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This article poses the following problem: Does there exist a probability distribution over subsets of a finite

partially ordered set (poset), such that a set of constraints involving marginal probabilities of the poset’s

elements and maximal chains is satisfied? We present a combinatorial algorithm to positively resolve this

question. The algorithm can be implemented in polynomial time in the special case where maximal chain

probabilities are affine functions of their elements. This existence problem is relevant for the equilibrium

characterization of a generic strategic interdiction game on a capacitated flow network. The game involves

a routing entity that sends its flow through the network while facing path transportation costs, and an

interdictor who simultaneously interdicts one or more edges while facing edge interdiction costs. Using our

existence result on posets and strict complementary slackness in linear programming, we show that the Nash

equilibria of this game can be fully described using primal and dual solutions of a minimum-cost circulation

problem. Our analysis provides a new characterization of the critical components in the interdiction game.

It also leads to a polynomial-time approach for equilibrium computation.

Key words : probability distributions on posets, network interdiction games, duality theory.

1. Introduction. In this article, we study the problem of showing the existence of a proba-

bility distribution over a partially ordered set (or poset) that satisfies a set of constraints involving

marginal probabilities of the poset’s elements and maximal chains. This problem is essential for the

equilibrium analysis and computation of a generic network interdiction game, in which a strategic

interdictor seeks to disrupt the flow of a routing entity. In particular, our existence result on posets

enables us to show that the equilibrium structure of the game can be described using primal and

dual solutions of a minimum-cost circulation problem.

1.1. Probability distributions over posets. For a given finite nonempty poset, we consider

a problem in which each element is associated with a value between 0 and 1; additionally, each

maximal chain has a value at most 1. We want to determine if there exists a probability distribution
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over the subsets of the poset such that: (i) The probability that each element of the poset is in a

subset is equal to its corresponding value; and (ii) the probability that each maximal chain of the

poset intersects with a subset is as large as its corresponding value. This problem, denoted (D), is

equivalent to resolving the feasibility of a polyhedral set. However, geometric ideas – such as the

ones involving the use of Farkas’ lemma or Carathéodory’s theorem – cannot be applied to solve

this problem, because they do not capture the structure of posets. We positively resolve problem

(D) under two conditions that are naturally satisfied for typical situations:

1. The value of each maximal chain is no more than the sum of the values of its elements.

2. The values of the maximal chains satisfy a conservation law: For any decomposition of two

intersecting maximal chains, the sum of the corresponding maximal chain values is constant.

Under these two conditions, we prove the feasibility of problem (D) (Theorem 1). First, we

show that solving (D) is equivalent to proving that the optimal value of an exponential-size linear

optimization problem, denoted (Q), is no more than 1 (Proposition 1). Then, to optimally solve

(Q), we design a combinatorial algorithm (Algorithm 1) that exploits the relation between the

values associated with the poset’s elements and maximal chains. Each iteration of the algorithm

involves constructing a subposet, selecting its set of minimal elements, and assigning a specific

weight to it. Importantly, in the design of the algorithm, we ensure that the conservation law

satisfied by the values associated with the maximal chains of the poset is preserved after each

iteration. This design feature enables us to obtain a relation between maximal chains after each

iteration, which leads to optimality guarantee of the algorithm (Propositions 2 - 4). We show that

the optimal value of (Q) is equal to the largest value associated with an element or maximal chain

of the poset, and is no more than 1 (Theorem 2).

In the special case where the value of each maximal chain is an affine function of the constitut-

ing elements, we refine our combinatorial algorithm to efficiently solve (Q) (Proposition 5). Our

polynomial algorithm (Algorithm 2) relies on subroutines based on the shortest path algorithm in

directed acyclic graphs, and does not require the enumeration of maximal chains.

Next, we show that the feasibility of problem (D) on posets is crucial for the equilibrium analysis

of a class of two-player interdiction games on flow networks.

1.2. Network interdiction games. We model a network interdiction game between player 1

(routing entity) that sends its flow through the network while facing heterogeneous path transporta-

tion costs; and player 2 (interdictor) who simultaneously chooses an interdiction plan comprised

of one or more edges. Player 1 (resp. player 2) seeks to maximize the value of effective (resp.

interdicted) flow net the transportation (resp. interdiction) cost. We adopt mixed strategy Nash

equilibria as the solution concept of this game.
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Our interdiction game is general in that it models heterogeneous costs of transportation and

interdiction. It models the strategic situation in which player 1 is an operator who wants to route

flow (e.g. water, oil, or gas) through pipelines, while player 2 is an attacker who targets multiple

pipes in order to steal or disrupt the flow. Another relevant setting is the one where player 1 is a

malicious entity composed of routers who carry illegal (or dangerous) goods through a transporta-

tion network (i.e., roads, rivers, etc.), and player 2 is a security agency that dispatches interdictors

to intercept malicious routers and prevent the illegal goods from crossing the network. In both these

settings, mixed strategies can be viewed as the players introducing randomization in implementing

their respective actions. For instance, player 1’s mixed strategy models a randomized choice of

paths for routing its flow of goods through the network, while player 2’s mixed strategy indicates

a randomized dispatch of interdictors to disrupt or intercept the flow.

The existing literature in network interdiction and robust flow problems has dealt with this

type of problems in a sequential (Stackelberg) setting (see Avenhaus and Canty [6], Ball et al. [8],

Ratliff et al. [28], Wollmer [32]). Typically, these problems are solved using integer programming

techniques, and are staple for designing system interdiction and defense (see Aneja et al. [3],

Bertsimas et al. [11], Cormican et al. [12], Neumayer et al. [26], Sullivan and Cole Smith [29], Wood

[33]). However, these models do not capture the situations in which the interdictor is capable of

simultaneously interdicting multiple edges, possibly in a randomized manner. Our model is closely

tied to the randomized network interdiction problem considered by Bertsimas et al. [10], in which

the interdictor first randomly interdicts a fixed number of edges, and then the operator routes a

feasible flow in the network. The interdictor’s goal is to minimize the largest amount of flow that

reaches the destination node. Although this model is equivalent to a simultaneous game, our model

differs in that we do not impose any restriction on the number of edges that can be simultaneously

interdicted. Additionally, we account for transportation and interdiction costs faced by the players.

Our work is also motivated by previous problems studied in network security games (e.g. Baykal-

Gürsoy et al. [9], Gueye et al. [18], Szeto [30]). However, the available results in this line of work

are for simpler cases, and do not apply to our model. Related to our work are the network security

games proposed by Washburn and Wood [31] and Gueye and Marbukh [17]. Washburn and Wood

[31] consider a simultaneous game where an evader chooses one source-destination path and the

interdictor inspects one edge. The interdictor’s (resp. evader’s) objective is to maximize (resp.

minimize) the probability that the evader is detected by the interdictor. Gueye and Marbukh [17]

model an operator who routes a feasible flow in the network, and an attacker who disrupts one

edge. The attacker’s (resp. operator’s) goal is to maximize (minimize) the amount of lost flow. The

attacker also faces a cost of attack. In contrast, our model allows the interdictor to inspect multiple

edges simultaneously, and also accounts for the transportation cost faced by the routing entity.
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The generality of our model renders known methods for analyzing security games inapplicable

to our game. Indeed, prior work has considered solution approaches based on max-flows and min-

cuts, and used these objects as metrics of criticality for network components (see Assadi et al. [4],

Dwivedi and Yu [14], Gueye et al. [18]). However, these objects cannot be applied to describe the

critical network components in our game due to the heterogeneity of path interdiction probabilities

resulting from the transportation costs. A related issue is that computing a Nash equilibrium of our

game is challenging because of the large size of the players’ action sets. Indeed, player 1 (resp. player

2) chooses a probability distribution over an infinite number of feasible flows (resp. exponential

number of subsets of edges). Therefore, well-known algorithms for computing (approximate) Nash

equilibria are practically inapplicable for this setting (see Lipton et al. [23], McMahan et al. [24],

and Gilpin et al. [15]). Guo et al. [19] developed a column and constraint generation algorithm to

approximately solve their network security game. However, it cannot be applied to our model due

to the transportation and interdiction costs that we consider.

Instead, we propose an approach for solving our game based on a minimum-cost circulation

problem, which we denote (M), and our existence problem on posets (D). The main findings are

the following:

1. Every Nash equilibrium of the game can be described using primal and dual optimal solutions

of (M) (Theorem 3). Specifically, the expected flow of an equilibrium routing strategy for player

1 is an optimal flow of (M). Furthermore, equilibrium interdiction strategies for player 2 are such

that the marginal interdiction probabilities of the network edges and source-destination paths can

be expressed using the optimal dual solutions and the properties of the network. In fact, these

equilibrium conditions rely on our results on posets (Theorems 1 and 2) for the existence problem

(D). The players’ payoffs in equilibrium can be expressed in terms of the optimal solutions of (M),

and are independent of the chosen path decomposition of player 1’s strategy. Bertsimas et al. [11]

showed that such property does not necessarily hold in path-based formulations of the Robust

Maximum Flow Problem (RMFP) with multiple interdictions.

2. Our solution approach shows that Nash equilibria of the game can be computed in poly-

nomial time: The first step consists of solving the minimum-cost circulation problem (M) using

known algorithms (see Karmarkar [22] and Orlin et al. [27]). The optimal flow is shown to be an

equilibrium routing strategy for player 1. Using the optimal dual solution, the second step of our

approach consists of running our polynomial algorithm on posets (Algorithm 2) to construct an

equilibrium interdiction strategy for player 2 that satisfies marginal interdiction probabilities. This

result contrasts with the NP-hardness of the RMFP (Disser and Matuschke [13]).

3. The critical components in the network can be computed from a primal-dual pair of solutions

of (M) that satisfy strict complementary slackness. Specifically, the primal (resp. dual) solution
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provides the paths (resp. edges) that are chosen (resp. interdicted) in at least one Nash equilib-

rium of the game (Proposition 6). This result generalizes the classical min-cut-based metrics of

network criticality previously studied in the network interdiction literature (see Assimakopoulos

[5], McMasters et al. [25], Washburn and Wood [31], Wood [33]). Indeed, we show that in our more

general setting, multiple edges in a source-destination path may be interdicted in equilibrium, and

cannot be represented with a single cut of the network.

The rest of the paper is organized as follows: In Section 2, we pose our existence problem on

posets, and introduce our main feasibility result. Section 3 presents and analyzes a combinatorial

algorithm for solving the existence problem. A polynomial implementation of the algorithm is

described in Section 4 when the maximal chain values are affine. Applications of our results on

posets are then demonstrated in Section 5, where we study our strategic network interdiction game.

Lastly, we provide some concluding remarks in Section 6.

2. Probability distributions on posets. In this section, we first recall some standard defini-

tions in order theory. We then pose our problem of proving the existence of probability distributions

over partially ordered sets, and introduce our main result about its feasibility.

2.1. Preliminaries. A finite partially ordered set or poset P is a pair (X,�), where X is a

finite set and � is a partial order on X, i.e., � is a binary relation on X satisfying:

– Reflexivity: For all x∈X, x� x in P .

– Antisymmetry: For all (x, y)∈X2, if x� y in P and y� x in P , then x= y.

– Transitivity: For all (x, y, z)∈X3, if x� y in P and y� z in P , then x� z in P .

Given (x, y) ∈ X2, we denote x ≺ y in P if x � y in P and x 6= y. We say that x and y are

comparable in P if either x≺ y in P or y ≺ x in P . On the other hand, x and y are incomparable

in P if neither x≺ y in P , nor y ≺ x in P . We say that x is covered in P by y, denoted x≺: y in

P , if x≺ y in P and there does not exist z ∈X such that x≺ z in P and z ≺ y in P . When there

is no confusion regarding the poset, we abbreviate x� y in P by writing x� y, etc.

Let Y be a nonempty subset of X, and let �
Y
denote the restriction of � to Y . Then, �

Y
is

a partial order on Y , and (Y,�
Y
) is a subposet of P . A poset P = (X,�) is called a chain (resp.

antichain) if every distinct pair of elements in X is comparable (resp. incomparable) in P . Given

a poset P = (X,�), a nonempty subset Y ⊆X is a chain (resp. an antichain) in P if the subposet

(Y,�
Y
) is a chain (resp. an antichain). A single element of X is both a chain and an antichain.

Given a poset P = (X,�), an element x ∈X is a minimal element (resp. maximal element) if

there are no elements y ∈X such that y ≺ x (resp. x≺ y). Note that any chain has a unique minimal

and maximal element. A chain C ⊆X (resp. antichain A⊆X) is maximal in P if there are no other
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chains C ′ (resp. antichains A′) in P that contain C (resp. A). Let C and A respectively denote the

set of maximal chains and antichains in P . A maximal chain C ∈ C of size n can be represented as

C = {x1, . . . , xn} where for all k ∈ J1, n− 1K, xk ≺: xk+1. We state the following property:

Lemma 1. Given a finite nonempty poset P , the set of minimal elements of P is an antichain

of P , and intersects with every maximal chain of P .

Proof in Appendix A.

Given a poset P = (X,�), we consider its directed cover graph, denoted HP = (X,EP ). HP

is a directed acyclic graph whose set of nodes is X, and whose set of edges is given by EP :=

{(x, y) ∈ X2 | x ≺: y}. When HP is represented such that for all (x, y) ∈ X2 with x ≺: y, the

vertical coordinate of the node corresponding to y is higher than the vertical coordinate of the

node corresponding to x, the resulting diagram is called a Hasse diagram of P .

We now introduce the notion of subposet generated by a subset of maximal chains. Given a

poset P = (X,�), let X ′ ⊆X be a subset of elements, let C′ ⊆ C be a subset of maximal chains of

P , and consider the binary relation �C′ defined by: for all (x, y)∈X ′2, x�C′ y if and only if (x=

y) or (there exists C ∈ C′ such that x, y ∈ C and x ≺ y). Furthermore, we assume that if C1 =

{x−k, . . . , x−1, x
∗, x1, . . . , xn} and C2 = {y−l, . . . , y−1, x

∗, y1, . . . , ym} are in C′ and intersect in x∗ ∈

X ′, then C′ also contains C2
1 = {x−k, . . . , x−1, x

∗, y1, . . . , ym} and C1
2 = {y−l, . . . , y−1, x

∗, x1, . . . , xn}.

In other words, C′ preserves the decomposition of maximal chains intersecting in X ′. Then, the

following lemma holds:

Lemma 2. Consider the poset P = (X,�), a subset X ′ ⊆X, and a subset C′ ⊆C that preserves

the decomposition of maximal chains intersecting in X ′. Then, P ′ = (X ′,�C′) is also a poset.

Furthermore, for any maximal chain C of P ′ of size at least two, there exists a maximal chain C ′

in C′ such that C =C ′ ∩X ′.

Proof in Appendix A.

The subposet P ′ = (X ′,�C′) of P in Lemma 2 satisfies the property that if two elements in X ′

are comparable in P , and belong to a same maximal chain C ∈ C′, then they are also comparable

in P ′. Graphically, this is equivalent to removing the edges from the Hasse diagram HP if their

two end nodes do not belong to a same maximal chain C ∈ C′.

Example 1. Consider the poset P represented by the Hasse Diagram HP in Figure 1.

