a POMDP, and
ε > 0, with no ε-optimal finite-memory strategy.

This negative result, proved in Section 4.1.2, does not imply any computational complexity
characterization for the limsup-average or limsup objective, and whether the approximation of
the value problem for limsup-average objectives is recursively enumerable remains open. How-
ever, it shows that any approach based on finite-memory strategies cannot establish recursively
enumerable bounds for the approximation problem.

Let us focus on the limsup objective. Limsup objective is arguably simpler than the liminf-
average objective and, to formalize this statement, we can compare the complexity of the objects
themselves irrespective of any particular context or model (such as POMDPs). The Borel hier-
archy describes the complexity of an objective by the number of quantifier alternations needed
to describe it. Its construction is similar to that of the Borel σ-algebra, or σ-field, and is defined
as follows.

Definition 3.5 (Borel hierarchy). Consider hm ∈ Hm = (A × S)m−1 a finite history of the
game. The cylinder set generated by hm is given by {hm} × (A × S)N. Finite intersection,
unions and complements of the cylinder sets generated by finite histories form the first level in
the hierarchy. Countable unions of the first level form Σ1 and countable intersections form Π1.
The next level is always obtained from the previous one: countable unions of Πi give Σi+1 and
countable intersections of Σi give Πi+1. The nested sequence of family of problems {Σi ∪Πi}i≥1

is called Borel hierarchy.

For example, limsup objective can be described as countable intersection of countable unions
of rewards: given a family of sets (Cn)n≥1, lim supn→∞ Cn = ∩n≥1 ∪m≥n Cm. The formal result is
the following (see [9]).

Proposition 3.6. The limsup objective is Π2-complete, i.e. complete for the second level of the
Borel hierarchy, whereas the liminf-average objective is Π3-complete, i.e. complete for the third
level of the Borel hierarchy.

While the notion of Borel hierarchy characterizes the topological complexity for objectives,
a similar notion of Arithmetic hierarchy characterizes the computational complexity for decision
problems.

Definition 3.7 (Arithmetic hierarchy). Denote Σ1
0 the class of r.e. problems and Π1

0 the co-r.e.
problems. For i > 1, define Σi

0 as the class of problems solved by Turing machines with access to
oracles for Πi−1

0 and Πi
0 is similarly defined with oracles for Σi−1

0 . The nested sequence of family
of problems {Σi

0 ∪Πi
0}i≥1 is called Arithmetic hierarchy.

By Corollary 3.2, we have that POMDPs with a liminf-average objective is in Σ1
0 \ (Σ

1
0 ∩Π1

0).
On the other hand, it was shown in [2, 5] that POMDPs with limsup objective with boolean
rewards is Σ2

0-complete.
We conclude this section with a summary chart contrasting liminf-average and limsup objec-

tives. The surprising result is the complexity switch: limsup objective has lower Borel hierarchy
complexity but higher Arithmetic hierarchy complexity in the context of POMDPs.

Objective comparison in POMDPs

Objective Borel hierarchy Arithmetic Hierarchy

limsup Π2-complete Σ2
0-complete

liminf-average Π3-complete Σ1
0 \ (Σ

1
0 ∩Π1

0)

Figure 1: Objective comparison in POMDPs
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3.3 Robust ε-optimal strategies

Consider a POMDP Γ = (K,A,S, q, g). It is well known that the value function is continuous
with respect to perturbations of the reward function g and the initial belief p1. Now, we show a
robustness result concerning the transition function q.

In applications, just as in any stochastic model, the structure of the model is decided first, and
then the specific probabilities are either estimated or fixed. The values of transition probabilities
are approximations: an ε-perturbation of these probabilities are not expected to have an impact
on the modelling. In our setting, the transitions are encoded in the function q : K×A → ∆(K×S)
and we would expect some robustness against perturbations of the values it takes.

The notion of perturbation over q is measured as in Solan [25] and Solan and Vieille [26], where
perturbations in each transition probability are measured as relative differences, not additive
differences. Formally, define the semimetric

d(q, q′) = max
k∈K, a∈A
k′∈K, s∈S

{

q(k, a)(k′, s)

q′(k, a)(k′, s)
,
q′(k, a)(k′, s)

q(k, a)(k′, s)

}

− 1 .

Under this notion, and taking q and q′ close to each other, we can prove the existence of
strategies which are approximately optimal for the POMDP corresponding to q and perform
almost as well when they are applied to the POMDP corresponding to q′. To formally state this
notion of robustness, let us give the following definition.

Definition 3.8 (Robust strategies). Given a POMDP Γ with transition function q, an initial
belief p1 ∈ ∆(K), we say that σ is a robust strategy for Γ(p1) if the following condition holds:
∀η > 0 ∃δ > 0 such that

d(q, q′) ≤ δ ⇒ γ′p1∞ (σ) ≥ γp1∞(σ)− η ,

where γ∞ is the long-term reward in Γ and γ′∞ is the long-term reward in Γ′ = (K,A,S, g, q′).

Lemma 3.9. Any finite-memory strategy is robust. Thus, in any POMDP and for any ε > 0,
there exists a robust ε-optimal finite-memory strategy.

Proof. Let Γ = (K,A,S, g, q) be a POMDP. Consider σ = (σu, σa,M,m0) a finite-memory
strategy for Γ(p1). Playing σ from p1 induces a Markov Chain (Yn)n≥1 on K × S × M. Define
g̃ : K ×M → [0, 1] by g̃(k,m) := g(k, σa(m)).

Now, consider the 0-Player stochastic game with reward g̃ and transitions given by the kernel
of the Markov Chain (Yn)n≥1. Let s0 ∈ S be any signal. By definition, for any k ∈ K, the value of
this stochastic game starting from (k, s0,m0) coincides with γk∞(σ). Using [25][Theorem 6, page
841], we deduce that

γ′k∞(σ) ≥ γk∞(σ)− 4|K||S||M|d(q, q′) .

Integrating k over p1 yields

γ′p1∞ (σ) ≥ γp1∞(σ)− 4|K||S||M|d(q, q′) .

Taking δ = η(4|K||S||M|)−1 , we conclude that σ is a robust strategy. By Theorem 2.9, for all
ε > 0, there exists an ε-optimal finite-memory strategy, which is thus robust.

Corollary 3.10. Let K,A,S be finite sets, g : K×A → R a reward function, and p1 ∈ ∆(K) an
initial belief. The mapping from (∆(K × S)K×A, d) to R that maps each transition function q to
the value at p1 of the POMDP (K,A,S, g, q) is lower semi-continuous.

Proof. Let q ∈ ∆(K×S)K×A. Let Γ = (K,A,S, q, g). By the previous lemma, for all ε > 0, there
exists σε a robust ε-optimal strategy in Γ(p1). Take η = ε, by robustness of σε, there exists δ > 0

6



such that, for all q′ ∈ ∆(K × S)K×A, we have that if d(q, q′) ≤ δ, then γ′p1∞ (σε) ≥ γp1∞(σε) − ε.
Also, by ε-optimality of σε, we have that γp1∞(σε) ≥ v∞(p1)− ε. Then,

v′∞(p1) ≥ γ′p1∞ (σε) ≥ v∞(p1)− 2ε .

Taking ε → 0, we conclude that

lim inf
q′→q

v′∞(p1) ≥ v∞(p1) ,

and thus v∞ is lower semi-continuous with respect to q.

Lower semi-continuity of the value function is the best result one can achieve in the following
sense.

