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Abstract

We analyze multi-layer neural networks in the asymptotic regime of simultaneously (A) large network
sizes and (B) large numbers of stochastic gradient descent training iterations. We rigorously establish
the limiting behavior of the multi-layer neural network output. The limit procedure is valid for any
number of hidden layers and it naturally also describes the limiting behavior of the training loss. The
ideas that we explore are to (a) take the limits of each hidden layer sequentially and (b) characterize
the evolution of parameters in terms of their initialization. The limit satisfies a system of deterministic
integro-differential equations. The proof uses methods from weak convergence and stochastic analysis.
We show that, under suitable assumptions on the activation functions and the behavior for large times,
the limit neural network recovers a global minimum (with zero loss for the objective function).

1 Introduction
Machine learning, and in particular deep learning, has achieved immense success, revolutionizing fields

such as image, text, and speech recognition. It is also increasingly being used in engineering, medicine, and
finance. However, despite their success in practice, there is currently limited mathematical understanding
of deep neural networks. This has motivated recent mathematical research on multi-layer learning models
such as [39], [40], [41], [20], [21], [42], [49], [50], [43], and [48].

Neural networks are nonlinear statistical models whose parameters are estimated from data using stochas-
tic gradient descent (SGD) methods. Deep learning uses neural networks with many layers (i.e., “deep” neural
networks), which produces a highly flexible, powerful and effective model in practice. Typically, a neural
network with multiple layers between the input and the output layer is called a “deep” neural network, see
for example [24]. We analyze multi-layer neural networks that have a fixed number of layers between the
input and output layer, and where the number of hidden units in each layer becomes large.

Applications of deep learning include image recognition (see [35] and [24]), facial recognition [59], driver-
less cars [6], speech recognition (see [35], [4], [36], and [60]), and text recognition (see [62] and [57]). Neural
networks have also been applied in engineering, robotics, medicine, and finance (see [37], [38], [58], [26], [47],
[3], [51], [52], [53], and [54]).

In this paper we characterize multi-layer neural networks in the asymptotic regime of large network sizes
and large numbers of stochastic gradient descent iterations. We rigorously prove the limit of the neural
network output as the number of hidden units increases to infinity. The proof relies upon weak convergence
analysis for stochastic processes. The result can be considered a “law of large numbers” for the neural
network’s output when both the network size and the number of stochastic gradient descent steps grow to
infinity. We show that the neural network output in the large hidden-units and large SGD-iterates limit
depends on paths of representative weights that go from input to output layer. This result is then used
to show that, under suitable assumptions, the limit neural network seeks to minimize the limit objective
function and achieve zero loss.

Recently, law of large numbers and central limit theorems have been established for neural networks
with a single hidden layer [10, 30, 43, 48, 49, 50]. For a single hidden layer, one can directly study the
weak convergence of the empirical measure of the parameters. However, in a neural network with multiple
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layers, there is a closure problem when studying the empirical measure of the parameters (which is explained
in Section 4.3). Consequently, the law of large numbers for a multi-layer network is not a straightforward
extension of the single-layer network result and the analysis involves unique challenges which require new
approaches. In this paper we establish the limiting behavior of the output of the neural network.

To illustrate the idea, we consider a multi-layer neural network with two hidden layers:

gN1,N2

θ (x) =
1

N2

N2∑
i=1

Ciσ

 1

N1

N1∑
j=1

W 2,i,jσ
(
W 1,j · x

) . (1.1)

As we will see in Section 4.2, the limit procedure can be extended to neural networks with three layers
and subsequently to neural networks with any fixed number of hidden layers.

Notice now that (1.1) can be also written as

H1,j(x) = σ(W 1,j · x), j = 1, . . . , N1,

Z2,i(x) =
1

N1

N1∑
j=1

W 2,i,jH1,j(x), i = 1, . . . , N2,

H2,i(x) = σ

(
Z2,i(x)

)
,

gN1,N2

θ (x) =
1

N2

N2∑
i=1

CiH2,i(x). (1.2)

where Ci,W 2,i,j ∈ R and x,W 1,j ∈ Rd. The neural network model has parameters

θ = (C1, . . . , CN2 ,W 2,1,1 . . . ,W 2,N1,N2 ,W 1,1, . . .W 1,N1),

which must be estimated from data. The number of hidden units in the first layer is N1 and the number of
hidden units in the second layer is N2. The multi-layer neural network (1.2) includes a normalization factor
of 1

N1
in the first hidden layer and 1

N2
in the second hidden layer.

The loss function that we focus on in this paper is the mean squared error

LN1,N2(θ) =
1

2
EY,X

[
(Y − gN1,N2

θ (X))2

]
, (1.3)

where the data (X,Y ) ∼ π(dx, dy). The goal is to estimate a set of parameters θ which minimizes the
objective function (1.3).

The literature frequently refers to minimizing the mean squared error loss as regression. Our results
also hold for a more general class of error functions. In particular, we could have also considered the error
function EY,XΨ(Y − gN1,N2

θ (X)) for a function Ψ that is smooth, convex and satisfies min
x∈R

Ψ(x) = Ψ(0) = 0.

However, for the purposes of simplicity, we will focus on the standard regression task (1.3).
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The stochastic gradient descent (SGD) algorithm for estimating the parameters θ is, for k ∈ N,

Cik+1 = Cik +
αN1,N2

C

N2

(
yk − gN1,N2

θk
(xk)

)
H2,i
k (xk),

W 1,j
k+1 = W 1,j

k +
αN1,N2

W,1

N1

(
yk − gN1,N2

θk
(xk)

)( 1

N2

N2∑
i=1

Cikσ
′(Z2,i

k (xk))W 2,i,j
k

)
σ′(W 1,j

k · xk)xk,

W 2,i,j
k+1 = W 2,i,j

k +
αN1,N2

W,2

N1N2

(
yk − gNθk(xk)

)
Cikσ

′(Z2,i
k (xk))H1,j

k (xk),

H1,i
k (xk) = σ(W 1,i

k · xk),

Z2,i
k (xk) =

1

N1

N1∑
j=1

W 2,i,j
k H1,j

k (xk),

H2,i
k (xk) = σ(Z2,i

k (xk)),

gN1,N2

θk
(xk) =

1

N2

N2∑
i=1

CikH
2,i
k (xk). (1.4)

where αN1,N2

C , αN1,N2

W,1 , and αN1,N2

W,2 are the learning rates. The learning rates may depend upon N1 and N2.

The parameters at step k are θk = (C1
k , . . . , C

N2

k ,W 2,1,1
k . . . ,W 2,N1,N2

k ,W 1,1
k , . . .W 1,N1

k ). (xk, yk) are samples
of the random variables (X,Y ).

The goal of this paper is to characterize the limit of an appropriate rescaling of the multi-layer neural
network output gN1,N2

θk
(x) as both the number of hidden units (N1, N2) and the stochastic gradient descent

iterates k become large. This is the topic of Theorem 2.3. The idea is to first take N1 →∞ with N2 fixed. In
Lemma 2.2, we prove that the empirical measure of the parameters converges to a limit measure as N1 →∞
(with N2 fixed) which satisfies a measure evolution equation. This naturally implies a limit for the neural
network output gN1,N2 as N1 →∞. The next step is to take N2 →∞. Theorem 2.3 proves that the limiting
distribution can be represented via a system of ODEs.

As previously discussed, related limiting results for the single-layer neural network case have been in-
vestigated in [10, 30, 43, 48, 49, 50]. In those papers, it is proven that as the number of hidden units and
stochastic gradient descent steps, in the appropriate scaling, diverge to infinity, the empirical distribution of
the neural network parameters converges to the weak solution of a non-local PDE. This non-local PDE turns
out to be a gradient flow for the limiting objective function in the space of probability measures endowed
with the Wassenstein metric (this result is analogous to our Theorem 3.4). More results with non-asymptotic
bounds, again for the single-layer neural network, can be found in [44].

Let us also mention that after our current paper appeared as a preprint on arXiv, [2] studied the limit
of a multi-layer neural network, but under some important differences as compared to our paper. [45] also
derives asymptotics for multi-layer neural networks. In [2], the weights in the first and last hidden layers are
held fixed throughout training, and the number of hidden units in the rest of the layers is sent to infinity. In
our paper, we train all parameters in all layers of the neural network, which introduces additional technical
challenges. There is also the related papers [9, 31], whose authors look again at the limit as the units per layer
go to infinity, but under a 1√

N
normalization instead of our 1

N normalization. In the 1√
N

normalization, a

completely different limit equation will appear. The 1√
N

case results in a perturbation around the network’s

randomized initialization, leading to a kernel-type regression limit.
We address the multi-layer neural network case in the mean field scaling of 1

N . In particular, we study the
behavior of the neural network’s output (a) as the number of hidden units in each layer go to infinity one by
one, and (b) as the number of stochastic gradient descent iterates (i.e., during training of the network) goes
to infinity at the speed of the number of the hidden units of the first layer. In this asymptotic regime, we
are able to obtain a well-defined limit in Theorem 2.3. Consequences of this result along with a simulation
study are presented in Sections 3 and 4.

The rest of the paper is organized as follows. Our main result, which characterizes the asymptotic
behavior of a neural network with two hidden layers when the number of hidden units becomes large, is
presented in Section 2. The result can be easily extended to an arbitrary number of hidden layers. Section
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3 is devoted to the global convergence arguments. In particular, we show that under the proper assumption
the limiting problem derived in Section 2 seeks to minimize the limiting objective function, recovering the
global minimum. Section 4 discusses further the theoretical results, includes a numerical study to showcase
some of the theoretical implications, and, as an example, presents the limit for a three-layer neural network.
The proof of the convergence theorem is in Section 5. The uniqueness of a solution to the limiting system
is established in Section 6. The proof of the limit of the first layer (i.e., the proof of Lemma 2.2) and a few
other results are provided in the Appendix. Section 7 has concluding remarks and possible directions for
future work.

2 Main Results
Let us start by presenting our assumptions, which will hold throughout the paper. We shall work on a

filtered probability space (Ω,F ,P) on which all the random variables are defined. The probability space is
equipped with a filtration Ft that is right continuous and F0 contains all P-negligible sets.

Assumption 2.1. We assume the following conditions throughout the paper.

• σ(·) ∈ C2
b , i.e., it is twice continuously differentiable and bounded.

• The distribution π(dx, dy) has compact support, i.e. the data (xk, yk) takes values in the compact set
X × Y.

• The random initialization of the parameters, i.e. {Ci◦}i, {W
2,i,j
◦ }i,j , {W 1,j

◦ }j , are i.i.d. and take values
in compact sets C,W1, and W2.

• The probability distributions of the initial parameters (Ci◦,W
2,i,j
◦ ,W 1,j

◦ )i,j admit continuous probability
density functions.

We denote by µc(dc), µW 2(du), and µW 1(dw) the probability distributions of {Ci◦}i, {W
2,i,j
◦ }i,j , and

{W 1,j
◦ }j respectively.
For reasons that will become clearer later on, we shall choose the learning rates to be

αN1,N2

C =
N2

N1
, αN1,N2

W,1 = 1 and αN1,N2

W,2 = N2. (2.1)

Note that the weights in the second layer are trained faster than the other parameters. This choice of
learning rates is necessary for convergence to a non-trivial limit as N1, N2 →∞. If the parameters in all the
layers are trained with the same learning rate, it can be mathematically shown that the network will not
train as N1, N2 become large. We further explore this interesting fact in Section 4.1.

Define the empirical measure

γ̃N1,N2

k :=
1

N1

N1∑
j=1

δ
W 1,j
k ,W 2,1,j

k ,...,W
2,N2,j

k ,C1
k,...,C

N2
k

. (2.2)

If f is an appropriate test function on some space X and γ is a finite measure on X, then we denote
the inner product 〈f, γ〉 =

∫
X
f(x)γ(dx). Using this inner product, the neural network’s output can be

re-written in terms of the empirical measure:

gN1,N2

θk
(x) =

1

N2

N2∑
i=1

〈
ci, γ̃

N1,N2

k

〉
σ

(〈
w2,iσ(w1 · x), γ̃N1,N2

k

〉)
.

Let us next define the time-scaled empirical measure

γN1,N2

t := γ̃N1,N2

bN1tc ,

and the corresponding time-scaled neural network output is

gN1,N2

t (x) := gN1,N2

θbN1tc
(x) =

1

N2

N2∑
i=1

〈
ci, γ

N1,N2

t

〉
σ

(〈
w2,iσ(w1 · x), γN1,N2

t

〉)
.
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At any time t, γN1,N2

t is measure-valued. The scaled empirical measure (γN1,N2

t )0≤t≤1 is a random element
of DE([0, 1])1 with E =M(Rd+2N2).

We study convergence using iterated limits. We first let N1 →∞ where the number of units in the first
layer is N1 and the number of stochastic gradient descent steps is bN1c. Then, we let the number of units
in the second layer N2 →∞.

We begin by letting the number of hidden units in the first layer N1 →∞.

Lemma 2.2. The process γN1,N2 := (γN1,N2

t )0≤t≤1 converges in distribution to the measure valued process
γN2 that takes values in DE([0, 1]) as N1 → ∞. For every f ∈ C2

b (Rd+2N2), γN2 satisfies the measure
evolution equation〈
f, γN2

t

〉
−
〈
f, γN2

0

〉
=

∫ t

0

∫
X×Y

(
y − gN2

s (x)
) 〈
HN2
s (x) · ∇cf, γN2

s

〉
π(dx, dy)ds

+

∫ t

0

∫
X×Y

(
y − gN2

s (x)
) 〈
σ(w1 · x)(σ′(Zs(x))� c) · ∇w2f, γN2

s

〉
π(dx, dy)ds

+

∫ t

0

∫
X×Y

(
y − gN2

s (x)
) 1

N2

N2∑
i=1

〈
ciσ
′(Zi,N2

s (x))w2,iσ′(w1 · x)x · ∇w1f, γN2
s

〉
π(dx, dy)ds,

(2.3)

where

Zi,N2
s (x) =

〈
w2,iσ(w1 · x), γN2

s

〉
,

Hi,N2
s (x) = σ(Zi,N2

s (x)),

gN2
s (x) =

1

N2

N2∑
i=1

〈
ci, γ

N2
s

〉
Hi,N2
s (x),

γN2
0 (dw1, dw2, dc) = µW 1(dw1)× µW 2(dw2,1)× · · · × µW 2(dw2,N2)× δC1

◦
(dc1)× · · · × δ

C
N2
◦

(dcN2). (2.4)

Proof. The proof of this lemma is related to the limit in the first layer as the number of hidden units in the
first layer grows with the number of hidden units in the second layer is held fixed. The proof is analogous
to the proof in [49] and the details are presented for completeness in the Appendix A.

