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Abstract

In this paper we introduce two general techniques for the design and analysis of approxi-
mation algorithms for NP-hard scheduling problems in which the objective is to minimize the
weighted sum of the job completion times. For a variety of scheduling models, these techniques
yield the first algorithms that are guaranteed to find schedules that have objective function value
within a constant factor of the optimum. In the first approach, we use an optimal solution to a
linear programming relaxation in order to guide a simple list-scheduling rule. Consequently, we
also obtain results about the strength of the relaxation. Our second approach yields on-line al-
gorithms for these problems: in this setting, we are scheduling jobs that continually arrive to be
processed and, for each time ¢, we must construct the schedule until time ¢ without any knowl-
edge of the jobs that will arrive afterwards. Our on-line technique yields constant performance
guarantees for a variety of scheduling environments, and in some cases essentially matches the
performance of our off-line LP-based algorithms.
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1 Introduction

In his seminal paper, Graham (1966) showed that when jobs are scheduled on identical parallel
machines by a list-scheduling rule, then the algorithm is guaranteed to produce a schedule of
length that is within a factor of two of optimal. This result is often viewed as the starting point
for research on the design and analysis of approximation algorithms. A p-approzimation algorithm
is a polynomial-time algorithm that always finds a solution of objective function value within a
factor of p of optimal; p is also referred to as the performance guarantee of the algorithm. In
the following decades, there has been a great deal of work on approximation algorithms for N'P-
hard optimization problems, and in particular, for scheduling problems with min-max objective
functions. However, until recently much less was known about approximation algorithms for N'P-
hard scheduling problems with min-sum objective functions.

In this paper we introduce two general techniques for the design of approximation algorithms
for N'P-hard scheduling problems in which the goal is to minimize the weighted sum of the job
completion times; these techniques yield the first constant performance guarantees for a variety of
scheduling models. Whereas little was known about approximation algorithms for these problems,
there is an extensive literature on their polyhedral structure; Queyranne & Schulz (1994) give a com-
prehensive survey of this area of research. For single-machine models, several linear programming
relaxations have been considered, and they yield sufficiently strong lower bounds to allow instances
of modest size to be solved by enumerative methods. Our first technique was motivated by this
success: we show that Graham’s list-scheduling algorithm, when guided by an optimal solution to
a linear relaxation, is guaranteed to produce a schedule of near-optimal total weighted completion
time. A consequence of these results is that the lower bound given by the linear programming
relaxation is also guaranteed to be within a constant factor of the true optimum.

Our second technique is a general framework for designing on-line algorithms to minimize total
weighted completion time in scheduling environments with release dates. In this setting, we are
scheduling jobs that intermittently arrive to be processed and, for each time ¢, we must construct
the schedule until time ¢ without any knowledge of the jobs that will arrive after time ¢. Our on-line
algorithm relies only on the existence of an (off-line) approximation algorithm for a problem that
is closely related to finding a minimum-length schedule in that environment. For several of the
problems we consider, the performance guarantee proved for this on-line technique asymptotically
matches the guarantee proved for our off-line LP-based algorithms.

The problem of scheduling a single machine to minimize the total weighted job completion time
is one of the most basic problems in the area of scheduling theory. We are given n jobs, and each job
J has a specified positive weight w; and a nonnegative processing time p;, j = 1,...,n. The jobs
must be processed without interruption, and the machine can process at most one job at a time.
We let C; denote the completion time of job j and the goal is to minimize }_; w;Cj, or equivalently,
(E]’ w;C;)/n. Consider some optimal schedule, and let C’; denote the completion time of job j in it;
thus, >, ij; denotes the optimal value. We shall present a number of approximation algorithms
that are based upon solving a particular relaxation; throughout the paper, we shall use the notation
C; to denote the value assigned to job j for the relaxation, and so 2 w;C; is a lower bound on

> w;C}. Furthermore, for each approximation algorithm that we shall consider, we use C~'j to
denote the completion time of job j in the schedule that it computes.

For the single-machine problem stated above, Smith (1956) showed that sequencing in or-
der of non-decreasing p;/w; ratio produces an optimal schedule. We shall be interested in more
constrained, strongly A'P-hard problems, in which each job j cannot begin processing before a
specified release date rj, j = 1,...,n, or there is a partial order < on the jobs, where j < k
is a precedence constraint that requires job k to begin processing no earlier than the completion



time of job j. We give a 2-approximation algorithm for the case in which there are precedence
constraints, but no (non-trivial) release dates. In contrast, Ravi, Agrawal, & Klein (1991) gave
an O(lognlog )", w;)-approximation algorithm, and Even, Naor, Rao, & Schieber (1995) recently
improved this to O(lognloglog}_,w;). For the case in which there are also release dates, we
give a 3-approximation algorithm. In fact, with only slightly larger constants, these results extend
to the model with m identical parallel machines, in which each job j must be processed without
interruption for p; time units on some machine. Furthermore, these results extend to models in
which preemption is allowed, that is, the processing of a job may be interrupted and resumed at a
later time, possibly on a different machine. Even for the special case of minimizing >_, Cj, these
algorithms are the first shown to have sublogarithmic performance guarantees.

Our results were motivated by recent work using polyhedral methods for scheduling problems,
and in particular, single-machine scheduling problems. There are a number of interesting papers
in this area, both for characterizations of polynomially-solvable special cases and for computing
optimal solutions; these include work of Balas (1985), Wolsey (1985,1990), Dyer & Wolsey (1990),
Queyranne (1993), Queyranne & Wang (1991a,b), Lasserre & Queyranne (1992), Sousa & Wolsey
(1992), von Arnim & Schulz (1994), Crama & Spieksma (1995), Van den Akker, Van Hoesel, &
Savelsbergh (1993), Van den Akker (1994), Van den Akker, Hurkens, & Savelsbergh (1995), and
von Arnim, Schrader, & Wang (1996).

Several of our algorithms are based on the work of Wolsey (1985) and Queyranne (1993), who
proposed a linear programming relaxation in which the decision variable Cj, j = 1,...,n, cor-
responds to the completion time of job j in a schedule. For the unconstrained single-machine
scheduling problem solved by Smith (1956), Queyranne (1993) showed that this formulation pro-
vides an exact characterization. He also gave a polynomial-time separation algorithm, and so the
relaxation can be solved in polynomial time, even if additional constraints are added to enforce
release dates or precedence constraints. For these more constrained variants, we will show that
an optimal solution to the linear programming formulation can be used to derive a schedule that
is within a constant factor of the LP optimum. If a linear programming relaxation is shown to
have an optimal value that is always within a factor of p of the true optimum, we shall call it a
p-relazation of the problem. For example, for the problem of minimizing total weighted completion
time on a single machine subject to precedence constraints, we show that Queyranne’s formulation
is a 2-relaxation.

Our algorithm and its analysis are also inspired by recent work of Phillips, Stein, & Wein (1995)
for the case in which there are release dates, but no precedence constraints. They introduced the
notion of constructing a near-optimal nonpreemptive schedule by scheduling the jobs in order of
their completion times in a preemptive schedule; this idea led to a simple 2-approximation algorithm
to minimize (nonpreemptively) the average completion time of a set of jobs with release dates on one
machine (i.e., in the special case where w; =1, j = 1,...,n). They also introduced a time-indexed
linear programming formulation from which they constructed near-optimal preemptive schedules
for a variety of models in which the objective is minimize the average weighted completion time.
Based on these ideas, they gave approximation algorithms for four models with this objective:
scheduling preemptively or nonpreemptively on one machine or m identical parallel machines: let €
be an arbitrarily small positive constant; for both preemptive models their performance guarantee
is 8 + ¢€; for one machine, their nonpreemptive guarantee is 16 + ¢; and for m identical parallel
machines their guarantee is 24 4+ €. For all four scheduling models, our techniques significantly
improve upon these performance guarantees.

Our results also have implications for other well-studied formulations of these single-machine
scheduling problems. For example, since the formulation in completion-time variables is weaker
than both a linear-ordering formulation of Potts (1980) and a time-indexed formulation of Dyer &



Wolsey (1990), we see that each of these is also a 2-relaxation in the case mentioned above. Van
den Akker (1994) evaluated the effectiveness of several heuristics for the model in which there are
release dates but no precedence constraints, and concluded that the following one is particularly
effective in practice: solve the time-indexed relaxation and schedule the jobs in the order in which
they complete (in an average sense) in the optimal fractional solution. Our analysis implies that this
procedure is a 3-approximation algorithm, and hence it can be viewed as a theoretical validation
of this approach to finding a good schedule.

We also introduce a polynomial-size variant of the time-indexed formulation, called an interval-
indezed formulation. We show that such formulations are effective in the design of approximation
algorithms for scheduling jobs, constrained by release dates, on unrelated parallel machines. In this
scheduling environment each job j must be assigned to some machine 7, and requires p;; time units
when processed on machine ¢ = 1,...,m. We introduce new rounding algorithms that yield the
first constant performance guarantee for this problem. These results build on earlier research on
computing near-optimal solutions for other scheduling models by rounding fractional solutions to
linear relaxations. This research includes work by Lenstra, Shmoys, & Tardos (1990), Lin & Vitter
(1992), Trick (1994), Munier & Konig (1993), and, most relevant to our work, that of Shmoys &
Tardos (1993).

We then turn to our second technique: a general method for devising on-line algorithms to
minimize the total weighted completion time in any scheduling environment with release dates. We
show that if we assign jobs to intervals by applying a type of greedy strategy, then the resulting
performance guarantee is within a factor of four of the performance guarantee of the subroutine
used to make the greedy selection. This technique is similar to one used by Blum, Chalasani,
Coppersmith, Pulleyblank, Raghavan, & Sudan (1994) to devise an approximation algorithm for
the minimum latency problem, which is the variant of the traveling salesman problem in which one
wishes to minimize the sum of the travel times to reach each city, rather than the time to reach
the last city. We shall use this technique to devise on-line approximation algorithms, and in several
cases, the resulting algorithm has nearly as good a performance guarantee as the off-line LP-based
technique.