Proposition 3.11. There is a POMDP such that the mapping from (∆(K×S)K×A, d) to R that
maps each transition function q to the value at p1 of the POMDP (K,A,S, g, q) is discontinuous.

4 Examples

In this section, we introduce examples to prove negative results (Propositions 2.12, 3.4 and 3.11)
and to illustrate our techniques later on.

4.1 Negative results

Let us prove Propositions 2.12 and 3.4 by presenting an example for each statement.

4.1.1 Proof of Proposition 2.12

We will prove that there exists a POMDP and ε > 0 with no ε-optimal finite-recall strategy by
an explicit construction. Recall that a strategy has finite recall if it uses only a finite number of
the last stages in the current history to decide the next action (see Definition 2.6). Therefore,
our construction should have the property that, for any finite-recall strategy, there is a pair of
finite histories such that:

1. The last stages are identical, i.e., the player did the same actions and received the same
signals in the last part of both histories (but the starting point was different).

2. Taking the same decision in both histories leads to losing some reward that can not be
compensated in the long-run.

3. The previous loss does not decrease to zero by increasing the amount of memory.

Example 4.1. Consider the POMDP Γ = (K,A,S, q, g) with five states: k0, k1, . . . , k4. The
initial state is k0 and players know it (formally, the initial belief is δk0). The state k4 is an
absorbing state from where it is impossible to get out and rewards are zero. The states k1 and k2
form a sub-game where the optimal strategy is trivial. This is the same for the state k3. From
k0 a random initial signal is given indicating which sub-game the state moved to. The key idea
is that there is an arbitrarily long sequence of actions and signals which can be gotten in both
sub-games, but the optimal strategy behaves differently in each of them. Therefore, to forget the
initial signal of the POMDP leads to at most half of the optimal value.

Figure 2 is a representation of Γ: first under action a and then action b. Each state is
followed by the corresponding reward, and the arrows include the probability for the corresponding
transition along with the signal obtained.

7



k0|0

k1|1

k2|1

k3|1

k4|0

1/2; s
2

1/2; s2

1; s1

1/2; s1
1/
2;
s 1

1/2; s1

1/2; s2

1; s1

(a) Action a

k0|0

k1|1

k2|1

k3|1

k4|0

1/2; s
2

1;
s 1

1; s1

1/
2;
s 1

1; s1

1; s1

(b) Action b

Figure 2: Finite recall is not enough for POMDPs

The sub-game of k1 and k2 has a unique optimal strategy: play action a until receiving signal
s2, then play action b once and repeat. The value of this sub-game is 1 and deviating from the
prescribed strategy would lead to a long-run reward of 0. Similarly, the value of the sub-game of
k3 has a unique optimal strategy: to always play action a. Again, the value of this sub-game is
1 and playing any other strategy leads to a long-run reward of 0.

By the previous discussion, the value of this game starting from k0 is 1. On the other hand,
the maximum value obtained by strategies with finite recall is only 1/2, by playing, for example,
always action a. Finite-recall strategies achieve at most 1/2 because, no matter how much finite
recall there is, by playing the game the decision-maker faces a history of having played always
action a and always receiving a signal s1, except for the last signal which is s2. Then, if action
b is played, the second sub-game is lost; if action a is played, the first sub-game is lost. That is
why, for any 0 < ε < 1/2, there is no ε-optimal finite-recall strategy for this POMDP.

4.1.2 Proof of Proposition 3.4

We will show that for the limsup-average and limsup objectives there is a blind MDP where
there is no ε-optimal finite-memory strategy. For both cases, the example is constructed with the
following idea in mind. To achieve the optimal value, the decision-maker needs to play an action
a1 for some period, then play another action a2 and repeat the process. The key is to require
that the length of the period gets longer as the game progresses. This kind of strategy can not
be achieved with finite-memory strategies.

For the limsup-average objective, the blind MDP example is due to Venel and Ziliotto [28]
and is presented below.

Example 4.2. Consider two states k0 and k1 and the player receives a reward only when the
state is k1. To reach k1, the decision-maker can play action change and move between the two
states. By playing action wait, the state does not change.

Figure 3 is a representation of the game.
Consider the initial belief p1 = 1

2 · δk0 + 1
2 · δk1 , the uniform distribution. It is easy to see

that finite-memory strategies (or equivalently finite-recall strategies) can not achieve more than
1/2. On the other hand, the value of this game with the limsup-average objective is 1, and is
guaranteed by the following strategy:

σ = (wait)2
02

(change)(wait)2
12

· · · (change)(wait)2
N2

· · ·
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k0|0 k1|1

1

1

(a) Action change

k0|0 k1|1

1 1

(b) Action wait

Figure 3: Finite recall is not enough for POMDPs

Hence, finite-memory strategies do no guarantee any approximation for POMDPs with limsup-
average objective.

For the limsup objective, the blind MDP example is the following.

Example 4.3. Consider four states (k0, k1, k2 and k3) and two actions: wait (w) and change
(c). The initial state is k1 and players know it. In k1, if w is played, then the state moves to k2
with probability 1/2 and stays with probability 1/2; if c is played, then the absorbing state k0 is
reached. From state k2, if we play w, we stay in the same state; if we play c, we move to state
k3. From k3, the only state that has a positive reward, if we play any action, we return to the
initial state k1.

Figure 4 is a representation of the game.

k0|0 k1|0

k2|0k3|1

1
1

1

1

(a) Action change

k0|0 k1|0

k2|0k3|1

1 1/2

1/2

1

1

(b) Action wait

Figure 4: Finite-memory is not enough for limsup objective

In this blind MDP (see [5, 2]), for the limsup objective, for any ε > 0, there is an infinite-
memory strategy that guarantees 1−ε, so the value of the game is 1. On the other hand, applying
any finite-memory strategy (or equivalently finite-recall strategies) yields a limsup reward of 0.
Hence, finite-memory strategies do no guarantee any approximation for POMDPs with limsup
objective.

4.1.3 Proof of Proposition 3.11

We will show that there is a POMDP with discontinuous value with respect to the transition
function. The idea is to have two possible scenarios where signals are slightly different. By
analyzing a long sequence of signals, the player is able to identify which is the scenario of the
current state and so take a better strategy. The following example considers a transition function
parameterized by ε ≥ 0.

Example 4.4. Consider two states (ku, kd) and three actions: up (au), down (ad) and wait (aw).
Signals are relevant only for action aw: under a non-symmetric transition function, they inform
about the underlying state. More concretely, there are two signals su and sd. Playing actions
au or ad will give signal su or sd respectively, adding no information. Playing action aw leads to
signals su and sd with slightly different probabilities if the state is ku or kd. In terms of actions
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and rewards, au leads to positive reward only if the state is ku, similarly, ad leads to positive
reward only if the state is kd. Finally, aw leads to null reward in both states. Figure 5 is a
representation of this POMDP where transitions are specified.

ku|0

kd|0

1/2; su 1/2; sd

1/2− ε; su 1/2 + ε; sd

(a) Action aw

ku|1

kd|0

1; su

1; su

(b) Action au

ku|0

kd|1

1; sd

1; sd

(c) Action ad

Figure 5: Discontinuous value POMDP

Consider an initial belief p1 = 1/2 · δku + 1/2 · δkd . If ε = 0, the value is 1/2, achieved for
example by the constant strategy σ ≡ au. Note that playing action aw leads to no information
since the random signal the player receives is independent of the underlying state. In contrast,
if ε > 0, playing action aw reveals information about the underlying state. If action aw is played
sufficiently many times, the player can estimate the state by comparing the number of signals sd
against su: if sd appear more than su, then it is more probable that the underlying state is kd.
Therefore, by playing aw, the player can estimate the state with increasing probability. That is
why the value for ε > 0 is 1. This proves that this POMDP is discontinuous with respect to the
transition function since

1 = lim inf
ε→0

v∞(p1 | ε) > v∞(p1 | ε = 0) =
1

2
.