Lemma 2.2 studies the limit of the empirical measure γN1,N2

t as N1 → ∞ with N2 fixed. The limit is
characterized by the stochastic evolution equation (2.3)-(2.4). Notice that Lemma 2.2 immediately implies
that

lim
N1→∞

gN1,N2

t (x) = gN2
t (x),

in probability, as N1 →∞
The next step is to study the limit as N2 → ∞. To do so, we study the limit of the random ODE

as N2 → ∞ whose law is characterized by (2.3)-(2.4). Our main goal is the characterization of the limit

neural network output gN1,N2

t (x). The following convergence result characterizes the neural network output

gN1,N2

t (x) for large N1 and N2.

Theorem 2.3. For any t ∈ [0, 1] and x ∈ X ,

lim
N2→∞

lim
N1→∞

gN1,N2

t (x) = gt(x),

in probability2, where we have that

gt(x) =

∫
C
C̃ct H̃

2,c
t (x)µc(dc), (2.5)

1DS([0, 1]) is the set of maps from [0, 1] into S which are right-continuous and which have left-hand limits.

2 lim
N2→∞

lim
N1→∞

XN1,N2 = X in probability if, for all ε > 0, lim
N2→∞

lim
N1→∞

P
[ ∥∥∥XN1,N2 −X

∥∥∥ > ε

]
= 0.
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with

dC̃ct =

∫
X×Y

(
y − gt(x)

)
H̃2,c
t (x)π(dx, dy)dt, C̃c0 = c,

dW̃ 1,w
t =

∫
X×Y

(
y − gt(x)

)
V wt (x)σ′(W̃ 1,w

t · x)xπ(dx, dy)dt, W̃ 1,w
0 = w,

dW̃ 2,c,w,u
t =

∫
X×Y

(
y − gt(x)

)
C̃ct σ

′(Z̃ct (x))H̃1,w
t (x)π(dx, dy)dt, W̃ 2,c,w,u

0 = u,

H̃1,w
t (x) = σ(W̃ 1,w

t · x),

Z̃ct (x) =

∫
W1

∫
W2

W̃ 2,c,w,u
t H̃1,w

t (x)µW 2(du)µW 1(dw),

H̃2,c
t (x) = σ(Z̃ct (x)),

V wt (x) =

∫
C
C̃ct σ

′(Z̃ct (x))

(∫
W2

W̃ 2,c,w,u
t µW 2(du)

)
µc(dc). (2.6)

The system in (2.6) has a unique solution. In addition, letting gN2
t (x) defined through Lemma 2.2 we

have the following rate of convergence

sup
x∈X

E
[
|gN2
t (x)− gt(x)|

]
≤ KN−1/2

2 ,

for some constant K <∞.

Notice that we can also write that gt(x) satisfies

gt(x) =

∫
C
C̃ct σ

(∫
W1

∫
W2

W̃ 2,c,w,u
t σ(W̃ 1,w

t · x)µW 2(du)µW 1(dw)

)
µc(dc). (2.7)

The proof of Theorem 2.3 is given in Section 5. Theorem 2.3 indicates that the neural network output in
the large hidden units and large SGD-iterates limit depends on paths of representative weights that connect
the input layer to the output layer. Even though, we restricted the statement of Theorem 2.3 in the interval
t ∈ [0, 1], its proof makes it clear that the statement is true for t ∈ [0, T ] for any 0 < T < ∞. In addition,
even though this does not mean that we can take T = ∞, we can still examine what happens to the limit
problem as t grows. In particular, in Section 3 we show that under the proper assumptions, one does expect
to recover the global minimum as t→∞.

Section 4 discusses some further consequences of Theorem 2.3 as well as challenges that come up in the
study of the limiting behavior of multi-layer neural networks as the number of the hidden units grows.

3 On global convergence
The goal of this section is to demonstrate that, under appropriate assumptions, it can be expected that

the global minimum is recovered as t→∞. Let the target data y be a function f(x) that we seek to learn,
i.e. y = f(x).

Assumption 3.1. The activation function σ(·) is real analytic, bounded, and σ′(·) > 0. Let X = {1} ×D
where D ⊂ Rd−1, which is equivalent to including bias weights in the first layer of the neural network. π is
positive on sets in D with positive Lebesgue measure and its first marginal is a Dirac measure at x = 1.

Notice that by [29], the fact that σ is bounded and non-constant by Assumption 3.1 implies that σ is
also discriminatory in the sense of [11, 29]. Namely, if we have that∫

X
h(x)σ(w · x)π(dx) = 0 for all w ∈ Rd,

then h(x) = 0 for x ∈ X .

Remark 3.2. An example of a real analytic, bounded activation function where σ′(·) > 0 (and therefore
discriminatory too), i.e. that satisfies Assumption 3.1, is the sigmoid function σ(z) = ez

1+ez .
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Theorem 2 of [23] shows that for activation functions σ that are non-constant, bounded and monotone (in

which case Assumption 3.1 holds), then two layer neural networks, such as gN1,N2

θ (x), (and more generally
multilayer neural networks) are dense in C(X ). This result basically implies that for large enough N1, N2

functions of the form gN1,N2

θ (x) approximate to arbitrary accuracy functions in C(X ). Training the weights
with stochastic grading descent and sending N1, N2 to infinity, leads then, by Theorem 2.3, to function
approximator gt(x), which is given through a system of integro-differential equations of the form

dC̃ct =

∫
X

(
f(x)− gt(x)

)
H̃2,c
t (x)π(dx)dt, C̃c0 = c,

dW̃ 1,w
t =

∫
X

(
f(x)− gt(x)

)
V wt σ

′(W̃ 1,w
t · x)xπ(dx)dt, W̃ 1,w

0 = w,

dW̃ 2,c,w,u
t =

∫
X

(
f(x)− gt(x)

)
C̃ct σ

′(Z̃ct )H̃
1,w
t (x)π(dx)dt, W̃ 2,c,w,u

0 = u,

H̃1,w
t (x) = σ(W̃ 1,w

t · x),

Z̃ct (x) =

∫
W1

∫
W2

W̃ 2,c,w,u
t H̃1,w

t (x)µW 2(du)µW 1(dw),

H̃2,c
t (x) = σ(Z̃ct (x)),

V wt (x) =

∫
C
C̃ct σ

′(Z̃ct (x))

(∫
W2

W̃ 2,c,w,u
t µW 2(du)

)
µc(dc), (3.1)

where the neural network prediction is

gt(x) =

∫
C
C̃ct H̃

2,c
t (x)µc(dc), (3.2)

We establish in this section that under reasonable assumptions f(x) can indeed be recovered by gt(x) as
t→∞.

Let us denote Θt(c, w, u) = (C̃ct , W̃
1,w
t , W̃ 2,c,w,u

t ) for the components of the ODE in (3.1). For notational
convenience, we shall often write θ = (c, w, u). Then, we obviously have that gt(x) depends on t only through
[Θt] = {Θt(θ)}θ∈C×W1×W2 . In order to emphasize that we shall write gt(x) = g(x; [Θt]).

Analogously, we will denote [Θt(c, ·)] = {Θt(c, w, u)}(w,u)∈W1×W2 and [Θt(·, w, ·)] = {Θt(c, w, u)}(c,u)∈C×W2 ,

which then leads to the notation Z̃ct (x) = Z̃(x; [Θt(c, ·, ·)]) and V wt (x) = V (x; [Θt(·, w, ·)]). For notational
convenience let us also denote h(x; [Θt]) = (f(x)− gt(x)).

With these definitions in place, and for (c, w) ∈ C ×W1, let us also define

R1([Θt], c) ≡
∫
X
h(x; [Θt])σ(Z̃(x; [Θt(c, ·)]))π(dx)

R2([Θt], W̃
1,w
t , w) ≡

∫
X
h(x; [Θt])V (x; [Θt(·, w, ·)])σ′(W̃ 1,w

t · x)xπ(dx)

R3([Θt], C̃
c
t , W̃

1,w
t , c) ≡

∫
X
h(x; [Θt])C̃

c
t σ
′(Z̃(x; [Θt(c, ·)])))σ(W̃ 1,w

t · x)π(dx) (3.3)

and let us set

H([Θt],Θt(θ), θ) = (R1([Θt], c), R2([Θt], W̃
1,w
t , w), R3([Θt], C̃

c
t , W̃

1,w
t , c)).

The purpose of the notation above is to make it clear that the functions H(·) depends on [Θt], on Θt(θ)
and on θ separately. With these identifications we can write that the ODE system in (3.1) can be written
in the form

Θ̇t(Θ0) = H([Θt],Θt(Θ0),Θ0), such that Θ0 = (c, w, u). (3.4)
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Next we investigate the limiting objective function

L̄(Θt) = lim
N2→∞

lim
N1→∞

LN1,N2(θbN1tc) = lim
N2→∞

lim
N1→∞

1

2
EX
[
(f(X)− gN1,N2

θbN1tc
(X))2

]
=

1

2

∫
X

[
(f(x)− g(x; [Θt]))

2

]
π(dx)

where g(x; [Θt]) = gt(x) is given by (3.2).
Notice that the function Θ 7→ L̄(Θ) is always non-negative and becomes zero only at a global minimum.

In particular, our goal is to demonstrate that as t→∞, there are sufficient conditions that guarantee that
the global minimum is realized in the sense that

lim
t→∞

g(x; [Θt]) = f(x), for almost all x ∈ X .

We notice that L̄ acts as a Lyapunov function for the dynamical system (3.4) in that

d

dt
L̄(Θt) = ∇ΘL̄(Θt) · Θ̇t = ∇ΘL̄(Θt) ·H(Θt) ≤ 0

Indeed, we calculate

d

dt
L̄(Θt) =

∫
X

(f(x)− gt(x))ġt(x)π(dx)

=

∫
X

(f(x)− gt(x))

[∫
C

(
˙̃Cct H̃

2,c
t (x)+

+C̃ct σ
′(Z̃ct (x))

(∫
W1

∫
W2

(
˙̃W 2,c,w,u
t H̃1,w

t (x) + W̃ 2,c,w,u
t σ′(W̃ 1,w

t · x) ˙̃W 1,w
t · x

)
µW 2(du)µW 1(dw)

))
µc(dc)

]
π(dx)

=

∫
X

(f(x)− gt(x))

∫
C

˙̃Cct H̃
2,c
t (x)µc(dc)π(dx)

+

∫
X

(f(x)− gt(x))

∫
C
C̃ct σ

′(Z̃ct (x))

∫
W1

∫
W2

W̃ 2,c,w,u
t σ′(W̃ 1,w

t · x) ˙̃W 1,w
t · xµW 2(du)µW 1(dw)µc(dc)π(dx)

+

∫
X

(f(x)− gt(x))

∫
C
C̃ct σ

′(Z̃ct (x))

∫
W1

∫
W2

˙̃W 2,c,w,u
t H̃1,w

t (x)µW 2(du)µW 1(dw)µc(dc)π(dx)

=

∫
C

˙̃Cct

[∫
X

(f(x)− gt(x))H̃2,c
t (x)π(dx)

]
µc(dc)

+

∫
W1

˙̃W 1,w
t ·

[∫
X

(f(x)− gt(x))

∫
C
C̃ct σ

′(Z̃ct (x))

∫
W2

W̃ 2,c,w,u
t σ′(W̃ 1,w

t · x)xµW 2(du)µc(dc)π(dx)

]
µW 1(dw)

+

∫
C

∫
W1

∫
W2

˙̃W 2,c,w,u
t

[∫
X

(f(x)− gt(x))C̃ct σ
′(Z̃ct (x))H̃1,w

t (x)π(dx)

]
µW 2(du)µW 1(dw)µc(dc)

=

∫
C

˙̃Cct

[∫
X

(f(x)− gt(x))H̃2,c
t (x)π(dx)

]
µc(dc)

+

∫
W1

˙̃W 1,w
t ·

[∫
X

(f(x)− gt(x))V wt σ
′(W̃ 1,w

t · x)xπ(dx)

]
µW 1(dw)

+

∫
C

∫
W1

∫
W2

˙̃W 2,c,w,u
t

[∫
X

(f(x)− gt(x))C̃ct σ
′(Z̃ct (x))H̃1,w

t (x)π(dx)

]
µW 2(du)µW 1(dw)µc(dc)

= −
∫
C

(∫
X

(f(x)− gt(x))H̃2,c
t (x)π(dx)

)2

µc(dc)

−
∫
W1

∣∣∣∣∫
X

(f(x)− gt(x))V wt σ
′(W̃ 1,w

t · x)xπ(dx)

∣∣∣∣2 µW 1(dw)

−
∫
C

∫
W1

∫
W2

(∫
X

(f(x)− gt(x))C̃ct σ
′(Z̃ct (x))H̃1,w

t (x)π(dx)

)2

µW 2(du)µW 1(dw)µc(dc)
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= −
[∫
C

(R1([Θt], c))
2
µc(dc) +

∫
W1

∣∣∣R2([Θt], W̃
1,w
t , w)

∣∣∣2 µW 1(dw)

+

∫
C

∫
W1

(
R3([Θt], C̃

c
t , W̃

1,w
t , c)

)2

µW 1(dw)µc(dc)

]
≤ 0. (3.5)

The fact that d
dt L̄(Θt) ≤ 0 from (3.5) means that L̄(Θt) is decreasing in the gradient direction of the

paths governing the limiting behavior of the weights.
Let us define η0 to be the joint measure for the random initialization of the parameters, i.e. for {Ci◦}i,

{W 1,j
◦ }j , {W 2,i,j

◦ }i,j . By Assumption 2.1 we have that this is the product measure η0 = µc × µW 1 × µW 2 .
Let us make a convenient assumption for the support of η0. In particular,

Assumption 3.3. We have that support(η0) = C ×W1 ×W2.

