
Solutions to A�ne Generalized Equations UsingProximal Mappings �Stephen C. Billupsyand Michael C. Ferris zNovember, 1994 (Revised May, 1996)AbstractThe normal map has proven to be a powerful tool for solving generalized equations of theform: �nd z 2 C, with 0 2 F (z) + NC(z), where C is a convex set and NC (z) is the normalcone to C at z. In this paper, we use the T -map, a generalization of the normal map, tosolve equations of the more general form: �nd z 2 dom(T ), with 0 2 F (z) + T (z), where Tis a maximal monotone multifunction. We present a path-following algorithm that determineszeros of coherently oriented piecewise-a�ne functions, and we use this algorithm, together withthe T -map, to solve the generalized equation for a�ne, coherently oriented functions F , andpolyhedral multifunctions T .1 IntroductionThis paper is concerned with solving generalized equations [20, 21] of the form0 2 F (x) + T (x) (1)where T is a maximal monotone multifunction from IRn into IRn and F is a continuously di�eren-tiable function from an open set 
 � dom(T ) into IRn. We recall that a monotone multifunction Tis a point to set mapping such that for each (x1; y1); (x2; y2) in the graph of T ,Dx1 � x2; y1 � y2E � 0;where h�; �i denotes the inner product, T is maximal if its graph is not properly contained in thatof any other monotone multifunction and dom(T ) represents the e�ective domain of T .To date, most of the algorithmic development for generalized equations has been focused on thespecial case where T := NC , the normal cone to a convex set C, de�ned byT (z) = NC(z) := ( fwj hw; y � zi � 0; 8y 2 Cg z 2 C; z 62 CThis case yields the generalized equation0 2 F (x) +NC(x): (2)�This material is based on research supported by National Science Foundation Grant CCR-9157632, the Air ForceO�ce of Scienti�c Research Grant F49620-94-1-0036, and the Department of Energy Grant DE-FG03-94ER61915yMathematics Department, University of Colorado, Denver, Colorado 80217zComputer Sciences Department, University of Wisconsin, Madison, Wisconsin 537061



Many problems from mathematical programming, equilibrium, complementarity and other �eldscan be expressed in this form. For example, if F := rf , then (2) represents the �rst order necessaryoptimality conditions for the problemminimize f(x)subject to x 2 C:Another important instance of (2) is the variational inequality problem, which is to �nd z 2 Csuch that hy � z; F (z)i � 0; 8y 2 C:This problem is known to be equivalent to (2) (see [21]).As a �nal example, we mention the complementarity problem; this has a wealth of applicationsand appears in a variety of forms [13]. The standard nonlinear complementarity problem is to �ndx 2 IRn+ such that F (x) � 0; and hx; F (x)i = 0:It is well known [13, 15] that complementarity problems can be reformulated as variational inequal-ities, and therefore can be treated in the context of the generalized equation (2).A prominent tool for solving (2) is the normal map [8, 22, 26]. The normal map FC for afunction F : 
! IRn and a nonempty, closed, convex set C � 
 is de�ned byFC(x) := F (�C(x)) + x� �C(x); (3)where �C(x) denotes the projection (with respect to the Euclidean norm) of x onto the set C. Theimportance of the normal map lies in the fact that solving (2) is equivalent to �nding a zero ofthe normal map FC . Speci�cally, if x is a zero of the normal map, then z := �C(x) solves (2).Conversely, if z is a solution to (2), then x := z � F (z) is a zero of the normal map. Thus, theproblem of solving the generalized equation (2), which is expressed with set-valued functions, isreduced to �nding a zero of a piecewise smooth, single-valued function.Several algorithms have been developed based on this idea. Most of these algorithms are basedon the theory of piecewise linear homotopies given by Eaves [9]. The specialization of the generalalgorithm given in [9] determines a zero of the normal map by tracing the zero curve of a piecewiselinear homotopy mapping. It is shown in [12] that Lemke's famous method [16] for solving linearcomplementarity problems is conceptually equivalent to path following in a corresponding piecewiselinear system. This idea is easily extended to more general algorithms [10, 11]. Based on Eaves'work, Cao and Ferris [3] analyzed an algorithm for solving a�ne (i.e. F (x) is a�ne) variationalinequality problems over polyhedral sets and showed that Lemke's method processed matrices inthe class PC [2].For non-a�ne problems with C rectangular, Ralph [18] proposed a Newton-based algorithmwhere at each iteration the Newton point is calculated by solving an a�ne variational inequality(AVI) that is a linearization of the normal map equation at the current point. This approachwas developed computationally by Dirkse and Ferris [5, 6, 7] to produce PATH, an e�cient androbust code for solving mixed complementarity problems. A similar approach was developed byRutherford [24].In this paper, we begin to generalize the above class of algorithms by removing the restrictionthat T be the normal cone to a convex set. As a �rst step, in this paper we focus on solving thea�ne generalized equation where F is an a�ne function and T is polyhedral (that is, the graph ofT is the union of �nitely many convex polyhedrons).2