4.2 Illustrative examples

We show an example of POMDP that will be analyzed in Section 6.2 in light of our technique.
This example comes in two variants differing in sophistication.

4.2.1 Simple version

Let us explain the easiest version.

Example 4.5. Consider two states (ku, kd) and two actions: up (au) and down (ad). All tran-
sitions are possible (including loops) and they do not depend on the action. Signals inform the
player when the state changes. In terms of actions and rewards, by playing au the player obtains
a reward of 1 only if the current state is ku. Similarly, by playing ad the player obtains a reward
of 1 only if the state is kd. Figure 6 is a representation of the game with specific transition
probabilities.

Consider an initial belief p1 = 1/4 · δku + 3/4 · δkd . During a play, the decision-maker can
have two beliefs, 1/4 · δku +3/4 · δkd or 3/4 · δku +1/4 · δkd , because the signals notify when there
has been a change. The value of this game is 3/4. An optimal strategy is to play action ad until
getting a signal sc, then playing action au until getting a signal sc, and repeat.

4.2.2 Involved version

Let us go to the more complex version. Now the transition between the two extremes includes
more states, instead of being a direct jump.

10



ku|1

kd|0

1/2; sc
1/2; sw

1/2; sc
1/2; sw

(a) Action au

ku|0

kd|1

1/2; sc
1/2; sw

1/2; sc
1/2; sw

(b) Action ad

Figure 6: Simple POMDP

Example 4.6. Consider six states and four actions: up (au), down (ad), left (al) and right (ar).
States can be separated into two groups: extremes (ku and kd) and transitional (kl1 , kr1 , kl2 and
kr2). Furthermore, transitional states can be divided into two groups: left states (kl1 and kl2)
and right states (kr1 and kr2). Transitions are from extreme states to transitional states and
from transitional to extremes. More precisely, excluding loops, only the following transitions are
possible: from ku to either kl1 or kr1 , then from these two to kd, from kd to either kl2 or kr2 and
then back to ku. Signals are such that the player knows: (i) the state changed to an extreme
state, or (ii) the state changed to a transitional state and the new state is with higher probability
a left state or a right state. In terms of actions and rewards, each action has an associated set of
states in which the reward is 1 and the rest is 0: by playing au the reward is 1 only if the current
state is ku, playing ad rewards only state kd, al rewards states kl1 and kl2 , and ar rewards states
kr1 and kr2 . Figure 7 is a representation of this game with specific transition probabilities.

Consider an initial belief p1 = 1/4 · δku + 3/4 · δkd . The value of the game is 21/32. An
optimal strategy is given by playing action ad until getting a signal sl or sr. If the decision-maker
got signal sl, then play action al, otherwise, play action ar. Repeat action al or ar until getting
the signal sc. Then, play au until getting a signal sl or sr. When this happens, play al or ar
accordingly until getting signal sc. And so, repeat the cycle.

The belief dynamic under this optimal strategy is the following. The initial belief is p1,
supported in the extreme states. By getting a signal sw, the belief does not change. By getting
signal sl, the weight on ku distributes between states kl1 and kr1 in a proportion 3 : 1 and the
weight on kd distributes between kl2 and kr2 in the same way. By getting signal sr, the distribution
is similar, but the role of left states are interchanged with right states. Once the belief is in the
transitional states, by playing the respective action (either al or ar), the belief does not change
while receiving signal sw. Upon receiving the signal sc, the new belief is 3/4 · δku + 1/4 · δkd . By
symmetry of the POMDP, the dynamic is then similar until getting signal sc for a second time.
At that time, the belief is equal to the initial distribution, namely 1/4 · δku + 3/4 · δkd .

Remark 4.7. For the decision-maker to have a finite-memory strategy, some quantity with finitely
many options must be updated over time. A tentative idea is to compute the posterior belief, but
it can take infinitely many values. In this example, using a belief partition is enough to encode
an optimal strategy. In general, it is an open question if a belief partition is sufficient to achieve
ε-optimal strategies.
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ku|1

kl1 |0 kr1 |0

kd|0

kl2 |0 kr2 |0

1/
9;
s r

3/9; s
r

3/
9;
s l 1/9; s

l

1/
9;
s r

3/9; s
r

3/
9;
s l 1/9; s

l

1/9; sw

1; sw 1; sw

1; sw 1; sw

1/9; sw

(a) Action au

ku|0

kl1 |1 kr1 |0

kd|0

kl2 |1 kr2 |0

1/2; s
c

1/
2;
s c

1/
2;
s c

1/2; s
c

1; sw

1/2; sw 1/2; sw

1/2; sw 1/2; sw

1; sw

(b) Action al

ku|0

kl1 |0 kr1 |1

kd|0

kl2 |0 kr2 |1

1/2; s
c

1/
2;
s c1/

2;
s c

1/2; s
c

1; sw

1/2; sw 1/2; sw

1/2; sw 1/2; sw

1; sw

(c) Action ar

ku|0

kl1 |0 kr1 |0

kd|1

kl2 |0 kr2 |0

1/
9;
s r

3/9; s
r

3/
9;
s l 1/9; s

l

1/
9;
s r

3/9; s
r

3/
9;
s l 1/9; s

l

1/9; sw

1; sw 1; sw

1; sw 1; sw

1/9; sw

(d) Action ad

Figure 7: Complex POMDP
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5 Structure of the proof

In this section, we introduce two key lemmas and derive from them the proof of Theorem 2.9. We
first define the history at stage m, which is all the information the decision-maker has at stage
m.

Definition 5.1 (m-stage history). Given a strategy σ ∈ Σ and an initial belief p1, denote the
(random) history at stage m by

Hm := ((A1, S1), (A2, S2), . . . , (Am−1, Sm−1)) .

The random variable Hm takes values in Hm = (A× S)m−1.

Recall that we denote the state at stage m by Km, which takes values in K; the signal at
stage m by Sm, which takes values in S; and the action at stage m by Am, which takes values
in A. Note that the history at stage m does not contain direct information about the states
K1, . . . ,Km.

The belief of the player at stage m plays a key role in the study of POMDPs, and we formally
define it as follows.

Definition 5.2 (m-stage belief). Given a strategy σ ∈ Σ and an initial belief p1, denote the
belief at stage m by Pm, which is given by, for all k ∈ K,

Pm(k) := P
p1
σ (Km = k | Hm) .

For fixed σ and p1, one can use Bayes rule to compute Pm. To avoid heavy notations, we omit
the dependence of Pm on σ and p1. For p ∈ ∆(K), denote the support of p by supp(p), which is
the set of k ∈ K such that p(k) > 0.

The first ingredient of the proof of Theorem 2.9 is the following lemma.