Notice now that we can write

d

dt
L̄(Θt) = −

∫
C

∫
W1

∫
W2

|H([Θt],Θt(θ), θ)|2 η0(dθ) ≤ 0. (3.6)

As a matter of fact, more is true. We investigate how the objective function changes with perturbation
from Θ to Θ̂. In particular, we have for ε = (ε1, ε2, ε3)

∂

∂εi
L̄(Θ + ε� Θ̂)

∣∣∣
ε=0

=

∫
C×W1×W2

Hi([Θ],Θ(θ), θ)Θ̂i(θ)η0(dθ),

which, in combination with (3.6) and Assumption 3.3, then says that a minimizer for L̄(Θ), say Θ∗(θ), will
satisfy for almost all (c, w) ∈ C ×W1 the relations

R1([Θ∗], c) = R2([Θ∗], W̃ 1,∗,w, w) = R3([Θ∗], C̃∗,c, W̃ 1,∗,w, c) = 0. (3.7)

By analogy, let us now define ηt to be the measure at time t of the random vector Θt = (C̃t, W̃
1
t , W̃

2
t )

as governed by the solution to the random ODE system (3.1). Then, ηt is the pushforward of η0 under Θt

given by (3.4) (see for example Chapter 8 in [1]), i.e.,

ηt = (Θt)] η0. (3.8)

Theorem 3.4. Let assumptions 3.1 and 3.3 hold. If ηt → η∗, weakly, where η∗ is a non-degenerate measure
that admits a density with finite first moments, then we have that η∗ is a global minimum with zero loss.

Before proving Theorem 3.4 we discuss its assumptions in the remarks that follow.

Remark 3.5. It is interesting to note that Theorem 3.4 actually shows that any stationary point is a global
minimum with zero loss. In addition, even though we do not show this here, one can see from the proof of
Theorem 3.4 that the assumption on analyticity of the activation function can be replaced by an assumption
on η∗ having full support.

Remark 3.6. The assumption on convergence of ηt as t→∞ is a required assumption for convergence in the
limit as t→∞ to occur. For completeness we mention here that verifying this assumption for the (commonly
used in practice) unregularized case that we study here is still an open problem even for the corresponding
unregularized case in the single layer case, see Appendix C.5 in [10] or [43]. Even though we do not show this
here, one way to guarantee that such an assumption holds is to add an appropriate regularization term in
the loss function, or to add an appropriate non-degenerate stochastic perturbation in the training algorithm
(1.4) for the evolution of each one of Cik+1,W

1,j
k+1,W

2,i,j
k+1 (noisy SGD); see [30, 48] for the corresponding

arguments in the single layer case. See also [8] for conditions under which the assumption on convergence of
ηt as t→∞ holds for non-degenerate sparse problems that include an appropriate regularizing term in the
loss function.

Remark 3.7. It is clear that convergence of [Θt] as t→∞ is linked to the convergence of the measure ηt as
t → ∞. At this point, we also mention that convergence of the trajectories [Θt] as t → ∞ is linked to the
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study of  Lojasiewicz inequalities [7, 27]. To the best of our knowledge no general results in this direction
are currently known neither for our case of interest, nor for problems corresponding to the single-layer case
(see Appendix C.5 of [10]) (i.e. no general results currently exist for the non-geodesically convex case that
we are dealing with here).

Proof of Theorem 3.4. We will use the notation µ̃c(c), µ̃W 1(w), and µ̃W 2(w) for the densities of the measure
µc(dc), µW 1(dw), and µW 2(dw) respectively. From equations (3.7), we have that any stationary solution
must satisfy

0 =

∫
C

∫
W1

∫
W2

(∫
X

(f(x)− g(x; [Θ∗]))C̃∗,cσ′(Z̃∗,c(x))σ(W̃ 1,∗,w · x)π(dx)

)2

µW 2(du)µW 1(dw)µc(dc)

=

∫
C

∫
W1

(∫
X

(f(x)− g(x; [Θ∗]))C̃∗,cσ′(Z̃∗,c(x))σ(W̃ 1,∗,w · x)π(dx)

)2

µ̃W 1(w)µ̃c(c)dwdc. (3.9)

Equation (3.9) and Assumption 3.3 imply that∫
X

(f(x)− g(x; [Θ∗]))C̃∗,cσ′(Z̃∗,c(x))σ(W̃ 1,∗,w · x)π(dx)µ̃W 1(w)µ̃c(c) = 0, (3.10)

for almost every w ∈ W1 and c ∈ C. Recalling now that

Z∗,c(x) =

∫
W1

∫
W2

W̃ 2,∗,c,w,uσ(W̃ 1,∗,w · x)µW 2(du)µW 1(dw),

we obtain ∫
C

sup
x∈X
|Z∗,c(x)|µc(dc) ≤

∫
C

∫
W1

∫
W2

|W̃ 2,∗,c,w,u|µW 2(du)µW 1(dw)µc(dc)

≤
∫
Rd
|u|η̃∗W2(u)du <∞,

where η̃∗W 2(u) denotes the marginal density of the limiting measure η∗ with respect to W̃ 2. Analogously we

shall define the marginal densities η̃∗c (c) and η̃∗W 1(w) with respect to the variables C and W̃ 1 respectively.
Similar to before, η̃∗(c, w, u) is the density of the measure η∗(dc, dw, du).

We must therefore have that sup
x∈X
|Z∗,c(x)|µ̃c(c) <∞ for almost every c ∈ C. In addition, since η∗ has a

density, we have that there exists a set B = {c ∈ R : |c− c0| < δ} with c0 6= 0 and 0 < δ < |c0| such that

0 <

∫
R
1{c∈B}η̃

∗
c (c)dc

=

∫
C
1{C∗,c∈B}µ̃c(c)dc

=

∫
C
1{C∗,c∈B, sup

x∈X
|Z∗,c(x)|µ̃c(c) <∞}µ̃c(c)dc.

Therefore, there must be a set K ⊂ R with Lesbegue measure λ(K) > 0 such that, for almost every
c ∈ K,

1{C∗,c∈B, sup
x∈X
|Z∗,c(x)|µ̃c(c) <∞}µ̃c(c) > 0, (3.11)

which in turn implies that C∗,c 6= 0 and sup
x∈X
|Z∗,c(x)| <∞ for almost every c ∈ K. Due to equations (3.11)

and (3.10), for almost every (c, w) ∈ K ×W1,

C∗,c 6= 0,

sup
x∈X
|Z∗,c(x)| < ∞,

0 =

∫
X

(f(x)− g(x; [Θ∗]))C̃∗,cσ′(Z̃∗,c(x))σ(W̃ 1,∗,w · x)π(dx)µ̃W 1(w)µ̃c(c). (3.12)
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Thus, there exists a c0 ∈ K such that∫
X

(f(x)− g(x; [Θ∗]))C∗,c0σ′(Z̃∗,c0(x))σ(W̃ 1,∗,w · x)π(dx)µ̃W 1(w) = 0,

for almost every w ∈ W1. This of course implies that, for almost every w ∈ W1,∫
X

(f(x)− g(x; [Θ∗]))σ′(Z̃∗,c0(x))σ(W̃ 1,∗,w · x)π(dx)µ̃W 1(w) = 0.

Consequently, we have that∫
W1

∫
X

(f(x)− g(x; [Θ∗]))σ′(Z̃∗,c0(x))σ(W̃ 1,∗,w · x)π(dx)µ̃W 1(w)dw = 0.

Therefore, since η∗W 1 has a density, there exists a compact set A ⊂ Rd such that, for every w ∈ A,

Γ(w) =

∫
X

(f(x)− g(x; [Θ∗]))σ′(Z̃∗,c0(x))σ(w · x)π(dx) = 0. (3.13)

Since σ(·) is analytic, Γ(w) is analytic (see Lemma 3.8). Therefore, by the identity theorem for real-
analytic functions, Γ(w) = 0 for every w ∈ Rd. It then follows, since σ(·) is discriminatory,

(f(x)− g(x; [Θ∗]))σ′(Z̃∗,c0(x)) = 0,

for every x ∈ X . Finally, since σ′(Z̃∗,c0(x)) > 0 due to equation (3.12),

f(x)− g(x; [Θ∗]) = 0,

for every x ∈ X , concluding the proof of the theorem.

We conclude with the the result on analyticity of Γ(w) defined in (3.13).

Lemma 3.8. Assume X is a compact set and the activation unit σ(·) is real analytic and bounded. Then,

Γ(w) =

∫
X

(f(x)− g(x; [Θ∗]))σ′(Z̃∗,c0(x))σ(w · x)π(dx)

defined in (3.13) is a real analytic function as well.

Proof of Lemma 3.8. The partial derivative of σ(w · x) is

∂|µ|

∂wµ
σ(w · x) = σ|µ|(w · x)

d∏
i=1

xµi .

Before we prove analyticity of Γ(w), we show that g(x) is finite. Recall that

g(x; [Θ∗]) =

∫
C
C∗,cσ(Z∗,c(x))µ̃c(c)dc.

Therefore, due to σ(·) being bounded and η∗ having marginals with finite first moments,

|g(x)| ≤ K0

∫
C
|C∗,c|µ̃c(c)dc

≤ K0

∫
C
|c|η̃∗c (c)dc

≤ K.

Next,

∂|µ|Γ

∂wµ
(w) =

∫
X

(f(x)− g(x; [Θ∗]))σ′(Z̃∗,c0(x))σ|µ|(w · x)

d∏
i=1

xµiπ(dx).

11



Due to the compactness of X , sup
x∈X
|σ′(Z̃∗,c0(x))| < ∞, and the fact that σ is a real analytic function,

Proposition 2.2.10 of [32] shows there exist constants C1, C2 > 0 such that∣∣∣∣∂|µ|Γ∂wµ
(w)

∣∣∣∣ ≤ C1
µ!

R
|µ|
1

d∏
i=1

Cµi2

= C1
µ!

R
|µ|
1

C
|µ|
2

= C1
µ!

R
|µ|
1

(R−1
2 )|µ|

= C1
µ!

(R1R2)|µ|

= C1
µ!

R|µ|
,

where R2 = 1
C2

and R = R1R2. It follows then again from Proposition 2.2.10 of [32] that Γ(w) is a real
analytic function. This concludes the proof of the lemma.

4 Discussion on the limiting results and extensions to multi-layer networks with
greater depth

In Subsection 4.1, we discuss some of the implications of our theoretical convergence results and presents
related numerical results. In Section 4.2, we show that the procedure can be extended to treat deep neural
networks with more than two hidden layers. General challenges in the study of multi-layer neural networks
are explored Subsection 4.3.

4.1 Discussion on the limiting results
It is instructive to notice that the results of this paper recover the results of [49] (see also [43, 48]) if

we restrict attention to the one-layer case. Indeed, let us set N2 = 1, N1 = N , Ci = 1 and H2,i = Z2,i in
(1.1)-(1.2), and we get the single-layer neural network

gNθ (x) =
1

N

N∑
j=1

W 2,jσ
(
W 1,j · x

)
,

with the corresponding empirical measure of the parameters becoming

γNt = γ̃NbNtc, where γ̃Nk =
1

N

N∑
j=1

δW 1,j
k ,W 2,j

k
. (4.1)

In that case notice that we can simply write

gNθbNtc(x) =
〈
w2σ(w1 · x), γNt

〉
.

Then, it is relatively straightforward to notice that the result of Lemma 2.2 boils down to the one layer
convergence results of [49], see also [43, 48]. Namely, if we write γt for the limit in probability of γNt we get
that

lim
N→∞

gNθbNtc(x) =
〈
w2σ(w1 · x), γt

〉
. (4.2)

It is useful to compare the limits of the neural network output in the one layer and two layer cases, (4.2)
and (2.7) respectively.

Some general remarks of interest follow.
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• It is clear that the two layer case (and more generally the multi-layer case) is more complex than the
single-layer case, which provides some intuition for the increased complexity of deep neural networks
when compared to shallow neural networks. For instance, in the single layer case the neural network
output is given explicitly by (4.2). On the other hand, in the multi-layer case, the neural network’s
output is the solution to an integral equation as given by (2.6)-(2.7).

• In contrast to the single-layer case, in the multi-layer case the asymptotic weight distribution is layer
dependent and weights do not necessarily become independent in the large hidden units limit. In fact,
as our result demonstrates, see (2.5)-(2.6), the neural network output in the large hidden units limit
and large SGD-iterates does not depend on the individual weights, but on paths of weights that connect
the input layer to the output layer. One could regard these paths, i.e. the solution to the random
ODE’s in (2.6), as typical representative paths of the weights in the limit connecting the different layers
of the “limiting” neural network.

• In the multi-layer case, units at a given layer receive an aggregate signal from units of the previous
and/or of the next layer.

• The law of large numbers for a single-layer network indicates that the network will converge in proba-
bility to a deterministic limit. That is, after a certain point, adding more hidden units will not increase
the accuracy. Our main result Theorem 2.3 suggests that the same conclusion is true for multi-layer
neural networks as well.