Our strategy is, in essence, a generalization of the AVI algorithm of Cao and Ferris. We usea generalization of the normal map to reformulate (1) as a zero �nding problem of a piecewisea�ne function; then we use the piecewise-linear homotopy framework of Eaves [9] to generate analgorithm for determining zeros of piecewise-a�ne functions. We describe this algorithm in detailin Section 2 and prove that under the assumption of coherent orientation, the algorithm �nds azero after a �nite number of steps.The remainder of the paper describes how the algorithm is used to solve a�ne generalizedequations. In Section 3 we discuss a generalization of the normal map called the T -map. Thismapping, which to our knowledge was introduced by Minty [17], provides a means of reformulatinggeneralized equations involving operators T that do not necessarily correspond to the normal cone ofany set. After describing this reformulation, we focus on the case where T is polyhedral. This casecan be viewed as an extension of the special case where T := NC , with C a convex polyhedron. InSection 4 we describe how the algorithm presented in Section 2 can be used to solve a�ne generalizedequations. In Section 5 we further specialize to the case where T is separable. Finally, in Section 6we discuss how the algorithm can be applied to solve piecewise linear-quadratic programmingproblems [25].Some words about notation are needed. The notation T : IRn!!IRn indicates that T is a pointto set mapping, or multifunction, which maps points in IRn to subsets of IRn. In discussing multi-functions, we may refer either to a point to set mapping, T (�), or to the graph of that mapping,T , which is the set T := f(x; y) j y 2 T (x)g. The expression T�1(�) is de�ned as a set inverse; i.e.,T�1(y) := fxj(x; y) 2 Tg. Further, T�1 = f(y; x)j(x; y) 2 Tg. The e�ective domain of T , is de�nedby dom(T ) := fxjT (x) 6= ;g.In discussing matrices and vectors, subscripts are used to refer to components. For exampleAi�; A�j; Aij refer to the ith row, jth column, and (i; j)th entry of A, respectively. We may alsouse index sets to refer to speci�c components. For example if � = f1; 3; 5g, then x� = fx1; x3; x5g.Further, we use the MATLAB notation of a comma to separate columns, and a semicolon toseparate rows. For example (x; y) is a row vector, whereas (x; y) is a column vector. Unlessotherwise indicated, all vectors are taken to be column vectors. Superscripts are used to indicatean iteration count, index, or some other label for matrices and vectors. In contrast, for scalars,sets, and functions, subscripts are used as labels.For a set C, a�(C), int(C), ri(C), rec(C), dim(C), and �(�jC) refer to the a�ne hull, interior,relative interior, recession cone, dimension, and indicator function of C respectively. (see [23] forde�nitions of these terms).2 Algorithm for Finding Zeros of M-PA MapsOur �rst task is to describe an algorithm for �nding zeros of piecewise a�ne functions. Thealgorithm we present can be viewed as a generalization of Lemke's method for the linear com-plementarity problem and of the algorithm for solving a�ne variational inequalities over convexpolyhedral sets that was described in [3]. The theoretical basis for the algorithm is derived fromthe theory of piecewise-linear homotopies given in [9].In order to describe the algorithm carefully, we need some preliminary de�nitions.De�nition 2.1 (cell) A polyhedral convex set � � IRn is called a cell. If dim(�) = k then � iscalled a k-cell. Let � := fxjAx � ag, where A 2 IRp�n, and a 2 IRp, with p a nonnegative integer.Then (p; A; a) is said to represent �. If p is the smallest number for which a representation of �exists, then (p; A; a) is called a minimal representation of �. A set � 2 IRn is called a face of � if3



for some set of indices � � f1; : : : ; pg, � = fx 2 � : A��x = b�g. If dim(�) = i, then � is called ani-face of �.Clearly any cell has a minimal representation.De�nition 2.2 (piecewise a�ne) Let M be a collection of n-cells and let M := S�2M �. Afunction F : M ! IRm is said to be piecewise-a�ne with respect to M, denoted M-PA, if for each� 2 M, Fj� (i.e. the restriction of F to �) is a�ne. If F is M-PA for some M satisfying theabove assumptions, then we say that F is piecewise a�ne.Note that in the above de�nition, if M is convex, then the function F must be continuous onM , because F must be single-valued on the boundaries between cells. Furthermore, in contrast tothe work of Eaves [9],M is not required to correspond to a subdivided manifold.De�nition 2.3 (function representation) Let M be a collection of n-cells in IRn, let F be aM-PA function, and let � be an n-cell of M. Let b� 2 IRm and let B� be an m�n matrix. (B� ; b�)is said to represent F on � if F (x) = B�x + b� for all x 2 �.We now describe an algorithm to �nd a zero of an M-PA function G, for a given collection ofcells M. We will assume that representations of the cells of M and of the map G have alreadybeen constructed. The basis of the algorithm is to construct a piecewise a�ne homotopy mappingF (x; �) with the following properties1. (x�; 0) is a zero of F if and only if x� is a zero of G.2. A point (x1; �1), and a direction (d1;�1) is known such that �1 � 0 and F (x1��d1; �1+�) = 0for all � � 0.The algorithm uses a method described by Eaves [9] to trace the zero curve of F , proceeding in thedirection (d1;�1) from the starting point (x1; �1). To prove that the algorithm �nds a solution ina �nite number of steps, we restrict ourselves to the case where G is coherently oriented:De�nition 2.4 (coherent orientation) Let G be anM-PA map with representation (B� ; b�) oneach � 2 M. We say that G is coherently oriented ifsgn(det(B�))is nonzero and constant for all � in M, wheresgn(x) := 8><>: �1 x < 00 x = 01 x > 0:Since M is �nite and S�2M � = IRn, it follows that IRn = S�2M rec(�), and further that thereis a � such that int(rec(�)) 6= ;. Choose d such that �d 2 int(rec(�)). Then for any x0 in IRn, andfor all � su�ciently large, x0 � �d 2 int(�).In the AVI algorithm described by Cao and Ferris, the cell � and the direction d were constructedby �nding an extreme point xe of the set C. The cell was then given by � := xe+NC(xe), and thedirection d was chosen such that �d was in the interior of NC(xe). For our algorithm, rather thanconstructing the cell and direction, we can rely instead on the fact that since IRn = S�2M rec(�),4