Lemma 5.3. For any initial belief p1 and ε > 0, there exists mε ≥ 1, σε ∈ Σ and a (random)
belief P ∗ ∈ ∆(K) (which depends on the history before stage mε) such that:

1.
P
p1
σε(‖Pmε − P ∗‖1 ≤ ε) ≥ 1− ε .

2. There exists σ ∈ Σ, which depends on P ∗, such that for all k ∈ supp(P ∗)

(

1

n

n
∑

m=1

Gm

)

−−−→
n→∞

γk∞(σ) P
k
σ − a.s.

Moreover, γP
∗

∞ (σ) = v∞(P ∗) and E
p1
σε(v∞(P ∗)) ≥ v∞(p1)− ε.

This result is a consequence of Venel and Ziliotto [27, Lemma 33]. This previous work states
the existence of elements µ∗ ∈ ∆(∆(K)) and σ∗ ∈ ∆(Σ) with similar properties to those of
P ∗ ∈ ∆(K) and σ ∈ Σ. In this sense, the present lemma can be seen as a deterministic version
of this previous result. To focus on the new tools we introduce in this paper to prove Theorem
2.9, we relegate the proof and the explanation of the differences between the two lemmata to
Appendix A.

Remark 5.4. The first property of Lemma 5.3 follows immediately from [27, Lemma 33] by the
type of convergence in this previous result. On the other hand, the second property requires the
introduction of a certain Markov chain on K×A×∆(K). This Markov chain is already present in
the work [27] but was used for other purposes. Therefore, the proof consists mainly of recalling
previous results and constructions.
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Remark 5.5. Note that Pk
σ represents the law on plays induced by the strategy σ, conditional on

the fact that the initial state is k. This does not mean that we consider the decision-maker to
know k. In the same fashion, γk∞(σ) is the reward given by the strategy σ, conditional on the
fact that the initial state is k. Even though σ is optimal in Γ(P ∗), this does not imply that σ is
optimal in Γ(δk): we may have γk∞(σ) < v∞(δk).

The importance of Lemma 5.3 comes from the fact that the average rewards converge almost
surely to a limit that only depends on the initial state k. Intuitively, this result means that
for any initial belief p1, after a finite number of stages, we can get ε-close to a belief P ∗ such
that the optimal reward from P ∗ is, in expectation, almost the same as from p1, and moreover
from P ∗ there exists an optimal strategy that induces a strong ergodic behavior on the state
dynamics. Thus, there is a natural way to build a 3ε-optimal strategy σ̃ in Γ(p1): first, apply
the strategy σε for mε stages, then apply σ. Since after mε steps the current belief Pmε is ε-close
to P ∗ with probability higher than 1 − ε, the reward from playing σ̃ is at least the expectation
of γP

∗

∞ (σ)− 2ε, which is greater than v∞(p1)− 3ε. Therefore, this procedure yields a 3ε-optimal
strategy. Nonetheless, σ may not have finite memory, and thus σ̃ may not have either. The
main difficulty of the proof is to transform σ into a finite-memory strategy. We formalize this
discussion below.

Definition 5.6 (ergodic strategy). Let p∗ ∈ ∆(K). We say that a strategy σ is ergodic for p∗ if
the following holds for all k ∈ supp(p∗)

(

1

n

n
∑

m=1

Gm

)

−−−→
n→∞

γk∞(σ) P
k
σ − a.s.

From the previous discussion, we aim at proving the following result.

Lemma 5.7. Let p∗ ∈ ∆(K) and σ be an ergodic strategy for p∗. For all ε > 0, there exists a
finite-memory strategy σ′ such that

γp
∗

∞(σ′) ≥ γp
∗

∞(σ)− ε .

This is our key lemma and the main technical contribution. The next section is devoted to
explaining the technique used and proving it.

Proof of Theorem 2.9 assuming Lemmas 5.7 and 5.3. Let p1 be an initial belief and ε > 0. Let
mε, σ

ε, P ∗ and σ be given by Lemma 5.3. Define the strategy σ0 by: playing σε until stage mε,
then switch to the strategy σ′ given by Lemma 5.7 for σ and p∗ = P ∗. Note that σ0 has finite
memory. We have

γp1∞(σ0) = E
p1
σε

(

γPmε
∞ (σ′)

)

; def σ0

≥ E
p1
σε

(

γP
∗

∞ (σ′)
)

− 2ε ; Lemma 5.3

≥ E
p1
σε

(

γP
∗

∞ (σ)
)

− 3ε ; Lemma 5.7

= E
p1
σε (v∞(P ∗))− 3ε ; Lemma 5.3

≥ v∞(p1)− 4ε ; Lemma 5.3 ,

and the theorem is proved.

6 Super-support and proof of Lemma 5.7

In this entire section, fix p∗ ∈ ∆(K), which will be used as an initial belief, and σ an ergodic
strategy for p∗.
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6.1 Notation

For a, b ∈ R, denote the set [a, b] ∩ Z by [a .. b].

Definition 6.1 (Value partition). Let ∼ be the equivalence relationship on supp(p∗) defined by
k ∼ k′ if and only if γk∞(σ) = γk

′

∞(σ). Let {K1, . . . ,KI} be the corresponding value partition.

Definition 6.2 (Super-support). For i ∈ [1 .. I] and m ≥ 0, define, for all hm ∈ Hm,

Bi
m(hm) :=

⋃

k1∈Ki

{k ∈ K : Pk1
σ (Hm = hm) > 0,Pk1

σ (Km = k|Hm = hm) > 0} .

In other words, Bi
m(hm) is the set of all reachable states at stage m starting from some state in

Ki, playing the strategy σ and obtaining history hm (if Hm = hm is possible). Denote

Bi
m := Bi

m(Hm) ,

the random set associated with Hm, and Bm := (B1
m, . . . , BI

m) the super-support at stage m.

Remark 6.3. Note that
supp(Pm) =

⋃

i∈[1 .. I]

Bi
m.

Therefore, the support of Pm can be deduced from the super-support Bm. On the other hand,
Bm can not be deduced from Pm, and thus can not be deduced from the support of Pm. This
justifies the vocabulary.

We will build a finite-memory ε-optimal strategy that plays by blocks. Each block has fixed
finite length and, within each block, the strategy depends only on the history in the block and
on the super-support at the beginning of the block. At the end of the block, the automaton
computes the new super-support according to the block history and the previous super-support.
Thus, the only difference with a bounded recall strategy is that our strategy keeps track of the
super-support. Super-support is a type of origin information: it is related to the value partition,
and therefore to where the current mass distribution comes from.

Definition 6.4 (hm-shift). Let m ≥ 1 and hm ∈ Hm. The hm-shift of σ is the strategy σ[hm]
defined by, for all m′ ≥ 1,

σ[hm](hm′) := σ(hm, hm′) .

We denote σm := σ[Hm], the corresponding random shift at stage m.

In other words, σ[hm] corresponds to the continuation of the strategy σ conditional on the
fact that the history of the first m stages was hm.

6.2 Illustration

The super-support captures specific information related to the beginning of the game: the origin
of the current mass distribution (given by Pm) in terms of the initial value partition (Ki)i∈[1 .. I].
There are finitely many possible super-supports and it is possible to keep track of the current
super-support using Bayesian updating. Therefore, it is a good variable to be used in finite-
memory strategies.

Let us recall our simple example of a POMDP, Example 4.5.