We observe that 1≺ 4, 2≺: 3; 1 and 3 are comparable, but 4 and 6 are incomparable; {2,4} is a

chain in P , but is not maximal since it is contained in the maximal chain {2,3,4}. Similarly, {4} is

an antichain in P , but is not maximal since it is contained in the maximal antichain {4,5}. The set

of maximal chains and antichains of P are given by C = {{1,3,4},{2,3,5,6},{1,3,5,6},{2,3,4}}
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1
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5

6

1

3

4 2

6

Figure 1. On the left is represented a Hasse diagram of a poset P . On the right is represented a Hasse diagram of

the subposet P ′ = (X ′,�C′) of P , where X ′ = {1,2,3,4,6} and C′ = {{1,3,5,6},{2,3,5,6}}.

and A= {{1,2},{3},{4,5},{4,6}}, respectively. The set of minimal elements of P is given by {1,2},

and intersects with every maximal chain in C. Finally, P ′ = (X ′,�C′), where X ′ = {1,2,3,4,6} and

C′ = {{1,3,5,6},{2,3,5,6}}, is a poset as illustrated in Figure 1. △

2.2. Problem formulation and main result. Consider a finite nonempty poset P = (X,�).

Let P := 2X denote the power set of X, and let ∆(P) := {σ ∈RP
≥0 |

∑
S∈P σS = 1} denote the set of

probability distributions over P. We are concerned with the setting where each element x ∈X is

associated with a value ρx ∈ [0,1], and each maximal chain C ∈ C has a value πC ≤ 1. Our problem is

to determine if there exists a probability distribution σ ∈∆(P) such that for every element x∈X,

the probability that x is in a subset S ∈P is equal to ρx; and for every maximal chain C ∈ C, the

probability that C intersects with a subset S ∈P is at least πC . That is,

(D) : ∃σ ∈RP
≥0 such that





∑

{S∈P |x∈S}

σS = ρx, ∀x∈X, (1a)

∑

{S∈P |S∩C 6=∅}

σS ≥ πC , ∀C ∈ C, (1b)

∑

S∈P

σS = 1. (1c)

For the case in which πC ≤ 0 for all maximal chains C ∈ C, constraints (1b) can be removed,

and the feasibility of (D) follows from Carathéodory’s theorem. However, no known results can

be applied to the general case. Note that although (1a)-(1c) form a polyhedral set, Farkas’ lemma

cannot be directly used to evaluate its feasibility. Instead, in this article, we study the feasibility

of (D) using order-theoretic properties of the problem. We assume two natural conditions on ρ=

(ρx)x∈X and π= (πC)C∈C, which we introduce next.

Firstly, for feasibility of (D), ρ and π must necessarily satisfy the following inequality:

∀C ∈ C,
∑

x∈C

ρx ≥ πC . (2)



8 Dahan, Amin, and Jaillet: Probability Distributions on Partially Ordered Sets and Network Interdiction Games

Indeed, if (D) is feasible, then for σ ∈RP
≥0 satisfying (1a)-(1c), the following holds:

∀C ∈ C,
∑

x∈C

ρx
(1a)
=

∑

x∈C

∑

{S∈P |x∈S}

σS =
∑

S∈P

σS

∑

x∈C

1{x∈S} =
∑

S∈P

σS |S ∩C| ≥
∑

{S∈P |S∩C 6=∅}

σS

(1b)

≥ πC .

That is, the necessity of (2) follows from the fact that for any probability distribution over P,

and any subset of elements C ⊆X, the probability that C intersects with a subset S ∈P is upper

bounded by the sum of the probabilities with which each element in C is in a subset S ∈P.

Secondly, we assume that π satisfies a specific condition for each pair of maximal chains that

intersect each other. Consider any pair of maximal chains C1 and C2 of P , with C1∩C2 6= ∅. Let x∗ ∈

C1∩C2, and let us rewrite C1 = {x−k, . . . , x−1, x
∗, x1, . . . , xn} and C2 = {y−l, . . . , y−1, x

∗, y1, . . . , ym}.

Then, P also contains two maximal chains C2
1 = {x−k, . . . , x−1, x

∗, y1, . . . , ym} and C1
2 =

{y−l, . . . , y−1, x
∗, x1, . . . , xn} that satisfy C1 ∪ C2 = C2

1 ∪ C1
2 ; see Figure 2 for an illustration. We

require π to satisfy the following condition:

πC1 +πC2 = πC2
1
+πC1

2
. (3)

Essentially, (3) can be viewed as a conservation law on the maximal chains in C.

1

3

4

3

2

5

6

1

3

5

6

3

4

2

C1 C2 C2
1 C1

2

Figure 2. Four maximal chains of the poset shown in Figure 1.

We now present our main result regarding the feasibility of (D), under conditions (2) and (3).

Theorem 1. The problem (D) is feasible for any finite nonempty poset (X,�), with parameters

ρ= (ρx)∈ [0,1]
X and π= (πC)∈ (−∞,1]C that satisfy (2) and (3).

This result plays a crucial role in solving a two-player interdiction game on a flow network

(Section 5). The game involves a “router” who sends a flow of goods to maximize her value of flow

crossing the network while facing transportation costs, and an “interdictor” who inspects one or

more network edges to maximize the value of interdicted flow while facing interdiction costs. Our

equilibrium analysis in Section 5 shows that interdiction strategies in Nash equilibria interdict each

edge x with a probability ρx, and interdict each path C with a probability at least πC . Essentially,

for this game, (ρx) and (πC) are governed by network properties, such as edge transportation and
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interdiction costs, and naturally satisfy (2) and (3). When the network is a directed acyclic graph,

a partial order can be defined on the set of edges, such that the set of maximal chains is exactly the

set of source-destination paths of the network. Thus, showing the existence of interdiction strategies

satisfying the above-mentioned equilibrium conditions is an instantiation of the problem (D). In

fact, Theorem 1 is useful for deriving several properties satisfied by the equilibrium strategies of

this network interdiction game.

It is important to note that (D) may not be feasible if the conservation law (3) is not satisfied,

as illustrated in the following counterexample:

Example 2. Let P be the poset represented by the Hasse Diagram in Figure 3.

1

3

2

4

5 6

C1 C2 C3 C4 C5

1

3

5

1

4

5

1

4

6

2

4

5

2

4

6

Figure 3. Hasse diagram of a poset P (left), and its five maximal chains (right).

In this poset, the maximal chains are C1 = {1,3,5}, C2 = {1,4,5}, C3 = {1,4,6}, C4 = {2,4,5},

C5 = {2,4,6}. Consider the following values: ρx = 0.4 for x ∈ {1,4,5}, and ρx = 0 for x ∈ {2,3,6};

πC5 = 0.4 and πC = 0.8 for C ∈ C\{C5}. We note that (2) is satisfied. However, πC2 + πC5 = 1.2 6=

1.6 = πC3 + πC4, which violates (3). If σ ∈RP
≥0 satisfies (1a) and (1b), then necessarily, σ{x} = 0.4

for all x∈ {1,4,5}, which violates (1c). Thus, problem (D) is infeasible for this example. △

Next, we show that (D) is feasible if and only if the optimal value of a linear program is no more

than 1.

2.3. Equivalent optimization problem. We observe that when
∑

x∈X
ρx ≤ 1, a trivial solu-

tion for (D) is given by: σ̃{x} = ρx for all x∈X, and σ̃∅ = 1−
∑

x∈X
ρx. The vector σ̃ so constructed

indeed represents a probability distribution over P, and satisfies constraints (1a). Furthermore, for

each maximal chain C ∈ C,
∑

{S∈P |S∩C 6=∅} σ̃S =
∑

x∈C
ρx

(2)

≥ πC . Therefore, σ̃ is a feasible solution

of (D). However, in general,
∑

x∈X
ρx may be larger than 1, which prevents the aforementioned

construction of σ̃ from being a probability distribution. Thus, to construct a feasible solution of

(D), some probability must be assigned to subsets of elements of size larger than 1. This is governed

by the following quantity, defined for each maximal chain C ∈ C:

δC :=
∑

x∈C

ρx−πC . (4)
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The role of δ = (δC)C∈C in assigning probabilities to subsets of elements can be better understood

by considering the following optimization problem:

(Q) : minimize
∑

S∈P

σS

subject to
∑

{S∈P |x∈S}

σS = ρx, ∀x∈X (5)

∑

{S∈P | |S∩C|≥2}

σS(|S ∩C| − 1)≤ δC , ∀C ∈ C (6)

σS ≥ 0, ∀S ∈P.

Problems (Q) and (D) are related in that the set of constraints (1a)-(1b) is equivalent to the set

of constraints (5)-(6); see the proof of Proposition 1 below. Furthermore, the objective function

in (Q) is analogous to the constraint (1c) in (D). The feasibility of (Q) is straightforward (for

example, σ̃ constructed above is a feasible solution); however, a feasible solution of (Q) may not

be a probability distribution.

Given a maximal chain C ∈ C, constraint (6) bounds the total amount of probability that can be

assigned to subsets that contain more than one element in C. One can see that for a subset S ∈P

such that |S ∩C| ≤ 1, the probability σS assigned to S does not influence constraint (6). However,

the more elements from C a subset S contains, the smaller the probability that can be assigned

to S, due to scaling by the factor (|S ∩C|− 1). Thus, δ determines the amount of probability that

can be assigned to larger subsets.

Let z∗(Q) denote the optimal value of (Q). Then, the following result holds:

Proposition 1. (D) is feasible if and only if z∗(Q) ≤ 1.

Proof of Proposition 1. First, let us show that the set of constraints (1a)-(1b) is equivalent to

the set of constraints (5)-(6). Let σ ∈RP
≥0 that satisfies

∑
{S∈P |x∈S} σS = ρx for all x∈X. For every

maximal chain C ∈ C, the following equality holds:

∑

x∈C

ρx =
∑

x∈C

∑

{S∈P |x∈S}

σS =
∑

S∈P

σS

∑

x∈C

1{x∈S} =
∑

{S∈P |S∩C 6=∅}

σS|S ∩C|. (7)

Therefore, for every maximal chain C ∈ C, the following equivalence is satisfied:

∑

{S∈P |S∩C 6=∅}

σS ≥ πC

(4),(7)
⇐⇒ δC ≥

∑

{S∈P |S∩C 6=∅}

σS(|S ∩C| − 1)=
∑

{S∈P | |S∩C|≥2}

σS(|S ∩C| − 1). (8)

Now, let us show that (D) is feasible if and only if the optimal value of (Q) satisfies z∗(Q) ≤ 1.

– If there exists σ ∈RP
≥0 that satisfies (1a)-(1c), then we showed that σ is a feasible solution of

(Q). Furthermore, the objective value of σ is equal to 1, which implies that z∗(Q) ≤ 1.
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– If z∗(Q) ≤ 1, let σ∗ be an optimal solution of (Q). Necessarily, σ∗
∅ = 0, and the vector σ ∈ RP

defined as follows is feasible for (D): σS = σ∗
S, for every S ∈P\∅, and σ∅ = 1− z∗(Q). �

Therefore, proving Theorem 1 is equivalent to showing that z∗(Q) ≤ 1. In fact, we show a stronger

result, which will be crucial for solving our network interdiction game in Section 5:

Theorem 2. z∗(Q) =max{max{ρx, x∈X},max{πC , C ∈ C}}.

It is easy to see that z∗(Q) ≥max{max{ρx, x ∈X},max{πC , C ∈ C}}. Indeed, any feasible solu-

tion σ ∈ RP
≥0 of (Q) satisfies

∑
S∈P σS ≥

∑
{S∈P |x∈S} σS = ρx for every x ∈ X, and

∑
S∈P σS ≥

∑
{S∈P |S∩C 6=∅} σS

(8)

≥ πC for every C ∈ C. To show the reverse inequality, we must prove that there

exists a feasible solution of (Q) with objective value equal to max{max{ρx, x∈X},max{πC , C ∈

C}}. This is the focus of the next section.

3. Constructive proof of Theorem 2. Essentially, we design a combinatorial algorithm

to compute a feasible solution of (Q) with objective value exactly equal to max{max{ρx, x ∈

X},max{πC , C ∈ C}}. Recall from Section 2.3 that such a feasible solution is optimal for (Q), and

can be used to construct a feasible solution of (D); see the proof of Proposition 1.

Before formally introducing our algorithm, we discuss the main ideas behind its design. In each

iteration, the algorithm selects a subset of elements, and assigns a positive weight to it. Let us

discuss the execution of the first iteration of the algorithm.

Firstly, we determine the collection of subsets that can be assigned a positive weight without

violating any of the constraints in the problem (Q). Essentially, this is dictated by the maximal

chains C ∈ C for which δC = 0. Indeed, for any C ∈ C with δC = 0, the following equivalence holds:
∑

{S∈P | |S∩C|≥2} σS︸︷︷︸
≥0

(|S ∩C| − 1)︸ ︷︷ ︸
>0

≤ 0 if and only if σS = 0 for all S ∈ P such that |S ∩ C| ≥ 2.

Therefore, our algorithm must select a subset of elements S ∈ P that intersects every maximal

chain C ∈ C for which δC =0 in at most one element.

To precisely characterize this collection of subsets, we consider the notion of subposet generated

by a subset of maximal chains, introduced in Section 2.1. In particular, by considering C′ the

set of maximal chains C ∈ C such that δC = 0, and X ′ the subset of elements x ∈ X such that

ρx > 0, we can show (in Proposition 2 below) that the condition stated in Lemma 2 is satisfied,

and P ′ = (X ′,�C′) is a poset. Interestingly, the subsets of elements that the algorithm can select

from at that iteration are the antichains of P ′. In any poset, a chain and an antichain intersect in

at most one element. By definition of �C′ , this implies that |S ∩C| ≤ 1 for every antichain S ⊆X ′

of P ′ and every maximal chain C ∈ C of P such that δC = 0.

Now, we need to determine which antichain of P ′ to select. Let S′ ⊆X ′ denote the subset of

elements selected by the algorithm in the first iteration. Recall that an optimal solution of (Q)
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satisfies constraints (1a)-(1b) with the least total amount of weight assigned to subsets of elements

of X. Thus, it is desirable that the weight assigned to S′ in this iteration contribute towards

satisfying all constraints (1b). To capture this requirement, our algorithm selects S′ as the set of

minimal elements of P ′. The selected S′ is an antichain of P ′, intersects with every maximal chain

of P , and enables us to prove the optimality of the algorithm.

Secondly, we discuss how to determine the maximum amount of weight w′ that can be assigned

to S′ in the first iteration, without violating any of the constraints (5) and (6). This is governed by

the remaining chains C ∈ C for which δC > 0 and the elements constituting S′. If w′ is larger than
δC

|S′∩C|−1
for C ∈ C such that |S′ ∩C| ≥ 2, then the corresponding constraint (6) will be violated.

Similarly, w′ cannot be larger than any ρx, x∈ S
′. Thus, the weight to assign to S′ is:

w′ =min

{
min{ρx, x∈ S′} ,min

{
δC

|S′ ∩C| − 1
, C ∈ C | δC > 0 and |S′ ∩C| ≥ 2

}}
.

At the end of the iteration, the algorithm updates the vectors ρ and δ, as well as the sets of

elements X ′ and maximal chains C′ to consider in subsequent iterations. In particular, we will show

that some maximal chains need to be removed in order to preserve the conservation law at each

iteration. The algorithm terminates when there are no more elements x∈X with positive ρx. We

are now in the position to formally present Algorithm 1.

Algorithm 1 : Optimal solution of (Q)

Input: Finite nonempty poset P = (X,�), and vectors ρ∈RX
≥0, δ ∈R

C
≥0.

Output: Vector σ ∈RP
≥0.

A1: C1←C, ρ1x← ρx, ∀x∈X, δ1C← δC, ∀C ∈ C
1

A2: X1←{x ∈X | ρ1x > 0}, C
1
←{C ∈ C1 | δ1C = 0}, Ĉ1←{C ∈ C1 | δ1C > 0}

A3: k← 1

A4: while Xk 6= ∅ do

A5: Construct the poset P k = (Xk,�
C
k)

A6: Select Sk the set of minimal elements of P k

A7: wk =min{min{ρkx, x∈ Sk},min{
δkC

|Sk∩C|−1
, C ∈ Ĉk | |Sk ∩C| ≥ 2}}, and σSk←wk

A8: ρk+1
x ← ρkx−wk

1{x∈Sk}, ∀x∈X, and δk+1
C ← δkC −wk(|Sk ∩C| − 1)1{|Sk∩C|≥2}, ∀C ∈ C

A9: Ck+1←{C ∈ Ck | the minimal element of C ∩Xk in P is in Sk}

A10: Xk+1←{x ∈Xk | ρk+1
x > 0}, C

k+1
←{C ∈ Ck+1 | δk+1

C =0}, Ĉk+1←{C ∈ Ck+1 | δk+1
C > 0}

A11: k← k+1

A12: end while

We illustrate Algorithm 1 with an example in Appendix B.
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Let n∗ denote the number of iterations of Algorithm 1. Since it has not yet been shown to

terminate, we suppose that n∗ ∈ N ∪ {+∞}. For every maximal chain C ∈ C, let us define the

sequence (πk
C)k∈J1,n∗+1K induced by Algorithm 1 as follows:

π1
C := πC , and for every k ∈ J1, n∗K, πk+1

C := πk
C −wk

1{Sk∩C 6=∅}. (9)

Given k ∈ J1, n∗+1K, πk
C (resp. ρkx) represents the remaining value associated with the maximal chain

C ∈ C (resp. the element x ∈X) after the first k− 1 iterations of the algorithm. For convenience,

we let X0←X.