then for any direction d, there will be a cell �d for which �d 2 rec(�d). Note further that for eachcell �, the boundary rec(�) n int(rec(�)) of rec(�) has Lebesgue measure zero. Therefore, since thenumber of cells is �nite, S�2M rec(�) n int(rec(�)) has measure zero. Thus, for almost all d, therewill be a cell �d for which �d 2 int(rec(�d)).Thus, if x0 is any point in IRn, then for all � su�ciently large, x0 � �d will lie interior to thecell �d. In other words, the cell can be chosen simply by picking an arbitrary d and proceeding inthe direction �d until a cell �d is reached for which �d is in the recession cone of �d. For almostall d (excepting a set of Lebesgue measure zero), �d will be in the interior of rec(�d). We note,however, that for some special cases, construction of an extreme point may still be preferable.Once d and �d have been identi�ed, the homotopy map can be constructed. Let (B; b) be therepresentation of G in �d. De�ne a function F : IRn � IR+ ! IRn byF (x; �) := G(x) + �Bd: (4)Note that F (x; 0) = 0 exactly when G(x) = 0. Under the assumption that G is coherently oriented,B is invertible. Let x0 := �B�1b and de�new(�) = x0 � �d:Then, since �d 2 int(rec(�d))), there exists �0 � 0 such that w(�) 2 int(�d); 8� > �0. Thus, for� � �0, F (w(�); �) = G(w(�)) + �Bd= Bw(�) + b+ �Bd= B(x0 � �d) + b+ �Bd= �b� �Bd + b+ �Bd= 0: (5)By choosing �1 > �0, x1 = w(�1), and d1 = d, we see that F satis�es the conditions neededfor the homotopy map. We are now ready to state the algorithm, which is given in Figure 1. Notethat by normalizing d in the discussion above to be a unit vector, we can start the algorithm fromthe point (x1; �1) constructed above with �1 := �d.Some comments about Algorithm AGE are in order:1. Most of the work in the algorithm is in step 8 where the direction (dk+1; vk+1) is calculated.At the end of this section, in Theorem 2.13, we show that Bk+1�Bk is a rank-1 matrix. Thus,an e�cient implementation of the algorithm can be obtained by keeping the matrices Bk infactored form and performing rank-1 updates of the factors at each step of the algorithm.2. At step 8 in the algorithm, there may be more than one possible choice of cells �k+1. However,a lexicographic ordering, as described by Eaves [9, Section 15], can be used to resolve anyambiguity concerning which cell to choose. The use of such a lexicographic ordering willbe assumed in the convergence proof, and will be presented in more detail in the discussionpreceding Lemma 2.9.3. The requirement that 


dk+1


 = 1 is arbitrarily chosen to force the choice of dk+1 to be unique.4. The requirement that x1��d1 2 int(�1); 8� � 0 guarantees that the zero curve of F (x; �) :=G(x) + �Bd1 contains a ray, and therefore assures us that it will not have any loops. Thisfact will be useful in our convergence proof. However, we shall also show that, under theassumption of coherent orientation, vk is always negative, which by itself guarantees that no5



Figure 1: Algorithm AGEGiven a �nite collection of n-cells M such that S�2M � = IRn, and an M-PA function G on IRn.Let G have representation (Bk ; bk) on �k 2 M.1) [Initialization] Determine (x1; �1; �1; d1) satisfying

d1

 = 1;x1 2 int(�1);x1 � �d1 2 int(�1); 8� � 0;B1x1 + �1B1d1 + b1 = 0.2) v1 := �1.Repeat for k = 1; 2; : : :3) �k := supf�jxk + �dk 2 �k; �k + �vk � 0g.If �k = +1, then4) output(\ray termination"); return.Else5) xk+1 := xk + �kdk6) �k+1 := �k + �kvkIf �k+1 = 0 then7) output(\solution found at", xk+1); return.Else8) determine �k+1 (possibly using lexicographic ordering),dk+1, and vk+1 such thatxk+1 2 �k+1,Bk+1dk+1 + vk+1B1d1 = 0,


dk+1


 = 1,dk+1 points into �k+1 from xk+1,and �k+1 2M n �k.9) goto next k.
6



loops occur. Thus, under the assumption of coherent orientation, it is not necessary to �nd aray start. However, in future work, we will prove convergence for a broader class of problems,in which case the ray start requirement will be useful.The next few pages are devoted to proving the following convergence theorem:Theorem 2.5 LetM be a �nite collection of n-cells whose relative interiors are disjoint and whoseunion is IRn. Let G be a coherently oriented, M-PA function. Algorithm AGE, using lexicographicordering, terminates after �nitely many steps with a zero x� of G.Proof (Outline) There are three main parts to the proof. First, as Lemma 2.9, we will show thatthe algorithm terminates at a solution if M is a subdivision of IRn (see De�nition 2.6). Second, inLemma 2.11, we will show that even if M is not a subdivision of IRn, there is a re�nement (seeDe�nition 2.10)N ofM that is a subdivision. Finally, we show in Lemma 2.12 that if a subdivisionN is a re�nement of M, then running the algorithm using N will generate exactly the same pathas would be generated by using M. Thus, the fact that the algorithm terminates at a solutionusing N guarantees that it will terminate at a solution using M.We now prove the three lemmas mentioned above. At this point, we recommend that theimpatient reader skip ahead to Theorem 2.13. Our proof technique is based on the work of Eaves[9]. Eaves' analysis relies heavily on the notion of a subdivided manifold:De�nition 2.6 (subdivided manifold) Let N be a set in some Euclidean space, and let N be a�nite or countable collection of n-cells in that space such that N = S�2N �. Let ~N be the collectionof all faces of elements of N . (N; ~N ) is a subdivided n-manifold if1. any two n-cells of N are either disjoint or meet in a common face;2. each point of N has a neighborhood meeting only �nitely many n-cells of N ;3. each (n� 1)-cell of ~N lies in at most two n-cells;If (N; ~N ) is a subdivided n-manifold for some subdivision N , we call N an n-manifold and we callN a subdivision of N .The following lemma shows that when N = IRn, item 3 in De�nition 2.6 is redundant. Thisresult was proved by Robinson [22] in the proof of Proposition 2.4. While Robinson's propositionis stated for the normal manifold, his proof is valid for general subdivisions of IRn.Lemma 2.7 If N is a collection of cells whose union is IRn and if N satis�es 1 and 2 of De�ni-tion 2.6, then N is a subdivision of IRn.The next step in our analysis is to prove that the algorithm works wheneverM is a subdivisionof IRn. In this case, by de�ning S := f� � IR+j� 2 Mg, we see that S is a subdivision of IRn � IR+and further that F is S-PA. The starting point (x1; �1) of the algorithm lies interior to the cell�1 := �1 � IR+ of S. Further, the ray f(x1; �1) � �(d1;�1)j� � 0g lies within �1. Let ~S be thecollection of all faces of elements of S. Algorithm AGE is then seen to be equivalent to the algorithmdescribed by Eaves [9, Section 10.2], with the following relationships between the algorithms:7