• Theorem 3.4 combined with Theorem 2.3 characterizes the limiting behavior of the objective function
LN1,N2(θ) from (1.3). Section 3 shows that, under the proper assumptions, the limit objective function
decreases in the gradient direction of the paths governing the limiting behavior of the weights. The
limit ODEs seek to minimize the limit objective function and the global minimum is expected to be
recovered.

One practical consequence of our analysis is that the parametrization of the learning rates, see (2.1),
indicates that one should use larger learning rates for the weights that connect the different layers (e.g.,
W 2,i,j) as compared to the weights for the input or output layers (e.g., Ci and W 1,j). Notice that this is
also the case for the three layer case outlined in Subsection 4.2 below.

As will be explained in Section 4.2, the law of large numbers can be extended to multi-layer neural
networks with an arbitrary number of layers. The law of large numbers will only hold under a certain choice
of the learning rates. The learning rates need to be scaled with the number of hidden units in each layer.
For a multi-layer network with L layers, the learning rates are

αC =
NL
N1

, αW,1 = 1, αW,2 = N2, αW,L =
NL−1NL
N1

, αW,` =
N`−1N`
N1

, (4.3)

where N` is the number of hidden units in the `-th layer.
If the learning rates are constant in the number of hidden units N1, . . . , NL, it turns out that the network

will not train as N1, . . . , NL → ∞ (i.e., in the limit, the network parameters will remain at their initial
conditions).

The necessity of scaling the learning rates in the asymptotic regime of large numbers of hidden units
(i.e., wide layers) is one of the interesting products of the mean-field limit analysis. A numerical example is
presented in Figure 1 below. A deep neural network is trained to classify images for the CIFAR10 dataset
[33]. The CIFAR10 dataset contains 60, 000 color images in 10 classes (airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck). The dataset is divided into 50, 000 training images and 10, 000 test images.
Each image has 32 × 32 × 3 pixels. The goal is to train a neural network to correctly classify each image
based solely on the image pixels as an input. The neural network we use has the mean-field normalizations
1
N`

in each layer `. There are 8 convolution layers which each have 64 channels. This is followed by two
fully-connected layers which each have 500 units. We first train the neural network using the scaled learning
rates. Then, we also train the neural network with the standard stochastic gradient descent algorithm (no
scaling of the learning rates). Using the scaled learning rates, we achieve a high test accuracy. However,
without the scalings, the neural network does not train (i.e., it remains at a very low accuracy).
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Figure 1: Performance of deep neural network on CIFAR10 dataset with and without scaled learning rates.

4.2 Extension to multi-layer neural networks with more layers
The procedure developed in this paper naturally extends to multi-layer neural networks with more layers

than two layers. For brevity, let us present the result in the case of three layers. The situation for more
layers is the same, albeit with more complicated algebra. A multi-layer neural network with three layers
takes the form

gN1,N2,N3

θ (x) =
1

N3

N3∑
i=1

Ciσ

 1

N2

N2∑
j=1

W 3,i,jσ

(
1

N1

N1∑
ν=1

W 2,j,νσ
(
W 1,ν · x

)) , (4.4)

which can be also written as

H1,ν(x) = σ(W 1,ν · x), ν = 1, . . . , N1,

Z2,j(x) =
1

N1

N1∑
ν=1

W 2,j,νH1,ν(x), j = 1, . . . , N2

H2,j(x) = σ

(
Z2,j(x)

)
,

Z3,i(x) =
1

N2

N2∑
j=1

W 3,i,jH2,j(x), i = 1, . . . , N3

H3,i(x) = σ

(
Z3,i(x)

)
,

gN1,N2,N3

θ (x) =
1

N3

N3∑
i=1

CiH3,i(x). (4.5)

where Ci,W 2,j,ν ,W 3,i,j ∈ R and x,W 1,ν ∈ Rd. The neural network model has parameters

θ = (C1, . . . , CN3 ,W 2,1,1 . . . ,W 2,N2,N1 ,W 3,1,1 . . . ,W 3,N3,N2 ,W 1,1, . . .W 1,N1),

which must be estimated from data. The number of hidden units in the first layer is N1, the number of
hidden units in the second layer is N2, and the number of hidden units in the third layer is N3. Naturally,
the loss function now becomes

LN1,N2,N3(θ) =
1

2
EY,X

[
(Y − gN1,N2,N3

θ (X))2

]
,

where the data (X,Y ) ∼ π(dx, dy).
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The stochastic gradient descent (SGD) algorithm for estimating the parameters θ is, for k ∈ N, ν =
1, . . . , N1, i = 1, . . . , N3 and j = 1, . . . , N2 is

Cik+1 = Cik +
αN1,N2,N3

C

N3

(
yk − gN1,N2,N3

θk
(xk)

)
H3,i
k (xk),

W 1,ν
k+1 = W 1,ν

k +
αN1,N2,N3

W,1

N1

(
yk − gN1,N2,N3

θk
(xk)

) 1

N3

N3∑
i=1

Cikσ
′(Z3,i

k (xk))

 1

N2

N2∑
j=1

W 3,i,jσ′(Z2,j(xk))W 2,j,ν
k

×
× σ′(W 1,ν

k · xk)xk,

W 3,i,j
k+1 = W 3,i,j

k +
αN1,N2,N3

W,3

N2N3

(
yk − gN1,N2,N3

θk
(xk)

)
Cikσ

′(Z3,i
k (xk))H2,j

k (xk),

W 2,j,ν
k+1 = W 2,j,ν

k +
αN1,N2,N3

W,2

N1N2

(
yk − gN1,N2,N3

θk
(xk)

) 1

N3

N3∑
i=1

Cikσ
′(Z3,i

k (xk))W 3,i,j
k σ′(Z2,j

k (xk))H1,ν
k (xk),

(4.6)

where

H1,ν
k (xk) = σ(W 1,ν

k · xk), ν = 1, . . . , N1,

Z2,j
k (xk) =

1

N1

N1∑
ν=1

W 2,j,ν
k H1,ν

k (xk),

H2,j
k (xk) = σ

(
Z2,j
k (xk)

)
,

Z3,i
k (xk) =

1

N2

N2∑
j=1

W 3,i,j
k H2,j

k (xk),

H3,i
k (xk) = σ

(
Z3,i
k (xk)

)
,

gN1,N2,N3

θk
(xk) =

1

N3

N3∑
i=1

CikH
3,i
k (xk). (4.7)

where αN1,N2,N3

C , αN1,N2,N3

W,1 , αN1,N2,N3

W,2 and αN1,N2,N3

W,3 are the learning rates. The parameters at step k are

θN1,N2,N3

k = (C1
k , . . . , C

N3

k ,W 2,1,1
k . . . ,W 2,N2,N1

k ,W 3,1,1
k . . . ,W 3,N3,N2

k ,W 1,1
k , . . .W 1,N1

k ).

(xk, yk) are samples of the random variables (X,Y ). We assume a condition analogous to Assumption 2.1.
Let us now choose the learning rates to be

αN1,N2,N3

C =
N3

N1
, αN1,N2,N3

W,1 = 1, αN1,N2,N3

W,3 =
N2N3

N1
, αN1,N2,N3

W,2 = N2

Similar to before, define the empirical measure

γ̃N1,N2,N3

k =
1

N1

N1∑
ν=1

δ
W 1,ν
k ,W 2,1,ν

k ,...,W
2,N2,ν

k ,W 3,1,1
k ...,W

3,N3,N2
k ,C1

k,...,C
N3
k

.

The time-scaled empirical measure is

γN1,N2,N3

t := γ̃N1,N2,N3

bN1tc ,

and the corresponding time-scaled neural network output is gN1,N2,N3

t (x) = gN1,N2,N3

θbN1tc
(x).
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Following the same procedure as for the two layer case one expects to get the following limit that describes
gt(x) (the iterated limit of gN1,N2,N3

t (x) as first N1 →∞, then N2 →∞, and then N3 →∞):

dC̃ct =

∫
X×Y

(
y − gt(x)

)
H̃3,c
t (x)π(dx, dy)dt, C̃c0 = c,

dW̃ 1,w
t =

∫
X×Y

(
y − gt(x)

)
V wt (x)σ′(W 1,w

t · x)xπ(dx, dy)dt, W̃ 1,w
0 = w,

dW̃ 3,c,v
t =

∫
X×Y

(
y − gt(x)

)
C̃ct σ

′(Z̃3,c
t (x))H̃2,v

t (x)π(dx, dy)dt, W̃ 3,c,v
0 = v,

dW̃ 2,w,u,v
t =

∫
X×Y

(
y − gt(x)

)
Lvt (x)σ′(Z̃2,v

t (x))H̃1,w
t (x)π(dx, dy)dt, W̃ 2,w,u,v

0 = u,

H̃1,w
t (x) = σ(W̃ 1,w

t · x),

Z̃2,v
t (x) =

∫
W1

∫
W2

W̃ 2,w,u,v
t H̃1,w

t (x)µW 2(du)µW 1(dw),

H̃2,v
t (x) = σ(Z̃2,v

t (x)),

Z̃3,c
t (x) =

∫
W3

W̃ 3,c,v
t H̃2,v

t (x)µW 3(dv),

H̃3,c
t (x) = σ(Z̃3,c

t (x)),

V wt (x) =

∫
C
C̃ct σ

′(Z̃3,c
t (x))

(∫
W3

W̃ 3,c,v
t σ′(Z̃2,v

t (x))

(∫
W2

W̃ 2,w,u,v
t µW 2(du)

)
µW 3(dv)

)
µc(dc)

Lvt (x) =

∫
C
C̃ct σ

′(Z̃3,c
t (x))W̃ 3,c,v

t µc(dc)

gt(x) =

∫
C
C̃ct H̃

3,c
t (x)µc(dc), (4.8)

In other words, one expects to be able to write that the neural network’s output is

gt(x) =

∫
C
C̃ct

(
σ

(∫
W3

W̃ 3,c,v
t σ

(∫
W1

∫
W2

W̃ 2,w,u,v
t σ̃(W̃ 1,w

t · x)µW 2(du)µW 1(dw)

)
µW 3(dv)

))
µc(dc).

A computation analogous to the one in Section 3 shows that, as expected, the limit ODEs in (4.8) seek
to minimize the corresponding limit objective function as t→∞. We leave the rigorous proof for the form
of gt(x) in the three layer neural network case to the interested reader.

4.3 Challenges in the analysis of multi-layer neural networks
Challenges arise in the study of the asymptotics of multi-layer neural networks. [49], [43], and [48] lever-

aged traditional approaches from the mean-field and interacting particle system literature to characterize the
asymptotics of single-layer neural networks. However, it turns out that the traditional mean-field approach
cannot be used for multi-layer neural networks.

A standard approach for analyzing (1.4) as N1, N2 → ∞ would be to construct an empirical measure

ρN1,N2

k of the parameters θk at training step k, as for example γ̃N1,N2

k . Then, we could study the behavior

of ρN1,N2

k as N1, N2 → ∞. This empirical measure ρN1,N2

k needs to be designed such that the dynamics of

ρN1,N2

k can be written in terms of ρN1,N2

k itself and the data (xk, yk) (plus martingale and remainder terms).

That is, the dynamics of ρN1,N2

k are closed.
This is straightforward for single-layer neural networks (see [49]), but it is challenging to do for multi-layer

neural networks. In the case of single-layer networks, the empirical measure is simply given by (4.1) and its
analysis has been successfully carried on in [49]. One is tempted to do the same thing for the multi-layer
case, i.e. study the limit of the empirical measure defined in (2.2). The problem that one faces with this
formulation is that, in contrast to the single-layer case, the dimension of the space on which the empirical
measure takes values increases with N2. Therefore, the problem cannot be studied using such a empirical
measure.
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An alternative approach, which is also natural in this case, is to try and create “nested measures”,
sometimes called multi-level measure valued processes in mathematical biology, see [12, 14, 15, 16, 17, 18, 19]
and the review paper [13].

Let us explain how to construct a nested empirical measure for (1.4) and why it will not work. In order

to simplify notation, let N1 = N2 = N and ρN1,N2

k = ρNk in the following example. Considering N1 6= N2

and taking subsequent limits does not alter the conclusions below.

• Let’s first examine the parameter W 1,j in the first layer. The j-th unit in the first layer (i.e., H1,j =
σ(W 1,j · x)) is connected to all of the hidden units in the second layer (i.e., H2,i) via the weights
W 2,i,j . Therefore, there is a measure associated with each W 1,j which must track {W 2,i,j , Zi, Ci}Ni=1.

W 2,i,j and Zi are required for calculating the SGD update for W 1,j (see 1.4). This measure is νN,jk =
1
N

∑N
i=1 δW 2,i,j

k ,Zik,C
i
k
.

• Let’s next examine the parameter Ci in the second layer. The i-th unit in the second layer is connected
to all of the hidden units in the first layer via the weights W 2,i,j . Therefore, for each Ci, we must
track {W 2,i,j ,W 1,j}Nj=1 in order to calculate the SGD update for Ci (see 1.4). Furthermore, updating

Ci requires tracking W 1,j , and updating W 1,j requires tracking νj . Therefore, updates to Ci require
the empirical measure µN,ik = 1

N

∑N
j=1 δW 2,i,j

k ,W 1,j
k ,νN,jk

∈M(R× Rd ×M(R3)).

• Finally, the entire network at iteration k is specified by the empirical measure

ρNk =
1

N

N∑
i=1

δCik,µik ∈M(R×M(R× Rd ×M(R3))), (4.9)

where M(E) is the space of measures on the metric space E. Notice that the process (4.9) involves nested
measures (sometimes called “multi-level processes”). The process ρk takes values in a space of nested mea-
sures M(M(M(· · · ))).