We now proceed with proving Theorem 2. Our proof consists of three main parts:

Part 1: Algorithm 1 is well-defined (Proposition 2).

Part 2: It terminates and outputs a feasible solution of (Q) (Proposition 3).

Part 3: It assigns a total weight
∑n∗

k=1w
k equal to max{max{ρx, x∈X},max{πC , C ∈ C}} at

termination (Proposition 4).

Part 1: Well-definedness of Algorithm 1. To show that Algorithm 1 is well-defined, we

need to ensure that at each iteration k ∈ J1, n∗K of the algorithm, P k is a poset. Lemma 2 can be

applied to show this, provided that we are able to prove that C
k
preserves the decomposition of

maximal chains intersecting in Xk. This property, and some associated results, are stated below:

Proposition 2. Each iteration of Algorithm 1 is well-defined. In particular, for every k ∈

J1, n∗+1K, the following hold:

(i) For every maximal chain C ∈ C, δkC determines the remaining weight that can be assigned to

subsets that intersect C at more than one element:

∀C ∈ C, δkC =
∑

x∈C

ρkx−πk
C, (10)

∀C ∈ Ck, δkC ≥ 0. (11)

(ii) Ck preserves the decomposition of maximal chains intersecting in Xk−1:

∀(C1,C2)∈ C2 | C1 ∩C2 ∩Xk−1 6= ∅, (C1,C2) ∈ (Ck)2 =⇒ (C2
1 ,C

1
2 )∈ (C

k)2.

(iii) πk satisfies the conservation law on the maximal chains of Ck that intersect in Xk−1:

∀(C1,C2)∈ (Ck)2 | C1 ∩C2 ∩Xk−1 6= ∅, πk
C1 +πk

C2 = πk
C2
1
+πk

C1
2
. (12)

(iv) P k = (Xk,�
C
k) is a poset.
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Proof of Proposition 2. We show (i)− (iv) by induction.

First, consider k = 1. Since C1 = C, ρ1 = ρ, π1 = π, and δ1 = δ, then (i) follows from (2) and (4).

Since X0 =X and C1 = C, then (ii) is automatically satisfied. (iii) is a direct consequence of (3).

Now we apply Lemma 2 to show (iv), i.e., P 1 = (X1,�
C
1) is a poset. Specifically, we show that C

1

preserves the decomposition of maximal chains intersecting in X1. Consider C1,C2 ∈ C
1
such that

C1∩C2∩X1 6= ∅, and let us consider the other two maximal chains C2
1 and C1

2 , which we know from

(ii) are in C1, since X1 ⊆X0. Let x∗ ∈ C1 ∩C2 ∩X1, and let us rewrite C1 = {x−k, . . . , x−1, x0 =

x∗, x1, . . . , xn} and C2 = {y−l, . . . , y−1, y0 = x∗, y1, . . . , ym}. Then, C
2
1 = {x−k, . . . , x−1, x

∗, y1, . . . , ym}

and C1
2 = {y−l, . . . , y−1, x

∗, x1, . . . , xn}. From (i)− (iii), since C1,C2 ∈ C
1
; the conservation law is

satisfied by π1 on the maximal chains in C1 intersecting in X0; C2
1 ,C

1
2 ∈ C

1; and since δ1 ≥ 0 on C1:

n∑

i=−k

ρ1xi +
m∑

j=−l

ρ1yj = π1
C1 +π1

C2 = π1
C2
1
+π1

C1
2
=

∑

x∈C2
1

ρ1x +
∑

x∈C1
2

ρ1x− δ1
C2
1
− δ1

C1
2
≤

n∑

i=−k

ρ1xi +
m∑

j=−l

ρ1yj .

Therefore, δ1
C2
1
= δ1

C1
2
= 0, and C2

1 ,C
1
2 ∈ C

1
. From Lemma 2, P 1 = (X1,�

C
1) is a poset.

We now assume that (i)− (iv) hold for k ∈ J1, n∗K, and show that they also hold for k+1:

(i) Since P k is a poset, the k−th iteration of the algorithm is well-defined, and we can consider

the set Sk and the weight wk at that iteration. Then, for every C ∈ C, (A8) and (9) give us:

∑

x∈C

ρk+1
x −πk+1

C =
∑

x∈C

ρkx−πk
C −wk|Sk ∩C|+wk

1{Sk∩C 6=∅} = δkC −wk(|Sk ∩C| − 1)1{Sk∩C 6=∅} = δk+1
C .

Now, consider a maximal chain C ∈ Ck. Since δk ≥ 0 on Ck, then Ck = C
k
∪ Ĉk (from (A10)).

(a) If C ∈ C
k
, then by definition of �

C
k , C ∩Xk is a chain in P k. From Lemma 1, Sk is

an antichain of P k. Therefore, |Sk ∩ (C ∩ Xk)| ≤ 1. Since Sk ⊆ Xk, we obtain that |Sk ∩ C| =

|(Sk ∩Xk)∩C|= |Sk ∩ (C ∩Xk)| ≤ 1. Thus, δk+1
C

(A8)
= δkC −wk(|Sk ∩C| − 1)1{|Sk∩C|≥2} = δkC = 0.

(b) If C ∈ Ĉk, then by definition of wk: δk+1
C

(A8)
= δkC −wk(|Sk ∩C| − 1)1{|Sk∩C|≥2}

(A7)

≥ 0.

In summary, for all C ∈ Ck, δk+1
C ≥ 0. Since Ck+1

(A9)

⊆ Ck, then for all C ∈ Ck+1, δk+1
C ≥ 0.

(ii) Consider C1,C2 ∈ Ck+1 ⊆ Ck such that C1 ∩C2 ∩Xk 6= ∅, and let C2
1 and C1

2 be the other

two maximal chains such that C2
1 ∪C

1
2 = C1 ∪C2. Since Xk

(A10)

⊆ Xk−1, then C1 ∩C2 ∩Xk−1 6= ∅.

Therefore, by inductive hypothesis, C2
1 , C

1
2 ∈ C

k as well. Let x1 (resp. y1) denote the minimal

element of the chain C1 ∩Xk (resp. C2 ∩Xk) in P . Since C1, C2 ∈ Ck+1, then (x1, y1)
(A9)

∈ (Sk)2.

Let x∗ ∈Xk denote an intersecting element of C1 and C2. Since C1 ∩Xk is a chain in P , contains

x∗, and whose minimal element is x1, then necessarily x1 � x∗. Similarly, we obtain that y1 � x∗.

Therefore, the minimal element of C2
1 ∩X

k (resp. C1
2 ∩X

k) in P is x1 ∈ S
k (resp. y1 ∈ S

k). Thus,

C2
1 ,C

1
2 ∈ C

k+1, and Ck+1 preserves the decomposition of maximal chains of P intersecting in Xk.
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(iii) Now, given C1, C2 in Ck+1 that intersect in Xk, we just proved that C2
1 and C1

2 are in Ck+1

as well. Therefore, for all C ∈ {C1,C2,C2
1 ,C

1
2}, π

k+1
C

(9)
= πk

C −wk (since Sk ∩C 6= ∅). By inductive

hypothesis, since Ck+1 ⊆Ck and Xk+1 ⊆Xk, πk satisfies the conservation law between C1, C2, C2
1 ,

and C1
2 . Thus, we conclude that πk+1

C1 +πk+1
C2 = πk

C1 +πk
C2 − 2wk = πk

C2
1
+πk

C1
2
− 2wk = πk+1

C2
1

+πk+1

C1
2
.

(iv) This is a consequence of (i)− (iii); the proof is analogous to the one derived for k= 1.

Therefore, we conclude by induction that (i)− (iv) hold for every k ∈ J1, n∗+1K. �

The proof of Proposition 2 highlights the importance of our construction of Ck+1 for k ∈ J1, n∗K

as given in (A9). This step of the algorithm ensures that Ck+1 preserves the decomposition of

maximal chains intersecting in Xk. It also ensures that each maximal chain in Ck+1 intersects Sk.

A direct consequence is that πk+1 satisfies the conservation law on the maximal chains of Ck+1 that

intersect in Xk. This implies that C
k+1

preserves the decomposition of maximal chains intersecting

in Xk+1, and P k+1 is a poset (Lemma 2). The issue however is that some maximal chains in Ck

may be removed when constructing Ck+1, and we must ensure that the corresponding constraints

(6) will still be satisfied by the output of the algorithm. This is the focus of the next part.

Part 2: Feasibility of Algorithm 1’s output. The second main part of the proof of Theo-

rem 2 is to show that the algorithm terminates, and outputs a feasible solution of (Q). Showing that

the algorithm terminates is based on the fact that there is a finite number of elements and maximal

chains. From (A10), we deduce that constraints (5) are automatically satisfied at termination, since

an element x∈X is removed whenever the remaining value ρkx is 0. Similarly, from Proposition 2,

we obtain that constraints (6) are satisfied for all maximal chains in Cn
∗+1, i.e., the maximal chains

that are not removed by the algorithm. For the remaining maximal chains C ∈ C\Cn
∗+1, we create

a finite sequence of “dominating” maximal chains, and show that constraint (6) being satisfied for

the last maximal chain of the sequence implies that it is also satisfied for the initial maximal chain

C. To carry out this argument, we essentially need the following lemma:

Lemma 3. Consider C(1) ∈ C, and suppose that C(1) ∈ Ck1\Ck1+1 and C(1) ∩Xk1 6= ∅ for some

k1 ∈ J1, n∗K. Then, there exists C(2) ∈ Ck1+1 such that δk1
C(1) ≥ δk1

C(2) and C(2) ∩Xk1 ⊇C(1) ∩Xk1 .

Proof of Lemma 3. Consider C(1) ∈ C, and suppose that there exists k1 ∈ J1, n∗K such that C(1) ∈

Ck1\Ck1+1 and C(1)∩Xk1 6= ∅. This case arises when the minimal element of C(1)∩Xk1 in P is not

a minimal element of P k1 . Then, there is a chain in P k1 whose maximal element is the minimal

element of C(1)∩Xk1 in P , and whose minimal element is a minimal element of P k1 . By definition

of P k1 , this chain is contained in a maximal chain in C
k1

(Lemma 2). We then exploit (i)− (iii) in

Proposition 2 to show that there exists a maximal chain in Ck1+1 satisfying the desired properties.

Formally, let x∗ denote the minimal element of C(1)∩Xk1 in P . Since C(1) /∈ Ck1+1, then x∗ /∈ Sk1 .

Let C ′ ⊆Xk1 denote a maximal chain of P k1 that contains x∗. From Lemma 1, the minimal element
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of C ′ in P k1 , which we denote y1, is a minimal element of P k1. Therefore y1 ∈ S
k and y1 6= x∗. Thus,

|C ′| ≥ 2, and there exists a maximal chain C2 ∈ C
k1

such that C ′ = C2 ∩Xk1 (Lemma 2). Since

C(1) ∩C2 ∩Xk1−1 ⊇ {x∗} 6= ∅, let us consider the other two maximal chains C2
1 ,C

1
2 ∈ C such that

C2
1 ∪C

1
2 =C(1)∪C2. Since C(1) and C2 are in Ck1 , then from Proposition 2, C2

1 and C1
2 are in Ck1 as

well. Let us rewrite C(1) = {x−m, . . . , x0 = x∗, . . . , xn}, C
2 = {y−q, . . . , y0, y1, . . . , yp = x∗, . . . , yp+r},

C2
1 = {x−m, . . . , x−1, yp, . . . , yp+r}, and C1

2 = {y−q, . . . , yp, x1, . . . , xn}; they are illustrated in Figure 4.

yp−1

x∗

yp+1

x−1

x1

x−m

xn

y1

y0

y−q

y2

yp+r

C(1) C2

C2
1C1

2

Figure 4. Illustration of C(1), C2, C2
1 , and C1

2 . In dark blue are the elements in Xk1 , in light blue are the elements

that may or may not be in Xk1 , and in white are the elements that are not in Xk1 . The “double” node y1 is in Sk1 .

Since x∗ is the minimal element of C(1) ∩Xk1 in P , then for all i ∈ J−m,−1K, ρk1xi = 0. Since

C2 ∈ C
k1

and C2
1 ∈ C

k1 , and from the conservation law between C(1), C2, C2
1 and C1

2 , we obtain:

πk1
C1
2
−πk1

C(1)

(12)
= πk1

C2 −πk1
C2
1

(10)
=

p+r∑

j=−q

ρk1yj − δk1
C2︸︷︷︸
=0

−
−1∑

i=−m

ρk1xi︸︷︷︸
=0

−

p+r∑

j=p

ρk1yj + δk1
C2
1︸︷︷︸

≥0

(11)

≥

p−1∑

j=−q

ρk1yj . (13)

This implies that:

δk1
C(1)

(10)
=

n∑

i=0

ρk1xi −πk1

C(1) +

p−1∑

j=−q

ρk1yj −

p−1∑

j=−q

ρk1yj
(10)
= δk1

C1
2
+πk1

C1
2
−πk1

C(1) −

p−1∑

j=−q

ρk1yj

(13)

≥ δk1
C1
2
.

Since y1 is the minimal element of C2 ∩Xk1 in P k1, it is also the minimal element of C2 ∩Xk1

in P . Therefore, y1 is the minimal element of C1
2 ∩X

k1 in P . Since y1 ∈ S
k1 , then C1

2 ∈ C
k1+1.
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Finally, since for all i∈ J−m,−1K, xi /∈X
k1 , then C1

2 ∩X
k1 ⊇ {x∗, x1, . . . , xn}∩X

k1 =C(1)∩Xk1 ,

as illustrated in Figure 4. In conclusion, given C(1) ∈ Ck1\Ck1+1 such that C(1) ∩Xk1 6= ∅, there

exists C(2) :=C1
2 ∈ C

k1+1 such that δk1
C(1) ≥ δk1

C(2) and C(2) ∩Xk1 ⊇C(1) ∩Xk1 . �

As shown in the next proposition, one of Lemma 3’s implications is that if a maximal chain C(1)

is removed after the k1−th iteration of the algorithm, then there exists another maximal chain C(2)

that dominates C(1) in that if the output of the algorithm satisfies constraint (6) for C(2), then it

also satisfies that constraint for C(1). Additionally, it is guaranteed that C(2) is not removed before

the k1 +1−th iteration of the algorithm. We now show the feasibility of Algorithm 1’s output:

Proposition 3. Algorithm 1 terminates, and outputs a feasible solution of (Q).

Proof of Proposition 3. We recall that the algorithm terminates after iteration n∗ if Xn∗+1 = ∅.

First, note that X1 ⊆X and for all k ∈ J1, n∗K, Xk+1
(A10)

⊆ Xk. Additionally, Ĉ1 ⊆ C, and from (A8),

Ĉk+1 ⊆ Ĉk for every k ∈ J1, n∗K. Now, consider k ∈ J1, n∗K, and the weight wk chosen by the algorithm

at iteration k. From (A7), there exists x∈Xk such that wk = ρkx, or there exists C ∈ Ĉk such that

wk =
δkC

|Sk∩C|−1
. In the first case, x /∈Xk+1, so Xk+1 (Xk. In the second case, either C /∈ Ck+1, or

C ∈ Ck+1 with δk+1
C = 0; this implies that C /∈ Ĉk+1 and Ĉk+1 ( Ĉk.

Thus, for every k ∈ J1, n∗K, |Xk+1 × Ĉk+1| < |Xk × Ĉk|. Since |X1 × Ĉ1| ∈ N, if n∗ were equal to

+∞, we would obtain an infinite decreasing sequence of natural integers. Therefore, we conclude

that n∗ ∈N, i.e., the algorithm terminates. At termination, Xn∗+1 = ∅.