Eaves' Algorithm Algorithm AGEM ~SF (x) F (x; �) := G(x) + �B1d1xk (xk; �k)�k �kvk (dk; vk)To discuss the behavior of this algorithm in more detail, we need some de�nitions from [9].De�nition 2.8 (regularity) Let (N; ~N ) be a subdivided (n+ 1)-manifold, let N be the collectionof n-cells in ~N , and let F : N ! IRn be a N -PA map. A point x in N is said to be degenerate(otherwise regular) if x lies in a cell � of ~N with dim(F (�)) < n. A value y in F (N) is said to bea degenerate value (otherwise a regular value) if F�1(y) contains a degenerate point.Note that if y is a regular value, then F�1(y) cannot intersect any k-cells of S with k < n.By the assumption of coherent orientation, G is one-to-one in every n-cell of M. Thus,dim(F (�)) = n for all (n + 1)-cells � of S. Since the starting point (x1; �1) of the algorithmis interior to �1, it is a regular point of F . According to [9, Theorem 15.13], since S is �nite, thealgorithm generates, in �nitely many steps, either a point (x�; ��) in the boundary of IRn � IR+,or a ray in F�1(0) di�erent from the starting ray. In the �rst case, we know that �� = 0, sincethe boundary of IRn � IR+ is IRn � f0g. It then follows, from our earlier remarks that x� satis�esG(x�) = 0. Therefore, to guarantee that the algorithm �nds a solution, we need only show that itcannot produce a ray di�erent from the starting ray.We �rst consider the case when 0 is a regular value of F . In this case, by [9, Theorem 9.1],F�1(0) is a 1-manifold which is subdivided by sets of the form �TF�1(0). Further, since F�1(0)cannot intersect any k-cells with k < n, each point on F�1(0) is in at most two (n+ 1)-cells of S.Thus, in step 8 of the algorithm, the choice of �k+1 is well-de�ned. (The only di�culty would beif (xk+1; �k+1) lies in only one (n + 1)-cell �k so that no �k+1 could be selected. But in this case,(xk+1; �k+1) would be a boundary point of IRn� IR+. Thus, �k+1 = 0, so the algorithm would haveterminated in step 5.)Let (dk; vk) be the direction of the path within the (n + 1)-cell �k of S, and let G have rep-resentation (Bk ; bk) on the n-cell �k of M. Then by [9, Lemma 12.3], the curve index, givenby (sgnvk)(sgndetBk)is constant everywhere along the path. Since v1 = �1 for the starting direction (d1; v1), and sinceG is coherently oriented, it follows that vk is negative in each cell that the path enters. But thismeans that the parameter � decreases strictly in each cell. Thus, after �nitely many steps, we musthave � = 0.When 0 is a degenerate value of F , F�1(0) may intersect a k-cell of S with k < n. Thus, instep 8 of the algorithm, there may be multiple choices for which cell �k+1 to enter next. To addressthis problem, a lexicographic ordering can be used to resolve ambiguities concerning which cell thepath will enter. Such a scheme is conceptually equivalent to solving a perturbed problem, whichwe now describe.LetX = [�1; : : : ; �n] be an (n+1)�n matrix such that [X; d1] is of rank (n+1). De�ne the vector[�] := (�1; �2; : : : ; �n)> (note: the superscripts here refer to exponentiation). De�ne (x1(�);�1(�)) :=(x1;�1) +X [�]. Since (x1;�1) in Algorithm AGE is interior to �1, then (x1(�);�1(�)) 2 int(�1) for8



small enough �. Further, since (�d1; 1) 2 int(rec(�1)), (x1(�); �1(�)) + �(�d1; 1) 2 int(�1), for all� � 0. Thus, x1(�); �1(�); �1, and d1 satisfy the starting conditions needed to apply the algorithmto the perturbed problem given by 0 = F (x; �)� p(�);where p(�) := F (x1(�); �1(�)). Observe thatp(�) = F (x1; �1) + [B1; B1d1]X [�]= [B1; B1d1]X [�]= Y [�]; (6)where Y := [B1; B1d1]X . Y is an invertible n � n matrix, so that by [9, Lemma 14.2], p(�) is aregular value for all � su�ciently small. Thus, by the arguments given above for regular values,using Algorithm AGE to solve the perturbed problem will, after a �nite number of steps J , producea point (xJ(�)) such that G(xJ(�)) = p(�).Let (xk(�); �k(�)) be the sequence of points generated by the algorithm for the perturbed prob-lem. By the discussion in [9, Section 15], there is a sequence of matrices Xk 2 IR(n+1)�n and asequence of points (xk; �k) such that (xk(�);�k(�)) := (xk;�k) +Xk[�] for all small �. The points(xk; �k) are exactly the sequence of points generated by the algorithm for solving the unperturbedproblem using the lexicographic ordering. Since the algorithm terminates after J steps for all small�, we see that �J (�) = 0 and G(xJ(�)) = p(�). It follows that �J = 0 and further that G(xJ) = 0.Thus, using a lexicographic ordering, the algorithm �nds a solution after a �nite number of steps.We have proved the following lemma:Lemma 2.9 Let M be a subdivision of IRn and AT be a coherently oriented, M-PA function.Algorithm AGE, using lexicographic ordering, terminates after �nitely many steps with a zero x�of G.We now address the case where M is not a subdivision of IRn. We begin by proving that Mcan be re�ned to produce a subdivision.De�nition 2.10 (re�nement) Let M and N be �nite collections of n-cells. N is said to be are�nement of M if each cell � of M is the union of a �nite collection of cells �i of N , and if eachcell of N is contained in some cell of M.The following lemma is proved by Hudson [14, Lemma 1.5], however, using di�erent nomencla-ture. In particular, the term \subdivision" is used in place of our term \re�nement".Lemma 2.11 Let M := fCig be a collection of J < 1 n-cells which covers IRn. There exists asubdivision N of IRn such that N is a re�nement of M.We now show that using N , the algorithm follows the same path as it would using M.Lemma 2.12 Let G be an M-PA function, where M is a �nite collection of relatively disjointn-cells whose union is IRn. Let N be a re�nement of M such that N is a subdivision of IRn. ThenAlgorithm AGE, using lexicographic ordering, will �nd a solution x� to G(x) = 0 in a �nite numberof steps. Furthermore, the sequence of points generated by the algorithm using M is a subsequenceof the points that would be generated using N . 9