Example 4.5. Consider two states (ku, kd) and two actions: up (au) and down (ad). All tran-
sitions are possible (including loops) and they do not depend on the action. Signals inform the
player when the state changes. In terms of actions and rewards, by playing au the player obtains
a reward of 1 only if the current state is ku. Similarly, by playing ad the player obtains a reward
of 1 only if the state is kd. Figure 6 is a representation of the game with specific transition
probabilities.
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Finite-recall is enough to approximate the value of this POMDP: the decision-maker can recall
the last action. Then, upon seeing the signal sc, the player has to change actions. Recall that
p1 = 1/4 · δku + 3/4 · δkd . Therefore, an optimal strategy is given by playing ad until getting
signal sc, then playing au until getting signal sc and repeat. This strategy is ergodic for p1 and
the corresponding value partition is given by (K1 = {ku},K2 = {kd}), because, if K1 = ku, the
long-run reward is 0 and, if K1 = kd, the long-run reward is 1. In this case, the super-support
describes completely the belief Pm since it keeps track of which state has the highest (or lowest)
probability.

Although the example is simple, we can already see the difference between support strategies
and super-support strategies. In this case, all strategies based on the current support (the support
of Pm) are constant and therefore can achieve a long-run reward of at most 1/2. On the other
hand, super-support strategies can be optimal and achieve a long-run reward of 3/4.

This example also shows that playing by blocks and defining the behaviour in each block by
the current support (instead of the super-support) is not enough.

Let us analyze now our more complex POMDP example, Example 4.6.

Example 4.6. Consider six states and four actions: up (au), down (ad), left (al) and right (ar).
States can be separated into two groups: extremes (ku and kd) and transitional (kl1 , kr1 , kl2 and
kr2). Furthermore, transitional states can be divided into two groups: left states (kl1 and kl2)
and right states (kr1 and kr2). Transitions are from extreme states to transitional states and
from transitional to extremes. More precisely, excluding loops, only the following transitions are
possible: from ku to either kl1 or kr1 , then from these two to kd, from kd to either kl2 or kr2 and
then back to ku. Signals are such that the player knows: (i) the state changed to an extreme
state, or (ii) the state changed to a transitional state and the new state is with higher probability
a left state or a right state. In terms of actions and rewards, each action has an associated set of
states in which the reward is 1 and the rest is 0: by playing au the reward is 1 only if the current
state is ku, playing ad rewards only state kd, al rewards states kl1 and kl2 , and ar rewards states
kr1 and kr2 . Figure 7 is a representation of this game with specific transition probabilities.

Recall that p1 = 1/4 ·δku +3/4 ·δkd and that an optimal strategy is given by playing action ad
until getting a signal sl or sr. If the decision-maker gets signal sl, then play action al, otherwise,
play action ar. Repeat action ar until getting the signal sc. Then, play au until getting a signal
sl or sr. When this happens, play al or ar accordingly until getting signal sc. And so, repeat the
cycle.

This optimal strategy is ergodic for p1 and the corresponding value partition is given by
(K1 = {ku},K2 = {kd}) because, if K1 = ku, the long-run reward is 0 and, if K1 = kd, the
long-run reward is 7/8. Contrary to the previous example, the super-support does not describe
completely the belief Pm. Indeed, consider the initial belief p1, which is supported on the extreme
states, and that the decision-maker gets either signals sl or sr. Then, the new belief is supported
in all the transitional states and the super-support is the same under any of these two histories,
and equal to: B = (B1 = {kl1 , kr1}, B

2 = {kl2 , kr2}). Based on this super-support one can not
reconstruct the current belief, but one knows more than only the support: we can differentiate
the origin (ku or kd) of the current belief distribution.

Notice that using the super-support alone is not enough to get ε-optimal strategies. Indeed,
in transitional states, the decision-maker needs to know whether the state is more likely to be in
a left state or a right state in order to play well, and the super-support does not contain such
information. That is why, in the proof of Lemma 5.7, we consider a more sophisticated class of
strategies, that combine super-support and bounded recall. For the moment, let us describe such
a strategy for this example. Choose n0 very large, and for each ℓ ≥ 1, play the following strategy
in the time block [ℓn0 + 1 .. (ℓ+ 1)n0]:

- Case 1: the super-support at stage ℓn0 + 1 is ({ku}, {kd}). Play the previous 0-optimal
strategy, that is: play action ad until getting a signal sl or sr. If the decision-maker gets
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signal sl, then play action al, otherwise, play action ar. Repeat action ar until getting the
signal sc. Then, play au until getting a signal sl or sr. When this happens, play al or ar
accordingly until getting signal sc. And so, repeat the cycle.

- Case 2: the super-support at stage ℓn0 + 1 is ({kd}, {ku}). Play the same strategy as in
Case 1, except that the roles of au and ad are switched.

- Case 3: the super-support at stage ℓn0 + 1 is ({kl1 , kr1}, {kl2 , kr2}). Play al (or ar) until
getting the signal sc. At this point, the super-support is ({kd}, {ku}). Then, play as in
Case 2.

- Case 4: the super-support at stage ℓn0 + 1 is ({kl2 , kr2}, {kl1 , kr1}). Play al (or ar) until
getting the signal sc. At this point, the super-support is ({ku}, {kd}). Then, play as in
Case 1.

This strategy is sub-optimal during the first phase of Case 3 and Case 4, until the decision-maker
receives signal sc. As n0 grows larger and larger, this part becomes negligible. Thus, for any
ε > 0, there exists n0 such that this strategy is ε-optimal (but not optimal).

6.3 Properties

Now we can state properties of super-supports when the strategy σ is ergodic for p∗ and explain
how rich is the structure of the random sequence of beliefs (Pm)m≥1. By definition of ergodic
strategies, the map k 7→ γk∞(σ) is constant on Ki, and we denote its value by γi∞.

Lemma 6.5 (Continuation value). For all m ≥ 1 and i ∈ [1 .. I] it holds P
p∗

σ -a.s. that

∀k ∈ Bi
m γk∞(σm) = γi∞

Consequently, B1
m, . . . , BI

m are disjoint Pp∗

σ -a.s.

Proof. Let i ∈ [1 .. I]. Considering the law given by P
p∗

σ , fix a realization Km = k ∈ Bi
m. By

definition of super-support, there exists k′ ∈ Ki ⊆ supp(p∗) such that k can be reached from k′

in m steps. Recall that, since σ is ergodic for p∗,

(

1

n

m+n−1
∑

m′=m

Gm′

)

−−−→
n→∞

γk
′

∞(σ) = γi∞ P
k′

σ − a.s. .

In particular, the convergence holds when Km = k. Then,

(

1

n

n
∑

m′=1

Gm′

)

−−−→
n→∞

γk
′

∞(σ) = γi∞ P
k
σm

− a.s. ,

and therefore γk∞(σm) = γi∞.

Another property of the super-support is concerned with consecutive conditioning and is fairly
intuitive. We formally state it in the following lemma and show the proof for completeness.

Lemma 6.6 (Continuation super-support). Let i ∈ [1 .. I], m,m′ ≥ 0. For all realizations
Hm+m′ = h = (hm, hm′) ∈ Hm+m′ , denoting C = Bi

m+m′(hm+m′), we have that, for all k ∈
Bi
m(hm),

P
k
σ[hm](Km′ ∈ C|Hm′ = hm′) = 1 .

In other words, the super-support that arises at stage m + m′, Bm+m′ , coincides with the
super-support that would arise from a two-step procedure: first, advancing m stages; and then,
applying the continuation of the strategy, σm, for m′ more stages.

17



Proof. Fix a realization Hm+m′ = h = (hm, hm′) and let k ∈ Bi
m(hm). Recall that, by definition

of super-support,

Bi
m(hm) =

⋃

k̄1∈Ki

P
k̄1
σ (hm>0)

supp
(

P
k̄1
σ (Km = · | Hm = hm)

)

.