Next, we show that the output σ ∈RP
≥0 of the algorithm is a feasible solution of (Q). First, the

equality constraints (5) are trivially satisfied:

∀x∈X, ρx
(A1)
= ρ1x

(A8)
= ρn

∗+1
x︸ ︷︷ ︸
=0

+
n∗∑

k=1

wk
1{x∈Sk}

(A7)
=

n∗∑

k=1

σSk1{x∈Sk} =
∑

{S∈P |x∈S}

σS .

Regarding constraints (6), we first show the following equality:

∀C ∈ C, δn
∗+1

C

(A8)
= δ1C −

n∗∑

k=1

wk(|Sk ∩C| − 1)1{|Sk∩C|≥2}

(A1),(A7)
= δC −

∑

{S∈P | |S∩C|≥2}

σS(|S ∩C| − 1).

Therefore, constraints (6) are satisfied if and only if for every C ∈ C, δn
∗+1

C ≥ 0.

From Proposition 2, we know that for all C ∈ Cn
∗+1, δn

∗+1
C ≥ 0. Now, consider C(1) ∈ C, and

suppose that there exists k1 ∈ J1, n∗K such that C(1) ∈ Ck1\Ck1+1. If C(1) ∩Xk1 = ∅, then for every

l ∈ Jk1, n
∗K, |Sl ∩C(1)| = 0 since Sl

(A6)

⊆ X l and X l
(A10)

⊆ Xk1 . Therefore, since C(1) ∈ Ck1 , we have

δn
∗+1

C(1)

(A8)
= δk1

C(1) −
∑n∗

l=k1
wl(|Sl ∩C(1)| − 1)1{|Sl∩C(1)|≥2} = δk1

C(1)

(11)

≥ 0.

If C(1)∩Xk1 6= ∅, then there exists C(2) ∈ Ck1+1 such that δk1
C(1) ≥ δk1

C(2) and C(2)∩Xk1 ⊇C(1)∩Xk1

(Lemma 3). For any i∈ Jk1, n
∗K, Si ∩C(2) ⊇ Si ∩C(1) since Si

(A6),(A10)

⊆ Xk1 . Then, we obtain:

∀l ∈ Jk1, n
∗ +1K, δl

C(1)

(A8)
= δk1

C(1) −
l−1∑

i=k1

wi(|Si ∩C(1)| − 1)1{|Si∩C(1)|≥2}
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≥ δk1
C(2) −

l−1∑

i=k1

wi(|Si ∩C(2)| − 1)1{|Si∩C(2)|≥2}

(A8)
= δl

C(2) . (14)

In particular, δn
∗+1

C(1) ≥ δn
∗+1

C(2) .

By induction, we construct a sequence of maximal chains (C(s)), a sequence of increasing integers

(ks), and a termination point s∗ ∈N, such that for all s ∈ J1, s∗−1K,C(s) ∈ Cks\Cks+1, δn
∗+1

C(s) ≥ δn
∗+1

C(s+1) ,

and δn
∗+1

C(s∗) ≥ 0. Note that s∗ exists since ks≤ n∗ +1. This implies that δn
∗+1

C(1) ≥ · · · ≥ δn
∗+1

C(s∗) ≥ 0.

Thus, for every C ∈ C, δn
∗+1

C ≥ 0, and constraints (6) are satisfied by the output σ of the algo-

rithm. In conclusion, the algorithm outputs a feasible solution of (Q). �

The output of Algorithm 1, by design, satisfies constraints (5), and also constraints (6) for the

maximal chains in Cn
∗+1. Recall that the remaining maximal chains were removed after an iteration

k in order to maintain the conservation law on the resulting set Ck+1. This conservation law played

an essential role in proving Proposition 3, i.e., in showing that constraints (6) are also satisfied for

the maximal chains that are not in Cn
∗+1 (see the proof of Lemma 3).

Part 3: Optimality of Algorithm 1. The final part of the proof of Theorem 2 con-

sists in showing that the total weight used by the algorithm is exactly max{max{ρx, x ∈

X},max{πC , C ∈ C}}. This is done by considering the following quantity: for every k ∈ J1, n∗+1K,

W k :=max{max{ρkx, x∈X},max{πk
C , C ∈ C}}. First, we show that for every k ∈ J1, n∗K, W k+1 =

W k−wk. Then, we show that W n∗+1 = 0. Using a telescoping series, we obtain the desired result.

Lemma 3 is also used to conclude that max{πk
C , C ∈ C} is attained by a maximal chain C ∈ Ck+1.

Proposition 4. The total weight used by Algorithm 1 when it terminates is max{max{ρx, x∈

X},max{πC , C ∈ C}}.

Proof of Proposition 4. For all k ∈ J1, n∗ + 1K, let W k := max{max{ρkx, x ∈X},max{πk
C , C ∈

C}}. First, we show that for every k ∈ J1, n∗K, W k+1 = W k − wk. Consider k ∈ J1, n∗K, and let

C ∈ C\Ck+1. Then, there exists k1 ≤ k such that C ∈ Ck1\Ck1+1. If C ∩Xk1 = ∅, then πk+1
C ≤ πk

C ≤

πk1
C

(10)
= −δk1C

(11)

≤ 0. If C ∩Xk1 6= ∅, then Lemma 3 implies that there exists C(2) ∈ Ck1+1 such that

for all l ∈ Jk1, n
∗ +1K, δlC

(14)

≥ δl
C(2) , and C(2) ∩X l ⊇C ∩X l. Consequently, we obtain:

∀l ∈ Jk1, n
∗ +1K, πl

C

(10)
=

∑

x∈C∩Xl

ρlx− δlC +πl

C(2) + δl
C(2) −

∑

x∈C∩Xl

ρlx−
∑

x∈(C(2)∩Xl)\(C∩Xl)

ρlx
(14)

≤ πl

C(2) .

In particular, πk
C ≤ πk

C(2) and πk+1
C ≤ πk+1

C(2) . As in Proposition 3, we construct a sequence of

maximal chains (C(s)), a sequence of increasing integers (ks), and a termination point s′ ∈N, such

that C(1) = C and for all s ∈ J1, s′ − 1K, C(s) ∈ Cks\Cks+1, πk

C(s) ≤ πk

C(s+1) , and πk+1

C(s) ≤ πk+1

C(s+1) . At

termination, C(s′) ∈ Cks′ , and either ks′ = k+ 1, or ks′ < k+ 1 and C(s′) ∩Xks′ = ∅. If ks′ = k+ 1,
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then πk
C ≤ πk

C(s′) and πk+1
C ≤ πk+1

C(s′)
, with C(s′) ∈ Ck+1. If ks′ < k+1 and C(s′)∩Xks′ = ∅, then πk+1

C

(9)

≤

πk
C ≤ πk

C(s′)

(9)

≤ π
ks′

C(s′)

(10)
= −δ

ks′

C(s′)

(11)

≤ 0 ≤ ρk+1
x

(8)

≤ ρkx for all x ∈ X. Thus, W k = max{max{ρkx, x ∈

X},max{πk
C , C ∈ C

k+1}}, and W k+1 =max{max{ρk+1
x , x∈X},max{πk+1

C , C ∈ Ck+1}}.

Since Xk 6= ∅, ρkx ≥ ρk+1
x ≥ 0 for every x ∈ Xk, and ρkx = ρk+1

x = 0 for every x ∈ X\Xk, then

max{ρkx, x∈X}=max{ρkx, x∈Xk}, and max{ρk+1
x , x∈X}=max{ρk+1

x , x∈Xk}.

Next, let x ∈ Xk\Sk. Then, there exists y ∈ Sk such that y �
C
k x. By definition, there exists

C ∈ C
k
such that y,x∈C. In fact, y is the minimal element of C ∩Xk in P k, and C ∈ Ck+1. Since

C ∈ C
k
, then πk

C

(10)
=

∑
x′∈C

ρkx′ ≥ ρkx + ρky ≥ ρkx. Furthermore, since y ∈ Sk, then wk
(A7)

≤ ρky. Thus,

ρk+1
x = ρkx ≤ πk

C − ρky ≤ πk
C − wk (9)

= πk+1
C , from which we conclude that W k = max{max{ρkx, x ∈

Sk},max{πk
C , C ∈ C

k+1}}, and W k+1 =max{max{ρk+1
x , x∈ Sk},max{πk+1

C , C ∈ Ck+1}}.

Finally, we note that for all C ∈ Ck+1, πk+1
C

(9)
= πk

C − wk since Sk ∩ C 6= ∅, and for all x ∈ Sk,

ρk+1
x

(A8)
= ρkx−wk. Putting everything together, we conclude:

W k+1 =max{max{ρk+1
x , x∈ Sk},max{πk+1

C , C ∈ Ck+1}}

=max{max{ρkx, x∈ Sk},max{πk
C , C ∈ C

k+1}}−wk =W k−wk.

Next, we show that W n∗+1 = 0. First, ρn
∗+1

x = 0 for all x ∈X. Secondly, πn∗+1
C

(10)
= −δn

∗+1
C

(11)

≤ 0

for all C ∈ Cn
∗+1. Thirdly, Sn∗

6= ∅ since Xn∗

6= ∅. This implies that W n∗+1 =max{max{ρn
∗+1

x , x∈

Sn∗

},max{πn∗+1
C , C ∈ Cn

∗+1}}= 0. Finally, using a telescoping series, we obtain:

∑

S∈P

σS

(A7)
=

n∗∑

k=1

W k−W k+1 =W 1−W n∗+1

︸ ︷︷ ︸
=0

(A1),(9)
= max{max{ρx, x∈X},max{πC , C ∈ C}}.

�

In conclusion, Propositions 2, 3, and 4 enable us to show that Algorithm 1 outputs a feasible

solution of (Q) with objective value equal to max{max{ρx, x ∈X},max{πC , C ∈ C}}. Therefore

z∗(Q) ≤max{max{ρx, x∈X},max{πC , C ∈ C}}. Since we already established the reverse inequality

at the end of Section 2.3, we conclude that z∗(Q) =max{max{ρx, x ∈X},max{πC , C ∈ C}}, thus

proving Theorem 2.

Furthermore, since ρx ≤ 1 for every x∈X, and πC ≤ 1 for every C ∈ C, then z∗(Q) ≤ 1. This implies

that (D) is feasible: Given the output σ of Algorithm 1, the vector σ̂ ∈ RP
≥0 obtained from σ by

additionally assigning 1− z∗(Q) to ∅ is a feasible solution of problem (D), and proves Theorem 1.

In fact, (Q) is a generalization of the minimum-weighted fractional coloring problem on com-

parability graphs (Hoàng [20]). The comparability graph of the poset P = (X,�) is an undirected

graph whose set of nodes is X and whose edges are given by the pairs of comparable elements

in P . In the special case where for all C ∈ C,
∑

x∈C
ρx = πC (i.e., inequality (2) is tight), (Q) is
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equivalent to the minimum-weighted fractional coloring problem on the comparability graph of P .

Algorithm 1 can then be refined into Hoàng’s O(|X|2)-time algorithm.

Given EP the edge set of the cover graph of P (as defined in Section 2.1), the number of iterations

of Algorithm 1 is upper bounded by |X|+ |EP |. However, Algorithm 1 requires at each iteration

k the storage of the possibly exponentially many chains C in Ck, along with their corresponding

values δkC. Next, we develop an efficient implementation of Algorithm 1 when π is an affine function

of the elements constituting each maximal chain of P .

4. Affine case: a polynomial algorithm. Consider the problem (D) for a given poset P =

(X,�), and vectors ρ ∈ [0,1]X and π ∈ (−∞,1]C satisfying (2). In addition, we assume that the

value of each maximal chain C ∈ C in P is given by πC = α−
∑

x∈C
βx, with α ∈ R and βx ∈ R

for every x ∈X. We observe that π satisfies the conservation law (3), and (D) is feasible. In this

section, we refine Algorithm 1 for this special case and show that an optimal solution of (Q) can

be computed in polynomial time.

Our polynomial algorithm performs (A5) and (A7) without enumerating all the maximal chains

of P . Instead, it runs subroutines based on the shortest path algorithm in the directed cover graph

of P to construct the subposet P k and compute the maximum weight wk that can be assigned at

each iteration k ∈ J1, n∗K. Let us discuss the execution of the first iteration of the algorithm.

Firstly, we augment the poset P by adding an artificial source element s and destination element

t that satisfy s� x� t, for every x ∈X; let P ∗ denote the augmented poset. Then, the algorithm

stores the directed cover graph HP∗ = (X ∪{s, t},EP∗) of P ∗. An s− t path of size n is a sequence

of edges {e1 = (s1, t1), . . . , en = (sn, tn)} such that s1 = s, tn = t, and for all i ∈ J1, n− 1K, ti = si+1.

Note that the set of maximal chains C of P is equivalent to the set of s− t paths of HP∗ : The set

of nodes in X visited by an s− t path is a maximal chain C ∈ C, and vice versa.

Next, the algorithm sets the length ρy + βy to every edge (x, y) ∈ EP∗ with y 6= t, and sets the

length −α to every edge (x, t) ∈ EP∗ with x ∈ X. Thus, the length of every s − t path in HP∗ ,

whose corresponding maximal chain is C ∈ C, is
∑

x∈C
(ρx + βx)− α

(4)
= δC . We then compute the

shortest distances between all pairs of nodes in HP∗ : We first topologically sort HP∗ , and then run

the classical shortest path algorithm in directed acyclic graphs starting from each node of HP∗ . We

store the shortest distances in a matrix M = (mxy)(x,y)∈(X∪{s,t})2. By definition of P 1 = (X1,�
C
1) in

Algorithm 1, and since δC
(2)

≥ 0 for every C ∈ C, we obtain that for every (x, y)∈ (X1)2 with x 6= y,

x�
C
1 y if and only if the length msx+mxy +myt of a shortest s− t path in HP∗ that goes through

x and y is 0. Thus, this shortest path subroutine replaces (A5), and constructs P 1 in polynomial

time. The algorithm then selects its set of minimal elements S1.
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Now, we compute the weight w1 to assign to S1 without enumerating all maximal chains C ∈ Ĉ1

such that |S1 ∩C| ≥ 2: Our algorithm constructs the subposet P̂ 1 := (S1 ∪ {s, t},�
S1∪{s,t}

) of P ∗,

and stores its directed cover graph HP̂1 = (S1∪{s, t},EP̂1). The length of each edge (x, y)∈EP̂1 is

set to the shortest distance mxy from x to y in the graph HP∗ . Then, we extend the shortest path

algorithm in directed acyclic graphs to obtain, for each q ∈ J1, |S1|K, the distance ℓ̂q of a shortest

path from s to t that traverses q elements of S1. The maximum weight to assign to S1 can be

efficiently computed as w1 =min{min{ρx, x∈ S
1},min{ ℓ̂q

q−1
, q ∈ J2, |S1|K}}, which replaces (A7).

Finally, the algorithm updates the vector ρ and the set of elements with positive ρ. In addition,

w1 must be subtracted from the scalar α to capture the update (9). This in turn will change

the lengths of the edges in HP∗ for the next iteration. The key challenges for the analysis of the

subsequent iterations k are to account for the fact that some maximal chains are removed by

Algorithm 1, and that the length of an s− t path in HP∗ , whose corresponding maximal chain is

C ∈ C, is not necessarily δkC . We now formally present Algorithm 2.

For every maximal chain C ∈ C, we define the following sequence induced by Algorithm 2, which

represents the length of the corresponding s− t path in HP∗ at the beginning of each iteration:

∀k ∈ J1, n∗ +1K, ℓkC :=
∑

x∈C

(ρ̃kx +βk
x)+βk

t . (15)

We now proceed with proving by induction that Algorithm 2 is a refinement of Algorithm 1:

Proposition 5. Algorithm 1’s and Algorithm 2’s outputs are identical. In particular, for every

iteration k ∈ J1, n∗ +1K, the following hold:

(i) The remaining values for each element are identical: for every x∈X, ρ̃kx = ρkx, and X̃k =Xk.