Since there are a number of scheduling models considered in this paper, it will be convenient to
refer to them in the notation of Graham, Lawler, Lenstra, & Rinnooy Kan (1979). We summarize
the most relevant features of this notation here. Each problem that we shall consider can be
abbreviated «|8|y, where (i) « is either 1, P, or R, denoting that there is either one machine,
m identical parallel machines, or m unrelated parallel machines; (ii) § contains some subset of
r;, prec, pmin, and p; = 1, where these denote respectively the presence of (non-trivial) release
date constraints, precedence constraints, the ability to schedule preemptively, and the restriction
that all jobs are of unit size; and (iii) vy is ) w;C}, indicating that we are minimizing the total
weighted job completion time. For example, 1|r;,prec| > w;C; refers to the problem of minimizing
(nonpreemptively) the total weighted completion time on one machine subject to release-date and
precedence constraints. We shall assume, without loss of generality, that the data for each instance
is integral and that the data is preprocessed so that in any feasible schedule, there does not exist
a job that can be completed at time 0; hence, no job can complete before time 1. Finally, note
that we have assumed that no job has weight 0, primarily to ensure that the p;/w; ordering is
well-defined; however this assumption is be made without loss of generality, since a job of weight 0
does not affect the objective function value.

The approach of applying a list-scheduling rule in which the jobs are ordered based on solving
a linear program can easily be extended to a wide spectrum of scheduling problems, and we believe
that it will have further consequences for the design of approximation algorithms. For several other
basic scheduling models, we have considered analogous formulations, and conjecture them to yield



substantially stronger guarantees than are presently known. Motivated by our work, Chudak &
Shmoys (1996) have given O(log m)-approximation algorithms for the Cnax = max; C; and Y- w;C;
objectives in the setting in which the parallel machines run at different speeds; this improves
upon the best known performance guarantees of O(y/m) due to Jaffe (1980) (for Ciax) and Schulz
(1995) (for 3 w;C}). Mohring, Schéffter & Schulz (1996) considered the problem of scheduling with
communication delays to minimize the average weighted completion time. Specifically, they present
the first constant-factor approximation algorithms for scheduling identical parallel machines subject
to release dates and small communication delays. Our on-line technique has also already inspired
several different directions. Chakrabarti, Phillips, Schulz, Shmoys, Stein & Wein (1996) have given
a version with an improved performance guarantee and extended the technique to a variety of
other scheduling models. In addition, they show that this on-line technique finds schedules that
are simultaneously near-optimal with respect to both the maximum completion time and the total
weighted completion time objectives. Further extensions to other models are given by Chakrabarti
& Muthukrishnan (1996).

2 Single-machine scheduling problems

In this section we present approximation algorithms for several single-machine scheduling prob-
lems; we consider variants in which the set of jobs may be precedence constrained, and in which
additionally each job j may have a release date r;. We use j < k to denote the constraint that job
j must be completed before job k starts. We denote the entire set of jobs {1,...,n} as N, and, for
any subset S C N, we use the following shorthand notation:
p(S) = ij, Tmin(S) =min r;, and rmax(S) = max r;.
jes JES JES

We shall also require the quantity Eje g p?, which we shall denote by p?(S).

The basis of our approximation algorithms is a linear programming relaxation that uses as
variables the completion times C;. We can formulate the problem 1|r;, prec| 3" w;Cj in the following

way, where the constraints ensure that the variables C1,...,C), specify a feasible set of completion
times: .
minimize Z w;Cj (1)
j=1
subject to
C; > r; + Dy, ji=1,...,n, (2)
C, > C; + pr, for each pair j, k such that j < k, (3)
Cr>Cj+pr or C;2>Cg+pj, for each pair j, k. (4)

The difficulty with this characterization is that the so-called “disjunctive” constraints (4) are not
linear inequalities and cannot be modeled using linear inequalities. Instead, we use a class of valid
inequalities, introduced by Queyranne (1993), that are motivated by considering Smith’s rule for
scheduling the jobs when there are no release dates or precedence constraints. Smith (1956) proved
that a schedule is optimal if and only if the jobs are scheduled in order of non-decreasing ratio
pj/wj. As a result, if we set w; = p; for all j, then the sum 37, p;C; is invariant for any ordering
of the jobs. In particular, for the ordering 1,...,n, if there is no idle time in the schedule then
Cj = Y°3._1 pk; therefore, for any schedule we can write down the valid constraint
n n J n J 1
>opiCi 2 3 pi(3o ) =30 mipy = 5 (0 (V) +p(N)?),
j=1 j=1 k=1 =1k=1

J



where the inequality results from the possibility of idle time in the schedule.
Since a schedule for the entire set of jobs can be interpreted as a schedule for any subset, we
also have the following valid inequalities:

Zp]-C’j > %(pQ(S) +p(S)?), foreach S C N. (5)
JjES
We note that these inequalities remain valid even if we allow the schedule to be preemptive; that
is, the processing of a job may be interrupted and continued at later point in time. Furthermore,
Queyranne (1993) has shown that constraints (5) are sufficient to describe the convex hull of
completion-time vectors of feasible schedules for instances of 1|| Y- w;C;. These constraints are no
longer sufficient, however, if we add constraints such as (2) and (3) that enforce release dates and
precedence constraints, respectively. Although we do not have exact characterizations for either
lprec| > w;C; or 1|r;,prec| Y w;C;, we will show that this linear relaxation can be used to find
near-optimal solutions for each of them.
The key to the quality of approximation deriving from these relaxations is the following lemma.

Lemma 2.1 Let Cy,...,C, satisfy (5), and assume without loss of generality that Cq < --- < C,.
Then, for each j=1,...,n,

Proof: Inequality (5) for S ={1,2,...,j} implies that

J
3 piCi > 5(3(S) +p(S)%) > J(S) (6)
k=1

Since C} < Cj, for each k=1,...,j, we have

J J
1
Cj-p(S)=Cj Y pk 2 ) Cuvi 2 5p(S)?,
k=1 k=1

or equivalently, C; > Ei:l Pr/2. [ |

A feasible solution Cy < --- < C), to (5) need not correspond to a feasible schedule: the intervals
(C; —p;,Cj], j =1,...,n, are not constrained to be disjoint. If this solution actually corresponds
a feasible schedule, then C; > Eizl Pk, j = 1,...,n. Lemma 2.1 states that merely satisfying the
constraints (5) is sufficient to obtain a relaxation of this: C; > (1/2) {:lek, j=1,...,n. Ttis
this intuition that underlies the approximation algorithms of this section.

2.1 Single-machine scheduling with precedence constraints

We begin by presenting a 2-approximation algorithm for 1|prec| Y w;C; based on the linear pro-
gramming formulation that minimizes 377 _; w;C; subject to constraints (3) and (5). Consider
the following heuristic for producing a schedule: first, we obtain an optimal solution to the linear
program, C1,...,Cr; and then we schedule the jobs in order of non-decreasing C;, where ties
are broken by choosing an order that is consistent with the precedence relation. We refer to this
algorithm as Schedule-by-C;, since the jobs are ordered according to their completion times in the
linear programming solution. Observe that constraints (3) ensure that the resulting schedule will
be consistent with the precedence constraints.



Lemma 2.2 Let C7,...,C; denote the completion times in some optimal schedule, and 5’1, ceey C,
denote the completion times in the schedule found by Schedule-by-C;. Then > wiCy <23 w;Cr.

Proof:  For simplicity we assume that the jobs have been renumbered so that C1 < --- < Chp;
therefore, for S = {1,...,5}, N
Cj = p(S)
By Lemma 2.1, we immediately obtain C; < 2C;. Since ¥; w;C; < ¥; w;C?, the result follows. M
Queyranne (1993) has shown that the linear program given by (1), (3) and (5) is solvable in
polynomial time via the ellipsoid algorithm; the key observation is that there is a polynomial-time

separation algorithm for the exponentially large class of constraints (5). Hence we have established
the following theorem.

Theorem 2.3 Schedule—by—Uj is a 2-approzimation algorithm for 1|prec| > w;C;.

Next, we present a set of instances, suggested by Margot and Queyranne, which show that our
analysis of this heuristic is tight. Consider an instance with 2k jobs with

L =10k
Pi=Y o, j=k+1,...,2k,

0, j=1,....,k—1;
w; = 1, j=kk+1;
2, j=k+2,...,2k.

Also, j<k+jand j <k+j+1,forj=1,...,k—1, and k < 2k. If C; denotes the optimal
LP “completion time,” then C; = «, j = 1,...,2k, where « is chosen so that E?ilp]@j =
(1/2)(p*(N) + p(N)?), for N = {1,...,2k}. In the optimal schedule, the jobs are processed in the
order 1,k+1,2,k+2,...,k,2k. Its value is k2 4+ 2k — 1. On the other hand, one possible ordering
generated by the algorithm Schedule-by-C; is 1,...,2k, with objective function value equal to 2k2.
Hence, the ratio between heuristic value and the optimal value approaches 2 as & — oo. In this
example, the bad behavior of the heuristic results from an unlucky breaking of ties; in fact, by
perturbing the data, it is possible to force the algorithm to choose an equivalently bad solution.

One manner in which the linear program given by (3) and (5) can be strengthened is by adding
a set of so-called series constraints (see Queyranne & Schulz (1994)). When these are added to
the model, Queyranne & Wang (1991a) showed that this gives an exact characterization of the
feasible completion-time vectors in the case that the partial order associated with the precedence
relation is series-parallel. It is interesting to note, however, that these constraints cannot in general
strengthen our approximation result, since the preceding example remains unaffected when these
new inequalities are added.

We conclude this section with a few additional observations. First, notice that in equation (6)
we have discarded the term %pz(S). By analyzing the inequality more carefully it is possible to
show that Schedule-by-Cj is a (2 — n%_l)—approximation algorithm; see Schulz (1995) for the details.

Second, notice that our algorithmic results yield the following corollary concerning the quality
of the optimal value of the linear program.

Corollary 2.4 The linear program (1), (3) and (5) is a 2-relazation of 1|prec| Y. w;C;.