Therefore, there exists k̄1 ∈ Ki such that k ∈ supp(Pk̄1
σ (Km = · | Hm = hm)). In particular, we

have that Pk̄1
σ (Km = k) > 0.

Consider k′ such that P
k
σ[hm](Km′ = k′ | Hm′ = hm′) > 0. By a semi-group property, we

deduce that
P
k̄1
σ (Km+m′ = k′ | Hm+m′ = h) > 0 ,

which implies that k′ ∈ Bi
m(h) = C, and thus the lemma is proved.

Remark 6.7. This property does not depend on the fact that σ is ergodic for p∗.

6.4 Proof of Lemma 5.7

Fix p∗ ∈ ∆(K) such that σ is ergodic for p∗. Note that, for all m ≥ 1, Bm ∈ {(C1, . . . , CI) :
C1, . . . , CI ⊆ K}, which is a finite set. Denote all different super-supports that can occur with
positive probability by D1,D2, . . . ,DJ , i.e.

{

D1,D2, . . . ,DJ
}

:=
⋃

m≥1

suppBm .

Moreover, since Dj corresponds to a super-support that occurs at some stage and under some
history, there exists hj and mj such that hj ∈ Hmj

and Dj = Bi
m(hj). In other words, Dj is the

realization of the super-support at stage mj under history hj and
{

D1,D2, . . . ,DJ
}

contains all
super-supports that can occur.

Definition of the strategy σ′. Let ε > 0. By Lemma 6.5, there exists n0 ∈ N
∗ such that for

all i ∈ [1 .. I], j ∈ [1 .. J ] and k ∈ Dj
i ,

E
k
σ[hj ]

(

1

n0

n0
∑

m=1

Gm

)

≥ γi∞ − ε .

Define the strategy σ′ by blocks, and characterize each block by induction. For each ℓ ≥ 0,
the block number ℓ consists in the stages m such that ℓn0 + 1 ≤ m ≤ (ℓ+ 1)n0. We characterize
the behavior in block ℓ by a variable Jℓ ∈ [1 .. J ] in the following way. For stage m inside block ℓ,
the strategy σ′ plays according to Jℓ and the history between stages ℓn0+1 and m. Each block is
characterized by induction because the variable Jℓ is computed at stage ℓn0+1 according to J(ℓ−1)

and the history in the last n0 stages. Thus, σ′ can be seen as mapping from ∪n0
m=1Hm× [1 .. J ] to

A.
Consider ℓ = 0, i.e. the first block. The strategy σ′ is defined on the first n0 stages as follows.

Consider the value partition {K1, . . . ,KI} given by p∗ and σ. By definition of D1,D2, . . . ,DJ ,
there exists j ∈ [1 .. J ] such that B1 = Dj. Set J0 = j, and define σ′(h, J0) := σ(hJ0 , h) for all
h ∈ Hm and m ≤ n0.

Let us proceed to the induction step. Consider ℓ ≥ 1 and assume that we have defined J(ℓ−1)

and σ′ up to stage ℓn0. Denote the history between stages (ℓ−1)n0+1 and ℓn0+1 by h ∈ Hn0+1

and define Jℓ such that, for all i ∈ [1 .. I],

DJℓ
i = Bi

mJ(ℓ−1)
+n0+1(h

J(ℓ−1) , h) .
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Then, extend σ′ for n0 additional stages as before: σ′(h, Jℓ) := σ(hJℓ , h) for all h ∈ Hm and
m ≤ n0. Thus, we have defined Jℓ and extended σ′ up to stage (ℓ+ 1)n0.

To summarize our construction in words, during stages ℓn0 + 1, ℓn0 + 2, . . . , (ℓ + 1)n0, the
decision-maker plays as if he was playing σ from history hJℓ . Notice that the indexes J0, J1, . . .
depend on the history, and therefore are random. Now we will connect the strategy σ′ with the
super-support given by p∗ and σ.

Lemma 6.8. For all i ∈ [1 .. I], k ∈ Ki and ℓ ≥ 0, we have that

P
k
σ′(Kℓn0+1 ∈ DJℓ

i ) = 1 .

Consequently, DJℓ = (DJℓ
1 ,DJℓ

2 , . . . ,DJℓ
I ) is a partition of the support of Pℓn0+1. Moreover,

P
p∗

σ′ (Kℓn0+1 ∈ DJℓ
i ) = p∗(Ki) .

Proof. Fix i ∈ [1 .. I] and k ∈ Ki. We will prove the result by induction on ℓ ≥ 0. For ℓ = 0,
DJ0 = (K1, . . . ,KI) and P

k
σ′(K1 ∈ DJ0

i = Ki) = 1. Thus, the result holds.

Assume ℓ ≥ 1. Note that H(ℓ−1)n0+1 determines the value of J0, . . . , J(ℓ−1). Therefore, D
J(ℓ−1)

i

is also determined by H(ℓ−1)n0+1. By induction hypothesis,

P
k
σ′(K(ℓ−1)n0+1 ∈ D

J(ℓ−1)

i ) = 1 .

We must prove that, under these circumstances, Kℓn0+1 ∈ DJℓ
i .

Indeed, index Jℓ−1 defines strategy σ′ for stages ℓn0 + 1, ℓn0 + 2, . . . , (ℓ+ 1)n0: the decision-
maker will play according to σ[hJ(ℓ−1) ]. By playing σ′ during this block, a history h ∈ Hn0+1 will
be collected. Let m := J(ℓ−1) and m′ := n0 + 1. By Lemma 6.6, we have that, starting from

K(ℓ−1)n0+1 ∈ D
J(ℓ−1)

i , playing σ[hJ(ℓ−1) ] during n0 stages and collecting history h ∈ Hn0+1 leads

to a state that, by definition of Jℓ, is in DJℓ
i . Therefore,

P
k
σ′(Kℓn0+1 ∈ DJℓ

i ) ≥ P
k
σ′(K(ℓ−1)n0+1 ∈ D

J(ℓ−1)

i ) = 1 ,

which proves the first result.
Now we know that the union of DJℓ

1 ,DJℓ
2 , . . . ,DJℓ

I covers the support of P
p∗

σ′ (Kℓn0+1 = ·).

Moreover, by Lemma 6.5, DJℓ
1 ,DJℓ

2 , . . . ,DJℓ
I are disjoint. Since (K1, . . . ,KI) partitions the support

of p∗, we have that, for all i ∈ [1 .. I],

P
p∗

σ′ (Kℓn0+1 ∈ DJℓ
i ) =

I
∑

i′=1

∑

k∈Ki′

p∗(k)Pk
σ′(Kℓn0+1 ∈ DJℓ

i )

=
I
∑

i′=1

∑

k∈Ki′

p∗(k)1k∈Ki

= p∗(Ki) ,

which proves the second property.

To finish the proof of Lemma 5.7, we must show that the finite-memory strategy σ′ guarantees
the reward obtained by σ up to ε. The idea is that in each block we are playing some shift of σ
for n0 stages. The shift is chosen so that information about the initial belief is correctly updated,
while the number n0 is chosen so that the expected average reward of the whole block is close
to the expected limit average reward. Then, since all blocks have the same approximation error,
the average considering all blocks yields approximately γp

∗

∞(σ). This is the intuition behind the
following lemma.
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Lemma 6.9. Let L ∈ N
∗. The following inequality holds:

E
p∗

σ′

(

1

Ln0

Ln0
∑

m=1

Gm

)

≥ γp
∗

∞(σ)− ε.