(ii) For every maximal chain C ∈ C, the length of its corresponding s− t path in HP∗ is at least

δkC. Furthermore, this inequality is tight for every maximal chain in Ck:

∀C ∈ C, ℓkC ≥ δkC, (16)

∀C ∈ Ck, ℓkC = δkC. (17)

(iii) P̃ k = (X̃k,�k) is a poset identical to P k = (Xk,�
C
k), and S̃k = Sk.

(iv) The weights assigned by both algorithms are identical: w̃k =wk.

Proof of Proposition 5. We show (i)− (iv) by induction.

First, consider k = 1. Since ρ̃ = ρ = ρ1, then X̃1 = X1. Furthermore, for all C ∈ C, ℓ1C
(15)
=

∑
x∈C

(ρx + βx)−α
(4)
= δ1C

(2)

≥ 0. Therefore, for every (x, y) ∈ (X1)2 with x 6= y, x�
C
1 y if and only if

there exists C ∈ C
1
such that x, y ∈C, which in turn is equivalent to the length of a shortest path
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Algorithm 2 : Optimal solution of (Q) in affine case

Input: Finite nonempty poset P = (X,�), scalar α∈R, and vectors ρ∈RX
≥0, β ∈R

X .

Output: Vector σ̃ ∈RP
≥0.

B1: Augment the poset into P ∗ = (X ∪{s, t},�), where s� x� t, ∀x∈X

B2: Construct the directed cover graph HP∗ = (X ∪{s, t},EP∗)

B3: ρ̃1x← ρx, ∀x∈X, ρ̃1t ← 0, β1
x← βx, ∀x∈X, β1

t ←−α, X̃1←{x∈X | ρ̃1x > 0}

B4: k← 1

B5: while X̃k 6= ∅ do

B6: Set the length of every edge (x, y)∈EP∗ to ρ̃ky +βk
y

B7: Mk = (mk
xy)(x,y)∈(X∪{s,t})2← all-pairs shortest distance matrix for the graph HP∗

B8: Construct the poset P̃ k = (X̃k,�k): ∀x, y ∈ X̃
k with x 6= y, x≺k y⇐⇒mk

sx+mk
xy +mk

yt =0

B9: Select S̃k the set of minimal elements of P̃ k

B10: Construct the subposet P̂ k = (S̃k ∪{s, t},�
S̃k∪{s,t}

) of P ∗

B11: Construct the directed cover graph HP̂k = (S̃k ∪{s, t},EP̂k ), and topologically sort it

B12: ℓ̂k,qx ←+∞, ∀x∈X ∪{s, t}, ∀q ∈ J−1, |S̃k|K, ℓ̂k,−1
s ← 0

B13: for x∈ S̃k ∪{s} in topologically sorted order, and y ∈ S̃k ∪{t} such that (x, y)∈EP̂k do

B14: for q ∈ J−1, |S̃k| − 1K such that ℓ̂k,q+1
y > ℓ̂k,qx +mk

xy do

B15: ℓ̂k,q+1
y ← ℓ̂k,qx +mk

xy

B16: end for

B17: end for

B18: w̃k←min{min{ρ̃kx, x∈ S̃k},min{
ℓ̂
k,q
t

q−1
, q ∈ J2, |S̃k|K}}, σ̃S̃k← w̃k

B19: βk+1
x ← βk

x, ∀x∈X, βk+1
t ← βk

t + w̃k, ρ̃k+1
x ← ρ̃kx− w̃k

1{x∈S̃k}, ∀x∈X ∪{t}

B20: X̃k+1←{x∈ X̃k | ρ̃k+1
x > 0}

B21: k← k+1

B22: end while

in HP∗ traversing x and y being 0. Thus, P̃ 1 = P 1, and S̃1 = S1. Next, since ℓ1 = δ1, we obtain

that:

w̃1 (B18)
= min

{
min{ρ̃1x, x∈ S̃1},min

{ ℓ̂1,qt

q− 1
, q ∈ J2, |S̃1|K

}}

=min
{
min{ρ1x, x∈ S

1},min
{ δ1C
|S1 ∩C| − 1

, C ∈ C | |S1 ∩C| ≥ 2
}}

.

Note that |S1 ∩C| ≤ 1 for every maximal chain C ∈ C
1
, by definition of P 1. Since C1 = C, we

deduce that {C ∈ C | |S1 ∩C| ≥ 2}= {C ∈ Ĉ1 | |S1 ∩C| ≥ 2}. Therefore:

w̃1 =min
{
min{ρ1x, x∈ S1},min

{ δ1C
|S1 ∩C| − 1

, C ∈ Ĉ1 | |S1 ∩C| ≥ 2
}}

(A7)
= w1.
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We now assume that (i)− (iv) hold for k ∈ J1, n∗K, and show that they also hold for k+1:

(i) Since ρ̃k = ρk, S̃k = Sk, and w̃k = wk, then for every x ∈ X, ρ̃k+1
x

(B19)
= ρ̃kx − w̃k

1{x∈S̃k} =

ρkx−wk
1{x∈Sk}

(A8)
= ρk+1

x . This also implies that X̃k+1 =Xk+1.

(ii) For every maximal chain C ∈ C, ℓkC ≥ δkC implies that:

ℓk+1
C

(15),(B19)
= ℓkC − w̃k|S̃k ∩C|+ w̃k ≥ δkC −wk|Sk ∩C|+wk

1{Sk∩C 6=∅}

(A8)
= δk+1

C . (18)

If C ∈ Ck+1, then Sk ∩C 6= ∅. Since Ck+1 ⊆ Ck, then ℓkC = δkC by inductive hypothesis. Therefore,

(18) is tight for C ∈ Ck+1.

(iii) Consider (x, y)∈ (Xk+1)2 with x 6= y. If x�
C
k+1 y, then there exists C∗ ∈ C

k+1
⊆ Ck+1 such

that x, y ∈C∗. Consequently, ℓk+1
C∗

(17)
= δk+1

C∗ = 0≤ δk+1
C

(16)

≤ ℓk+1
C for every C ∈ C. Therefore, the s− t

path corresponding to C∗ is a shortest path in HP∗ that goes through x and y, and has length 0.

Thus, x�k+1 y.

Now, assume that x and y are not comparable in P k+1. Two cases arise:

Case 1: x and y are not comparable in P . Then, there is no s− t path in HP∗ that goes through

x and y, which implies that x and y are not comparable in P̃ k+1.

Case 2: x≺ y in P . Then, δk+1
C > 0 for all C ∈ Ck+1 such that x, y ∈C, by definition of P k+1. Let

C ′ ∈ C be the maximal chain corresponding to a shortest path in HP∗ that goes through x and y. If

C ′ ∈ Ck+1, then ℓk+1
C′

(17)
= δk+1

C′ > 0. If C ′ /∈ Ck+1, then by applying Lemma 3 as in Section 3, we obtain

that there exists a maximal chain C(2) ∈ Ck+1 such that δk+1
C′ ≥ δk+1

C(2) and C(2) ∩Xk+1 ⊇C ′ ∩Xk+1.

Consequently, x, y ∈C(2), and ℓk+1
C′

(16)

≥ δk+1
C′ ≥ δk+1

C(2) > 0. Thus, x and y are not comparable in P̃ k+1.

In conclusion, P̃ k+1 =P k+1, and S̃k+1 = Sk+1.

(iv) First, we note that:

min
{ ℓ̂k+1,q

t

q− 1
, q ∈ J2, |S̃k+1|K

}
=min

{ ℓk+1
C

|Sk+1 ∩C| − 1
, C ∈ C | |Sk+1 ∩C| ≥ 2

}
. (19)

If the minimization problem in (19) is infeasible, that is, there is no maximal chain C ∈ C

such that |Sk+1 ∩C| ≥ 2, then {C ∈ Ĉk+1 | |Sk+1 ∩C| ≥ 2}= ∅. In this case, we obtain w̃k+1 (B18)
=

min{ρ̃k+1
x , x∈ S̃k}=min{ρk+1

x , x∈ Sk}
(A7)
= wk+1.

Next, consider the case where (19) is feasible. We now show that the optimal value of (19) is

achieved by a maximal chain in Ck+1: Let C∗ ∈ C be an optimal solution of (19), and assume that

C∗ /∈ Ck+1. Since C∗ ∩Xk+1 ⊇ C∗ ∩ Sk+1 6= ∅, then by applying Lemma 3, there exists a maximal

chain C(2) ∈ Ck+1 such that δk+1
C∗ ≥ δk+1

C(2) and C(2) ∩Sk+1 ⊇C∗ ∩Sk+1. Therefore, we obtain:

ℓk+1
C∗

|Sk+1 ∩C∗| − 1

(16)

≥
δk+1
C∗

|Sk+1 ∩C∗| − 1
≥

δk+1

C(2)

|Sk+1 ∩C(2)| − 1

(17)
=

ℓk+1

C(2)

|Sk+1 ∩C(2)| − 1
.
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Thus, C(2) ∈ Ck+1 is also an optimal solution of (19). Then, we derive the following inequality:

∀C ∈ Ĉk+1 | |Sk+1 ∩C| ≥ 2,
δk+1

C(2)

|Sk+1 ∩C(2)| − 1

(17)
=

ℓk+1

C(2)

|Sk+1 ∩C(2)| − 1

≤
ℓk+1
C

|Sk+1 ∩C| − 1

(17)
=

δk+1
C

|Sk+1 ∩C| − 1
.

Therefore, C(2) ∈ argmin{
δ
k+1
C

|Sk+1∩C|−1
, C ∈ Ĉk+1 | |Sk+1 ∩C| ≥ 2|}, and we obtain:

w̃k+1 (B18)
= min

{
min{ρ̃k+1

x , x∈ S̃k+1},min
{ ℓk+1

C

|S̃k+1 ∩C| − 1
, C ∈ C | |S̃k+1 ∩C| ≥ 2

}}

(17)
= min

{
min{ρk+1

x , x∈ Sk+1},min
{ δk+1

C

|Sk+1 ∩C| − 1
, C ∈ Ĉk+1 | |Sk+1 ∩C| ≥ 2

}}
(A7)
= wk+1.

We conclude by induction that (i)− (iv) hold for every k ∈ J1, n∗+1K. �

In conclusion, Algorithm 2 computes an optimal solution of (Q) when π is an affine function of

the elements constituting each maximal chain. Importantly, Algorithm 2 is a polynomial algorithm:

Its running time is governed by (B7) and (B13)-(B17), which both require O(|X|(|X|+ |EP |))

operations since HP∗ and HP̂k are directed acyclic graphs (Ahuja et al. [2]). Since the algorithm

terminates after n∗ ≤ |X|+ |EP | iterations, Algorithm 2 runs in O(|X|(|X|+ |EP |)
2) time.

5. Applications to network interdiction. In this section, we introduce a strategic inter-

diction game involving a routing entity and an interdictor interacting on a flow network. We use

Theorems 1 and 2 on the existence of probability distributions over posets to characterize the

equilibria of this game. We also provide a solution approach for the equilibrium computation of

this game, which involves solving a minimum-cost circulation problem and running Algorithm 2.

5.1. Game-theoretic model. Consider a flow network, modeled as a simple directed con-

nected acyclic graph G = (V,E), where V (resp. E) represents the set of nodes (resp. the set of

edges) of the network. For each edge (i, j) ∈ E , let cij ∈ R>0 denote its capacity. Assume that a

single commodity can be sent through G from a source node s∈ V to a destination node t∈ V. Let

Λ denote the set containing all s− t paths of G.

A flow, denoted by the vector f ∈ RΛ
≥0, enters the network from s and leaves from t. A flow f

is said to be feasible if the flow through each edge does not exceed its capacity; that is, for all

(i, j)∈ E , fij :=
∑

{λ∈Λ | (i,j)∈λ} fλ≤ cij. Let F denote the set of feasible flows of G. Given a feasible

flow f ∈ F , let F (f) :=
∑

λ∈Λ fλ denote the amount of flow sent from the node s to the node t.

Each edge (i, j)∈ E is associated with a marginal transportation cost, denoted bij ∈R>0. For each

s− t path λ ∈ Λ, bλ :=
∑

(i,j)∈λ
bij represents the cost of transporting one unit of flow through λ.

Given a feasible flow f ∈F , T (f) :=
∑

λ∈Λ bλfλ denotes the total transportation cost of f .
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We define a two-player game Γ := 〈{1,2}, (F ,I), (u1, u2)〉 on the flow network G. Player 1 (P1)

is the routing entity that chooses to route a flow f ∈F of goods through the network, and player 2

(P2) is the interdictor who simultaneously chooses a subset of edges I ∈ 2E to interdict. The action

set for P1 (resp. P2) is F (resp. I := 2E). For every edge (i, j) ∈ E , dij ∈R>0 denotes the cost of

interdicting (i, j). Thus, the cost of an interdiction I ∈ I is given by C(I) :=
∑

(i,j)∈I
dij. In this

model, P2 (resp. P1) gains (resp. looses) the flow that crosses the edges that are interdicted by

P2. The model captures strategic routing situations when P1 cannot observe P2’s actions before

sending its flow and cannot re-route its flow after the interdiction. We do not consider partial edge

interdictions for the sake of simplicity. The effective flow when a flow f is chosen by P1 and an

interdiction I is chosen by P2 is f I , where f I
λ = fλ1{λ∩I=∅} for all λ∈Λ. We also suppose that the

transportation cost incurred by P1 is for the initial flow f and not for the effective flow f I . This

modeling choice reflects an ex ante monetary fee paid by P1 to the network owner who provides

P1 the access to send a quantity of flow through the network.

The payoff of P1 is the value of effective flow assessed by P1 net the cost of transporting the

initial flow: u1(f, I) = p1F(f I)−T(f), where p1 ∈ R>0 is the marginal value of effective flow for

P1. Similarly, the payoff of P2 is the value of interdicted flow assessed by P2 net the cost of

interdiction: u2(f, I) = p2(F (f)−F(f I))−C(I), where p2 ∈R>0 is the marginal value of interdicted

flow for P2.

In playing the game Γ, P1 can route goods in the network using a flow f realized from a

chosen probability distribution on the set F , and P2 can interdict subsets of edges according

to a probability distribution on the set I. Specifically, P1 and P2 respectively choose a mixed

routing strategy σ1 ∈ ∆(F) and a mixed interdiction strategy σ2 ∈ ∆(I), where ∆(F) = {σ1 ∈

RF
≥0 |

∑
f∈F σ1

f = 1}, and ∆(I) = {σ2 ∈RI
≥0 |

∑
I∈I σ

2
I = 1} denote the strategy sets. Here, σ1

f (resp.

σ2
I ) represents the probability assigned to the flow f (resp. interdiction I) by P1’s routing strategy

σ1 (resp. P2’s interdiction strategy σ2). The players’ strategies are independent randomizations.

Given a strategy profile σ= (σ1, σ2)∈∆(F)×∆(I), the expected payoffs are expressed as:

U1(σ
1, σ2) = p1Eσ[F

(
f I

)
]−Eσ[T (f)], (20)

U2(σ
1, σ2) = p2

(
Eσ[F (f)]−Eσ[F

(
f I

)
]
)
−Eσ[C (I)]. (21)

We will also use the notations Ui(σ
1, I) = Ui(σ

1,1{I}) and Ui(f,σ
2) = Ui(1{f}, σ

2) for

i ∈ {1,2}. We focus on characterizing the mixed strategy Nash equilibria of the game

〈{1,2}, (∆(F),∆(I)), (U1,U2)〉. A strategy profile (σ1∗, σ2∗) ∈ ∆(F) × ∆(I) is a mixed strategy

Nash Equilibrium (NE) of game Γ if: for all σ1 ∈ ∆(F), U1(σ
1∗, σ2∗) ≥ U1(σ

1, σ2∗), and for all

σ2 ∈ ∆(I), U2(σ
1∗, σ2∗) ≥ U2(σ

1∗, σ2). Equivalently, in a NE (σ1∗ , σ2∗), σ1∗ (resp. σ2∗) is a best

response to σ2∗ (resp. σ1∗). Let Σ denote the set of NE of Γ.