In fact, by the observations just made, this linear program is actually a (2 — n%rl)—relaxation.
Furthermore, we now give an example that shows that this analysis of the quality of the linear
program is asymptotically tight as well. Consider an instance with n unit-length jobs in which the



first n — 1 jobs must precede job n but are otherwise independent. Let w; =0 for j=1,...,n—1,
and w, = 1. The optimal LP solution will set C; = (n+1)/2 —1/n for j = 1,...,n — 1, and
Cpn = (n+3)/2 — 1/n; thus the overall LP objective value is (n + 3)/2 — 1/n. On the other hand,
the heuristic schedule, which is in fact an optimal schedule, has value n; thus, as n — oo, the
ratio between the two values approaches 2. Note that this example is not a “bad” example for
the algorithm, and the earlier example is not a “bad” example for the linear program. Moreover,
this second example has a series-parallel precedence partial order, and so by adding the series
inequalities to the linear program (1), (3) and (5), we would ensure that its extreme-point solutions
also satisfy the disjunctive constraints (4).

The results of this section have implications for other LP formulations, as well; we give two
basic examples here. The first formulation, which was given by Potts (1980), uses linear ordering
variables 6;;, where é;; = 1 implies that job ¢ precedes job j in the chosen schedule:

n

minimize Z w; Cj

j=1
subject to

Cj = széz] +Dj, J=1,...,n;

=1
i+ 06 = 1, ,j=1,...,m, i < j;
bij + 6k +ki <2, i, j,k=1,...,n, 1 <j<kori¢>j>k;
617 = 1, ,j=1,...,m, t < J;
6ij > 0, Li=1...,m, 1 #j.

Notice, of course, that the C; may be made implicit in this formulation, and from a set of 0;;
one could construct C; = Y i1 p;6;; + pj. Schulz (1995) has shown that these C; are feasible for
the linear program given by (3) and (5); consequently, the optimal value for the formulation in
linear-ordering variables is at least the optimal value for the one given by the C; decision variables.
Hence, the linear-ordering formulation is also a 2-relaxation of 1|prec|>  w;Cj. In addition, the
linear ordering formulation is polynomial in size, and thus by using it in conjunction with our
algorithm we can actually avoid the use of the ellipsoid algorithm in obtaining an optimal LP
solution.

The next formulation, which was given by Dyer & Wolsey (1990), uses time-indexed variables.
In this formulation we fix a time horizon 7" = p(N) by which all jobs will be completed in any
feasible schedule without unnecessary idle time. For each job j =1,...,n and each t =1,...,T,
we define z;; = 1 if job j completes processing at time . We then have the following LP relaxation:

n T
minimize Z w; E t-zj
j=1 t=1

subject to
T
Yo =1, =1 ¢
t=1
t t+pr
ijs > kam 1f.]'<k7 tzpjw")T_pk; (8)
s=1 s=1



n min{t+p,—1,T}

o> @ <0, t=1,...,T; (9)
7=1 s=t
i > 0, j=1,...n, t=1,...,T; (10)
g = 0, t=1,...,p; — L. (11)

Equation (7) says that each job must be assigned to some time slot; inequality (9) ensures that
there is at most one job undergoing processing in the time interval [t — 1,¢]; and inequalities (8)
enforce the precedence constraints, since they say that, for j < k, in order for k to be completed
by time t + pg, job j must be completed by time ¢, for all ¢.

This formulation has been reported to be quite strong in practice. However, it has both an
exponential number of variables and constraints, and so significant effort has been devoted to
developing efficient computational techniques to compute its solution (see, for example, Sousa &
Wolsey (1992), Van den Akker (1994), Van den Akker, Hurkens, Savelsbergh (1994)). In Section 4
we will also introduce a closely related formulation that is polynomial in size and show how to use
it to design approximation algorithms.

If we define C; = Z;‘F:pj t-xj; where z is a feasible solution to the linear program (7) — (10), then
C1,...,Cy are guaranteed to be feasible for (3) and (5) (Schulz, 1995); hence, the time-indexed
formulation is a 2-relaxation as well. Van den Akker (1994) reports that the heuristic Schedule-by-
61- that uses ﬁj computed from the optimal solution to the time-indexed formulation is the best
heuristic in practice for 1|r;| > w;C;. Therefore, our analysis of Schedule-by-C; (and its extension
to 1lrj,prec| > w;C; in the next section) gives the first evidence from a worst-case perspective
of the computational efficacy of this heuristic and the quality of lower bounds provided by these
formulations. Although our analysis provides an identical performance guarantee for each of these
three formulations, its seems likely that these formulations are not equivalently strong; for neither
the linear-ordering formulation, nor the time-indexed formulation, have we been able to show that
our analysis is tight. Clearly, for any LP-based approximation algorithm, the choice of formulation
can have a big impact on the performance guarantee that one can hope to prove.

2.2 Single-machine scheduling with precedence constraints and release dates

Next we consider a more general model in which, in addition to precedence constraints, each job j
has a release date r; when it first becomes available for processing. We will demonstrate that an
algorithm analogous to the one of the previous section is a 3-approximation algorithm.

Consider the following linear program given by (1), (2), (3), and (5). Suppose we solve the
linear program to obtain an optimal solution Cf, ..., Cy; for simplicity we assume, as before, that
C; < .- < C,. Given the Uj, we use the same heuristic, Schedule-by-ﬁj: construct a feasible
schedule by ordering the jobs according to non-decreasing C;. In this case, we might introduce idle
time before the start of job j: if r; is greater than the time at which job j — 1 completes, then job
J begins processing at time 7;.

Lemma 2.5 Let C; < --- < C,, be an optimal solution to the linear program defined by (1), (2), (3),
and (5), and let C~Z’1, ... ,C~Z’n denote the completion times in the schedule found by Schedule—by—Uj.
Then, forj=1,...,n, éj < 3C;.
Proof: Let us fix j and define S = {1,...,j}. Since no idle time is introduced between 7pax(.5)
and @», N

C] S Tma.x(S) +p(S)
Moreover, by (2) and the ordering of the jobs we have that rmax(S) < maxg—1,.; Cr = Cj, and so

C; < Cj +p(S).



Finally, by applying Lemma 2.1, we obtain our result. |
Since this linear program can also be solved in polynomial time via the ellipsoid algorithm, we

have the following theorem.

Theorem 2.6 Schedule-by-ﬁj is a 3-approzimation algorithm for 1|r;,prec| > w;C;.

Moreover, the optimal value of the linear program is guaranteed to be within a factor of three of
the optimal schedule value.

Corollary 2.7 The linear program given by (1), (2), (3), and (5) is a 3-relazation of 1|rj,prec| 3 w;C;.

Again, these results have implications for other LP relaxations. We obtain a time-indexed
formulation for this model by simply changing constraints (11) to

:E]'t:(), t:1,...,7"]'+pj—1. (12)

Then, if z satisfies (7) — (10) and (12), then C; = E'f:pj t - z;; also satisfies the release-date con-
straints (2). Consequently, the time-indexed formulation is a 3-relaxation of 1|r;, prec| >, w;C;. In
the absence of precedence constraints, Dyer & Wolsey (1990) proposed a formulation in completion
time variables C; and another kind of time-indexed variables y;;. Here, y;; = 1 if job j is being
processed in the time period [t — 1,%] and y;; = 0, otherwise. The relaxation is as follows:

n

minimize Z w; C;

j=1
subject to
Zyjt < 17 t:17 7T,
j=1
T
Zyjt = Py, leaan,
t=1
T
pj 1 1 .
—+=) t-Zyx = Cj, j=1,...,m;
2 pjg 2
yie = 0, Jj=1...,n, t=r;...,T.

Goemans (1996) showed that this relaxation is equivalent to the following relaxation which solely

uses completion time variables:
n

minimize Z w; C;
j=1
subject to
Eijj > ((S), foreach SCN, (13)
jES
where 1
£(S) = rmin (S)p(S) + 5(}?2(5) +p(5)?).

The valid inequalities (13) are a strengthened variant of (5) (see, e.g., Queyranne & Schulz (1995)).
This implies that the linear program (1) and (13) also is a 3-relaxation of 1|r;| > w;C;. Since the
polyhedron defined by constraints (13) is a linear transformation of a supermodular polyhedron
(Goemans (1996)), we may apply the greedy algorithm for supermodular polyhedra to solve this
particular relaxation. Combining this with algorithm Schedule-by-C;, we obtain a combinatorial
3-approximation algorithm for 1|r;|>” w;C; that runs in O(nlogn) time.



2.3 Single-machine scheduling with preemption

The third model we consider is 1|r;, prec,pmtn| > w;Cj, that is, the scheduling model in which
jobs have release dates and precedence constraints, but the processing of a job may be interrupted
and continued at a later point in time. Since the preemptive problem is a relaxation of the non-
preemptive problem and constraints (2), (3), and (5) are all valid for the preemptive version of
the problem, Theorem 2.6 immediately implies a 3-approximation algorithm for the preemptive
problem. In this section we give a 2-approximation algorithm based on a strengthened linear
programming relaxation.

Consider an instance of 1|rj,prec,pmtn| Y  w;C;. Notice that if j < k and r; + p; > ri, we
can increase the value of ry to r; + p; without causing any feasible schedules to become infeasible.
We begin by preprocessing the data in the instance in this manner so that, for all j, k with j < k&,
rp > rj + pj. Next we consider the linear programming formulation given by constraints (2), (3),
and (13).

Now, suppose we obtain an optimal linear programming solution to the system given by (1),
(2), (3), and (13); call it C1,...,C,. We construct a preemptive schedule from the LP solution as
follows. We consider the jobs one at a time, in order of their C; values; notice that the ordering is
consistent with the precedence constraints, because of (3), and thus, by the time we consider job
7, all of its predecessors have already been scheduled. To schedule job j, we find the first point in
time, in the partially constructed schedule, at which all of the predecessors of j have completed
processing, or time r;, whichever is larger. Subsequent to that point in time we schedule parts of j
in any idle time in the partial schedule, until j gets completely scheduled. We call this algorithm
Preemptively-Schedule-by-C .