Careful inspection of ρNk identifies a crucial problem: its dynamics are not closed. The evolution of

νN,jk (the innermost measure in the nested measures) cannot be written in terms of ρNk . In particu-

lar, updating νN,jk requires also updating (W 2,i,j , Zik, C
i
k)Ni=1. This would in fact require knowledge of

(W 2,i,j , Zik, C
i
k, µ

N,i
k )Ni=1, i.e. we would have to re-define νN,jk as 1

N

∑N
i=1 δW 2,i,j

k ,Zik,C
i
k,η

N,i
k

where ηN,ik =

1
N

∑N
m=1 δW 2,i,m

k ,Wm
k

. This leads to re-defining ρNk as taking values inM(R×M(R×Rd ×M(R3 ×M(R×
Rd)))), i.e. the space of 4-nested measures (before it was 3-nested measures). However, the closure problem

remains, since the evolution of ηN,ik cannot be written in terms ρNk . In fact, there does not seem to exist any
finite number of nested measures for which the empirical measure ρNk ’s dynamics are closed and despite our
best efforts we have not managed to find one. This closure problem then leads to non-trivial issues associated
with establishing a well define limit.

For completeness, we also remark that a third alternative is to define the candidate empirical measure as
an appropriately normalized double sum over both indices corresponding to the two hidden layers and then
consider the limit of this measure as N1, N2 → ∞. However, this approach also suffers a closure problem,
similar to the situation described above.

The discussion in this section highlights some of the challenges that must be addressed in the analysis of
multi-layer neural networks. Such problems are not present in the analysis of single-layer neural networks.
Therefore, a different approach is required for the asymptotic analysis of multi-layer neural networks and
this paper is a first step in this direction.

The problems that we describe above led us to the approach used in this paper. In particular, the
approach in Section 2 first studies the limit of the empirical measure as the number of hidden units in the
first layer grows to infinity. This is similar to [49]. The limit is a solution to an evolution equation and it is
the law of a system of random ODEs. We then make the crucial observation that one can characterize the
resulting system in terms of the initialization for the stochastic gradient descent iterates. This means that
we can reformulate the limiting system of the first layer into an equivalent system of random ODEs and then
consider the limit of the second layer. This allows us to obtain the limit of the output of the neural network
as the number of hidden units of all layers grow to infinity by studying the limit of the random ODE in
Theorem 2.3.
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5 Proof of Theorem 2.3-Characterization of the limit
In preparation for the proof of Theorem 2.3, we first re-express the result from Lemma 2.2.

Corollary 5.1. Consider the particle system:

dCit =

∫
X×Y

(
y − gN2

t (x)
)
H2,i
t (x)π(dx, dy)dt, Ci0 = Ci◦, i = 1, . . . , N2,

dW 1
t =

∫
X×Y

(
y − gN2

t (x)
)( 1

N2

N2∑
i=1

Citσ
′(Zit(x))W 2,i

t

)
σ′(W 1

t · x)xπ(dx, dy)dt, W 1
0 ∼ µW 1(dw),

dW 2,i
t =

∫
X×Y

(
y − gN2

t (x)
)
Citσ

′(Zit(x))H1
t (x)π(dx, dy)dt, W 2,i

0 ∼ µW 2(du), i = 1, . . . , N2,

H1
t (x) = σ(W 1

t · x),

Zit(x) = E
[
W 2,i
t H1

t (x)

∣∣∣∣C1
◦ , . . . , C

N2
◦

]
,

H2,i
t (x) = σ(Zit(x)),

gN2
t (x) =

1

N2

N2∑
i=1

CitH
2,i
t (x). (5.1)

Let νt,(c1,...,cN2
) be the conditional Law of (W 1

t ,W
2,1
t , . . .W 2,N2

t , C1
t , . . . , C

N2
t )0≤t≤T given (C1

0 , . . . , C
N2
0 ) =

(c1, . . . , cN2
). Then, ν

t,(C1
◦,...,C

N2
◦ )

is the unique solution to the evolution equation (2.3)-(2.4).

Proof. See Appendix A.

Due to exchangeability properties and without loss of generality, we can transform (5.1) into the equivalent
particle system:

dC
Ci◦
t =

∫
X×Y

(
y − gN2

t (x)
)
H

2,Ci◦
t (x)π(dx, dy)dt, C

Ci◦
0 = Ci◦ i = 1, . . . , N2,

dW 1,W0

t =

∫
X×Y

(
y − gN2

t (x)
)
V N2,W0

t σ′(W 1,W0

t · x)xπ(dx, dy)dt, W 1,W0

0 = W0 ∼ µW 1(dw)

dW
2,Ci◦,W0,W

2,i
0

t =

∫
X×Y

(
y − gN2

t (x)
)
C
Ci◦
t σ′(Z

Ci◦
t (x))H1,W0

t (x)π(dx, dy)dt, W
2,Ci◦,W0,W

2,i
0

0 = W 2,i
0 ∼ µW 2(du),

H1,W0

t (x) = σ(W 1,W0

t · x),

Z
Ci◦
t (x) = E

[
W

2,Ci◦,W0,W
2,i
0

t H1,W0

t (x)

∣∣∣∣C1
◦ , . . . , C

N2
◦

]
, i = 1, . . . , N2,

H
2,Ci◦
t (x) = σ(Z

Ci◦
t (x)), i = 1, . . . , N2,

gN2
t (x) =

1

N2

N2∑
i=1

C
Ci◦
t H

2,Ci◦
t (x),

V N2,W0

t (x) =
1

N2

N2∑
i=1

C
Ci◦
t σ′(Z

Ci◦
t (x))W

2,Ci◦,W0,W
2,i
0

t . (5.2)

Since for all i = 1, · · · , N2, Ci◦ have probability density function as described in Assumption 2.1, we have
that

P[{Ci◦ 6= Cj◦}i 6=j,(i,j)=1,2,...N2
] = 1.

This allows us to substitute the variable names

(Ĉit , Ŵ
1
t , Ŵ

2,i
t , Ẑit , Ĥ

1
t , Ĥ

2,i
t ) for (C

Ci◦
t ,W 1,W0

t ,W
2,Ci◦,W0,W

2,i
0

t , Z
Ci◦
t , H1,W0

t , H
2,Ci◦
t ),
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for i = 1, . . . , N2.
This produces the system:

dĈit =

∫
X×Y

(
y − gN2

t (x)
)
Ĥ2,i
t (x)π(dx, dy)dt, Ĉi0 = Ci◦, i = 1, . . . , N2,

dŴ 1
t =

∫
X×Y

(
y − gN2

t (x)
)
V N2,W0

t σ′(Ŵ 1
t · x)xπ(dx, dy)dt, Ŵ 1

0 = W0 ∼ µW 1(dw),

dŴ 2,i
t =

∫
X×Y

(
y − gN2

t (x)
)
Ĉitσ

′(Ẑit(x))Ĥ1
t (x)π(dx, dy)dt, Ŵ 2,i

0 = W 2,i
0 ∼ µW 2(du),

Ĥ1
t (x) = σ(Ŵ 1

t · x),

Ẑit(x) = E
[
Ŵ 2,i
t Ĥ1

t (x)

∣∣∣∣C1
◦ , . . . , C

N2
◦

]
, i = 1, . . . , N2,

Ĥ2,i
t (x) = σ(Ẑit(x)), i = 1, . . . , N2,

gN2
t (x) =

1

N2

N2∑
i=1

ĈitĤ
2,i
t (x),

V N2,W0

t (x) =
1

N2

N2∑
i=1

Ĉitσ
′(Ẑit(x))Ŵ 2,i

t . (5.3)

The system (5.3) is exactly the same system as (5.1). Notice also that Ĉit in (5.3) depends also on
{Ci◦}

N2
i=1 in a symmetric way via gN2

t (x). Similarly Ŵ 1
t and Ŵ 2,i

t depend also on {Ci◦}
N2
i=1 and on {W 2,i

0 }
N2
i=1

symmetrically via gN2
t (x) and V N2,W0

t (x). This is also the situation for (5.1). Then independence and
identical distribution of the initial conditions together with the aforementioned exchangeability property
imply that (5.1) and (5.2) are equivalent.

5.1 Limiting System
The goal is to prove that for any t ∈ [0, 1] and x ∈ X ,

lim
N2→∞

gN2
t (x) = gt(x),

in L1, where gN2
t (x) is from (5.2) and the limit gt(x) is given by

gt(x) =

∫
C
C̃ct H̃

2,c
t (x)µc(dc),

where,

dC̃ct =

∫
X×Y

(
y − gt(x)

)
H̃2,c
t (x)π(dx, dy)dt, C̃c0 = c,

dW̃ 1,w
t =

∫
X×Y

(
y − gt(x)

)
V wt σ

′(W̃ 1,w
t · x)xπ(dx, dy)dt, W̃ 1,w

0 = w,

dW̃ 2,c,w,u
t =

∫
X×Y

(
y − gt(x)

)
C̃ct σ

′(Z̃ct (x))H̃1,w
t (x)π(dx, dy)dt, W̃ 2,c,w,u

0 = u,

H̃1,w
t (x) = σ(W̃ 1,w

t · x),

Z̃ct (x) =

∫
W1

∫
W2

W̃ 2,c,w,u
t H̃1,w

t (x)µW 2(du)µW 1(dw),

H̃2,c
t (x) = σ(Z̃ct (x)),

V wt (x) =

∫
C
C̃ct σ

′(Z̃ct (x))

(∫
W2

W̃ 2,c,w,u
t µW 2(du)

)
µc(dc). (5.4)

Before presenting the proof of this result, let us define a quantity that will be of central interest in the
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sequel. In particular, for (c, w, u) ∈ {(Ci◦,W 1
0 ,W

2,i
0 ), i = 1, · · ·N2} and x ∈ X , let’s define the error function

EN2
t (c, w, u, x) := (Cct − C̃ct )2 +

∥∥∥W 1,w
t − W̃ 1,w

t

∥∥∥2

+ (W 2,c,w,u
t − W̃ 2,c,w,u

t )2

+(H2,c
t (x)− H̃2,c

t (x))2 + (Zct (x)− Z̃ct (x))2.

Note that we certainly have,

|Cc0 − C̃c0|2 +
∥∥∥W 1,w

0 − W̃ 1,w
0

∥∥∥2

+ |W 2,c,w,u
0 − W̃ 2,c,w,u

0 |2 + |Zc0(x)− Z̃c0(x)|2 = 0.

We will show below that E
[
EN2
t (Ci◦,W0,W

2,i
0 , x)

]
appropriately converges to zero as N2 → ∞ which

will then imply that gN2
t (x) converges to gt(x) as indicated.

5.2 A Priori Bounds

Let us first establish uniform bounds on the processes Cct ,W
1,w
t ,W 2,c,w,u

t , and gN2
t (x) for the system

(5.2). For any t ∈ [0, T ] and any N2 ∈ N,

1

N2

N2∑
i=1

|CC
i
◦

t | ≤
1

N2

N2∑
i=1

|CC
i
◦

0 |+
∫ t

0

∫
X×Y

∣∣y − gN2
s (x)

∣∣ 1

N2

N2∑
i=1

|H2,Ci◦
s (x)|π(dx, dy)ds.

|H2,Ci◦
s (x)| < K since σ(·) ∈ C2

b . Then, using the fact that X × Y is compact,

1

N2

N2∑
i=1

|CC
i
◦

t | ≤
1

N2

N2∑
i=1

|CC
i
◦

0 |+K1t+K2

∫ t

0

1

N2

N2∑
i=1

|CC
i
◦

s |ds.

By Gronwall’s inequality, we have that for any N2 ∈ N and for any t ∈ [0, T ],

1

N2

N2∑
i=1

|CC
i
◦

t | ≤ K.

Using the same approach, we can establish uniform bounds on the other processes W 1,w
t and W 2,c,w,u

t .
Therefore, for any N2 ∈ N, t ∈ [0, 1], x ∈ X , and (c, w, u) ∈ {(Ci◦,W 1

0 ,W
2,i
0 ), i = 1, · · ·N2},

max{|gN2
t (x)|, |Cct |, |W

2,c,w,u
t |, |V N2,w

t (x)|, |W 1,w
t |} ≤ K, (5.5)

5.3 Bound for E|V N2,W0
t (x)− V W0

t (x)|2.
We have:

|V N2,W0

t (x)− VW0
t (x)| ≤

∣∣∣∣ 1

N2

N2∑
i=1

C
Ci◦
t σ′(Z

Ci◦
t (x))W

2,Ci◦,W0,W
2,i
0

t −
∫
C
C̃ct σ

′(Z̃ct (x))
( ∫
W2

W̃ 2,c,W0,u
t µW 2(du)

)
µc(dc)

∣∣∣∣
=

∣∣∣∣ 1

N2

N2∑
i=1

C
Ci◦
t σ′(Z

Ci◦
t (x))W

2,Ci◦,W0,W
2,i
0

t − 1

N2

N2∑
i=1

C̃
Ci◦
t σ′(Z̃

Ci◦
t (x))W̃

2,Ci◦,W0,W
2,i
0

t

∣∣∣∣
+

∣∣∣∣ 1

N2

N2∑
i=1

C̃
Ci◦
t σ′(Z̃

Ci◦
t (x))W̃

2,Ci◦,W0,W
2,i
0

t −
∫
C
C̃ct σ

′(Z̃ct (x))
( ∫
W2

W̃ 2,c,W0,u
t µW 2(du)

)
µc(dc)