We now proceed with the equilibrium analysis of the game Γ.
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5.2. Properties of Nash equilibria. Γ is strategically equivalent to a zero-sum game; in

particular, the following transformation preserves the set of NE:

∀(f, I)∈F ×I,
1

p1
u1(f, I)+

1

p2
C(I) = F

(
f I

)
−

1

p1
T(f)+

1

p2
C(I) =: ũ1(f, I), (22)

∀(f, I)∈F ×I,
1

p2
u2(f, I)−F(f)+

1

p1
T(f) =−F

(
f I

)
+

1

p1
T(f)−

1

p2
C(I) =−ũ1(f, I). (23)

Therefore, Γ and Γ̃ := 〈{1,2}, (F ,I), (ũ1,−ũ1)〉 have the same equilibrium set. Additionally, NE of

Γ are interchangeable, i.e., if (σ1∗, σ2∗)∈Σ and (σ1′, σ2′)∈Σ, then (σ1∗, σ2′)∈Σ and (σ1′, σ2∗)∈Σ.

Also note that due to the splittable nature of the flow for any routing strategy σ1 ∈∆(F) of P1,

one can consider an equivalent pure strategy f̄ ∈ F defined by f̄λ = Eσ1 [fλ] for all λ ∈ Λ, which

satisfies Ui(σ
1, σ2) =Ui(f̄ , σ

2) for all i∈ {1,2} and σ2 ∈∆(I), since ui(·, σ
2) is an affine function.

The above-mentioned properties imply that linear programming techniques can be used to obtain

the NE of Γ. However, this would entail solving a linear program of exponential size, containing

|Λ|+1 variables and 2|E|+ |E| constraints. Instead, we derive an approach for efficiently solving Γ:

We show that by utilizing the primal and dual solutions of a minimum-cost circulation problem

and applying our results on posets (Theorems 1 and 2), we can obtain a complete equilibrium char-

acterization for game Γ. Furthermore, using Algorithm 2, we obtain a polynomial-time approach

to compute NE of this game.

We begin by considering the following “natural” network flow problem:

(M) maximize F (f)−
1

p1
T(f)

subject to
∑

{λ∈Λ | (i,j)∈λ}

fλ ≤min

{
dij

p2
, cij

}
, ∀(i, j)∈ E

fλ ≥ 0, ∀λ∈Λ.

This problem consists in finding a feasible flow f in F that maximizes u1(f,∅) with the constraint

that the flow through each edge (i, j) is no more than
dij

p2
. Game theoretically, this threshold

captures P2’s best response to P1. Indeed, if fij >
dij

p2
for some (i, j)∈ E , then P2 has an incentive

to interdict (i, j), resulting in an increase of P2’s payoff (since u2(f,{(i, j)}) = p2fij − dij > 0).

Thus, (M) can be viewed as the problem in which P1 maximizes its payoff while limiting P2’s

incentive to interdict any of the edges. For each s− t path λ∈Λ, let us denote π0
λ := 1− bλ

p1
. Then,

the value p1π
0
λ represents the gain in P1’s payoff when one unit of flow traveling along λ reaches

the destination node. The primal and dual formulations of (M) are given as follows:

(MP ) : max
∑

λ∈Λ

π0
λfλ

s.t.
∑

{λ∈Λ | (i,j)∈λ}

fλ ≤
dij

p2
, ∀(i, j)∈ E

∑

{λ∈Λ | (i,j)∈λ}

fλ ≤ cij, ∀(i, j)∈ E

fλ ≥ 0, ∀λ∈Λ

(MD) : min
∑

(i,j)∈E

(
dij

p2
ρij + cijµij

)

s.t.
∑

(i,j)∈λ

(ρij +µij)≥ π0
λ, ∀λ∈Λ

ρij ≥ 0, ∀(i, j)∈ E

µij ≥ 0, ∀(i, j)∈ E
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Let O∗
(MP ) (resp. O

∗
(MD)) denote the set of optimal solutions of (MP ) (resp. (MD)). By strong

duality, the optimal value of (MP ) is identical to that of (MD); we denote it by z∗(M). Note

that (MP ) and (MD) may have an exponential number of variables and constraints, respectively.

However, equivalent polynomial-size primal and dual formulations of (M) can be derived; see

Appendix C. Thus, f ∗∈O∗
(MP ) and (ρ∗, µ∗)∈O∗

(MD) can be efficiently computed by using an interior

point method (Karmarkar [22]) or a dual network simplex algorithm (Orlin et al. [27]). Alterna-

tively, (M) can be formulated as a minimum-cost circulation problem in a graph G′ = (V ′,E ′) such

that V ′ = V, E ′ = E ∪ {(t, s)}. The capacity of each edge (i, j) ∈ E is given by min{
dij

p2
, cij}, and

edge (t, s) is uncapacitated. The transportation cost of each edge (i, j) ∈ E is given by
bij

p1
, and

the transportation cost of edge (t, s) is −1. Thus, (MP ) and (MD) can be solved using known

combinatorial algorithms (Ahuja et al. [2]).

From complementary slackness, we know that any pair of optimal primal and dual solutions

f ∗ ∈O∗
(MP ) and (ρ∗, µ∗)∈O∗

(MD) satisfies the following properties:

∀(i, j)∈ E , ρ∗ij > 0 =⇒ f ∗
ij =

∑

{λ∈Λ | (i,j)∈λ}

f ∗
λ =

dij

p2
, (24)

∀(i, j)∈ E , µ∗
ij > 0 =⇒ f ∗

ij =
∑

{λ∈Λ | (i,j)∈λ}

f ∗
λ = cij, (25)

∀λ∈Λ, f ∗
λ > 0 =⇒

∑

(i,j)∈λ

(ρ∗ij +µ∗
ij) = π0

λ. (26)

These properties, along with Theorems 1 and 2, enable us to derive the following result:

Theorem 3. A strategy profile (σ1∗ , σ2∗) ∈∆(F)×∆(I) is a NE of the game Γ if and only if

there exists a pair of optimal primal and dual solutions f ∗ ∈O∗
(MP ) and (ρ∗, µ∗)∈O∗

(MD) such that:

∀λ∈Λ,
∑

f∈F

σ1∗

f fλ = f ∗
λ , (27)

∀(i, j)∈ E ,
∑

{I∈I | (i,j)∈I}

σ2∗

I = ρ∗ij , (28)

∀λ∈Λ,
∑

{I∈I | I∩λ6=∅}

σ2∗

I ≥ π∗
λ, (29)

where π∗
λ := π0

λ−
∑

(i,j)∈λ
µ∗
ij for all λ∈Λ. The corresponding equilibrium payoffs are U1(σ

1∗ , σ2∗) =

p1
∑

(i,j)∈E cijµ
∗
ij and U2(σ

1∗ , σ2∗) = 0.

Thus, optimal primal and dual solutions of (M) provide necessary and sufficient conditions for a

strategy profile to be a NE. In particular, optimal primal solutions represent the expected flows sent

by P1 in equilibrium. Additionally, optimal dual solutions characterize the marginal probabilities

with which network components are interdicted in equilibrium; that is, P2’s equilibrium strategy
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interdicts each edge (i, j)∈ E with probability ρ∗ij , and interdicts each path λ∈Λ with probability

at least π0
λ−

∑
(i,j)∈λ

µ∗
ij .

While showing that (27)-(29) are sufficient conditions is relatively straightforward, the key chal-

lenge lies in proving that they are also necessary. In proving Theorem 3, we first show the existence

of an interdiction strategy σ2∗ ∈∆(I) satisfying (28) and (29) given an optimal dual solution of

(M). In fact, this existence problem is an instantiation of problem (D) that we introduced in Sec-

tion 2.2 and positively answered in Theorem 1. Secondly, showing that (28) and (29) are necessary

conditions satisfied by P2’s interdiction strategies in equilibrium involves exploiting strong duality

in the strategically equivalent zero-sum game Γ̃. Finally, the necessary condition (27) is a conse-

quence of the s− t paths having positive transportation costs. The proof exploits Theorem 2, which

guarantees the existence of P2’s strategy that, with positive probability 1−max{max{ρ∗ij , (i, j)∈

E},max{1− bλ
p1
−
∑

(i,j)∈λ
µ∗
ij, λ∈Λ}}, does not interdict any edges at all in equilibrium.

We remark that for the case when the path transportation costs are assumed to be nonnegative

(instead of strictly positive), conditions (28) and (29) are still necessary and sufficient for equi-

librium interdiction strategies. However, (27) is only a sufficient condition for equilibrium routing

strategies. Indeed, if a path with low interdiction costs has zero cost of transportation, P2 will

interdict this path with probability 1. Any flow sent by P1 along this path will then always be

interdicted, and in fact P1 can select an equilibrium strategy that saturates this path and violates

constraints in (MP ).

In fact, dual solutions of (M) can be used to infer additional equilibrium properties: Given an

s− t path λ ∈ Λ, π0
λ is the probability above which λ must be interdicted by P2 to limit P1’s

incentive to send any flow through the network . However, when edges belonging to λ have high

interdiction costs, P2 chooses not to interdict these edges, which may result in the interdiction

probability of λ being less than π0
λ. This reduction of interdiction probability of λ is captured by

∑
(i,j)∈λ

µ∗
ij . By complementary slackness (25), µ∗

ij > 0 for (i, j)∈ λ only when cij = f ∗
ij ≤

dij

p2
. Hence,

the equilibrium interdiction probability of λ is given by π∗
λ = π0

λ−
∑

(i,j)∈λ
µ∗
ij.

Consequently, if an s − t path λ ∈ Λ is such that
∑

(i,j)∈λ
µ∗
ij > 0, then each unit of flow sent

through λ increases P1’s payoff by p1
∑

(i,j)∈λ
µ∗
ij. This is captured by P1’s equilibrium strategies,

with expected flow f ∗ ∈O∗
(MP ), that saturate every edge (i, j)∈ E for which µ∗

ij > 0. Since f ∗ only

takes s− t paths that are interdicted with probability exactly π∗, the resulting equilibrium payoff

for P1 is given by p1
∑

(i,j)∈E cijµ
∗
ij. Note also that f ∗ does not take any s− t path λ for which

π0
λ < 0. This captures the fact that P1 has no incentive to send its flow through s − t paths λ

for which bλ > p1. Recall from (M) that f ∗ is such that interdicting any edge does not increase

P2’s payoff. Furthermore, P2 only interdicts edges for which her value from the interdicted flow

compensates the interdiction cost (from (24)). Thus, her payoff is 0 in equilibrium. It is interesting
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to note that P1’s strategies and payoff in equilibrium can be expressed in terms of edge values,

and are independent of the chosen path decomposition of f ∗.

Proof of Theorem 3. We prove this theorem by showing that conditions (27)-(29) are sufficient

for a strategy profile to be a NE (Step 1); satisfied by at least one strategy profile (Step 2); and

satisfied by every NE (Step 3).

Step 1: Let f ∗ ∈O∗
(MP ) and (ρ∗, µ∗)∈O∗

(MD). First, we show that a strategy profile (σ1∗ , σ2∗)∈

∆(F)×∆(I) satisfying (27)-(29) is a NE of Γ. We write the following inequality for P1’s payoff:

∀f ∈F , U1(f,σ
2∗)

(20)
= p1

∑

λ∈Λ

fλEσ2∗ [1−1{I∩λ6=∅}]−
∑

λ∈Λ

bλfλ = p1
∑

λ∈Λ

π0
λfλ− p1

∑

λ∈Λ

fλ
∑

{I∈I | I∩λ6=∅}

σ2∗

I

(29)

≤ p1
∑

λ∈Λ

fλ
∑

(i,j)∈λ

µ∗
ij = p1

∑

(i,j)∈E

fijµ
∗
ij ≤ p1

∑

(i,j)∈E

cijµ
∗
ij. (30)

Now, given λ∈Λ such that f ∗
λ > 0, we obtain:

∑

{I∈I | I∩λ6=∅}

σ2∗

I ≤
∑

I∈I

σ2∗

I |I ∩λ|=
∑

(i,j)∈λ

∑

I∈I

σ2∗

I 1{(i,j)∈I}
(28)
=

∑

(i,j)∈λ

ρ∗ij
(26),(29)

≤
∑

{I∈I | I∩λ6=∅}

σ2∗

I . (31)

Furthermore, for all (i, j) ∈ E such that µ∗
ij > 0, f ∗

ij

(25)
= cij. Then, inequality (30) is tight for f ∗,

and U1(σ
1∗ , σ2∗)

(27)
= U1(f

∗, σ2∗) = p1
∑

(i,j)∈E cijµ
∗
ij.

Similarly, regarding P2’s payoff, we first derive the following inequality:

∀I ∈ I,
∑

(i,j)∈I

dij

p2
≥

∑

(i,j)∈I

∑

{λ∈Λ | (i,j)∈λ}

f ∗
λ =

∑

λ∈Λ

f ∗
λ |I ∩λ| ≥

∑

λ∈Λ

f ∗
λ1{I∩λ6=∅} =F(f ∗)−F

(
f ∗I

)
. (32)

Therefore, for all I ∈ I, U2(σ
1∗ , I)

(27)
= U2(f

∗, I)
(21)
= p2(F (f ∗)−F(f ∗I))−

∑
(i,j)∈I

dij

(32)

≤ 0.

Now, consider I ∈ supp(σ2∗). From (31), we obtain that for every λ∈Λ such that f ∗
λ > 0, |I∩λ| ≤

1. Furthermore, for every (i, j)∈ I,
∑

{λ∈Λ | (i,j)∈λ} f
∗
λ

(24)
=

dij

p2
, since ρ∗ij > 0. Thus, for all I ∈ supp(σ2∗),

inequality (32) is tight, and U2(σ
1∗ , I) = 0. Therefore, U2(σ

1∗ , σ2∗) = 0, and (σ1∗ , σ2∗) is a NE.

Step 2: Let f ∗ ∈O∗
(MP ) and (ρ∗, µ∗) ∈O∗

(MD). Next, we show that there exists a strategy profile

satisfying (27)-(29), and obtain the value of the zero-sum game Γ̃. Trivially, if P1 chooses the

pure strategy f ∗, (27) is then satisfied. We now argue that there exists an interdiction strategy

σ̃2 ∈∆(I) satisfying (28) and (29). First, we define the following binary relation on E , denoted �G :

Given (u, v) ∈ E2, u�G v if either u= v, or there exists an s− t path λ ∈Λ that traverses u and v

in this order. Since G is a directed acyclic connected graph, we obtain the following lemma, which

is proven in Appendix A:

Lemma 4. PG = (E ,�G) is a poset, whose set of maximal chains is the set of s− t paths Λ.
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Thus, showing that there exists σ̃2 ∈∆(I) satisfying (28) and (29) is an instantiation of problem

(D). Since (ρ∗, µ∗) ∈ O∗
(MD), then condition (2) is satisfied, i.e., for all λ ∈ Λ,

∑
(i,j)∈λ

ρ∗ij ≥ π∗
λ.

Additionally, for any s− t path λ ∈Λ, π∗
λ = 1−

∑
(i,j)∈λ

(
bij

p1
+ µ∗

ij), and π∗ is an affine function of

the edges constituting each s− t path. Therefore, π∗ satisfies the conservation law described in (3).

Finally, since ρ∗ij ∈ [0,1] for all (i, j) ∈ E , and π∗
λ ≤ 1 for all λ ∈Λ, all conditions of Theorem 1 are

satisfied, and there exists an interdiction strategy σ̃2 ∈∆(I) satisfying (28) and (29). In particular,

σ̃2 can be constructed from Algorithm 2.

From Step 1, (f ∗, σ̃2)∈Σ. Then, P1’s equilibrium payoff in the zero-sum game Γ̃ is:

∀(σ1∗ , σ2∗)∈Σ, Ũ1(σ
1∗ , σ2∗)

(27)
= Ũ1(f

∗, σ̃2)
(22)
=

1

p1
U1(f

∗, σ̃2)+
1

p2
Eσ̃2 [C (I)]

(28)
= z∗(M). (33)

Step 3: Let (σ1′ , σ2′) ∈∆(F)×∆(I) be a NE of Γ. We now show that (σ1′ , σ2′) satisfies (27)-

(29) for some pair of optimal primal and dual solutions of (M). In particular, we first prove

that f ′ := E
σ1′ [f ] is necessarily an optimal solution of (MP ): Given (ρ∗, µ∗) ∈ O∗

(MD), consider

the equilibrium interdiction strategy σ̃2 described in Step 2 and constructed from Algorithm 2.