Proof Consider �rst running the algorithm using N instead ofM. By Lemma 2.9, the algorithmwill terminate after some �nite number of steps J . The algorithm will visit a sequence of n-cells f�kg � N , and will generate a sequence of points f(xk; �k)g and directions f(dk; vk)g, fork = 1; : : : ; J .Let j1 := 1 and let �1 be the unique cell in M that contains �1. Then for i = 2; : : :, let jibe the smallest index greater than ji�1 such that �ji 6� �i�1, and if ji � J , let �i be the uniquecell in M that contains �ji . Let K be such that jK = J . This process de�nes a sequence of cellsf�ig; i = 1; : : : ; K and indices fjig; i = 1; : : : ; K + 1 such that �k � �i whenever ji � k < ji+1.We will show that if the algorithm is run using M, then the sequence of points f(�i; �i)ggenerated by the algorithm satis�es the equation (�i; �i) = (xji ; �ji), for each i. Thus, (�K ; �K) =(xJ ; �J), so the algorithm �nds a solution after a �nite number of steps.Let f(�i; �i)g be the sequence of directions chosen by the algorithm using M. Clearly, since thealgorithm is started at the point (x1; �1) in the direction (d1;�1), the following is true: (�1; �1) =(xj1 ; �j1), (�1; �1) = (dj1 ; vj1), and the �rst cell visited by the algorithm is �1.We now proceed by induction: Assume that (�i; �i) = (xji ; �ji), (�i; �i) = (dji ; vji), and that,usingM, the ith cell visited by the algorithm is �i. We shall prove that (�i+1; �i+1) = (xji+1 ; �ji+1),(�i+1; �i+1) = (dji+1 ; vji+1), and that the (i+ 1)st cell visited by the algorithm is �i+1.Let (Bi; bi) be the representation of G on �i. This is also the representation of G on �k wheneverji � k < ji+1. Thus, in step 8 of the algorithm using N , the direction (dk+1; vk+1) chosen whenentering cell �k+1 must satisfy Bidk+1 + vk+1B1d1 = 0for ji � k < ji+1. Since G is coherently oriented, Bi is invertible. Further, 


dk+1


 = 1 and,by our earlier discussion, vk+1 is negative. Thus, the direction is uniquely determined by therepresentation. In particular, (dji ; vji) = (dji+1; vji+1) = � � � = (dji+1 ; vji+1) = (�i; �i). From this itis clear that xji+1 lies on the ray f�i(�)j� � 0g, where �i(�) := �i + ��i. Further, xji+1 is on theboundary of �i.If the ray f�i(�)j� � 0g contains a point in the interior of �i, then the ray cannot be extendedpast xji+1 without exiting �i. Thus, xji+1 = �i(�i) where �i := supf�j�i(�) 2 �ig. In other words,(xji+1 ; �ji+1) = (�i+1; �i+1).If the ray f�i(�)j� � 0g does not contain an interior point of �i, then we must resort to thelexicographic ordering to prove that xji+1 = �i(�i). Since �i and �ji+1 are relatively disjoint convexsets, there exists a separating hyperplane Hi de�ned by a vector ci, and a scalar �i such thatci>x < �i; 8x 2 int(�i), and ci>x � �i; 8x 2 �ji+1 . Suppose we run the algorithm using Nto solve the perturbed problem G�(x) := G(x) � p(�) = 0, where p(�) is de�ned by (6). Then,for � small enough, the algorithm will visit the same sequence of cells f�kg as it visits in theunperturbed problem. Also, by our earlier discussion, the algorithm will generate the sequence ofpoints f(xk(�);�k(�))g = f(xk;�k) +Xk[�]g, where fXkg is a �xed sequence of matrices.Since 0 is a regular value of G�, dim(G�(�kT �k+1)) � n � 1 for any k. Thus, G�1� (0) containsonly one point in �kT �k+1, namely xk+1. Therefore, the direction dk+1 must point into the interiorof �k+1.By similar arguments as before, xji+1 lies on the ray f�i�(�)j� � 0g, where �i�(�) := xji(�)+�(dji).But, since dk+1 points into the interior of �ji , this ray must contain a point x̂ in the interior of�i. Thus, ci>x̂ < �i. But ci>xji+1 � �i since xji+1 is in �ji+1 . It follows that ci>dji > 0.Thus, even for the unperturbed problem, the ray �i(�) cannot be extended past the point xji+1without crossing the hyperplane Hi, and thereby exiting �i. Thus, xji+1 = �i(�i), and as before,(xji+1 ; �ji+1) = (�i+1; �i+1). 10