Lemma 2.8 Let C1 < --- < C, be an optimal solution to the linear program defined by (1), (2),
(3), and (13), and let Cy, . ..,Cn denote the completion times in the schedule found by Preemptively-
Schedule-by-C;. Then, forj =1,...,n, C; < 2C;. ~

Proof: Consider a job j, whose completion time in the constructed schedule is C}, and consider
the partial schedule constructed by the algorithm for jobs 1,...,j. Let ¢ be defined as the latest
point in time prior to CN‘j at which there is idle time in this partial schedule (or, if no idle time
exists before CN']', set t = 0). Let S denote the set of jobs that are partially processed in the interval
[t, C‘j], in the partial schedule. First, we observe that no job of S gets released before time ¢; for if
there were such a job, then by the preprocessing of the data there would also be a job k& minimal
in S with respect to < for which this were true. But then job k& would have been scheduled during
part of the idle time prior to ¢, which it was not. Therefore, t = ryis (S), and since there is no idle
time between ¢ and 5']-,

Ci < rmin(S) + p(9).

Now we return to the strengthened inequalities (13). Recall that the set S was defined relative
to the partial schedule obtained just after job j was scheduled; thus, for all k£ € S, C; < C;. This
fact, combined with (13), implies that

_ — 1
C]p(s) 2 Epkck 2 rmin(S)p(S) + 5])(5)2,
keS

or Cj > Tmin(S) + p(S)/2. Thus CN'j < 20, as we wished to show. [ |

Because of our previous remarks concerning the polynomial solvability of the linear program,
we have the following corollary.

Theorem 2.9
Preemptively-Schedule-by-C'; is a 2-approzimation algorithm for 1|r;,prec,pmin|>  w;C;.
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Once again, the proof of this theorem has the corollary that the linear programming optimum
is within a factor of two of the optimal preemptive schedule value. When considering a preemptive
model, it is also interesting to consider the ratio between the nonpreemptive and preemptive optima,;
that is, to bound the power of preemption. Phillips, Stein, & Wein (1995) and Lai (1995) showed
that the optimum for 1|r;|>J w;C; is at most a factor of 2 more than its preemptive relaxation,
and Lai (1995) showed that there exist instances for which the ratio is at least 18/13. Since the
inequalities (2), (3), and (5) are all valid for preemptive schedules, the proof of Theorem 2.6 implies
that the optimum for 1|r;,prec|>° w;C; is always within a factor of 3 of its preemptive relaxation;
however, the technique of Phillips, Stein, & Wein (1995) easily extends to yield a bound of 2 for
this case as well. Conversely, for any LP relaxation of the preemptive version, the ratio of the
nonpreemptive optimum to the preemptive optimum is also a lower bound on the ratio of the
nonpreemptive optimum to the LP optimum. Applying this to our strongest LP relaxation, we can
conclude that there are instances of 1|r;| 3= C; for which the optimum value is at least 18/13 times
the optimal value for the linear relaxation given by (1), (2) and (13).

3 Identical parallel machines

In this section we show that our approach can be extended to the more general setting in which
we have m identical parallel machines; each job can be processed by any of the machines. In
a nonpreemptive schedule a job must be processed, in an uninterrupted fashion, by exactly one
machine, whereas in a preemptive schedule a job may be interrupted on one machine and continued
on another at a later point in time; at any point in time a job may be processed by at most one
machine.

The problem of minimizing the total weighted completion time on two identical parallel ma-
chines, either preemptively or nonpreemptively, was established to be A"P-hard by Bruno, Coffman
& Sethi (1974) and Lenstra, Rinnooy Kan & Brucker (1977). We will again use variables C; to
denote the completion time of job j (irrespective of the machine on which it is processed). The
convex hull of feasible completion time vectors has not been previously studied in this general
setting. We can derive a class of valid inequalities for this model by generalizing the inequalities

(5)-

Lemma 3.1 Let Cy,...,C, denote the job completion times in a feasible schedule for P|| Y. w;C;
Then the C; satisfy the inequalities

Zp] > - ( (5)? +p2(S)) for each S C N. (14)
JES
Proof:  Without loss of generality, assume that there is no unforced idle time in the schedule,
and that the jobs are indexed so that C; < --- < (). Consider the schedule induced for the subset
of jobs J = {1,...,7}. Job j is the last job to finish among jobs of J. If job j is scheduled on
machine 4, then 7 is the most heavily loaded machine (with respect to jobs in J). So the load on
machine ¢ is at least p(J)/m, and hence C; > p(J)/m = > _, pr/m. But then

n J
ZPJC > (1/m) Z 2P

and then the usual arithmetic simplifies the right-hand side to yield (14) in the case where S =
{1,...,n}. The general case follows from the fact that a schedule for the entire set of jobs can be
interpreted as a schedule for any subset. |
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In fact, Schulz (1995) has also shown that the following slightly stronger class of inequalities
are valid:

1
Zp]C’] > 2— (S)* + §p2(5’) for each S C N.
However, our analyses of approximation algorithms will not require this strengthened class of
inequalities. We show next that the inequalities (14) imply a kind of load constraint; this result is
an immediate generalization of Lemma 2.1 in the single-machine setting.

Lemma 3.2 Let Cy,...,C, satisfy (14) and assume without loss of generality that C; < --- < Cy,.
Then for each j =1,...,n, if S={1,...,j},

C > ——p(8).

I= oam
Proof: Let S={1,...,j}; from (14) and the fact that C; < C; for each £k =1,..., 7, we have

J J
Gy p(8)=C; opk > 3o ms 2 5 0(9 4 2°(9) 2 5 p(S
k=1 k=1

from which we obtain C; > ﬁp(S). [ |

Note that inequalities (14) and Lemma 3.2 apply to both preemptive and nonpreemptive sched-
ules.

As in the single-machine setting, our approximation algorithms are based on solving a linear
programming relaxation in the C; variables and then scheduling the jobs in a natural order dictated
by the solution to the linear program. For several models, simple variants of a list-scheduling
rule that are based on the LP solution yield excellent performance guarantees; we present these
algorithms and their analysis in Sections 3.1 and 3.2. For the most general version of this problem
a somewhat more complex approach will be necessary; we present this result in Section 3.3. We
note in advance that with every approximation algorithm we obtain a bound on the quality of the
associated linear programming relaxation; to avoid excess verbiage we omit explicit statements of
these corollaries.

3.1 Independent jobs

We begin by considering the problem P|r;| > w;Cj; as our linear program, we minimize > ; w;C;
subject to constraints (14) and release-date constraints (2), which of course remain valid in the
parallel machine setting.

Our algorithm Start-Jobs-by-C'; works as follows. We first compute an optimal solution C1, ..., C,
to this linear program; we again assume without loss of generality that C; < --- < C,,. We schedule
the jobs iteratively in the order of this list, and for each job j we consider the current schedule
after time r;, and identify the earliest block of p; consecutive idle time units on some machine in
which to schedule this job.

Lemma 3.3 Let ?1 < -+.- < C, be an optimal solution to the linear program defined by (1), (2),
and (14), and let Cy, .. .,Cn denote the completion times in the schedule found by Start-Jobs-by-C;.
For each j =1,...,n,

~ 1 —
Gy < (4- ).
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Proof: Consider the schedule induced by the jobs 1,...,j,andlet S = {1,...,j}. Any idle period
on a machine in this partial schedule must end at the release date of some job in S. Consequently,
all machines are busy between time rmax(S) and the start of job j. Thus

G < rmax(8)+ —p(S\ {(7}) +p;
= rax(8) + —p(8) + (1= —)pj. (15)

To bound this expression, we note that the constraints of the LP formulation ensure that C; > p;,
and, since C; > C for k =1,...,j, that C; > rpax(S). By Lemma 3.2 we have

— 1
2C; > —p(8),

which yields an overall upper bound of (4 — 1)C; on C;. [ |

To solve the linear program in polynomial time we again use the ellipsoid algorithm; the sep-
arability of the constraints follows from the fact that the inequalities (14) are merely a rescaled
version of (5), which Queyranne (1993) proved are separable. Thus we have the following theorem.

Theorem 3.4 Start-Jobs-by-C; is a (4 — %)—approzimation algorithm for P|rj| > w;C;.

The ideas used in this result are similar to those introduced by Phillips, Stein & Wein (1995) to
convert preemptive parallel machine schedules to nonpreemptive schedules.

For the case in which there are no non-trivial release dates, Kawaguchi & Kyan (1986) have

shown that the following is a (“/%—H)—approximation algorithm: order the jobs by non-decreasing

ratio p;/w; and apply the list-scheduling algorithm of Graham. In this special case, our algorithm
Start-Jobs-by-C is closely related to this algorithm; assume that the jobs are indexed so that
p1/wiy < -+ < pp/w,. Suppose that we started by solving a somewhat weaker linear program
instead: minimize 3>; w;C; subject to (14). In other words, we relax the constraint that C; > pj,
j=1,...,n. However, this is the same linear program as we would solve for a 1-machine input in
which job j requires p;/m units of processing. By the theorem of Queyranne (1993), the optimal
solution to this linear program is C; = p({1,...,j})/m. In other words, our modified algorithm is
exactly the algorithm of Kawaguchi & Kyan (1986). Furthermore, equation (15) implies that

~ 1 — 1
C: <p(S 1——)p; <C; 1-—-)Cr
]_p( )/m+( m)pj— ]+( m) IR

and hence we obtain a simple proof that the algorithm of Kawaguchi & Kyan is a (2 — 1)-
approximation algorithm. More importantly, this analysis implies the following bound on the
strength of the linear relaxation used by Start-Jobs-by-C;.

Corollary 3.5 The linear program (1), (2), and (14) is a (2 — L)-relazation of P|| ¥ w;C;.