Proof. We have, for all ℓ ≥ 0,

E
p∗

σ′





1

n0

(ℓ+1)n0
∑

m=ℓn0+1

Gm



 = E
p∗

σ′

(

E
Kℓn0+1

σ[hJℓ ]

(

1

n0

n0
∑

m=1

Gm

))

; def. σ′

= E
p∗

σ′







I
∑

i=1

∑

k∈D
Jℓ
i

P
p∗

σ′ (Kℓn0+1 = k)Ek
σ[hJℓ ]

(

1

n0

n0
∑

m=1

Gm

)






; Lemma 6.8

≥ E
p∗

σ′







I
∑

i=1

∑

k∈D
Jℓ
i

P
p∗

σ′ (Kℓn0+1 = k)
[

γi∞(σ) − ε
]






; def. n0

=

(

I
∑

i=1

P
p∗

σ′ (Kℓn0+1 ∈ DJℓ
i )
[

γi∞(σ)− ε
]

)

=
I
∑

i=1

p∗(Ki)
[

γi∞(σ)− ε
]

; Lemma 6.8

= γp
∗

∞(σ)− ε .

It follows that

E
p∗

σ′

(

1

Ln0

Ln0
∑

m=1

Gm

)

=
1

L

L−1
∑

ℓ=0

E
p∗

σ′





1

n0

(ℓ+1)n0
∑

m=ℓn0+1

Gm



 ≥ γp
∗

∞(σ)− ε .

To conclude, since σ′ has finite memory, we have

lim
L→+∞

E
p∗

σ′

(

1

Ln0

Ln0
∑

m=1

Gm

)

= E
p∗

σ′

(

lim inf
n→+∞

1

n

n
∑

m=1

Gm

)

= γp
∗

∞(σ′) ,

and the above lemma implies that γp
∗

∞(σ′) ≥ γp
∗

∞(σ)−ε, which proves Lemma 5.7: for each ergodic
strategy σ and ε > 0, one can construct a finite-memory strategy σ′ that guarantees the reward
obtained by σ up to ε.
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A Proof of Lemma 5.3

A.1 Notation

Recall that Lemma 5.3 is a consequence of [27, Lemma 33]. Thus, we start by introducing some
of the terms used in [27], namely: n-stage game, invariant measure, occupation measure and the
Kantorovich-Rubinstein distance.

Definition A.1 (n-stage game). Given a POMDP Γ = (K,A,S, q, g), we denote Γn the n-stage
game with a value defined by

vn(p) := sup
σ∈Σ

γpn(σ) ,

where γpn(σ) := n−1
E
p
σ (
∑n

m=1 Gm).

Remark A.2. As the notation suggests, it was proven in [27] that for any finite POMDP (vn) −−−→
n→∞

v∞ uniformly. The fact that (vn)n≥1 converges was proven in [23].

The set ∆(K) is equipped with its Borelian σ-algebra B(∆(K)), and C(∆(K), [0, 1]) denotes
the set of continuous functions from ∆(K) to [0, 1].

Definition A.3 (Invariant measure). Given a POMDP Γ = (K,A,S, q, g), µ ∈ ∆(∆(K)) and
σ : ∆(K) → ∆(A) measurable, we say that µ is σ-invariant if ∀f ∈ C(∆(K), [0, 1]) we have that

∫

∆(K)
E [f(q̃[p, σ(p)])] µ(dp) =

∫

∆(K)
f(p)µ(dp) ,

where q̃ : ∆(K) × A → ∆(∆(K)) is the natural transition in ∆(K) from one belief to another,
given by Bayes rule.

The above definition can be intuitively understood in the following way: if the initial belief
is distributed according to µ, and the decision-maker plays the stationary strategy σ at stage 1,
then the belief at stage 2 is distributed according to µ too.

Remark A.4. Since v∞ : ∆(K) → [0, 1] is a continuous function, one can replace f by v∞ in the
previous definition. Moreover, interpreting σ as a (mixed) stationary strategy, we would have
that the sequence (Eµ

σ[v∞(Pm)])m≥1 is constant.

Definition A.5 (m-stage occupation measure). Given a POMDP Γ = (K,A,S, q, g), a measure
µ ∈ ∆(∆(K)) and a strategy σ, consider the following dynamic over ∆(K). First, P1 is drawn
according to µ. Then, (Pn)n≥1 is obtained by playing according to σ. This way, for each m ≥ 1,
we have that Γ, µ and σ induce a probability over ∆(K): for each measurable set A ⊆ ∆(K), we
can define P

µ
σ(Pm ∈ A). Therefore, the m-stage belief, Pm, is a random belief.

We denote the m-stage occupation measure zm[µ, σ] ∈ ∆(∆(K)) by the law of Pm over ∆(K).
Formally, zm[µ, σ] : B(∆(K)) → [0, 1] is given by, for all C ∈ B(∆(K)),

zm[µ, σ](C) = P
µ
σ(Pm ∈ C) .

For sake of notation, we identify ∆(K) with the extreme points of ∆(∆(K)).

Definition A.6 (Kantorovich-Rubinstein distance). For all z, z′ ∈ ∆(∆(K)), define

dKR(z, z
′) := sup

f∈E1

∣

∣

∣

∣

∣

∫

∆(K)
f(p)z(dp)−

∫

∆(K)
f(p)z′(dp)

∣

∣

∣

∣

∣

,

where E1 is the set of 1-Lipschitz functions from ∆(K) to [0, 1].

Remark A.7. The set ∆(∆(K)) equipped with distance dKR is a compact metric space.
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A.2 Proof

Now we can state [27, Lemma 33].

Lemma A.8. Consider a POMDP Γ and let p1 ∈ ∆(K). There exists µ∗ ∈ ∆(∆(K)) and a
(mixed) stationary strategy σ∗ : ∆(K) → ∆(A) such that

1. µ∗ is σ∗-invariant.

2. For all ε > 0 and N ≥ 1, there exists nε ≥ N and σε a pure strategy in Γ such that σε is
0-optimal in the nε-stage game Γnε(p1) and

dKR

(

1

nε

nε
∑

m=1

zm[p1, σ
ε], µ∗

)

≤ ε .

3.
∫

∆(K)
g(p, σ∗(p))µ∗(dp) =

∫

∆(K)
v∞(p)µ∗(dp) = v∞(p1) .

Remark A.9. Lemma A.8 works with elements in ∆(∆(K)) and a mixed stationary strategy, while
Lemma 5.3 deals with (random) elements in ∆(K) and a pure strategy. In this sense, we would
like to “go down a level”: moving from µ∗ to a random P ∗, from zm to Pm and still preserve
a relationship between v∞(p1) and E

p1
σε(v∞(P ∗)). The ergodic property 2 of Lemma 5.3 follows

from the first and third property of Lemma A.8.