Finally, note that for all small �, the point xji+1(�) is a regular point, so �(ji+1�1) and �ji+1are the only n-cells of N that contain xji+1(�). Thus, �i and �i+1 are the only n-cells of M thatcontain xji+1(�). Thus, for all small �, the algorithm, using M will enter cell �i+1 at the nextiteration. But this means that using lexicographic ordering the algorithm will enter cell �i+1 nextwhen solving the unperturbed problem. Finally, since the representation of G on �i+1 is identicalto the representation of G on �ji+1 , we must have (�i+1; �i+1) = (dji+1 ; vji+1).The lemma is now proved by induction.This completes the proof of Theorem 2.5. Our �nal task in this section is to establish the claimmade in Comment 1 following Algorithm AGE.Theorem 2.13 Under the hypothesis of Theorem 2.5, let f�kg be the sequence of cells chosen inStep 8 of Algorithm AGE using lexicographic ordering, and let (Bk ; bk) represent AT on �k. ThenBk+1 � Bk has rank 1.Proof Using lexicographical ordering, the algorithm will choose the same cell �k+1 in step 8 asit would when solving the perturbed problem for small �. However, 0 is a regular value for theperturbed problem, so �k := �kT �k+1 must have dimension n � 1. Now, for any two pointsx1; x2 2 �k Bk+1(x1 � x2) = Bk(x1 � x2) =) (x1 � x2) 2 ker(Bk+1 �Bk)Thus, dim ker(Bk+1 �Bk) = n� 1 so rank(Bk+1 �Bk) = 1.3 The T -mapThe T -map, denoted FT , is a generalization of the normal map that is formed by replacing theprojection operator �C in (3) by the resolvent operator PT := (I + T )�1. Speci�cally, the T -mapis given by FT (x) := F (PT (x)) + x� PT (x): (7)We assume throughout that T is a maximal monotone operator. In this case, Minty [17] showedthat PT is a continuous, single-valued, nonexpansive function de�ned on all of IRn. Since the imageof PT is dom(T ) (which is contained in the domain of F , 
), it follows that FT is a single-valuedfunction de�ned on all of IRn.By [1, Example 2.1.2], I + T is monotone, and therefore PT is monotone. We now show thatsolving GE(F; T ) is equivalent to �nding a zero of FT .Theorem 3.1 Given a maximal monotone multifunction T : IRn!!IRn, and a function F : 
 �IRn ! IRn, let FT be de�ned by (7). If x is a zero of FT , then z := PT (x) solves GE(F; T ).Conversely, if z solves GE(F; T ), then x := z � F (z) is a zero of FT :Proof Suppose FT (x) = 0 and let z := PT (x). Then 0 = FT (x) = F (z) + x� z, and�F (z) = x� z2 (I + T )(I + T )�1(x)� z= (I + T )(z)� z= T (z):Conversely, suppose �F (z) 2 T (z) and let x := z � F (z). Then x 2 z + T (z) = (I + T )(z), soPT (x) = (I + T )�1(x) = z. Thus FT (x) = F (z) + x � z = F (z)� F (z) = 0.11



So far, we have not made any assumptions on T other than that it is maximal monotone. Wenow focus on the case where T is polyhedral.De�nition 3.2 (polyhedral) A multifunction T is polyhedral if its graph is the union of �nitelymany polyhedral convex sets.Our �rst task will be to show that, for polyhedral T , the resolvent operator PT := (I + T )�1 isa piecewise-a�ne map.Lemma 3.3 A single-valued multifunction T : IRn!!IRm whose graph is a convex polyhedron isa�ne on dom(T ).Proof Assume dom(T ) 6= ;. (Otherwise the lemma is true vacuously). Since the graph of T is apolyhedron, T can be written as T = f(x; y)jAx+ By � cg for some A 2 IRp�n; B 2 IRp�m, andc 2 IRp, where p is some nonnegative integer. Let K := fijAi�x+ Bi�y = ci; 8(x; y) 2 Tg. In words,K is the set of row indices for which the corresponding constraint is active for all points in T .We �rst establish the fact that kerBK� = f0g. To do this, let H := fiji 62 Kg. Then foreach i 2 H; 9(xi; yi) 2 T with Ai�xi + Bi�yi > ci. Let (~x; ~y) = Pi2H(xi; yi)=jHj, where jHj is thecardinality of the index set H. Note that (~x; ~y) is a convex combination of points in T and istherefore also in T . Further, Ai�~x + Bi�~y > ci; 8i 2 H. Now, if ŷ 2 kerBK�, then for � > 0 smallenough, A~x + B(~y + �ŷ) � c. Thus, (~x; ~y + �ŷ) 2 T . But since T is single-valued, ŷ = 0. Thus,kerBK� = f0g.Now, by the de�nition of K, we have (x; y) 2 T ) AK�x + BK�y = cK. Conversely, suppose(x; y) satis�es AK�x + BK�y = cK. If x 2 dom(T ), then 9ŷ such that (x; ŷ) 2 T . But this meansthat AK�x + BK�ŷ = cK, which implies that ŷ � y 2 kerBK� = f0g. That is ŷ = y. We have thusshown that (x; y) 2 T , x 2 dom(T ) and AK�x+BK�y = cK:Finally, since kerBK� = f0g, BK� has a left inverse R 2 IRm�p. Thus, for x 2 dom(T ),(x; y) 2 T , AK�x+ BK�y = cK, y = RcK � RAK�x:So T is an a�ne function on dom(T ).Theorem 3.4 Given a maximal monotone polyhedral multifunction T : IRn!!IRn, the resolventoperator PT := (I + T )�1 is a piecewise a�ne function on all of IRn.Proof Since T is polyhedral, I+T is also polyhedral [19] and therefore so is PT = (I+T )�1. Thus,PT = S�i, where f�ig is a �nite collection of polyhedral convex sets. Let Ci be the projection of �ionto the domain of PT (i.e., Ci = �1(�i), where �1 := (x; y) 7! x). De�neM := fCij dim(Ci) = ng.Since PT is de�ned on all of IRn, SCi = IRn. Let M := SCi2MCi. Since M is closed, itscomplement, nM := IRn n M , is open. Thus, nM is either the empty set, or it has nonemptyinterior. But nM � Sdim(Ci)<n Ci. Thus, nM has no interior. In other words nM = ; and thus,M := IRn.To show that PT is M-PA, all that is needed is to show that for each Ci 2 M, the restrictionof PT to Ci is a�ne. However, since PT is single-valued, the graph of PT restricted to Ci is simplythe convex polyhedral set �i. By Lemma 3.3, PT is a�ne on Ci.Corollary 3.5 If T is polyhedral and F is a�ne, then the T -map, FT , de�ned by (7) is piecewisea�ne. 12