∣∣∣∣
:= |ΓV,1,W0

t |+ |ΓV,2,W0

t |. (5.6)
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The first term in (5.6) can be studied using a decomposition:∣∣∣∣ΓV,1,W0

t

∣∣∣∣ =

∣∣∣∣ 1

N2

N2∑
i=1

C
Ci◦
t σ′(Z

Ci◦
t (x))W

2,Ci◦,W0,W
2,i
0

t − 1

N2

N2∑
i=1

C̃
Ci◦
t σ′(Z̃

Ci◦
t (x))W̃

2,Ci◦,W0,W
2,i
0

t

∣∣∣∣
=

∣∣∣∣ 1

N2

N2∑
i=1

[(
C
Ci◦
t − C̃

Ci◦
t

)
σ′(Z

Ci◦
t (x))W

2,Ci◦,W0,W
2,i
0

t

+ C̃
Ci◦
t

(
σ′(Z

Ci◦
t (x))W

2,Ci◦,W0,W
2,i
0

t − σ′(Z̃C
i
◦

t (x))W̃
2,Ci◦,W0,W

2,i
0

t

)]∣∣∣∣
=

∣∣∣∣ 1

N2

N2∑
i=1

[(
C
Ci◦
t − C̃

Ci◦
t

)
σ′(Z

Ci◦
t (x))W

2,Ci◦,W0,W
2,i
0

t + C̃
Ci◦
t

(
σ′(Z

Ci◦
t (x))− σ′(Z̃C

i
◦

t (x))

)
W

2,Ci◦,W0,W
2,i
0

t

+ C̃
Ci◦
t σ′(Z̃

Ci◦
t (x))

(
W

2,Ci◦,W0,W
2,i
0

t − W̃ 2,Ci◦,W0,W
2,i
0

t

)]∣∣∣∣
≤ K

N2

N2∑
i=1

[∣∣CCi◦t − C̃Ci◦t ∣∣+
∣∣ZCi◦t (x)− Z̃C

i
◦

t (x)
∣∣+
∣∣W 2,Ci◦,W0,W

2,i
0

t − W̃ 2,Ci◦,W0,W
2,i
0

t

∣∣]

≤ K

N2

N2∑
i=1

√
EN2
t (Ci◦,W0,W

2,i
0 , x).

where the uniform bounds from (5.5) were used. In addition, we also have for some constant K <∞

E
[(

ΓV,2,W0

t

)2]
= E

[(
1

N2

N2∑
i=1

C̃
Ci◦
t σ′(Z̃

Ci◦
t (x))W̃

2,Ci◦,W0,W
2,i
0

t −
∫
C
C̃ct σ

′(Z̃ct (x))
( ∫
W2

W̃ 2,c,W0,u
t µW 2(du)

)
µc(dc)

)2]

=
1

N2
2

N2∑
i=1

Var
[
C̃
Ci◦
t σ′(Z̃

Ci◦
t (x))W̃

2,Ci◦,W0,W
2,i
0

t

]
≤ K

N2
.

where we used the assumed independence of Ci◦, W0, and W 2,i
0 as well as the a-priori bound from (5.5).

Hence, we obtain that for some unimportant constant K <∞

E|V N2,W0

t (x)− VW0
t (x)|2 ≤ K

N2

N2∑
i=1

E
[
EN2
t (Ci◦,W0,W

2,i
0 , x)

]
+
K

N2
. (5.7)

5.4 Bound for |gN2
t (x)− gt(x)|.

We can write

|gN2
t (x)− gt(x)| =

∣∣∣∣ 1

N2

N2∑
i=1

C
Ci◦
t H

2,Ci◦
t (x)−

∫
C
C̃ct H̃

2,c
t (x)µc(dc)

∣∣∣∣
≤

∣∣∣∣ 1

N2

N2∑
i=1

C
Ci◦
t H

2,Ci◦
t (x)− 1

N2

N2∑
i=1

C̃
Ci◦
t H̃

2,Ci◦
t (x)

∣∣∣∣
+

∣∣∣∣ 1

N2

N2∑
i=1

C̃
Ci◦
t H̃

2,Ci◦
t (x)−

∫
C
C̃ct H̃

2,c
t (x)µc(dc)

∣∣∣∣
:= Γg,1t (x) + Γg,2t (x). (5.8)

Let’s analyze the first term in (5.8). Using the uniform bounds from (5.5) we have for some unimportant
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constant K <∞∣∣∣∣Γg,1t (x)

∣∣∣∣ =

∣∣∣∣ 1

N2

N2∑
i=1

C
Ci◦
t H

2,Ci◦
t (x)− 1

N2

N2∑
i=1

C̃
Ci◦
t H̃

2,Ci◦
t (x)

∣∣∣∣
=

∣∣∣∣ 1

N2

N2∑
i=1

(C
Ci◦
t − C̃

Ci◦
t )H

2,Ci◦
t (x) +

1

N2

N2∑
i=1

C̃
Ci◦
t (H

2,Ci◦
t (x)− H̃2,Ci◦

t (x))

∣∣∣∣
≤ K

N2

N2∑
i=1

[
|CC

i
◦

t − C̃
Ci◦
t |+ |H

2,Ci◦
t (x)− H̃2,Ci◦

t (x)|
]

≤ K

N2

N2∑
i=1

√
EN2
t (Ci◦,W0,W

2,i
0 , x).

The second term in (5.8) is bounded, as follows,

E
[(

Γg,2t (x)

)2]
= E

[(
1

N2

N2∑
i=1

(
C̃
Ci◦
t H̃

2,Ci◦
t (x)−

∫
C
C̃ct H̃

2,c
t (x)µc(dc)

))2]
=

1

N2
2

N2∑
i=1

Var
[
C̃
Ci◦
t H̃

2,Ci◦
t (x)

]
≤ K

N2
,

(5.9)

where the independence of Ci◦ was used. Hence, putting things together we get

E|gN2
t (x)− gt(x)| ≤ E

[
K

N2

N2∑
i=1

√
EN2
t (Ci◦,W0,W

2,i
0 , x)

]
+

K√
N2

.

5.5 Bound for E
[
(C

Ci
◦

t − C̃
Ci
◦

t )2 + (W 1,W0
t − W̃ 1,W0

t )2 + (W
2,Ci
◦,W0,W

2,i
0

t − W̃
2,Ci
◦,W0,W

2,i
0

t )2
]

.

Let us write for notational convenience c = Ci◦. We have

d(Cct − C̃ct )2 = 2(Cct − C̃ct )
∫
X×Y

[(
y − gN2

t (x)
)(
H2,c
t (x)− H̃2,c

t (x)
)

+ (gt(x)− gN2
t (x))H̃2,c

t (x)

]
π(dx, dy)dt.

Using Young’s inequality and the uniform bounds from (5.5),

(Cct − C̃ct )2 ≤ (Cc0 − C̃c0)2 +K

∫ t

0

∫
X×Y

π(dx, dy)

[
(Ccs − C̃cs)2 +

(
H2,c
s (x)− H̃2,c

s (x)
)2

+ |Ccs − C̃cs | · |gs(x)− gN2
s (x)|

]
ds

= K

∫ t

0

∫
X×Y

π(dx, dy)

[
(Ccs − C̃cs)2 +

(
H2,c
s (x)− H̃2,c

s (x)
)2

+ |Ccs − C̃cs |(Γg,1s (x) + Γg,2s (x))

]
ds

= K

∫ t

0

∫
X×Y

π(dx, dy)

[
(Ccs − C̃cs)2 +

(
H2,c
s (x)− H̃2,c

s (x)
)2

+ |Ccs − C̃cs |Γg,1s (x) +
(
Γg,2s (x)

)2]
ds.

(5.10)

For the term |Ccs − C̃cs |Γg,1s (x), where we recall c = Ci◦, we have

|CC
i
◦

s − C̃C
i
◦

s |Γg,1s (x) ≤ |CC
i
◦

s − C̃C
i
◦

s |
K

N2

N2∑
j=1

√
EN2
s (Cj◦,W0,W

2,j
0 , x)

=
K

N2

N2∑
j=1

|CC
i
◦

s − C̃C
i
◦

s |
√
EN2
s (Cj◦,W0,W

2,j
0 , x)

≤ KEN2
s (Ci◦,W0,W

2,i
0 , x) +

K

N2

N2∑
j=1

EN2
s (Cj◦,W0,W

2,j
0 , x)

22



Therefore, using (5.9) and (5.10) we obtain

E
[
(C

Ci◦
t − C̃

Ci◦
t )2

]
≤ K1

N2
+K2

∫ t

0

sup
x∈X

E
[
EN2
s (Ci◦,W0,W

2,i
0 , x)

]
ds

+
K3

N2

N2∑
j=1

∫ t

0

sup
x∈X

E
[
EN2
s (Cj◦,W0,W

2,j
0 , x)

]
ds

Using similar arguments, we can also show, using (5.7), that

E
[
(W 1,W0

t − W̃ 1,W0

t )2

]
≤ K1

N2
+K2

∫ t

0

sup
x∈X

E
[
EN2
s (Ci◦,W0,W

2,i
0 , x)

]
ds

+
K3

N2

N2∑
j=1

∫ t

0

sup
x∈X

E
[
EN2
s (Cj◦,W0,W

2,j
0 , x)

]
ds

E
[
(W

2,Ci◦,W0,W
2,i
0

t − W̃ 2,Ci◦,W0,W
2,i
0

t )2

]
≤ K1

N2
+K2

∫ t

0

sup
x∈X

E
[
EN2
s (Ci◦,W0,W

2,i
0 , x)

]
ds

+
K3

N2

N2∑
j=1

∫ t

0

sup
x∈X

E
[
EN2
s (Cj◦,W0,W

2,j
0 , x)

]
ds (5.11)

Therefore, we overall get that

E
[
(C

Ci◦
t − C̃

Ci◦
t )2 + (W 1,W0

t − W̃ 1,W0

t )2 + (W
2,Ci◦,W0,W

2,i
0

t − W̃ 2,Ci◦,W0,W
2,i
0

t )2
]
≤

≤ K1

N2
+K2

∫ t

0

sup
x∈X

E
[
EN2
s (Ci◦,W0,W

2,i
0 , x)

]
ds+

K3

N2

N2∑
j=1

∫ t

0

sup
x∈X

E
[
EN2
s (Cj◦,W0,W

2,j
0 , x)

]
ds (5.12)

5.6 Bound for E
[
(Z

Ci
◦

t (x)− Z̃
Ci
◦

t (x))2
]

.

We next consider (Z
Ci◦
t (x)−Z̃C

i
◦

t (x))2. For the following calculations, we define FN2

C = (C1
◦ , C

2
◦ , . . . , C

N2
◦ ).

For i = 1, 2, . . . , N2, we have

(Z
Ci◦
t (x)− Z̃C

i
◦

t (x))2 =

(
E
[
W

2,Ci◦,W0,W
2,i
0

t H1,W0

t (x)

∣∣∣∣FN2

C

]
−
∫
W1

∫
W2

W̃
2,Ci◦,w,u
t H̃1,w

t (x)µW 2(du)µW 1(dw)

)2

=

(
E
[
(W

2,Ci◦,W0,W
2,i
0

t − W̃ 2,Ci◦,W0,W
2,i
0

t )H1,W0

t (x)

∣∣∣∣FN2

C

]
+ E

[
W̃

2,Ci◦,W0,W
2,i
0

t H1,W0

t (x)

∣∣∣∣FN2

C

]
−
∫
W1

∫
W2

W̃
2,Ci◦,w,u
t H̃1,w

t (x)µW 2(du)µW 1(dw)

)2

≤ E
[
(W

2,Ci◦,W0,W
2,i
0

t − W̃ 2,Ci◦,W0,W
2,i
0

t )2

∣∣∣∣FN2

C

]
+

(
E
[[
W̃

2,Ci◦,W0,W
2,i
0

t H1,W0

t (x)−
∫
W1

∫
W2

W̃
2,Ci◦,w,u
t H̃1,w

t (x)µW 2(du)µW 1(dw)
]∣∣∣∣FN2

C

])2

≤ E
[
(W

2,Ci◦,W0,W
2,i
0

t − W̃ 2,Ci◦,W0,W
2,i
0

t )2

∣∣∣∣FN2

C

]
+

(
E
[[
W̃

2,Ci◦,W0,W
2,i
0

t H1,W0

t (x)− W̃ 2,Ci◦,W0,W
2,i
0

t H̃1,W0

t (x)
]∣∣∣∣FN2

C

])2

≤ E
[
(W

2,Ci◦,W0,W
2,i
0

t − W̃ 2,Ci◦,W0,W
2,i
0

t )2

∣∣∣∣FN2

C

]
+K0E

[
(W 1,W0

t − W̃ 1,W0

t )2

∣∣∣∣FN2

C

]
,

where the uniform bounds from (5.5) were used together with the compactness of the state space assumption
from Assumption 2.1.
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Therefore, using iterated expectations, we have that

E
[
(Z

Ci◦
t (x)− Z̃C

i
◦

t (x))2

]
≤ E

[
(W

2,Ci◦,W0,W
2,i
0

t − W̃ 2,Ci◦,W0,W
2,i
0

t )2

]
+K0E

[
(W 1,W0

t − W̃ 1,W0

t )2

]
≤ K1

N2
+K2

∫ t

0

sup
x∈X

E
[
EN2
s (Ci◦,W0,W

2,i
0 , x)

]
ds

+
K3

N2

N2∑
j=1

∫ t

0

sup
x∈X

E
[
EN2
s (Cj◦,W0,W

2,j
0 , x)

]
ds (5.13)

where (5.11) was used.
Finally, using the assumption that σ(·) is globally Lipschitz,

E
[(
H

2,Ci◦
t (x)− H̃2,Ci◦

t (x)
)2] ≤ K0E

[
(Z

Ci◦
t − Z̃

Ci◦
t )2

]
≤ K1

N2
+K2

∫ t

0

sup
x∈X

E
[
EN2
s (Ci◦,W0,W

2,i
0 , x)

]
ds

+
K3

N2

N2∑
j=1

∫ t

0

sup
x∈X

E
[
EN2
s (Cj◦,W0,W

2,j
0 , x)

]
ds, (5.14)

for possibly different, but finite constants K1,K2,K3 <∞.