From Theorem 2, σ̃2
∅ = 1−max{max{ρ∗ij , (i, j)∈ E},max{π∗

λ, λ∈Λ}}> 0. Since ∅ ∈ supp(σ̃2) and

(σ1′ , σ̃2)∈Σ, then for all (i, j)∈ E , 0≤U2(σ
1′ ,∅)−U2(σ

1′ ,{(i, j)})
(21)
= dij − p2f

′
ij. Therefore, f

′ is a

feasible solution of (MD). In addition, z∗(M)

(33)
= Ũ1(σ

1′ ,∅)
(22)
= F(f ′)− 1

p1
T(f ′). Thus, f ′ ∈O∗

(MP ).

Secondly, we show that σ2′ necessarily satisfies (28) and (29) for some optimal solution of (MD).

For every (i, j)∈ E , let ρ′ij :=
∑

{I∈I | (i,j)∈I} σ
2′

I . We can then derive the following inequalities:

z∗(M)

(33)
= max

f∈F
Ũ1(f,σ

2′)
(22)
=

∑

(i,j)∈E

dij

p2
ρ′ij +max

f∈F

{∑

λ∈Λ

fλ(π
0
λ−

∑

{I∈I | I∩λ6=∅}

σ2′

I )
}

=
∑

(i,j)∈E

dij

p2
ρ′ij + min

µ∈RE
≥0

{ ∑

(i,j)∈E

cijµij

∣∣∣ ∀λ∈Λ,
∑

(i,j)∈λ

µij ≥ π0
λ−

∑

{I∈I | I∩λ6=∅}

σ2′

I

}
(34)

≥
∑

(i,j)∈E

dij

p2
ρ′ij + min

µ∈RE
≥0

{ ∑

(i,j)∈E

cijµij

∣∣∣ ∀λ∈Λ,
∑

(i,j)∈λ

µij ≥ π0
λ−

∑

(i,j)∈λ

ρ′ij

}
(35)

≥ min
ρ,µ∈RE

≥0

{ ∑

(i,j)∈E

(
dij

p2
ρij + cijµij)

∣∣∣ ∀λ∈Λ,
∑

(i,j)∈λ

(ρij +µij)≥ π0
λ

}
= z∗(M). (36)

Thus, inequalities (35)-(36) are tight. Note that (34) is a consequence of the strong duality theorem,

and (35) holds since
∑

{I∈I | I∩λ6=∅} σ
2′

I ≤
∑

(i,j)∈λ
ρ′ij for every λ∈Λ.

Let µ′ := argminµ∈RE
≥0

{∑
(i,j)∈E cijµij

∣∣ ∀λ ∈ Λ,
∑

(i,j)∈λ
µij ≥ π0

λ −
∑

{I∈I | I∩λ6=∅} σ
2′

I

}
. Then,

(35) and (36) imply that (ρ′, µ′) ∈ O∗
(MD). Furthermore, by definition of µ′,

∑
{I∈I | I∩λ6=∅} σ

2′

I ≥

π0
λ−

∑
(i,j)∈λ

µ′
ij for every λ∈Λ. Thus, σ2′ satisfies (28) and (29) with (ρ′, µ′) ∈O∗

(MD). �

A direct consequence of Theorem 3 is that some quantities related to the players’ actions in

equilibrium can be computed in closed form using the game parameters and the optimal primal

and dual solutions of (M). They are summarized in the following corollary:
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Corollary 1. NE of the game Γ satisfy the following properties:

(i) Expected amount (resp. cost) of initial flow sent by P1 is given by F(f ∗) (resp. T(f ∗)),

(ii) Expected cost of P2’s interdiction strategy is given by
∑

(i,j)∈E dijρ
∗
ij ,

(iii) Expected amount of interdicted flow is given by
∑

(i,j)∈E

dij

p2
ρ∗ij ,

(iv) Expected amount of effective flow is given by F(f ∗)−
∑

(i,j)∈E

dij

p2
ρ∗ij ,

where f ∗ ∈O∗
(MP ) and (ρ∗, µ∗)∈O∗

(MD).

Given f ∗ ∈O∗
(MP ) and (ρ∗, µ∗) ∈O∗

(MD), the expected amount of interdicted flow achievable by

any interdiction strategy satisfying (28) is upper bounded by
∑

(i,j)∈E

dij

p2
ρ∗ij . (iii) in Corollary 1

shows that this upper bound is achieved by P2’s strategy in equilibrium. In other words, given

the marginal edge interdiction probabilities ρ∗, P2 randomizes its interdictions to maximize the

amount of interdicted flow, while still limiting P1’s incentive to deviate from its strategy.

Note that despite the exponential number of actions of both players, a NE can be computed

in polynomial time. Indeed, we first solve the polynomial-size formulation of (M), and use the

flow decomposition algorithm to obtain f ∗ ∈O∗
(MP ) and (ρ∗, µ∗)∈O∗

(MD) (see Appendix C). Since

π∗ is an affine function of the edges constituting each s − t path, we run Algorithm 2 on the

poset PG = (E ,�G) (Lemma 4) to compute an interdiction strategy σ̃2 ∈∆(I) satisfying (28) and

(29). Given HPG
= (E ,EPG

) the directed cover graph of PG, we deduce that σ̃2 can be obtained in

O(|E|(|E|+ |EPG
|)2) time. Since G is a simple directed acyclic graph, the degree of each (i, j)∈ E in

HPG
is at most |V|−2, since (i, j)∈ E is adjacent to at most |V|−2 edges (i′, j′) in G such that j = i′

or j′ = i. Therefore, the total number of edges in HPG
is upper bounded by |EPG

| ≤ 1
2
|E|(|V| − 2).

In conclusion, the NE (f ∗, σ̃2) is computed in O(|V|2|E|3) time. In this NE, P1 sends its flow along

at most |E| s− t paths (from the flow decomposition theorem), and P2 randomizes over at most

|E|+ 1
2
|E|(|V|− 2)+1 interdictions (given the number of iterations of Algorithm 2).

We remark that in the simpler case where each s− t path has an identical transportation cost,

(M) can be viewed as a maximum flow problem. Then, this solution approach simply computes a

NE of Γ from a maximum flow for P1, and a minimum-cut set for P2.

For the sake of completeness, we characterize the game instances for which pure NE exist. From

Theorem 3, a pure NE exists if and only if there exists (ρ∗, µ∗) ∈ O∗
(MD) such that ρ∗ ∈ {0,1}E .

Since bλ > 0 for every λ∈Λ, then ρ∗ij < 1 for every (i, j)∈ E at optimality of (MD), and a pure NE

exists if and only if ρ∗ij = 0 for every (i, j)∈ E . The corresponding NE are (f ∗,∅) with f ∗ ∈O∗
(MP ).

Note that this case occurs when the interdiction costs for P2 or transportation costs for P1 are

too high.

Finally, we analyze the set of s− t paths (resp. set of edges) that are chosen (resp. interdicted) in

at least one NE. From Theorem 3, the set of s− t paths chosen by P1 in at least one NE is given



32 Dahan, Amin, and Jaillet: Probability Distributions on Partially Ordered Sets and Network Interdiction Games

by
⋃

f∗∈O∗
(MP )

supp(f ∗). Similarly, the set of edges interdicted by P2 in at least one NE is given

by
⋃

(ρ∗,µ∗)∈O∗
(MD)

supp(ρ∗). To efficiently compute these sets of critical components, we utilize the

notion of strict complementary slackness. Specifically, optimal solutions f † and (ρ†, µ†) of (MP )

and (MD) satisfy strict complementary slackness if:

∀(i, j)∈ E , either ρ†ij > 0 or f †
ij =

∑

{λ∈Λ | (i,j)∈λ}

f †
λ <

dij

p2
, (37)

∀(i, j)∈ E , either µ†
ij > 0 or f †

ij =
∑

{λ∈Λ | (i,j)∈λ}

f †
λ < cij, (38)

∀λ∈Λ, either f †
λ > 0 or

∑

(i,j)∈λ

(ρ†ij +µ†
ij)>π0

λ. (39)

We say that f † and (ρ†, µ†) form a strictly complementary primal-dual pair of optimal solutions

of (M). Note that such a pair is guaranteed to exist by the Goldman-Tucker theorem [16]. We

now show the following result:

Proposition 6. Let f † and (ρ†, µ†) be a strictly complementary primal-dual pair of optimal

solutions of (M). The set of s− t paths (resp. the set of edges) chosen with positive probability by

P1’s strategy (resp. P2’s strategy) in at least one NE is given by supp(f †) (resp. supp(ρ†)).

Proof of Proposition 6. Let f † and (ρ†, µ†) be optimal solutions of (MP ) and (MD) that satisfy

strict complementary slackness. We denote σ̃2 ∈∆(I) the interdiction strategy, constructed from

Algorithm 2, that interdicts every edge (i, j) ∈ E with probability ρ†ij, and interdicts every s− t

path λ ∈ Λ with probability at least π0
λ −

∑
(i,j)∈λ

µ†
ij. Given Σ the set of NE of the game Γ, let

H1 :=
⋃

(σ1∗ ,σ2∗ )∈Σ

⋃
f∈supp(σ1∗ ) supp(f) and H2 :=

⋃
(σ1∗ ,σ2∗ )∈Σ

⋃
I∈supp(σ2∗ ) I.

From Theorem 3, we know that (f †, σ̃2)∈Σ. Consequently, H1 ⊇ supp(f †), and H2 ⊇ supp(ρ†).

To show the reverse inclusions, consider (f ∗, σ2∗) ∈Σ. Theorem 3 implies that there exists (ρ∗, µ∗)∈

O∗
(MD) such that

∑
{I∈I | (i,j)∈I} σ

2∗

I = ρ∗ij . Consider (i, j) ∈ E such that ρ∗ij > 0. By complementary

slackness between (ρ∗, µ∗) and f †,
dij

p2

(24)
=

∑
{λ∈Λ | (i,j)∈λ} f

†
λ. Then, from strict complementary slack-

ness (37), ρ†ij > 0. Therefore, H2 ⊆ supp(ρ†), which implies that H2 = supp(ρ†).

Similarly, given (f ∗, σ2∗) ∈ Σ, Theorem 3 implies that f ∗ ∈ O∗
(MP ). Then, by complementary

slackness between f ∗ and (ρ†, µ†),
∑

(i,j)∈λ
(ρ†ij +µ†

ij)
(26)
= π0

λ for every λ∈Λ such that f ∗
λ > 0. From

(39), f †
λ > 0. Therefore, H1⊆ supp(f †), and we conclude that H1 = supp(f †). �

Thus, by computing a strictly complementary primal-dual pair of optimal solutions f † and

(ρ†, µ†) of (M), Proposition 6 shows that the set of critical s− t paths of the network is given by

supp(f †), and the set of critical network edges is given by supp(ρ†). Such a pair can be efficiently

computed using any of the existing methods in the literature (see Balinski and Tucker [7], Adler

et al. [1], Jansen et al. [21]).
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We note that in the setting that we consider, P2 may need to interdict edges that are not part of

any minimum-cut set, and can even belong to different cut sets; Figure 5 illustrates an example. In

this example, the equilibrium interdiction strategy targets edges (s,1) and (1, t) that do not belong

to a same cut set. Thus, Proposition 6 generalizes the previously studied max-flow min-cut-based

metrics of network criticality (see Assadi et al. [4], Dwivedi and Yu [14], Gueye et al. [18]).

s 1

2

t
1,2,1

σ̃2
s1 =0.1

1,2,21,2,2

2,3,2

σ̃2
1t = 0.7

Figure 5. NE when p1 = 10, p2 = 1. bij = 1 for all (i, j) ∈ E . The label of each edge (i, j) represents (f†
ij , cij , dij).

Edge (s,1) is interdicted by the equilibrium interdiction strategy σ̃2, but is not part of the minimum-cut set.

In summary, our results in Section 5 provide a new approach to solve the strategic interdiction

game Γ, and derive equilibrium properties for settings involving multiple interdictions, heteroge-

neous cost parameters, and general network topology.

6. Concluding remarks. In this article, we studied an existence problem of probability

distributions over partially ordered sets, and showed its applications to a class of interdiction

games on flow networks. In the existence problem, we considered a poset, where each element and

each maximal chain is associated with a value. Under two relevant conditions on these values, we

showed that there exists a probability distribution over the subsets of this poset, with the following

properties: the probability that each element (resp. maximal chain) is contained in a subset (resp.

intersects with a subset) is equal to (resp. as large as) the corresponding value. We provided a

constructive proof of this result by designing a combinatorial algorithm that exploits structural

properties of the problem. In the special case where the maximal chain values depend affinely on

their constituting elements, we refined our algorithm to compute a probability distribution that

satisfies the desired properties in polynomial time.

By applying this existence result, we solved a generic formulation of strategic network interdiction

game between a routing entity and an interdictor. To overcome the computational and analytical

challenges of the formulation, we proposed a new approach for characterizing equilibria of the game.

This approach relies on our existence result on posets, as well as optimal primal and dual solutions

of a minimum-cost circulation problem. In addition, we showed that Nash equilibria of the game

can be efficiently computed with our refined algorithm on posets. Finally, we demonstrated that

the critical network components that are chosen in equilibrium by both players can be computed

from a strictly complementary primal-dual pair of optimal solutions of the circulation problem.
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Appendix A: Remaining proofs.

Proof of Lemma 1. Let P be a finite nonempty poset, and let S be the set of minimal elements

of P . If |S| = 1, then S is an antichain of P . Now, assume that |S| ≥ 2, and consider (x, y) ∈ S2

with x 6= y. Since x (resp. y) is a minimal element of P , then y⊀ x (resp. x⊀ y). Therefore, x and

y are incomparable, and S is an antichain of P .

Now, consider a maximal chain C ∈ C, and assume that C does not contain any minimal element

of P . Let x be the minimal element of (C,�
C
). Since x is not a minimal element of P , there exists

y ∈X\C such that y≺ x. By transitivity of �, y ≺ x′ for every x′ ∈C. Therefore, C∪{y} is a chain

containing C, which contradicts the maximality of C. Thus, every maximal chain of P intersects

with the set of minimal elements of P . �

Proof of Lemma 2. Consider X ′ ⊆X, and C′ ⊆ C that preserves the decomposition of maximal

chains intersecting in X ′. Let us show that �C′ defined in Section 2.1 is a partial order on X ′:

– Reflexivity: For every x∈X ′, x�C′ x by definition.

– Antisymmetry: Consider (x, y) ∈ (X ′)2 such that x�C′ y and y �C′ x. If x 6= y, then we would

have x≺ y and y ≺ x, which contradicts � being a partial order. Therefore, x= y.

– Transitivity: Consider (x, y, z) ∈ (X ′)3, and assume that x �C′ y and y �C′ z. If x = y

or y = z, then we trivially obtain that x �C′ z. Now, let us assume that x 6= y and y 6= z.

By definition of �C′ , there exists C1 ∈ C′ such that (x, y) ∈ (C1)2 and x ≺ y. Similarly, there

exists C2 ∈ C′ such that (y, z) ∈ (C2)2 and y ≺ z. We can rewrite C1 and C2 as follows: C1 =

{x0, . . . , xl = x,xl+1, . . . , xl+m = y,xl+m+1, . . . , xl+m+n} and C2 = {y0, . . . , yq = y, yq+1, . . . , yq+r =

z, yq+r+1, . . . , yq+r+s}. Now, consider the maximal chain C2
1 = {x0, . . . , xl = x,xl+1, . . . , xl+m =

y, yq+1, . . . , yq+r = z, yq+r+1, . . . , yq+r+s}, as illustrated in Figure 6.

x

y

zC1

C2

C
2

1

Figure 6. Illustration of the transitivity of �C′ . C2
1 is represented by the thick chain.

Since C1 and C2 intersect in y ∈ X ′, and C′ preserves the decomposition of maximal chains

intersecting in X ′, we deduce that C2
1 ∈ C

′ as well. Furthermore, (x, z) ∈ (C2
1)

2, and the transitivity

of � implies that x≺ z. Therefore, x�C′ z.
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Thus, �C′ is a partial order on X ′, and P ′ = (X ′,�C′) is a poset.