3.2 Preemptive scheduling and unit-time jobs

We consider next the preemptive variant, P|r;,prec,pmin|> w;C;, in which we are allowed to
interrupt the processing of a job and continue it later, possibly on another machine. We will give a
simple 3-approximation algorithm for this problem. Furthermore, if all of the jobs are unit-length
and the release dates are integral, then the algorithm does not introduce any preemptions; hence,
this also yields a 3-approximation algorithm for P|r;,prec,p; = 1| > w;C;.
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In his ground-breaking paper, Graham (1966) showed that a simple list-scheduling rule is a
(2 — L)-approximation algorithm for P|prec|Cmax. In this algorithm, the jobs are ordered in some
list, and whenever one of the m machines becomes idle, the next available job on the list is started on
that machine, where a job is available if all of its predecessors have completed processing. Graham
actually showed that when this algorithm is used to schedule a set N of jobs, the length Cpax of
the resulting schedule is at most

Zp(N\ ) +p(0),

where C denotes the set of jobs that form the longest chain (with respect to processing times) of
precedence-constrained jobs ending with the job that completes last in the schedule.

We shall analyze a preemptive variant of Graham'’s list-scheduling rule. The jobs are listed in
order of non-decreasing C; value, where Cj, j = 1,...,n, denotes an optimal solution to the linear
program (1), (2), (3), and (14); once again, we shall assume that the jobs are indexed so that
C1 < Cy<---<Cyh. A jobjis available for processing in a schedule at time ¢, if r; < ¢ and all
predecessors of job j have completed by time ¢. A machine is awvailable at time ¢ if it not assigned
to be processing a job at that time. The algorithm Preemptively-List-Schedule-by-C; constructs the
schedule “in time”. If machine ¢ becomes available at time ¢, then, among all currently available
jobs, this machine is assigned to process the one that occurs earliest in the list. If a job j becomes
available at time ¢, and there is a job currently being processed that occurs later on the list than
J, then, among all jobs currently being processed, job j preempts the one that occurs latest in the
list.

Observe that each preemption in the schedule can be associated with the release of a job.
Hence, there are at most n — 1 preemptions in the schedule found by Preemptively-List-Schedule-
by—@,u Furthermore, if the release dates are integral, then all preemptions occur at integer points.
This implies that if all jobs are of unit length, then no preemptions occur, and the schedule found
is actually a nonpreemptive one; in this case, Preem ptively—List—ScheduIe—by—ﬁj is precisely the list-
scheduling algorithm of Graham.

Theorem 3.6 For P|rj,prec,pmtn| Y w;Cj, Preemptively-List-Schedule-by-C'; is a 3-approzimation
algorithm.

Proof: The proof of this result is very similar in spirit to Graham’s original analysis for
Plprec|Cmax- Let C~'1, . ,C~’n be the completion times of the scheduled jobs. Let us focus on a
particular job j. We claim that the time interval from 0 to CN']- can be partitioned into two sets of
intervals; the total length of one of these sets can be bounded above by C;, while the length of the
other can be bounded above by 2C;.

We construct the partition as follows. Let tg = C~'j and j; = j. We first derive a chain of jobs
Js = Js—1 < -+ < j1 from the schedule in the following way. Inductively, for £k = 1,...,s, define
tr as the time at which job j; becomes available; if r;, = t, then set s = k, and the construction
is complete. Otherwise, let jii; denote a predecessor of ji that completes at time ¢;. Clearly,
we have that js < js—1 < --+ < j1; let C denote the set of jobs in this chain. A simple inductive
argument shows that the constraints (2) and (3) imply that C; > rj, + p(C). We can think of this
lower bound as the total length of the union of the (disjoint) time intervals in which some job in
this chain is being processed, together with the interval (0,r;.]. So to compute an upper bound on
CN’]', we need only consider the complementary set of time intervals within (0, CN']']: let 7 denote the
set of times ¢ between t; and ¢y during which no job in C is being processed.

We wish to show that 7 consists of (disjoint) intervals of time of total length at most 2C;.
Consider any point in time ¢ € 7 in the interval (¢g,tx—1], £ = 1,...,s: at this point in time, the
job ji is available. Since it is not being processed, this implies that no machine is idle; furthermore,
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each job being processed must occur earlier in the list than ji, and hence earlier in the list than j.
In other words, for every ¢ € 7, each machine is processing some job in S = {1,...,5} \ C. Hence
the total length of 7 is at most p(S \ C)/m; by Lemma 3.2, p(S)/m < 2C;.

Thus CN‘]- < 3C}, for each j = 1,...,n. Noting once again that the linear program can be solved
in polynomial time, we have established our theorem. |

As we noted above, this also implies the following result.

Corollary 3.7 For P|r;,prec,p; = 1|3 w;C;, Preemptively-List-Schedule-by-C'; is a 3-approzima-
tion algorithm.

Ifr; =0,j=1,...,n, then we can slightly refine the analysis of Theorem 3.6. In this case, we
can partition the schedule into 7 and the periods of time in which some job in C is being processed.

Hence, .
Cj <p(S\C)/m+p(C) =p(S)/m+ (1 - —)p(C).

This implies that Preemptively-List-Schedule-by-C; is a (3 — %)—approximation algorithm for both
Plprec,pmin| Y  w;C; and Plprec,p; = 1| > w;C;.

3.3 The general problem

We next consider P|rj,prec|> w;Cj in its full generality. Unfortunately, we do not know how
to prove a good performance guarantee for this model by using a simple list-scheduling variant.
However, we are able to give a 7-approximation algorithm for P|r;,prec| > w;C}, by considering a
somewhat more sophisticated algorithm. Observe that if we use only one of our m machines, and
schedule the jobs in order of their LP optimal values, then Lemma 3.2 implies that this schedule
has objective function value within a factor of 2m + 1 of the m-machine optimum (and within a
factor of 2m if all release dates are 0). Hence, for m < 3, this dominates the more sophisticated
approach.

Our algorithm for P|rj,prec| 3 w;Cj, which we call Interval-Schedule-by-C;, begins as before
by finding the optimal solution C1,...,Cy to the linear program to minimize > w;C; subject to
(2), (3), and (14); as before, we assume that C; < --- < C,. Next, we divide the time line into
intervals [1,1], (1,2],(2,4],...,(2Y72,2571], where L is the smallest integer such that 27! is at
least rmax(N) +p(N) (i.e., an upper bound on the length of any feasible schedule with no unforced
idle time). For conciseness, let 79 = 1 and 7, = 271, £ = 1,...,L. We use £(j) to denote the
index of the upper endpoint of the interval in which C; lies, i.e., the smallest value of £ > 1 such
that 7, > C,. Furthermore, let Sy denote the set of jobs j with £(j) = ¢, £ =1,...,L. We define
ty = (1/m)p(Se); t¢ can be thought of as the average load on a machine for the set S;. For each
£=0,1,...,L, we set

¢
Te=1+4> (T + tx).
k=1
We schedule the jobs in Sy, using the list-scheduling algorithm of Graham, in the interval 7y_; to
Ty.

Theorem 3.8 Interval-Schedule-by-C'; is a T-approzimation algorithm for P|r;,prec| Y w;C;.

Proof:  We first show that this is a feasible schedule. The constraints (3) ensure that the
precedence constraints are enforced, since for each job j € Sy, each of its predecessors is assigned
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to Sk for some k € {1,...,£}. We also need to show that the schedule respects the release-date
constraints. If j € Sy, £ =1,...,L, then r; < C; < 74. However,

-1

T 214> 1=,
k=1

and hence r; < 7,_;. Hence, the analysis of the list-scheduling rule for each interval reduces to the
case without release dates. Graham’s analysis implies that the length of the schedule constructed
for Sy can be bounded by the maximum length of any precedence chain, plus the average load on a
machine. The constraints (3) ensure that the maximum length of a chain in S, is at most 74, and
the average load is t,. Hence, we have allocated sufficient time to complete this fragment of the
schedule.

Next we show that each job j completes by time at most 7C;. Consider the completion time
of job 7 € Sy. By the Graham-like analysis discussed in the proof of Theorem 3.6, C~’j is bounded
above by T,_1 + ty + [3;, where (3; is the length of some chain that ends with job j. Combining
terms, we can rewrite this bound as 1+ Ei;ll T+ Ei:l tr + B;, which is at most 7, + Ei:l tr+C;
(recall that 8; < C;). Consider the job j(£) € Si,...,S; whose Cj-value is largest. Lemma 3.2
implies that

J4 £
Ztk = (1/m) Zp(sk) < QU]'(() < 27y. (16)
k=1 k=1
Thus
C; < Tg+27’z+€j < 76]',
since 1y < 26]: This completes the proof. |

We note that subsequent to this work, Chakrabarti, Phillips, Schulz, Shmoys, Stein, & Wein
(1996) proposed a 5.33-approximation algorithm based on the same linear programming formula-
tion. Finally, since the inequalities (2), (3), and (14) are all valid for the preemptive relaxation, we
have also shown that the ratio between the nonpreemptive optimum and the preemptive optimum
is at most 7. In fact, if we replace @ by the completion time of job j in an optimal preemptive
schedule, then the proof of Theorem 3.8 implies that this ratio is at most 5: instead of inequality
(16), we know that the total processing requirement of jobs finishing by 7, in the optimal preemp-
tive schedule is at most m7,. The result of Chakrabarti et al. (1996) also implies an even tighter
upper bound on this ratio.

4 Interval-indexed formulations and unrelated machines

In this section we consider the problem of scheduling on unrelated parallel machines, and give
a (16/3)-approximation algorithm for R|r;|3>; w;Cj. In contrast to the results of the previous
sections, we do not use linear programming formulations in C; variables, but rather a formulation
inspired by time-indexed linear programming formulations. We shall introduce the notion of an
interval-indexed formulation, in which the decision variables merely indicate in which time-interval a
given job completes. The intervals are constructed by partitioning the time horizon at geometrically
increasing points; consequently, unlike the time-indexed formulation, this new formulation is of
polynomial size. Furthermore, since the ratio between the endpoints of each interval is bounded by
a constant, we can assign a job to complete within this interval without too much concern about
when within the interval it actually completes.

We will, in fact, consider a slightly more general problem, in which the release date of a job may
depend on the machine, and is thus denoted r;;: job j may not be processed on machine 7 until
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time 745, 1 =1,...,m, j = 1,...,n. This model will also be relevant to our discussion of network
scheduling models.