5.7 Bound for E
[
EN2
t (Ci

◦,W0,W
2,i
0 , x)

]
Collecting our results from (5.12), (5.13) and (5.14), together with the definition of the error function

EN2
t , we have, for i = 1, · · · , N2, the bound

sup
x∈X

E
[
EN2
t (Ci◦,W0,W

2,i
0 , x)

]
≤ K1

N2
+K2

∫ t

0

sup
x∈X

E
[
EN2
s (Ci◦,W0,W

2,i
0 , x)

]
ds,

+
K3

N2

N2∑
j=1

∫ t

0

sup
x∈X

E
[
EN2
s (Cj◦,W0,W

2,j
0 , x)

]
ds

Therefore, by averaging over all i = 1, · · · , N2 and then using Gronwall’s inequality, we get for any
0 ≤ t ≤ T ,

1

N2

N2∑
i=1

sup
x∈X

E
[
EN2
t (Ci◦,W0,W

2,i
0 , x)

]
≤ K

N2
.

for an appropriate constant K <∞. Combining the last two displays we naturally get, again using Gronwall’s
inequality, that for i = 1, · · · , N2

sup
x∈X

E
[
EN2
t (Ci◦,W0,W

2,i
0 , x)

]
≤ K

N2
. (5.15)

where the constant K <∞ does not depend on i or N2.

5.8 Convergence of neural network prediction
The bound (5.15) of course proves the (uniform) convergence in probability of the neural network output

gN2
t (x)→ gt(x). Recall, by (5.8), that

E|gN2
t (x)− gt(x)| ≤ E

∣∣∣∣Γg,1t (x)

∣∣∣∣+
K√
N2

.

where ∣∣∣∣Γg,1t (x)

∣∣∣∣ ≤ K

N2

N2∑
i=1

√
EN2
t (Ci◦,W0,W

2,i
0 , x).
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Then, using the Cauchy-Schwartz inequality and (5.15),

E
∣∣∣∣Γg,1t (x)

∣∣∣∣ ≤ K

N2

N2∑
i=1

E
[√

EN2
t (Ci◦,W0,W

2,i
0 , x)

]

≤ K

N2

N2∑
i=1

√
E
[
EN2
t (Ci◦,W0,W

2,i
0 , x)

]

≤ K

N2

N2∑
i=1

√
sup
x∈X

E
[
EN2
t (Ci◦,W0,W

2,i
0 , x)

]
≤ K√

N2

.

Therefore, for 0 ≤ t ≤ T , and for some unimportant constant K <∞

sup
x∈X

E
[
|gN2
t (x)− gt(x)|

]
≤ K√

N2

,

concluding the identification of the limit in Theorem 2.3.

6 Proof of Theorem 2.3-Uniqueness of the limit
Lemma 6.1. The solution to the limiting system (2.6) is unique in C([0, 1], C ×W1 ×W2 ×X ).

Proof. Suppose there are two solutions to (2.6). Let’s denote the first solution as (Ŵ 1,w
t , Ŵ 2,c,w,u

t , Ĉct , Ẑ
c
t (x), V̂ wt (x), ĝt(x))

and the second solution as (W̄ 1,w
t , W̄ 2,c,w,u

t , C̄ct , Z̄
c
t (x), V̄ wt (x), ḡt(x)). Define the function

Qt = sup
(c,w,u,x)∈C×W1×W2×X

{
(Ŵ 2,c,w,u

t − W̄ 2,c,w,u
t )2 +

∥∥∥Ŵ 1,w
t − W̄ 1,w

t

∥∥∥2

+ (V̂ wt (x)− V̄ wt (x))2 + (Ẑct (x)− Z̄ct (x))2

+(Ĉct − C̄ct )2 + (ĝt(x)− ḡt(x))2
}

Note that

Q0 = 0.

We next study the evolution of Qt for t > 0.
Using the same approach as in Section 5.2, we can show that any W̃ 2,c,w,u

t , C̃ct , W̃
1,w
t , H̃1,w

t (x), Z̃ct , V
w
t ,

and gt(x) which solve (2.6) are uniformly bounded on C ×W1 ×W2 ×X × [0, 1].
We can then prove the inequality

(Ŵ 2,c,w,u
t − W̄ 2,c,w,u

t )2 = 2

∫ t

0

∫
X×Y

(Ŵ 2,c,w,u
s − W̄ 2,c,w′,u

s )

((
y − ĝs(x)

)
Ĉcsσ

′(Ẑcs(x)))Ĥ1,w
s (x)

−
(
y − ḡs(x)

)
C̄csσ

′(Z̄cs(x))H̄1,w
s (x)

)
π(dx, dy)ds

≤ K

∫ t

0

Qsds.

where we have also used Young’s inequality and the fact that X × Y is compact. Therefore,

sup
(c,w,u,x)∈C×W1×W2×X

(Ŵ 2,c,w,u
t − W̄ 2,c,w,u

t )2 ≤ K
∫ t

0

Qsds.

Similarly,

sup
(c,w,u,x)∈C×W1×W2×X

∥∥∥Ŵ 1,w
t − W̄ 1,w

t

∥∥∥2

≤ K

∫ t

0

Qsds.

sup
(c,w,u,x)∈C×W1×W2×X

(Ĉct − C̄ct )2 ≤ K

∫ t

0

Qsds.
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Next, using the Cauchy-Schwarz inequality and Young’s inequality,

(Ẑct (x)− Z̄ct (x))2 =

(∫
W1

∫
W2

Ŵ 2,c,w,u
t Ĥ1,w

t (x)µW 2(du)µW 1(dw)−

−
∫
W1

∫
W2

W̄ 2,c,w,u
t H̄1,w

t (x)µW 2(du)µW 1(dw)

)2

=

(∫
W1

∫
W2

(Ŵ 2,c,w,u
t Ĥ1,w

t (x)− W̄ 2,c,w,u
t H̄1,w

t (x))µW 2(du)µW 1(dw)

)2

≤ K
∫
W1

∫
W2

[
(Ŵ 2,c,w,u

t − W̄ 2,c,w,u
t ) + (Ŵ 1,w

t − W̄ 1,w
t )2

]
µW 2(du)µW 1̂(dw)

≤ K sup
(c,w,u,x)∈C×W1×W2×X

[
(Ŵ 2,c,w,u

t − W̄ 2,c,w,u
t ) + (Ŵ 1,w

t − W̄ 1,w
t )2

]
≤ K

∫ t

0

Qsds.

Using a similar approach,

(V̂ wt (x)− V̄ wt (x))2 =

(∫
C

∫
W2

Ĉct σ
′(Ẑct (x))Ŵ 2,c,w,u

t µW 2(du)µc(dc)

−
∫
C

∫
W2

C̄ct σ
′(Z̄ct (x))W̄ 2,c,w,u

t µW 2(du)µc(dc)

)2

≤
∫
C

∫
W2

(
Ĉct σ

′(Ẑct (x))Ŵ 2,c,w,u
t − C̄ct σ′(Z̄ct (x))W̄ 2,c,w,u

t

)2

µW 2(du)µc(dc)

≤ K
∫
C

∫
W2

[
(Ĉct − C̄ct )2 + (Ẑct (x)− Z̄ct (x))2 + (Ŵ 2,c,w,u

t − W̄ 2,c,w,u
t )2

]
µW 2(du)µc(dc)

≤ K sup
(c,w,u,x)∈C×W1×W2×X

[
(Ĉct − C̄ct )2 + (Ẑct (x)− Z̄ct (x))2 + (Ŵ 2,c,w,u

t − W̄ 2,c,w,u
t )2

]
≤ K

∫ t

0

Qsds.

Therefore,

sup
(c,w,u,x)∈C×W1×W2×X

(Ẑct (x)− Z̄ct (x))2 ≤ K

∫ t

0

Qsds,

sup
(c,w,u,x)∈C×W1×W2×X

(V̂ wt (x)− V̄ wt (x))2 ≤ K

∫ t

0

Qsds.

Finally,

(ĝt(x)− ḡt(x))2 =

(∫
C
Ĉct Ĥ

2,c
t (x)µc(dc)−

∫
C
C̄ct H̄

2,c
t (x)µc(dc)

)2

≤
∫
C

[
Ĉct Ĥ

2,c
t (x)µc(dc)− C̄ct H̄

2,c
t (x)

]2

µc(dc)

≤ K

∫
C

[
(Ĉct − C̄ct )2 + (Ẑct (x)− Z̄ct (x))2

]
µc(dc)

≤ K

∫ t

0

Qsds.

Consequently,

sup
(c,w,u,x)∈C×W1×W2×X

(ĝt(x)− ḡt(x))2 ≤ K
∫ t

0

Qsds.
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Collecting our results,

Qt ≤ K

∫ t

0

Qsds,

Q0 = 0.

Therefore, by Gronwall’s inequality,

Qt = 0,

for all t ∈ [0, 1], completing the proof of the lemma.

7 Conclusions and future work
In this paper, we have developed an approach that allows us to obtain the limiting behavior of multi-layer

neural networks in the mean-field scaling as the number of units per layer and stochastic gradient steps grow
to infinity. We have demonstrated that the limit is characterized by paths of weights that connecting the
input layer to the output layer. The limit procedure shows that the main hyperparameters (the learning
rates) must be chosen using a specific scaling (as a function of the number of hidden units per layer) in order
to get a well-defined limit. A numerical study demonstrates that the mean-field scaling of the learning rates
has a significant effect on how well the network can be trained. In addition, we have shown that the limit
neural network seeks to minimize the limit objective function.

There are of course a number of open questions. The discussion in Section 4.3 shows that a genuine
mean field formulation in terms of convergence of empirical distributions of trained parameters has yet to
be understood. Secondly, our methodology works for convex error functions like the regression task. It is
of interest to characterize the limit in other cases such as Wassenstein distances or regularized entropies.
Thirdly, the universal approximation theorems say that a neural network approximator in the infinite unit
per layer limit can approximate any continuous function [5, 23, 28, 29]. It would be of interest to investigate
whether the limit procedure developed in this paper could lead to more specific information on convergence
rates. Fourthly, the, commonly used in practice, unregularized algorithm and its finer properties (such as
more detailed behavior as time grows to infinity) need to be better understood and we hope that the results
in this paper build towards this direction.

A Limit of First Layer, Lemma 2.2
In this appendix we prove Lemma 2.2, which is about the limit of the first layer. The proof is analogous

to [49]. Hence, instead of repeating all the arguments we will only present the general outline emphasizing
the differences and refer the interested reader to [49] when the arguments are the same.

We let N1 →∞ (with N2 fixed). We want to prove that for each N2 ∈ N, γ̃N1,N2
·

d→ γN2
· in DE([0, 1]). γN2

t

is a random measure-valued process which, for every f ∈ C2
b (Rd+2N2), γN2 , satisfies the evolution equation

(2.3)-(2.4).

A.1 Relative Compactness

Let’s first establish a bound on Cik. Recall that σ(·) is bounded and αN1,N2

C = N2

N1
. In the following

calculations, the unimportant constants, K,K0,K1, and K2 may change from line to line.
For k = 0, 1, . . . , bN1c,

Cik+1 = Cik +
αNC
N2

(
yk −

1

N2

N2∑
m=1

Cmk H
2,m
k (xk)

)
H2,i
k (xk),

Since σ(·) is bounded, |H2,i
k | < K. Therefore,

∣∣Cik+1

∣∣ ≤ ∣∣Cik∣∣+
1

N1

(
K1 +

1

N2

N2∑
m=1

∣∣Cmk ∣∣).
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This yields

1

N2

N2∑
i=1

∣∣Cik+1

∣∣ ≤ 1

N2

N2∑
i=1

∣∣Cik∣∣+
1

N1

(
K1 +

1

N2

N2∑
i=1

∣∣Cik∣∣).
This implies that

1

N2

N2∑
i=1

∣∣Cik+1

∣∣ ≤ 1

N2

N2∑
i=1

∣∣Ci0∣∣+K1
k

N1
+
K2

N1

k∑
j=1

1

N2

N2∑
i=1

∣∣Cik∣∣
≤ K0 +K1

k

N1
+
K2

N1

k∑
j=1

1

N2

N2∑
i=1

∣∣Cik∣∣
By Gronwall’s inequality, for k ≤ bN1c,

1

N2

N2∑
i=1

∣∣Cik∣∣ ≤ K exp(K).

Then, we also have that ∣∣Cik+1

∣∣ ≤ ∣∣Cik∣∣+
K

N1
.

≤ K
k

N1
.

This immediately yields that for k ≤ bN1c ∣∣Cik∣∣ < K.

Let’s now address the parameters W 2,i,j
k . Recall that αN1,N2

W,2 = N2. Then,

∣∣W 2,i,j
k+1

∣∣ ≤ ∣∣W 2,i,j
k

∣∣+
αN1,N2

W,2

N1N2

∣∣∣∣(yk − gNθk(xk)
)
Cikσ

′(Zik)H1,i
k

∣∣∣∣
≤

∣∣W 2,i,j
k

∣∣+
K

N1
.

Therefore, for k ≤ bN1c, ∣∣W 2,i,j
k+1

∣∣ ≤ K.
Similarly, we have

∣∣W 1,j
k+1

∣∣ ≤ ∣∣W 1,j
k

∣∣+
1

N1

∣∣(yk − gNθk(xk)
)( 1

N2

N2∑
i=1

Cikσ
′(Zik)W 2,i,j

k

)
σ′(Wk · x)xj

∣∣
≤

∣∣W 1,j
k

∣∣+
K

N1
.

Therefore, we obtain ∣∣W 1,j
k

∣∣ ≤ K.
Collecting our results, for all k/N1 ≤ 1 and for all j = 1, · · · , N2, we have the uniform bound

|Cik|+
∥∥∥W 1,j

k

∥∥∥+ |W 2,i,j
k | < K. (A.1)

We now prove relative compactness of the family {γN1,N2}N1∈N in DE([0, 1]) where E =M(Rd+2N2). It
is sufficient to show compact containment and regularity of the γN1,N2 ’s (see for example Chapter 3 of [22]).
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Lemma A.1. For each η > 0 and t ≥ 0, there is a compact subset K of E such that

sup
N1∈N,0≤t≤T

P[γN1,N2

t /∈ K] < η.