Let C ⊆X ′ be a maximal chain of P ′ of size at least two. Let us rewrite C = {x1, . . . , xn} with

n ≥ 2, where for all k ∈ J1, n− 1K, xk ≺:C′ xk+1. We show by induction on k ∈ J2, nK that there

exists C ′ ∈ C′ such that {x1, . . . , xk} ⊆ C ′. If k = 2, then by definition, there exists C ′ ∈ C′ such

that {x1, x2} ⊆ C
′. Now, assume that the result holds for k ∈ J2, n − 1K. Consider C1 ∈ C′ such

that {x1, . . . , xk} ⊆ C1. Since xk ≺C′ xk+1, then there exists C2 ⊆ C′ such that (xk, xk+1) ∈ (C2)2.

Analogously, we can show that C2
1 (illustrated in Figure 6), which is in C′, contains {x1, . . . , xk+1}.

Therefore, by induction, there exists C ′ ∈ C′ such that C = {x1, . . . , xn} ⊆C ′. Since C ⊆X ′, then

we have C =C ∩X ′ ⊆C ′ ∩X ′.

Now, assume that there exists x′ ∈C ′∩X ′\C. For every k ∈ J1, nK, (xk, x
′)∈ (C ′)2. Therefore, x′

is comparable in P ′ with every element of the chain C. This implies that C ∪{x′} is a chain in P ′,

which contradicts the maximality of C in P ′. Therefore, C =C ′ ∩X ′. �

Proof of Lemma 4. Let us show that �G is a partial order on E .

– Reflexivity: For every u∈ E , u�G u by definition.

– Antisymmetry: Consider (u, v) ∈ E2 such that u�G v and v �G u. If u 6= v, then there exist λ1

and λ2 in Λ such that λ1 traverses u and v in this order, and λ2 traverses v and u in this order.

They can be written as follows: λ1 = {u1, . . . , un, u, un+1, . . . , un+m, v, un+m+1, . . . , un+m+p} and

λ2 = {v1, . . . , vq, v, vq+1, . . . , vq+r, u, vq+r+1, . . . , vq+r+s}. Then, {u,un+1, . . . , un+m, v, vq+1, . . . , vq+r} is

a cycle (see Figure 7), which contradicts G being acyclic. Therefore u= v.

s

1 2

3 4

t

u

v

λ1

λ2

Figure 7. Proof of antisymmetry of �G by contradiction: if u�G v, v�G u, and u 6= v, then one can see that u and

v necessarily belong to a cycle (shown in thick edges), although G is acyclic.

– Transitivity: Consider (u, v,w) ∈ E3, and assume that u�G v and v �G w. If u= v or v = w,

then we trivially obtain that u �G w. Now, let us assume that u 6= v and v 6= w. Then, there

exist λ1 and λ2 in Λ such that λ1 traverses u and v in this order, and λ2 traverses v and w

in this order. They can be written as λ1 = {u1, . . . , un, u, un+1, . . . , un+m, v, un+m+1, . . . , un+m+p}

and λ2 = {v1, . . . , vq, v, vq+1, . . . , vq+r,w, vq+r+1, . . . , vq+r+s}. Then, λ2
1 =

{u1, . . . , un, u, un+1, . . . , un+m, v, vq+1, . . . , vq+r,w, vq+r+1, . . . , vq+r+s} is an s− t path (see Figure 8),

and traverses u and w in this order. Therefore, u�G w.
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s 1 2 3 4 5 6 t
vuλ1

λ2

w
λ

2

1

Figure 8. Proof of transitivity of �G : if u�G v, and v�G w, then one can construct an s− t path λ2
1 (in thick line)

that traverses u and w in this order.

In conclusion, PG = (E ,�G) is a poset.

Next, we prove that the set of maximal chains C of PG is Λ. Consider a maximal chain C ∈ C

of PG. If C = {u} is of size 1, then necessarily u= (s, t), because G is connected. Therefore, C =

{u} is an s− t path. Now, assume that |C| ≥ 2. Let us write C = {u1, . . . , un}, where for every

k ∈ J1, n− 1K, uk ≺:G uk+1. Since u1 ≺G u2 and u2 ≺G u3, then there exist λ1 and λ2 in Λ such that

λ1 traverses u1 and u2 in this order, and λ2 traverses u2 and u3 in this order. When proving the

transitivity of �G in the proof of Lemma 4, we showed that there exists λ2
1 ∈ Λ that traverses u1,

u2, and u3 in this order. By repeating this process, we obtain an s− t path λ∈Λ such that C ⊆ λ.

Now, assume that there exists u ∈ λ\C. Since C ⊆ λ, and u ∈ λ, then u is comparable with

every element of C (by definition of �G). Therefore C ∪{u} is a chain in PG , which contradicts the

maximality of C. Therefore C = λ and C ⊆Λ.

To show the reverse inclusion, consider an s− t path λ ∈ Λ. By definition of �G, λ is a chain

in PG . Let us assume that there exists a maximal chain C ∈ C such that λ ( C. Let us write

λ= {u1, . . . , un} where for every k ∈ J1, n−1K, uk ≺G uk+1, and let v ∈C\λ. Since λ⊂C and v ∈C,

then v is comparable with every element of λ. By transitivity of �G, if there exists k ∈ J1, nK such

that v≺G uk, then for every l ∈ Jk,nK, v≺G ul. Similarly, if there exists k ∈ J1, nK such that uk ≺G v,

then for every l ∈ J1, kK, ul ≺G v. Therefore, three cases can arise:

– v≺G u1. In this case, there exists λ1 = {w1, . . . ,wn, v,wn+1, . . . ,wn+m, u1,wn+m+1, . . . ,wn+m+p} ∈

Λ. However, since λ is an s− t path, then the start node of u1 is s, which is also the start node of

w1. Therefore, {w1, . . . ,wn, v,wn+1, . . . ,wn+m} is a cycle, which is a contradiction.

– un ≺G v. In this case, there exists λ1 = {v1, . . . , vq, un, vq+1, . . . , vq+r, v, vq+r+1, . . . , vq+r+s} ∈ Λ.

Analogously, {vq+1, . . . , vq+r, v, vq+r+1, . . . , vq+r+s} is a cycle in the acyclic graph G.

– uk ≺G v ≺G uk+1 for some k ∈ J1, n − 1K. In this case, there exist two

s − t paths λ1 = {v1, . . . , vq, uk, vq+1, . . . , vq+r, v, vq+r+1, . . . , vq+r+s} ∈ Λ and λ2 =

{w1, . . . ,wn, v,wn+1, . . . ,wn+m, uk+1,wn+m+1, . . . ,wn+m+p} ∈ Λ. One can verify that

{vq+1, . . . , vq+r, v,wn+1, . . . ,wn+m} is a cycle in G. This contradicts G being acyclic.

Thus, λ=C, and Λ⊆C. In conclusion, C =Λ. �
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Appendix B: Illustration of Algorithm 1. Consider the poset P represented by the Hasse

diagram given in Figure 9.

1 2

3

4 5

Figure 9. Hasse diagram of a poset P .

In this poset P , the set of maximal chains is given by C = {{1,3,4},{2,3,5},{1,3,5},{2,3,4}}. We

assume that the values assigned to each maximal chain are π134 = π135 = 0.8 and π234 = π235 = 0.6,

and the values assigned to each element are ρ1 = 0.4, ρ2 = 0.3, ρ3 = 0.5, ρ4 = 0.5, ρ5 =0.7.

First, we can see that for all C ∈ C,
∑

x∈C
ρx ≥ πC, and π134 + π235 = π135 + π234. Therefore,

conditions (2) and (3) are satisfied, and we can run Algorithm 1 to optimally solve (Q) (and

construct a feasible solution of (D)). Figure 10a (resp. Figure 10b), illustrates each iteration of the

algorithm using the poset P (resp. the posets P k, for k ∈ J1, n∗K).

• k= 1 : X1 =X = J1,5K, C1 = C, ρ1x = ρx for all x ∈X. Note that δ134 = 0.6, δ235 = 0.9, δ135 =

0.8, and δ234 = 0.7. Since for all C ∈ C, δ1C = δC > 0, then C
1
= ∅, and Ĉ1 = C. Therefore, each

pair of elements in P 1 = (X1,�
C
1) is incomparable, and S1 = {1,2,3,4,5}. Then one can check

that minx∈S1 ρ1x = 0.3 and min{C∈Ĉ1 | |S1∩C|≥2}
δ1C

|S1∩C|−1
= 0.3. Therefore, σS1 = w1 = 0.3 = ρ12 =

δ1134
|S1∩{1,3,4}|−1

.

Next, the values are updated as follows: ρ21 = 0.1, ρ22 = 0, ρ23 = 0.2, ρ24 = 0.2, ρ25 = 0.4, and

δ2134 =0, δ2235 = 0.3, δ2135 = 0.2, δ2234 = 0.1. Since each maximal chain’s minimal element is in S1, then

C2 = C. We conclude the first iteration of the algorithm by letting X2 = {1,3,4,5}, C
2
= {{1,3,4}},

and Ĉ2 = {{2,3,5},{1,3,5},{2,3,4}}.

• k= 2 : The set of minimal elements of the new poset P 2 = (X2,�
C
2) is given by S2 = {1,5}.

Furthermore, minx∈S2 ρ2x = 0.1 and min{C∈Ĉ2 | |S2∩C|≥2}
δ2C

|S2∩C|−1
=0.2, which imply that σS2 =w2 =

0.1 = ρ21. Then, the values are updated as follows: ρ31 = 0, ρ32 = 0, ρ33 = 0.2, ρ34 = 0.2, ρ35 = 0.3, and

δ3134 =0, δ3235 = 0.3, δ3135 =0.1, δ3234 = 0.1.

Now, one can see that the minimal element of {2,3,5} ∩X2 and {2,3,4} ∩X2 in P is 3 /∈ S2.

Therefore, C3 = {{1,3,4},{1,3,5}}, X3 = {3,4,5}, C
3
= {{1,3,4}}, and Ĉ3 = {{1,3,5}}.

• k= 3 : The set of minimal elements of P 3 = (X3,�
C
3) is given by S3 = {3,5}. Since

minx∈S3 ρ3x = 0.2, and min{C∈Ĉ3 | |S3∩C|≥2}
δ3C

|S3∩C|−1
= 0.1, then σS3 = w3 = 0.1 =

δ3135
|S3∩{1,3,5}|−1

. The

values are updated as follows: ρ41 = 0, ρ42 = 0, ρ43 = 0.1, ρ44 = 0.2, ρ45 = 0.2, and δ4134 = 0, δ4235 =

0.2, δ4135 = 0, δ4234 = 0.1. Then, X4 = {3,4,5}, C4 = C3, C
4
= {{1,3,4},{1,3,5}}, and Ĉ4 = ∅.
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• k= 4 : The set of minimal elements of P 4 = (X4,�
C
4) is S4 = {3}. Then, σS4 = w4 =

minx∈S4 ρ4x = ρ43 = 0.1, and the new values are: ρ51 = 0, ρ52 = 0, ρ53 =0, ρ54 = 0.2, ρ55 = 0.2, and δ5C = δ4C

for all C ∈ C. The new sets are X5 = {4,5}, C5 = C4, C
5
= {{1,3,4},{1,3,5}}, and Ĉ5 = ∅.

• k= 5 : The set of minimal elements of P 5 = (X5,�
C
5) is given by S5 = {4,5}, and the weight

associated with it is σS5 =w5 = ρ54 = ρ55 =0.2. Then, ρ6x =0 for all x∈X, and δ6C = δ5C for all C ∈ C.

Since X6 = ∅, the algorithm terminates and outputs σ which satisfies constraints (5) and (6).

The total weight utilized is
∑

S∈P σS = 0.8 =max{max{ρx, x ∈X},max{πC , C ∈ C}}. Therefore,

from Theorem 2, σ is an optimal solution of (Q). Since 0.8≤ 1, then σ̂ ∈RP
≥0 given by σ̂S = σS for

every S ∈P\∅, and σ̂∅ = 0.2, is a feasible solution of (D).
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0.0 0.0
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0.2 0.3

0.0 0.0
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0.2 0.2

0.0 0.0

0.0

0.2 0.2

σS1 = 0.3 σS2 = 0.1 σS3 = 0.1 σS4 = 0.1 σS5 = 0.2

(a) Poset P at the beginning of each iteration of the algorithm. The solid nodes are in Xk, the dashed nodes

are in X\Xk, and the blue nodes are in Sk. An edge is solid if there exists a maximal chain in C
k
that contains

both end nodes of the edge. The values ρkx are given next to each element.

1 2 3 4 5 1
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5 3
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5 3

4 5

4 5

0.4 0.3 0.5 0.5 0.7 0.1

0.2

0.2

0.4 0.2
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0.3 0.1
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0.2 0.2

P 1 P 2 P 3 P 4 P 5

σS1 = 0.3 σS2 = 0.1 σS3 = 0.1 σS4 = 0.1 σS5 = 0.2

(b) P k, for k ∈ J1,5K. The values ρkx are given next to each element. Sk is given by the blue nodes.

Figure 10. Illustration of Algorithm 1 for the poset P given in Figure 9.
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Appendix C: Minimum-cost circulation problem. Primal and dual linear formulations

of (M) of polynomial size are given as follows:

(M′
P ) maximize

∑

{i∈V | (i,t)∈E}

fit−
∑

(i,j)∈E

bij
p1

fij

subject to
∑

{j∈V | (j,i)∈E}

fji =
∑

{j∈V | (i,j)∈E}

fij, ∀i∈ V\{s, t}

0≤ fij ≤ cij, ∀(i, j)∈ E

0≤ fij ≤
dij

p2
, ∀(i, j)∈ E .

(M′
D) minimize

∑

(i,j)∈E

cijρij +
dij

p2
µij

subject to yi− yj + ρij +µij ≥−
bij
p1

, ∀(i, j)∈ E | i 6= s and j 6= t

−yj + ρsj +µsj ≥−
bsj
p1

, ∀j ∈ V | (s, j)∈ E

yi+ ρit +µit ≥ 1−
bit
p1

, ∀i∈ V | (i, t)∈ E

ρij ≥ 0, ∀(i, j)∈ E

µij ≥ 0, ∀(i, j)∈ E .

Let z∗
(M′)

denote the optimal value of (M′
P ) and (M′

D). We show the following result:

Lemma 5. Any s − t path decomposition of any optimal solution f ′ of (M′
P ) is an optimal

solution of (MP ). Furthermore, given any optimal solution (ρ′, µ′, y′) of (M′
D), (ρ

′, µ′) is an optimal

solution of (MD).

Proof of Lemma 5. Let f ∗ ∈ RΛ
≥0 be an optimal solution of (MP ). Then, f

′ ∈ RE
≥0 defined by

f ′
ij =

∑
{λ∈Λ | (i,j)∈λ} f

∗
λ is a feasible solution of (M′

P ). Therefore, z
∗
(M′)
≥ z∗(M). Now, let f

′ ∈RE
≥0 be

an optimal solution of (M′
P ). From the flow decomposition theorem, there exists a vector f ∗ ∈RΛ

≥0

such that for all (i, j) ∈ E , f ′
ij =

∑
{λ∈Λ | (i,j)∈λ} f

∗
λ . Since f ∗ is a feasible solution of (MP ), then

z∗(M) ≥ z∗(M′). In conclusion, z∗(M) = z∗(M′), and an optimal solution of (MP ) can be obtained by

decomposing an optimal solution of (M′
P ) into s− t paths.

Now, consider an optimal solution (ρ′, µ′, y′) of (M′
D). Then, one can verify that for every s− t

path λ∈Λ,
∑

(i,j)∈λ
(ρ′ij +µ′

ij)≥ 1− 1
p1

∑
(i,j)∈λ

bij = π0
λ (the y′ cancel in a telescopic manner along

each s− t path). Therefore, (ρ′, µ′) is a feasible solution of (MD). Since z∗
(M′)

= z∗(M), we conclude

that (ρ′, µ′) is an optimal solution of (MD). �
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