We will first give an 8-approximation algorithm that is somewhat simpler to explain. We can
divide the time horizon of potential completion times into the following intervals: [1,1], (1,2],
(2,4],...,(2572,271] where L is chosen to be the smallest integer such that 257! > max; r;; +
-, max; pij; that is, 2°~1 is a sufficiently large time horizon. For conciseness, let 7o = 1, and

=21 0=1,...,L, and so the /th interval runs from time 7,_1 to 7, £=1,..., L.
Consider the following linear programming relaxation, in which the interpretation of each 0 —1
decision variable z;5¢,7 =1,...,m,j=1,...,n,and £ =1,..., L, is to indicate if job j is scheduled

to complete on machine ¢ within the interval (74_1, 7¢]:

n m

L
minimize Z wj Z Z Te—1%ije (17)

j=1  i=1¢=1

subject to
i=1¢=1
Zpl]a:wﬁ < T 1 =1, y M, L= 1, » L (19)
j=1
zi5e = 0, if 7 < rij + pij; (20)
ziye > 0, i=1,...,m, j=1,...,n, £L=1,...,L. (21)

Lemma 4.1 For R|r;;| > w;C;, the optimal value of the linear program (17) — (21) is a lower
bound on the optimal total weighted completion time, 35 w;C5.

Proof: Consider an optimal schedule and set z;;, = 1 if job j is assigned to machine ¢ and
completes within the £th interval. This solution is clearly feasible: constraints (19) are satisfied
since the total processing requirement on machine i of jobs that complete within (7,_1,7,] is at
most 7y; constraints (20) are satisfied since any job j that completes by 7, on machine ¢ must have
ri; +pij < 7¢. Finally, if job j completes within the /th interval, £ =1,..., L, then its completion
time is at least 74_1; hence, the objective function value of the feasible solution constructed is no
more than >7 w;C7. |

One unusual aspect of the formulation (17) — (21) is that it is the linear relaxation of an integer
program that is, itself, a relaxation of the original problem. We believe that this idea might prove
useful in other settings as well.

Our rounding technique is based on the observation that this linear program is essentially the
same as the one considered by Shmoys & Tardos (1993) for the generalized assignment problem.
We will apply their rounding technique both in this section and the next; we therefore present a
brief discussion of the generalized assignment problem and the main result of Shmoys & Tardos
(1993).

Shmoys & Tardos consider the following linear program in the setting with m unrelated machines
and n jobs, where processing job j on machine ¢ requires p;; time units and incurs a cost ¢;;, for
eachi=1,...,m, j=1,...,n (and the costs need not be non-negative):

> cizi; < C (22)

i=1j=1
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Ziﬂz‘j = 1, forj=1,...,n, (23)
i=1
Zpijxij < T fori=1,...,m, (24)
i=1
Tij > 0, i:]_,...,m,j:]_,...,n. (25)

Theorem 4.2 (Shmoys & Tardos (1993)) There is a polynomial-time algorithm that, given a
feasible solution x to the linear program (22) — (25), rounds this solution to an integer solution T
such that

Ti5 = 0= Zi = 0 (26)

and T satisfies constraints (22), (23), and

Epija_:ij <t + max p;, forechi=1,...,m, (27)
= Jx;;>0
where t; = 371 pijTi;. Furthermore, if we let J; = {j : Z;; = 1}, i = 1,...,m, then each

Ji = S;UB;, where 3 cq pij < ti, and |B;| <1,i=1,...,m. Finally, the analogous theorem holds
if we replace constraints (23) with Y ;= z;; <1,i=1,...,m.

Observe that the properties of S; and B; imply that equation (27) holds: the total processing
requirement of S; is bounded by ¢;, and, by (26), the job j in B; must have z;; > 0.

Consider again the linear relaxation (17) — (21). If we view a machine-interval pair as a virtual
machine, then this linear program is a further constrained variant of (22) — (25), where (20) are
the only additional constraints. Nonetheless, any feasible solution to (17) — (21) can be viewed as
a feasible solution to (22) — (25), and hence Theorem 4.2 can be applied to round this solution.

We can use this rounding theorem to devise an approximation algorithm for R|r;;| > w;C;.
We first solve the linear program (17) — (21), apply the rounding technique of Shmoys & Tardos
(1993) to this feasible solution z, and interpret the rounded integer solution Z as a schedule in the
following way. Consider the set of jobs Jyy = {j : Z5e =1, i=1,...,m, £ =1,...,L}, and let
T = Ei:o 27, = 26H1, £ =0,..., L. We shall process each job j € J;; on machine i entirely within
the interval from 7y_; to 7, (where the ordering of jobs within this interval is arbitrary). First, we
shall show that this is feasible. Clearly, 7o < 7y_1, £=1,...,L. If r;; + p;j > 74, then z;; = 0, and
hence Z;; = 0; in other words, for each job j € Jy, r5j < rij +pij <71t =1,...,m, £{=1,...,L.
Putting these two facts together, we see that job j is released by time 7, ;. Furthermore, the total
processing requirement of the jobs in J;, satisfies

ii < Tp+ max pii < 2Ty =Tp— Te—1
Dij T, Dij V4 /4 1—1,
jEJ'z ]:mi]'g>0

and so these jobs can all be processed by machine ¢ entirely within the interval from 7,_; to 7.

To analyze the quality of this schedule, first note that the objective function value (17) of the
rounded solution Z is at most the objective function value of the optimal LP solution z (by Theorem
4.2). Observe that each j € J;¢ contributes w;m—1 to the objective function value (17) of Z, whereas
it completes by time 7 in our schedule and hence contributes at most w;7; to the objective function
value of the schedule found. Since 7y/7—1 < 8,f=1...,L, the total weighted completion time of
the schedule found is no more than 8 times the objective value of the rounded solution Z. Hence,
we have found a schedule with total weighted completion time within a factor of 8 of optimal.
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To give an improved performance guarantee, we note that the linear programming relaxation
(17) — (21) is quite weak in the following sense. The load constraints (19) limit the load on machine
1 for the /th interval to 74. If, for example, this constraint is satisfied with equality, then for each
of the previous intervals, machine 7 can have no load whatsoever. We can capture this by adding
the following constraints:

£ n
SN pijzijr < T i=1,....,m, £=1,...,L. (28)
k=1j=1

Lemma 4.3 For R|r;j| > w;Cj, the optimal value of the linear program (17) — (21) and (28), is a
lower bound on the optimal total weighted completion time, ijC’;.

We show next that Theorem 4.2 implies that an optimal solution to the strengthened linear
relaxation can be rounded to yield a schedule better than the one found above. As above, any
feasible solution to the linear program (17) — (21) and (28) can be viewed as a feasible solution to
(22) — (25). Let « denote the optimal solution to the strengthened linear relaxation, and let ¢;; =
E?leijmijg, t=1,...,m, £ =1,...,L; thus, Ei:l tiw <15, £ =1,...,L. The rounding theorem
produces an integer solution Z which can be interpreted as the job partition Jyu, ¢ = 1,...,m,
£=1,..., L, where each set J;y = B;, U .Sy, such that (i) X;cq, pij < tie, (ii) [Bi| <1, and (iii) for
each job j € By U Sy, rij + pij < .

Consider some machine ¢ = 1,...,m. We construct the following schedule: let
‘
Tu=1+Y (e+ta), £=0,...,L; (29)
k=1

the jobs in B;y U Sy are scheduled in the interval from 7;,_; to 7; ¢ sorted in the order of non-
decreasing p;/w; ratio. We shall call this the Greedy LP-interval algorithm. (Observe that if we
changed (29) by replacing t;; with its upper bound 7, implied by (19), then 7 is simply 7.)

Lemma 4.4 The schedule produced by the algorithm Greedy LP-interval is feasible.

Proof: Consider some machine i = 1,...,m: we must show that the release dates are respected
and that each set of jobs Bjy U Sy, £ = 1,..., L, fits into its assigned interval. Since 7, = 2¢71,

{=1,...,L, we see that
-1

Tie—1 2> 1+ ZTk = Ty.
k=1
For each job j € B;; U S;y, we have that r;; < r;; + pi; < 7 and hence job j has been released by
time 7; o 1. Furthermore, we have that

> pij STt =T — Tig1,
JEB; USi

and so these jobs can all be processed entirely within this interval. |
Lemma 4.5 Consider the class of all schedules & in which every job j € By U Sy is scheduled
entirely within the interval from 7;4_1 to Ty, for each i = 1,...,m, £ = 1,...,L. Among all

schedules in S, the Greedy LP-interval algorithm produces a schedule of minimum total weighted
completion time.
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Proof: The proof of Lemma 4.4 implies that any schedule in & is feasible. For any schedule in
S, view the completion time of each job j € By U Si as Tj 01 + CA’]'. When optimizing among
all schedules in S, the problem of minimizing 3 ijA’j is equivalent to the problem of minimizing
> w;C;. However, in former case, it is clear that we have mL independent sequencing problems,
and each is equivalent to an instance of 1|| 3 w;C}. By the classical result of Smith (1956), each
can be solved by ordering the jobs in B;; U S;; in order of non-decreasing ratio p;/w;. However,
this is exactly our algorithm Greedy LP-interval. |

Given the rounded solution Z, let Uj = 14—1 whenever Z;;; = 1; in other words, 6J~ is the
completion time that the rounded solution Z is charged for job j in its objective function (17).

Theorem 4.6 For R|r;;| > w;C;, Greedy LP-interval is a %—G-appromimation algorithm.

Proof: We will show that the schedule produced by the Greedy LP-interval algorithm is good by
analyzing two other ways to sequence the jobs within each interval, and then showing that one of
the two resulting schedules has total weighted completion time within a factor of 16/3 of optimal.
By Lemma, 4.5, this implies the theorem.