4 A�ne Generalized EquationsWe now show how to apply the algorithm of Section 2 to construct an algorithm to solve the a�negeneralized equation: 0 2 Ax� a+ T (x); (8)where A 2 IRn�n, a 2 IRn, and T is a maximal monotone polyhedral multifunction. For thisproblem, the T -map is given by AT := APT (x) + x� PT (x)� a: (9)As was shown in Section 3, for polyhedral T , AT is piecewise a�ne with respect to some �nitecollection M of n-cells whose union is IRn. Thus, to complete the description of the algorithm fora�ne generalized equations, it remains to show how to generate the representations.The task of constructing M is dependent upon how T is described. For example, in [22], T istaken as the normal cone NC to a polyhedral convex set C. M is then chosen to be the normalmanifold, which is de�ned in terms of the nonempty faces Fi of C. Speci�cally, the cells of thenormal manifold are de�ned by �i := Fi +NFi ;where NFi is the common value of NFi for x 2 ri(Fi). This particular choice of cells leads to thealgorithm given in [3].For more general T , we assume that T is described as the union of a �nite collection of polyhedralconvex sets Ci. We can then describe PT as the union of the sets Si := f(x+ y; x) j (x; y) 2 Ci g.By projecting each Si onto the domain of PT , we produce a collection of sets�i := fx+ y j (x; y) 2 Ci g :Since we know dom(PT ) = IRn, it follows that S�i = IRn and thus M := f�i j int(�i) 6= ;g :To provide an example of this process, we return to the case where T = NC . Observe thatNC =[Fi [x2Fifxg �NF =[Fi Fi �NFi :Thus, we see that NC is the union of the polyhedral convex setsCi := fx+ y j (x; y) 2 Fi �NFi g = Fi +NFi :It follows that the process described above yields the normal manifold.Robinson [22, Proposition 2.4] proved that the normal manifold is a subdivision of IRn. However,in general, the collection of cells M generated by the above process is not a subdivision. This canbe demonstrated by the following example. LetC1 := n(x; 0) 2 IR2 � IR2 j x1 � 0oC2 := n(x; 0) 2 IR2 � IR2 j x1 � 0; x2 � 0oC3 := n(x; 0) 2 IR2 � IR2 j x1 � 0; x2 � 0oand let T := S3i=1 Ci. Observe that T is simply the zero mapping, and is thus a maximal mono-tone multifunction. However, employing our procedure for constructing M, we obtain �1 =nx 2 IR2 j x1 � 0o, �2 = nx 2 IR2 j x1 � 0; x2 � 0o, �3 = nx 2 IR2 j x1 � 0; x2 � 0o. Since �1T�2is not a face of �1, we see that M := f�1; �2; �3g is not a subdivision of IRn.13



Since PT is single-valued, then by Lemma 3.3, PT is a�ne on each cell �i 2 M. A representationof AT on each cell is then given by (9). In order to have a workable description of these a�ne maps,it would appear necessary to exploit the underlying structure of T . One such case is the subject ofthe next section.5 Separable TA particularly important class of a�ne variational inequalities is that for which the set C is rect-angular, i.e., C is de�ned by the constraints l � z � uwhere l and u are vectors in IRn, with li 2 [�1;1) and ui 2 (�1;1] for 1 � i � n. This problemclass has a number of features that are very attractive for pivotal algorithms similar to AlgorithmAGE. In particular, the cells of linearity of the normal map are rectangular, and furthermore thenormal map itself takes on a very simple form. Speci�cally, for an a�ne function F (z) := Az + b,the matrix used to represent the normal map on any cell is formed simply by replacing some of thecolumns of A by the corresponding columns of the identity matrix.Rectangular variational inequalities are also attractive from a theoretical standpoint. In par-ticular, if at least one of li and ui is �nite for each i, then the normal map is coherently orientedwith respect to C if and only if A is a P -matrix.De�nition 5.1 ([4]) A matrix A is said to be a P -matrix if all its principal minors are positive.Note that when C is rectangular, then NC(z) = N[l;u](z) = Qni=1N[li;ui](zi). This suggeststhat we can extend the notion of rectangularity to generalized equations by requiring that themultifunction T be separable, i.e., it is of the formT (z) = 266664 T1(z1)T2(z2)...Tn(zn) 377775 :where for each i, Ti is a maximal monotone polyhedral multifunction from IR to IR. With such a T ,we shall see that the cells of linearity of the T -map AT are rectangular.We begin by looking at the resolvent operator PT = (I + T )�1. Note thatPT (x) = 266664 PT1(x1)PT2(x2)...PTn(xn) 377775 ;where for each i, PTi = (1+Ti)�1. Since PT is a continuous piecewise a�ne function, it follows thatPTi is a a continuous piecewise a�ne function from IR into IR. Let ki be the number of breakpointsof PTi . Then, for some strictly increasing sequence of breakpoints f�ijg; j = 1; : : : ; ki and some setof coe�cients fdij; bijg; j = 0; : : : ; ki,PTi(x) = 8><>: di0x+ bi0 x � �i1dijx+ bij �ij � x � �i(j+1); 1 � j < kidikix+ biki �iki � x:14