Proof. This uniform bound (A.1) actually implies the stronger statement of compact support. In particular,
notice that the set [−K,K]d+2N2 is compact, and define

K =
{
ω ∈M(Rd+2N2) : ω

(
[−K,K]d+2N2

)
= 1
}
.

Then K ⊂M(Rd+2N2), and P-a.s. γN1,N2

t ∈ K for all N1 ∈ N and t ∈ [0, 1]. This concludes the proof.

We now establish regularity of the γN1,N2 ’s. Define the function q(z1, z2) = min{|z1 − z2|, 1} where
z1, z2 ∈ R.

Lemma A.2. There is a constant K <∞ such that for 0 ≤ u ≤ δ, 0 ≤ v ≤ δ ∧ t, t ∈ [0, 1],

E
[
q(
〈
f, γN1,N2

t+u

〉
,
〈
f, γN1,N2

t

〉
)q(
〈
f, γN1,N2

t

〉
,
〈
f, γN1,N2

t−v

〉
)
∣∣FNt ] ≤ Cδ +

K

N1
.

Proof. Let 0 ≤ s < t <≤ T and δ < 1, such that t− s < δ < 1. We then have

|CibN1tc − C
i
bN1sc| = |

bN1tc−1∑
k=bN1sc

(Cik+1 − Cik)|

≤
bN1tc−1∑
k=bNsc

1

N1

∣∣(yk − gN1,N2

θk
(xk)

)
H2,i
k (xk)

∣∣
≤ 1

N1

bN1tc−1∑
k=bN1sc

K

≤ K1δ +
K2

N1
.

Using the same approach, we can establish similar bounds for the other parameters:

|W 1,j
bN1tc −W

1,j
bN1sc| ≤ K1δ +

K2

N1
,

|W 2,i,j
bN1tc −W

2,i,j
bN1sc| ≤ K1δ +

K2

N1
.

The desired result then follows.

We conclude this section now with the required relative compactness of the sequence {γN1,N2}N1∈N. This
implies that for each fixed N2, every subsequence γN1,N2 ’s has a convergent sub-subsequence as N1 →∞.

Lemma A.3. The sequence of probability measures {γN1,N2}N1∈N is relatively compact in DE([0, 1]).

Proof. Given Lemmas A.1 and A.2, Theorem 8.6 and Remark 8.7 B of Chapter 3 of [22], gives the statement
of the lemma.

29



A.2 Identification of the Limit

We consider the evolution of the empirical measure γN1,N2

t via test functions f ∈ C2
b (Rd+2N2). Using a

Taylor expansion based argument similarly to [49], we can show that the scaled empirical measure satisfies〈
f, γN1,N2

t

〉
−
〈
f, γN1,N2

0

〉
=

∫ t

0

∫
X×Y

(
y − gN1,N2

s (x)
) 〈
HN1,N2
s (x) · ∇cf, γN1,N2

s

〉
π(dx, dy)ds

+

∫ t

0

∫
X×Y

(
y − gN1,N2

s (x)
) 〈
σ(w1 · x)(σ′(ZN1,N2

s (x))� c) · ∇w2f, γN1,N2
s

〉
π(dx, dy)ds

+

∫ t

0

∫
X×Y

(
y − gN1,N2

s (x)
) 1

N2

N2∑
i=1

〈
ciσ
′(Zi,N1,N2

s (x))w2,iσ′(w1 · x)x · ∇w1f, γN1,N2
s

〉
π(dx, dy)ds

+MN1,N2(t) +O(N−1
1 ), (A.2)

where MN1,N2(t) is a martingale term,

Zi,N1,N2
s (x) =

〈
w2,iσ(w1 · x), γN1,N2

s

〉
,

Hi,N1,N2
s (x) = σ(Zi,N1,N2

s (x)),

gN1,N2
s (x) =

1

N2

N2∑
i=1

Hi,N1,N2
s (x)

〈
ci, γ

N1,N2
s

〉
.

and we have defined HN1,N2

t as the vector (H1,N1,N2

t , . . . ,HN2,N1,N2

t ), c as the vector (c1, . . . , cN2), and

ZN1,N2

t as the vector (Z1,N1,N2

t , . . . , ZN2,N1,N2

t ). The martingale term MN1,N2(t) converges to 0 in L2 as
N1 →∞. That is,

lim
N1→∞

E
[(
MN1,N2(t)

)2]
= 0. (A.3)

The proof for (A.3) follows as in Lemma 3.1 of [49] and thus it is omitted. The limit point of γN1,N2 , as
N1 →∞ and for a fixed N2, will satisfy the evolution equation〈
f, γN2

t

〉
−
〈
f, γN2

0

〉
=

∫ t

0

∫
X×Y

(
y − gN2

s (x)
) 〈
HN2
s (x) · ∇cf, γN2

s

〉
π(dx, dy)ds

+

∫ t

0

∫
X×Y

(
y − gN2

s (x)
) 〈
σ(w1 · x)(σ′(Zs)� c) · ∇w2f, γN2

s

〉
π(dx, dy)ds

+

∫ t

0

∫
X×Y

(
y − gN2

s (x)
) 1

N2

N2∑
i=1

〈
ciσ
′(Zi,N2

s (x))w2,iσ′(w1 · x)x · ∇w1f, γN2
s

〉
π(dx, dy)ds,

(A.4)

where

Zi,N2
s (x) =

〈
w2,iσ(w1 · x), γN2

s

〉
,

Hi,N2
s (x) = σ(Zi,N2

s (x)),

gN2
s (x) =

1

N2

N2∑
i=1

Hi,N2
s (x)

〈
ci, γ

N2
s

〉
,

and

γN2
0 (dw1, dw2, dc) = µW 1(dw1)× µW 2(dw2,1)× · · · × µW 2(dw2,N2)× δC1

◦
(dc1)× · · · × δ

C
N2
◦

(dcN2).

Let πN1,N2 be the probability measure of
(
γN1,N2

t

)
0≤t≤1

. Each πN1,N2 takes values in the set of proba-

bility measures M
(
DE([0, 1])

)
. Relative compactness, proven in Section A.1, implies that there is a subse-

quence πN1k
,N2 which weakly converges. We must prove that any limit point πN2 of a convergent subsequence

πN1k
,N2 will satisfy the evolution equation (A.4).
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Lemma A.4. Let πN1k
,N2 be a convergent subsequence with a limit point πN2 . Then, πN2 is a Dirac measure

concentrated on γN2 ∈ DE([0, 1]) and γN2 satisfies the measure evolution equation (A.4).

Proof. We define a map F (γ) : DE([0, 1])→ R+ for each t ∈ [0, T ], f ∈ C2
b (Rd+2N2), g1, · · · , gp ∈ Cb(Rd+2N2)

and 0 ≤ s1 < · · · < sp ≤ t.

F (γ) =

∣∣∣∣( 〈f, γt〉 − 〈f, γ0〉 −
∫ t

0

∫
X×Y

(
y − gN2

s (x)
) 〈
HN2
t (x) · ∇cf, γN2

s

〉
π(dx, dy)ds

−
∫ t

0

∫
X×Y

(
y − gN2

s (x)
) 〈
σ(w1 · x)(σ′(Zs)� c) · ∇w2f, γN2

s

〉
π(dx, dy)ds

−
∫ t

0

∫
X×Y

(
y − gN2

s (x)
) 1

N2

N2∑
i=1

〈
ciσ
′(Zi,N2

s (x))w2,iσ′(w1 · x)x · ∇w1f, γN2
s

〉
π(dx, dy)ds

)
× 〈g1, γs1〉 × · · · ×

〈
gp, γsp

〉 ∣∣∣∣. (A.5)

Then,

EπN1,N2 [F (γ)] = E[F (γN1,N2)]

= E

∣∣∣∣∣(MN1,N2(t) +O(N−1
1 )
) p∏
i=1

〈
gi, γ

N1,N2
si

〉∣∣∣∣∣
≤ E[|MN1,N2(t)|] +O(N−1)

≤ E[(MN1,N2(t))2]1/2 +O(N−1
1 )

≤ K(
1√
N

+
1

N
).

Therefore,

lim
N1→∞

EπN1,N2 [F (γ)] = 0.

Since F (·) is continuous and F (γN1,N2) is uniformly bounded (due to the uniform boundedness results of
Section A.1),

EπN2 [F (γ)] = 0.

Since this holds for each t ∈ [0, T ], f ∈ C2
b (Rd+2N2) and g1, · · · , gp ∈ Cb(Rd+2N2), γN2 satisfies the evolution

equation (A.4).

It remains to prove that the evolution equation (A.4) has a unique solution. This is the content of Section
A.3.

A.3 Uniqueness
Lemma A.5. There exists a unique solution to the evolution equation (A.4).

Proof. We only sketch the proof as the argument is similar to the uniqueness argument of [49]. Consider the
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particle system:

dCit =

∫
X×Y

(
y − gN2

t (x)
)
H2,i
t (x)π(dx, dy)dt, Ci0 = Ci◦, i = 1, . . . , N2,

dW 1
t =

∫
X×Y

(
y − gN2

t (x)
)( 1

N2

N2∑
i=1

Citσ
′(Zit(x))W 2,i

t

)
σ′(W 1

t · x)xπ(dx, dy)dt, W 1
0 ∼ µW 1(dw),

dW 2,i
t =

∫
X×Y

(
y − gN2

t (x)
)
Citσ

′(Zit)H
1
t (x)π(dx, dy)dt, W 2,i

0 ∼ µW 2(dw2), i = 1, . . . , N2,

H1
t (x) = σ(W 1

t · x),

Zit(x) =
〈
w2,iH1

t (x), γN2
t

〉
,

H2,i
t (x) = σ(Zit(x)),

gN2
t (x) =

1

N2

N2∑
i=1

CitH
2,i
t (x). (A.6)

Let νt,(c1,...,cN2
) be the conditional law of (W 1

t ,W
2,1
t , . . .W 2,N2

t , C1
t , . . . , C

N2
t )0≤t≤T given (C1

◦ , . . . , C
N2
◦ ) =

(c1, . . . , cN2). Similarly to the general results of [34], ν
t,(C1

◦ ,...,C
N2
◦ )

= γN2
t is a solution to the evolution

equation (A.4) and conversely, any solution ν
t,(C1

◦ ,...,C
N2
◦ )

to the evolution equation (A.4) must also be the

law of the solution to (A.6).

Let us next prove that we can write Zit(x) = E
[
W 2,i
t H1

t (x)

∣∣∣∣C1
◦ , . . . , C

N2
◦

]
. Recall that FN2

C = (C1
◦ , . . . , C

N2
◦ )

and let us similarly define FN2

W 2 = (W 2,1
0 , . . . ,W 2,N2

0 ). Inspecting (A.6) it becomes clear that the random

variables (W 1
t ,W

2,1
t , . . .W 2,N2

t , C1
t , . . . , C

N2
t )0≤t≤T depend, in addition to their own initial conditions, also

on FN2

C and FN2

W 2 in a symmetric way through the terms gN2
t (x) and 1

N2

∑N2

i=1 C
i
tσ
′(Zit(x))W 2,i

t . In order to
make this dependence specific in the notation, we write in particular that

W 1
t = W

1,W0;FN2
C ,FN2

W2

t , W 2,i
t = W

2,Ci◦,W0,W
2,i
0 ;FN2

C ,FN2
W2

t and Cit = C
Ci◦;F

N2
C

t .

This, then leads to the following calculations

Zit(x) =
〈
w2,iH1

t (x), γN2
t

〉
= E

[
W 2,i
t σ(W 1

t · x)

]
= E

[
W

2,Ci◦,W0,W
2,i
0 ;FN2

C ,FN2
W2

t σ(W
1,W0;FN2

C ,FN2
W2

t · x)

]
= E

[
E
[
W

2,Ci◦,W0,W
2,i
0 ;FN2

C ,FN2
W2

t σ(W
1,W0;FN2

C ,FN2
W2

t · x)

∣∣∣∣W0,FN2

W 2 ,FN2

C

]]
=

〈
W

2,Ci◦,W0,W
2,i
0 ;FN2

C ,FN2
W2

t σ(W
1,W0;FN2

C ,FN2
W2

t · x), γN2
0

〉
= E

[
W

2,Ci◦,W0,W
2,i
0 ;FN2

C ,FN2
W2

t σ(W
1,W0;FN2

C ,FN2
W2

t · x)

∣∣∣∣FN2

C

]
= E

[
W 2,i
t σ(W 1

t · x)

∣∣∣∣C1
◦ , . . . , C

N2
◦

]
The second to the last equality is due to the assumed independence of the initial conditions via Assumption

2.1 together with the fact that the marginal of γN2
0 with respect to C1

◦ , . . . , C
N2
◦ is a product of delta Dirac

distributions.
It remains to show that the solution to (A.6) is unique. We do this via a fixed point argument, completely

analogous to Section 4 of [49]. The details are omitted due to the similarity of the argument.

32



A.4 Convergence Result for First Layer

Let πN1,N2 be the probability measure corresponding to γN1,N2 . Each πN1,N2 takes values in the set
of probability measures M

(
DE([0, 1])

)
. Relative compactness, proven in Section A.1, implies that every

subsequence πN1k
,N2 has a further sub-sequence πN1km

,N2 which weakly converges. Section A.2 proves that
any limit point πN2 of πN1km

,N2 will satisfy the evolution equation (A.4). Section A.3 proves that the solution
of the evolution equation (A.4) is unique. Therefore, by Prokhorov’s Theorem, πN1,N2 weakly converges to
πN2 , where πN2 is the distribution of γN2 , the unique solution of (A.4). That is, γN1,N2 converges in
distribution to γN2 .
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