The two schedules that we consider are as follows: for each interval, either always assign the
job in By before the jobs in S;, £ =1,..., L, or vice versa. Observe that for any sequence of the
jobs in B;p U S, in its interval, each such job j completes by time

4 L 14
Tit = 1+Ztik+z7'k < 1+Tz+ZTk=Tg+Tz+1 < 671 266]'.
k=1 k=1 k=1

This implies that the algorithm is a 6-approximation algorithm, but we will show something a bit
stronger. We first consider the schedule in which each “B” job is scheduled first in its interval. In
that case, the job j € B;y completes by time

£—1 £ 4
1+Ztik+ZTk < 1+Tz_1+27'k =Tp_1+Tpp1 < BTy = 56j.
k=1 k=1 k=1

On the other hand, in the schedule in which each “B” job is scheduled last in its interval, each job
Jj € S;¢ completes by time

J4 -1 -1
1+Ztik+z7'k < 1+Te+27’k=7’g+7’g <Adtp_4 2461‘.
k=1 k=1 k=1

Let wp = 7 Y1t X jen, wiCi and ws = 7% Yio1 Yjies,, wiCj. By Theorem 4.2, wp + wg
is a lower bound on the optimal value, -, ij;. The first schedule has total weighted completion
time at most 6ws+ 5wp, and the second one has total weighted completion time at most dwg+6wp.
Suppose that wg = a(wp +wg). If @ > 1/3, then

do(wp +wsg) +6(1 — a)(wp +ws) = (6 — 2a)(wp +ws) < (16/3)(wp + wg).
On the other hand, if « < 1/3,
6a(wp +ws) +5(1 — a)(wp +ws) = (5+a)(wp +ws) < (16/3)(wp + ws).

Hence, we have shown that one of these schedules has objective function value within a factor of
16/3 of the optimum, and the schedule found by the algorithm is at least as good. |
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Corollary 4.7 The linear program (17) — (21), (28) is a %—Telamtion of R|ri| > w;Cj.

Deng, Liu, Long, & Xiao (1990) and Awerbuch, Kutten, & Peleg (1992) independently intro-
duced the notion of network scheduling, in which parallel machines are connected by a network,
each job is located at one given machine at time 0, and cannot be started on another machine until
sufficient time elapses to allow the job to be transmitted to its new machine; it is assumed that
an unlimited number of jobs can be transmitted over any network link at the same time. This
model can be reduced to the problem of scheduling with machine-dependent release dates: if job j
originates on machine k, we set r;; to be the time that it takes to transmit a job on machine £ to
machine 1.

We thereby obtain the following corollary.

Corollary 4.8 There is a 16/3-approzimation algorithm to minimize the average weighted com-
pletion time of a set of jobs scheduled on a network of unrelated machines.

The best previously known algorithms, due to Awerbuch, Kutten, & Peleg (1992) and Phillips,
Stein, & Wein (1994), provided only polylogarithmic performance guarantees .

5 A general on-line framework

In this section, we describe a technique that yields an on-line 4p-approximation algorithm to min-
imize the weighted sum of completion time objective, where p depends on the scheduling environ-
ment; the setting is on-line in the sense that we are constructing the schedule as time proceeds, and
do not know of the existence of job j until time r;. If one views the role of the LP in Section 4 as
assigning the jobs to intervals, this on-line result shows that if one does this assignment in a greedy
fashion, then one can still obtain a good performance guarantee. The technique is quite general,
and depends only on the existence of an off-line algorithm for the following problem.

THE MAXIMUM SCHEDULED WEIGHT PROBLEM: Given a certain scheduling environment, a dead-
line D, a set of jobs available at time 0, and a weight for each job, construct a feasible schedule
that maximizes the total weight of jobs completed by time D.

We require a dual p-approximation algorithm for the maximum scheduled weight problem, which
produces a schedule of length at most pD and whose total weight is at least the optimal weight
for the deadline D. Dual approximation algorithms were first shown to be useful in the design of
traditional approximation algorithms by Hochbaum & Shmoys (1987).

Our technique, which is similar to one used by Blum, Chalasani, Coppersmith, Pulleyblank,
Raghavan, and Sudan (1994), is useful in the design of on-line algorithms with performance guaran-
tees that nearly match those obtained by the best off-line approximation algorithms. The required
subroutine is a generalization of a subroutine used in the design of approximation algorithms to
minimize the length of the schedule. For several of the models considered in this paper, the design
of this more general subroutine is a straightforward extension of techniques devised for minimiz-
ing the length of the schedule (although we do not yet see how to construct this subroutine for
precedence-constrained models). In addition to the simplicity of the approach, the performance
guarantees can be quite good. In fact, for 1|r;| > w;C; and P|r;| ¥ w;Cj, respectively, it leads to
(3 + ¢€)- and (4 + €)-approximation algorithms, which asymptotically match the guarantees proved
for these models in Section 4.

This result provides a means to convert off-line scheduling algorithms into on-line algorithms.
A result of similar flavor was given for minimizing the length of a schedule by Shmoys, Wein &
Williamson (1995), but that result has the advantage that the subroutine required is simply the
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off-line version of the same problem. In that case, an off-line p-approximation algorithm yields an
on-line 2p-approximation algorithm. We first describe our framework Greedy-Interval and establish
its performance guarantee. We then briefly discuss several applications.

The framework Greedy-Interval is also based on dividing the time horizon of possible completion
times at geometrically increasing points. Let 7o = 1 and 7, = 271, The algorithm constructs the
schedule iteratively: in iteration £ = 1,2,..., we wait until time 74, and then focus on the set of
jobs that have been released by this time, but not yet scheduled, which we denote J;. We invoke
the dual p-approximation algorithm for the set of jobs J, and the deadline D = 14; notice that, in
applying the off-line dual approximation algorithm, we assume that the jobs are available at time
0. The schedule produced by the subroutine is then assigned to run from time p7; to time pry4 ;.
Let S; denote the set of jobs scheduled during iteration £. Since pryy1 — p7y > pTy, it is clear that
the schedule produced by this algorithm is feasible.

To analyze the performance guarantee of this algorithm, consider a fixed optimal schedule: let
L be defined so that each job completes in this schedule by time 77, and let S} denote the set of
jobs that complete in the fth interval, (7,_1,7¢], £ =1,...,L. We will argue that the total weight
scheduled by Greedy-Interval dominates the total weight scheduled in the optimal schedule, in the
following sense: for each £ =1,...,L,

¢ ¢
> w(Se) =) w(Sp), (30)
k=1 k=1
where w(S) = 3. g w; for each subset S C {1,...,n}. Focus on a particular interval £ =1 ..., L,

and consider the set of jobs S = U%_; S} — (Uf;;llgk) Since each job j € S is completed by 7,
in the optimal schedule, it is clearly released by 74, and by definition, it has not been scheduled
by Greedy-Interval before 7,. Hence, j € Jy, and so S C Jy;. Furthermore, S can be scheduled to
complete by 7, (since all jobs in S are completed by 7, in the optimal schedule). Hence, in iteration
£, the dual approximation algorithm must return a set Sy of total weight at least w(S). This implies
the dominance property (30). A further consequence of this property is that Greedy-Interval has
scheduled all of the jobs by iteration L.

Since the sets S, £ =1,..., L, specify an optimal schedule, }-; w;C} > Ele Te—1w(Sy). (Note
that we are using our assumption about the data that no job can complete before time 1.) The
schedule produced by Greedy-Interval has total weighted completion time at most

L L
ZpTz+1w(Sg) < 4p2n_1w(54). (31)
=1 =1

However, the dominance property (30), combined with the fact that Y7, w(S}) = Yrq w(Sy),
implies this upper bound is at most 4p 3}, Teqw(Sy).

Theorem 5.1 Given a dual p-approximation algorithm for the mazimum scheduled weight problem,
the framework Greedy-Interval yields an on-line 4p-approximation algorithm to minimize the total
weighted completion time.

Next we consider how to apply this framework to specific scheduling environments by describing
the necessary dual p-approximation algorithms. For a single machine and identical parallel machines
we provide dual polynomial approximation schemes for the maximum scheduled weight problem; for
the unrelated parallel machine and network scheduling environments, we generalize the algorithms
of Shmoys and Tardos (1993) and Phillips, Stein & Wein (1994) to provide dual 2-approximation
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algorithms. These lead to, respectively, (4 + ¢)- and 8-competitive on-line algorithms for these four
scheduling problems, where € > 0 is fixed but arbitrarily small.

We first consider applying Greedy-Interval to the problem 1|r;| 3> w;C;. In this context, the max-
imum scheduled weight problem is as follows: given a deadline D and a set of jobs J, find a subset
of jobs S with p(S) < D so as to maximize w(S). This problem is simply the knapsack problem,
where the size of the knapsack is D, the size of an “object” j (i.e., job j) is p;, and the value of that
object is wj, the weight of the associated job. We shall argue that it is straightforward to adapt
the fully polynomial approximation scheme of Ibarra & Kim (1975) to yield a dual approximation
scheme for this problem. Given € > 0 and a set of n jobs, we round down the processing time of
each job to the nearest multiple of § = eD/n. More precisely, we set D = |D/6], p; = |p;/6], and
w; = wj, j =1,...,n. Next we apply a standard dynamic programming algorithm to this rescaled
and rounded instance of the knapsack problem; this algorithm runs in O(nD) = O(n?/e) time. Let
S denote the optimal solution for the modified instance that is found by this algorithm, and let S*
denote an optimal solution for the unrounded instance. We have that §p(S*) < p(S*) < D; since
each p; is integer, this implies that p(S*) < D; that is, S* is a feasible solution for the modified
data. Since S is an optimal solution for the modified data, w(S) > w(S*). On the other hand,

p(S) <> 6(pj+1) <p(S)+né < D+eD=(1+¢)D.
jeSs

This shows that the proposed algorithm is a dual (1 + €)-approximation algorithm.

Theorem 5.2 There is a dual (1 + €)-approzimation algorithm for the mazimum scheduled weight
problem in the single-machine scheduling environment.

Corollary 5.3 For1|r;| > w;Cj, Greedy-Interval yields an on-line (4+€)-approzimation algorithm.

In fact, we can improve on this result by slightly modifying the framework in this setting.
Greedy-Interval merely requires that the jobs in S; be scheduled in the interval (pr, pre41], without
specifying the order in which they should be scheduled. Furthermore, any ordering of the jobs
within this interval produces a feasible schedule. Hence, it is most natural to sequence the job in
order of non-increasing w; /p; ratio. We shall show that this heuristic allows us to prove a stronger
performance guarantee.