Note that since PT is monotonic and nonexpansive, 0 � dij � 1.The breakpoint sequence de�nes a subdivision of IR given by Mi = Skij=0 �ij , where�ij = 8><>:x ������� x � �i1 j = 0�ij � x � �i(j+1) 0 < j < ki�iki � x j = ki 9>=>; :We then de�ne a subdivision of IRn by M = Qni=1Mi with n-cells de�ned by �[j1;j2;:::;jn] = �1j1 ��2j2 � : : :� �njn .Clearly, PT (and therefore AT ) isM-PA. This establishes our earlier statement that the cells oflinearity of AT are rectangular. For each cell �[j1;j2;:::;jn] ofM, de�ne a diagonal matrix D[j1;j2 ;:::;jn]by D[j1;j2;:::;jn](i; i) = diji . Further, de�ne the vector b[j1;j2;:::;jn] = [b1j1; b2j2; : : : ; bnjn ]. Then on�[j1;j2 ;:::;jn], PT is represented by (D[j1;j2;:::;jn ]; b[j1;j2;:::;jn]). Thus, on �[j1;j2;:::;jn], the T -map is givenby AT (x) = A(PT (x)) + a+ x� PT (x)= (AD[j1;j2;:::;jn] + I �D[j1;j2;:::;jn ])x+ (A� I)b[j1;j2;:::;jn] + a= [d1j1A�1 + (1� d1j1)I:1; d2j2A�2 + (1� d2j2)I:2; : : : ; dnjnA�n+(1� dnjn)I:n] x+ (A� I)b[j1;j2;:::;jn] + a=:M[j1;j2;:::;jn ]x + b̂[j1;j2;:::;jn ]Thus, we see that the matrix M[j1;j2;:::;jn] which represents AT on �[j1;j2;:::;jn] has columns whichare convex combinations of columns of A and the corresponding columns of I .We now set about proving the main result of this section. Namely, if A is a P -matrix, then ATis coherently oriented for any separable polyhedral maximal monotone multifunction T . We �rstneed to prove two technical lemmas.Lemma 5.2 If A and B are n� n matrices where B is rank-1 such that det(A) > 0 and det(A+B) > 0, then det(A+ �B) > 0 for all � 2 [0; 1].Proof det(A+ �B) = X(j1;:::;jn)det[Cj1; : : : ; Cjn];where the summation is taken over all possible choices of (j1; : : : ; jn) such that Cji is either A�i or�B�i. Since B is rank-1, the determinants in the above sum are zero for all choices that include atleast two columns of �B. Thus,det(A+ �B) = detA+Pni=1 det[A�1; : : : ; �B�i; : : : ; A�n]= detA+ � (Pni=1 det[A�1; : : : ; B�i; : : : ; A�n])Thus, det(A + �B) is an a�ne function of �, which is positive at � = 0 and � = 1. Thus, it ispositive for all � 2 [0; 1].Lemma 5.3 Let A be an n�n matrix and let fB1; : : : ; Bkg be a collection of rank-1 n�n matrices.If det(A+�1B1+ � � �+�kBk) > 0 for all choices of �i = 0 or 1, then det(A+�1B1+ � � �+�kBk) > 0for all choices of �i 2 [0; 1].Proof (By induction). The lemma is true for k = 1 by Lemma 5.2. Now, suppose the lemma istrue for all k < m, we shall prove the lemma true for k = m.15



Suppose fB1; : : : ; Bmg is a collection of rank-1 n � n matrices such that det(A+ �1B1 + � � �+�mBm) > 0 for all choices of �i = 0 or 1. Let Â := A +Bm. Then Â and fB1; : : : ; Bm�1g satisfythe conditions of the lemma for k = m � 1. Thus, if �i 2 [0; 1]; 8i, thendet((A+Bm) + �1B1 + � � �+ �m�1Bm�1) > 0:Similarly, with Â := A, we havedet(A+ �1B1 + � � �+ �m�1Bm�1) > 0:From these two results, we see that if we let ~A := A + �1B1 + � � �+ �m�1Bm�1, then ~A and Bmsatisfy the hypotheses for Lemma 5.2. Thus, for �m 2 [0; 1]0 < det( ~A+ �mBm);= det(A+ �1B1 + � � �+ �mBm):Theorem 5.4 If A is a P -matrix, then for any separable maximal monotone polyhedral multi-function T , the T -map AT de�ned by (9) has the property that in any cell of linearity, the matrixrepresenting AT has positive determinant. In particular, AT is coherently oriented.Proof Let AT have the representation (Â; b) in the n-cell �. By the our earlier discussion, Â can beformed by replacing columns of A by a convex combination of columns of A and the correspondingcolumns of the identity matrix. Thus, the matrix is of the formÂ = A+ �1B1 + � � �+ �nBn ; �i 2 [0; 1]where Bi := (I�i � A�i)I>�i . Observe that Bi is a rank-1 matrix.Since A is a P -matrix, the matrix formed by replacing an arbitrary set of columns of A by corre-sponding columns of the identity matrix has positive determinant. Thus, the matrices A;B1; : : : ; Bnsatisfy the hypotheses of Lemma 5.3. Thus, by Lemma 5.3, det(Â) > 0.Corollary 5.5 If A is a P -matrix and T is a separable maximal monotone polyhedral multifunction,then using lexicographic ordering, Algorithm AGE will �nd a solution to AT (x) = 0 in a �nitenumber of steps.6 Piecewise Linear-Quadratic ProgrammingWe conclude by giving an example of a well known problem in mathematical programming thatcan be solved using the technique we have presented. The piecewise linear-quadratic programmingproblem (PLQP) is given by min h(x) = f(x) + �(Ax); (10)where A 2 IRm�n, and f : IRn ! IRSf1g and � : IRm ! IRSf1g are convex piecewise linear-quadratic functions, de�ned below.De�nition 6.1 A function f : IRn ! IRSf1g is piecewise linear-quadratic if domf is closed andconvex and there exists a �nite subdivision M of dom(f) such that for each � 2 M, fj� is aquadratic function. 16



Note that domf is polyhedral, and further that since the cells in the subdivision are closed, f is acontinuous function on domf .The optimality conditions for PLQP are stated by the relation0 2 @h(x);where @h is the convex subdi�erential operator de�ned by@h(x) := fzjh(w) � h(x) + z>(w� x); 8w 2 dom(h)g:Under an appropriate constraint quali�cation (i.e. ri(A(dom(f)))T ri(dom(�)) 6= ;), it follows that@h(x) = @f(x) +A>@�(Ax):Thus, for the optimality conditions to be satis�ed, there must be an x 2 dom(f) and y 2 @�(Ax)such that �A>y 2 @f(x). By [23, Theorem 23.5], the �rst statement is equivalent toAx 2 @��(y);where �� is the conjugate of �. The optimality conditions are then�A>y 2 @f(x)Ax 2 @��(y):Thus, if we de�ne Â := " 0 A>�A 0 # ; T (x; y) := " @f(x)@��(y) # ;the optimality conditions for PLQP can stated as the generalized equation�Â(x; y) 2 T (x; y): (11)The fact that T is polyhedral was shown in [25]. Thus, the optimality conditions for the piecewiselinear-quadratic program can be expressed as an a�ne generalized equation, which can then besolved using our algorithm.7 AcknowledgementThe authors would like to thank Stephen Robinson for constructive comments, suggestions andpertinent references that greatly improved the presentation of the material given in this paper.References[1] H. Br�ezis. Op�erateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espacesde Hilbert. North-Holland, 1973.[2] M. Cao and M. C. Ferris. PC matrices and the linear complementarity problem. Linear Algebraand Its Applications, forthcoming, 1996. Available from ftp://ftp.cs.wisc.edu/math-prog/tech-reports/. 17
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