Proof of Lemma 5.3. Consider p1 ∈ ∆(K) and ε > 0 fixed. Since (vn)n≥1 converges uniformly to
v∞, consider N ≥ 1 such that ε ≥ 1/N and ∀n ≥ N ||vn − v∞||∞ ≤ ε. Now, using Lemma A.8,
there exists µ∗ and σ∗ such that µ∗ is σ∗-invariant and, considering ε4, ∃nε ≥ N such that

dKR

(

1

nε

nε
∑

m=1

zm[p1, σ
ε], µ∗

)

≤ ε4 ,

with σε ∈ Γnε(p1) an optimal pure strategy for the nε-stage game starting in p1.
We claim that ∃mε ≤ ⌈εnε⌉ such that

P
p1
σε(Pmε ∈ supp(µ∗) +B(0, ε)) > 1− ε. (1)

Proceeding by contradiction, assume that ∀m ≤ ⌈εnε⌉, we have P
p1
σε(Pm ∈ supp(µ∗) +B(0, ε)) ≤

1−ε. Define the function f : ∆(∆(K)) → [0, 1] by f(p) = d∞(p, supp(µ∗)), the supremum distance
from supp(µ∗). Clearly, f ∈ E1. Moreover,

ε4 ≥ dKR

(

1

nε

nε
∑

m=1

zm[p1, σ
ε], µ∗

)

≥

∣

∣

∣

∣

∣

∫

∆(K)
f(p)

1

nε

nε
∑

m=1

zm[p1, σ
ε](dp)−

∫

∆(K)
f(p)µ∗(dp)

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

1

nε

nε
∑

m=1

∫

∆(K)
f(p)zm[p1, σ

ε](dp)

∣

∣

∣

∣

∣

; f(p) = 0, p ∈ supp(µ∗)

≥
1

nε

⌈εnε⌉
∑

m=1

∫

∆(K)\(supp(µ∗)+B(0,ε))
f(p)zm[p1, σ

ε](dp) ; f, zm[p1, σ
ε] ≥ 0

≥ ε
1

nε

⌈εnε⌉
∑

m=1

zm[p1, σ
ε](∆(K) \ (supp(µ∗) +B(0, ε)) ; def. of f

≥ ε3 ; contradiction hypothesis,
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which is a contradiction for ε < 1. Thus, we have proven (1).
Take P ∗ ∈ argminp∈supp(µ∗) ‖p− Pmε‖1. By equation (1), the first property of Lemma 5.3 is

satisfied.
For the second property of Lemma 5.3, note that, with probability higher than 1− ε,

v∞(P ∗) ≥ vnε(P
∗)− ε ; ||vnε − v∞||∞ ≤ ε

≥ vnε(Pmε)− 2ε ; vnε is 1-Lipschitz .

On the other hand, taking expectation we get that

E
p1
σε (vnε(Pmε)) ≥ E

p1
σε (vnε−mε(Pmε))− ε ;mε ≤ ⌈εnε⌉

≥ vnε(p1)− 2ε ;σε is 0-optimal in Γnε(p1)

≥ v∞(p1)− 3ε ;∀n ≥ N ||vn − v∞||∞ ≤ ε .

Therefore, we conclude that

E
p1
σε (v∞(P ∗)) ≥ v∞(p1)− 6ε .

To complete the proof of Lemma 5.3, given P ∗, we need a (pure) strategy σ such that

∀ k ∈ supp(P ∗)

(

1

n

n
∑

m=1

Gm

)

−−−→
n→∞

γk∞(σ) P
k
σ − a.s. (2)

and such that
γP

∗

∞ (σ) = v∞(P ∗). (3)

Consider the random process (Ym)m≥1 on Y := K×A×∆(K) defined by Ym := (Km, Am, Pm).
We claim that, under σ∗, the process (Ym)m≥1 is a Markov chain. Indeed, given m ≥ 1 and
(Y1, . . . , Ym) ∈ Ym, Ym+1 is generated by the following procedure:

1. Draw a pair (Km+1, Sm) according to q(Km, Am),

2. Compute Pm+1 using Bayes rule according to Pm and Sm,

3. Draw the next action Am+1 according to σ∗(Pm+1).

By construction, the law of Ym+1 depends only on Ym and therefore (Ym)m≥1 is a Markov chain.
Define ν∗ ∈ ∆(Y) by fixing the third marginal to µ∗ and for all p ∈ ∆(K), ν∗(· | p) ∈ ∆(K×A)

is p ⊗ σ∗(p). We claim that ν∗ is an invariant measure for (Ym)m≥1. Indeed, fixing σ∗ as the
strategy for the player, if P1 is drawn according to µ∗, then, since µ∗ is σ∗-invariant, the third
marginal of Ym follows µ∗, for all m ≥ 1. Moreover, conditional on Pm, the random variables Km

and Am are independent: the conditional distribution of Km is Pm and the one of Am is σ∗(Pm).
Thus, ν∗ is an invariant measure of (Ym)m≥1.

The strategy σ∗ : ∆(K) → ∆(A) is a (stationary) mixed strategy, and we are looking for
a deterministic strategy σ ∈ Σ. To derandomize this strategy, note that σ∗ starting from any
p ∈ ∆(K) is strategically equivalent to a p-dependent element of ∆(Σ), that is, a distribution over
pure (not necessarily stationary) strategies (Kuhn’s theorem, see [11]). To simplify notations, we
still denote this equivalent strategy σ∗, and omit its dependence in p.

Define f : Y → [0, 1] by f(k, a, p) := g(k, a), a measurable function. Applying an ergodic
theorem in Hernández-Lerma and Lasserre [15, Theorem 2.5.1, page 37], we know that ∃f∗

integrable with respect to µ∗ such that, for all p ∈ supp(µ∗) and σ ∈ supp(σ∗),

(

1

n

n
∑

m=1

f(Km, Am, Pm) =
1

n

n
∑

m=1

Gm

)

−−−→
n→∞

f∗(K1, a1, p) P
p
σ − a.s. ,
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where f∗ satisfies that
∫

∆(K) f
∗(y)ν∗(dy) =

∫

∆(K) f(y)ν
∗(dy).

We claim that, for all p ∈ supp(µ∗) and σ ∈ supp(σ∗), we have that, for all k ∈ supp(p),

f∗(k, a1, p) = γk∞(σ) ,

where a1 is the first action according to σ (formally, a1 = σ(∅) = σ∗(p)).
Indeed, take p ∈ supp(µ∗), σ ∈ supp(σ∗) and k ∈ supp(p), then

γk∞(σ) = E
k
σ

(

lim inf
n→∞

1

n

n
∑

m=1

Gm

)

= E
k
σ (f

∗(K1, a1, p)) = f∗(k, a1, p) .

Since supp(P ∗) ⊆ {k ∈ K : ∃p ∈ supp(µ∗) s.t. k ∈ supp(p)}, property (2) is satisfied.
Let us now turn to property (3). We claim that, µ∗ − a.s. and σ∗ − a.s.,

γp∞(σ) = v∞(p) .

Indeed, note that

∫

∆(K)

∫

Σ
γp∞(σ)σ∗(dσ)µ∗(dp) =

∫

∆(K)
f∗(y)ν∗(dy) ; def. of ν∗

=

∫

∆(K)
f(y)ν∗(dy)

=

∫

∆(K)
g(p, σ∗(p))µ∗(dp) ; def. of ν∗

=

∫

∆(K)
v∞(p)µ∗(dp) ;Lemma A.8 .

By definition of v∞, for all σ ∈ Σ, γ·∞(σ) ≤ v∞(·). Therefore, by positivity, we can conclude
that, µ∗ − a.s. and σ∗ − a.s., γp∞(σ) = v∞(p). Since the support of P ∗ is included in supp(µ∗),
we conclude that

γP
∗

∞ (σ) = v∞(P ∗) ,

and property (3) is satisfied.
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