Consider the completion time of some job in ,SN’g. In (31), we use the fact that the completion time
of this job is at most p7y41, the upper endpoint of the interval in which these jobs are scheduled.
Instead, let this completion time Cj be viewed as p7g + 6;. Thus, we can show that 3>, w;C; is at
most the sum of Y7 ; prew(S;) and >7—1w;0;. The first term is exactly half of the upper bound
used in (31), and hence is at most 2p 377, w;C;. However, since the algorithm is now sequencing

the jobs in Sy optimally, we know that
Z w;b; < Z w]'C;,
JESe JES;

where C7 denote the completion time of job j in some optimal schedule of the entire instance of
the problem, 1|r;| 3> w;C;. Hence, 3.7 w;6; < 3274 w;CF, and so the performance guarantee is
2p+ 1. From Theorem 5.2 we obtain the following corollary.

Corollary 5.4 Forl|r;| > w;C;, Greedy-Interval yields an on-line (3+¢)-approzimation algorithm.
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The identical parallel machines environment requires a much more involved algorithm that is
basically a modification of the polynomial approximation scheme of Hochbaum and Shmoys (1987)
for scheduling identical parallel machines to minimize the makespan. We assume that we are given
a set of n jobs with processing times and weights, a deadline D, and € > 0. Our goal is to determine
a subset of jobs (and an associated schedule) that can be scheduled on m machines to complete
by time (1 + €)D, whose total weight is at least as large as that of any subset of jobs that can be
scheduled to complete by time D. Without loss of generality we assume that all processing times
are at most D, since otherwise they cannot be part of such a schedule. In order to simplify the
exposition, we shall merely show that, for any fixed ¢ > 0, there exists such a polynomial-time
algorithm; we shall briefly mention techniques for improving the running time at the end.

First we introduce two positive parameters v and 6, v < §, whose values will be specified later.
We partition the set of jobs into two sets: a job j is shortif p; < 6 and is long, otherwise. For each
long job j, we round down its processing time to the nearest multiple of y. Notice that there are
fewer than D/~ distinct processing-time values for long jobs, after rounding; let us assume that
there are K distinct values pi,...,Pk-

Next, we introduce the notion of a machine pattern that describes a possible assignment of
long job sizes to one machine. A machine pattern is specified by the number of long jobs of each
processing size; such a pattern can be denoted with a K-tuple, (n1,...,nx). We assume that the
sum of the rounded processing times in any machine pattern is at most D, and it could be much
smaller than D; for example, the empty pattern (0,...,0) is allowed.

Our strategy will be to focus on choosing a set of m machine patterns, and, given those patterns,
generating a schedule with length slightly larger than D whose weight is at least as good as any
schedule conforming to that choice of patterns. Then, by trying every possible combination of
patterns, we will be guaranteed to find a schedule whose weight is super-optimal and whose length
is only slightly degraded. By setting ¢ and 7 judiciously, we will be able to ensure that there is
at most a polynomial number of pattern combinations to try, while simultaneously ensuring that,
upon inserting the original processing times for the rounded times, we can still achieve a schedule
length of (1+¢€)D. We will call a choice of m patterns feasible if there exists a sufficient number of
long jobs of each type to actually fill out the patterns.

Lemma 5.5 Given a feasible choice of patterns, there is a O(nlogn)-time algorithm to construct
a schedule whose length with respect to the rounded processing times is at most D + 6, such that
the sum of the weights of all jobs in the schedule is as large as in any schedule of length at most D
that conforms to the choice of patterns.

Proof: Let us assume that the m chosen patterns together require Ny jobs of type k, for k =
1,..., K. For each k, we order the jobs of that type according to non-increasing w; and we select
the first N jobs on the list to be in the schedule. Next, let T = mD — Ei{:l Nypr, the total
amount of machine time left for scheduling the short jobs. Let us assume that the set of short jobs
is {j1,. -+, Jn'}, ordered so that wy/p1 > wa/pa > -+ > Wy /Pp. Consider the index s for which

or let s =n' if E}"Zl < T. Consider the partial schedule given by the selected long jobs scheduled
according to the machine patterns. We will augment this schedule with the short jobs j1,...,Jjs in
such a way that all of these short jobs get scheduled and the overall length of the new schedule
(with respect to the rounded processing times) is at most D + §. This can be done as follows:
assign these s short jobs in order, and for each such job j merely identify some machine ¢ which
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is currently processing jobs of total (rounded) length less than D, and schedule job j on machine
1; by an averaging argument, the definition of 7" and s ensures that there must always exist such
a machine 7. Consequently, the total processing load assigned to each machine ¢ exceeds D by less
than 6, the maximum length of any short job.

We claim that the resulting schedule has total weight at least as large as any schedule for the
original problem that conforms to the machine patterns of length at most D. First, among all
long jobs we have clearly chosen a set that maximizes the weight of the selected machine patterns.
Moreover, T' is an upper bound on the total amount of processing time available for scheduling
short jobs in any schedule conforming to the chosen machine patterns; since we have chosen the
short jobs greedily and have either scheduled all of them or a set of them that has processing time
at least T, their total weight must equal or exceed the weight of the short jobs in any schedule with
the properties described. Thus, the weight of the constructed schedule is super-optimal relative to
the chosen set of machine patterns. The running time of the algorithm is clearly linear once the
jobs of every rounded size have been sorted. |

It remains to show that we can choose § and v in a way that any such schedule, when the
processing times are unrounded, has length at most (1 + ¢) D, while simultaneously ensuring that
the number of possible combinations of m machine patterns is at most polynomial in the size of
the input.

The number of possible long jobs that could fit on one machine in a schedule of length D is
bounded above by |D/6], and the total number of job sizes is bounded by |D/+]; thus an upper
bound on the number of distinct machine patterns is M := (D/v)P/®. To bound the number of
ways of selecting a combination of these patterns for m machines, note that each pattern describes
at most m machines; therefore the total number pattern combinations is bounded above by m™.
(In fact, complete enumeration is not necessary, and the algorithm can be made much more efficient
by employing a simple dynamic programming approach.) In a greedily constructed schedule based
on machine patterns, the length of any schedule is bounded by D+ 6+ (D/6)y, where the last term
reflects the increase caused by the unrounding of at most D /6 long jobs; we wish to restrict this to
be at most D 4 eD. Values of § and v that achieve this bound while making M sufficiently small
are § = eD/2 and v = €2D/4. We observe that these values imply that M is a constant (albeit
depending doubly exponentially on 1/¢), and so there are at most a polynomial number m* of
distinct pattern combinations to try. Since a schedule corresponding to a pattern can be computed
in O(nlogn) time, we have obtained the following theorem.

Theorem 5.6 There is a dual (1 + €)-approzimation algorithm for the mazimum scheduled weight
problem in the identical parallel machine scheduling environment.

Corollary 5.7 For P|r;j| Y, w;Cj;, Greedy-Interval yields an on-line (4-+¢€)-approzimation algorithm.

We next turn to the case in which we have a network of unrelated parallel machines: each
job j originates on some machine k, and may be transferred to some other machine ¢ through the
network; we let r;; denote the earliest time at which job j can begin processing on machine ¢,
which is the sum of its release date and the time required to transfer the job to machine i. The
machines themselves are unrelated: each job j requires p;; time units of processing when scheduled
on machine ¢, =1,...,m.

Phillips, Stein, & Wein (1994) gave an off-line 2-approximation algorithm for minimizing the
schedule length in a network of unrelated machines; we will show how to adapt this result to obtain
the required subroutine for Greedy-Interval for this scheduling environment.

Consider the maximum scheduled weight problem in this environment: we are given a set of
jobs J and a deadline D; for each j € J and each machine i = 1,...,m, we are also given p;;
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and r;;, the machine-dependent processing and allow starting times, respectively. Consider the
following linear program:

maximize Z Z Wi (32)

1=17=1
subject to
dowy <1, JEJ; (33)
i=1
szjx’” S _D, 1 = ]_, . ,m, (34)
JjeJ
zy;; = 0, if D <7+ pijs (35)
Tij > 0, 1=1,...,m, j€J. (36)

This linear program is a relaxation of the maximum scheduled weight problem: if we consider the
optimal schedule for the latter problem, and set z;; = 1 whenever job j is scheduled by time D on
machine 4, then z is a feasible (integer) solution for the linear program (32)-(36). We will derive
a dual 2-approximation algorithm by applying Theorem 4.2 to round the optimal solution to this
linear program.

Let z denote the optimal solution to the linear program (32)-(36). If we set ¢;; = —wj, for
eachi=1,....m,j€J,and C = -7, Y jeg Wjtsj, then z is a feasible solution to the linear
relaxation of the generalized assignment problem, (22)-(25). As a result, we can invoke Theorem
4.2 and round z to obtain an integer solution Z. By this theorem, we know that

m m
DD wiTi > Y wizy;

i=1jeJ i=1jeJ

that is, if we let S denote the set of jobs j for which some component Z;; = 1, then w(g) is at
least the LP optimum, and is consequently at least the optimal value for the maximum scheduled
weight problem.

We will show that the set of jobs S can be scheduled by time 2D, and hence derive a dual 2-
approximation algorithm. By Theorem 4.2, the set S can be partitioned into B;US;, i =1,...,m.
For each job j € B; U S;, z;; = 0 whenever r;; + p;; > D, and so by (26), Z;; > 0 implies that
rij + pij < D. This implies that the job j in B; (if it exists) can be scheduled on machine ¢ from
time D — p;; to time D. Furthermore, we know that }°;cg pij < D, and hence all of the jobs in S;
can be scheduled on machine ¢ from time D to 2D.

Theorem 5.8 For scheduling on a network of unrelated parallel machines, there is a dual 2-
approximation algorithm for the mazimum scheduled weight problem.

Corollary 5.9 For minimizing Y w;C; in a network of unrelated parallel machines, Greedy-Interval
yields an on-line 8-approximation algorithm.

If each job can be transferred between machines without delay, then we have reduced the
problem to ordinary unrelated machines, and so we obtain the following corollary.

Corollary 5.10 For R|rj| >, w;C;, Greedy-Interval yields an on-line 8-approzimation algorithm.
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