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Abstract

The normal map has proven to be a powerful tool for solving generalized equations of the
form: find z € C, with 0 € F(z) + N¢(z), where C' is a convex set and N¢(z) is the normal
cone to C at z. In this paper, we use the T-map, a generalization of the normal map, to
solve equations of the more general form: find z € dom(T), with 0 € F(z) + T'(z), where T
1s a maximal monotone multifunction. We present a path-following algorithm that determines
zeros of coherently oriented piecewise-affine functions, and we use this algorithm, together with
the T-map, to solve the generalized equation for affine, coherently oriented functions F', and
polyhedral multifunctions 7'

1 Introduction

This paper is concerned with solving generalized equations [20, 21] of the form
0€ F(z)+T(x) (1)

where T is a maximal monotone multifunction from R™ into R™ and F' is a continuously differen-
tiable function from an open set O dom(7) into R™. We recall that a monotone multifunction 7T
is a point to set mapping such that for each (2!, y'), (22, 4?) in the graph of T,

<$1 - $27y1 - y2> Z 07
where (-, -) denotes the inner product, 7" is maximal if its graph is not properly contained in that
of any other monotone multifunction and dom(7T’) represents the effective domain of 7.
To date, most of the algorithmic development for generalized equations has been focused on the
special case where T := N¢, the normal cone to a convex set C', defined by

fU@:A@@y:{{WHwy—@507VyeC}j;g

This case yields the generalized equation

0 € F(z) + No(z). 2)
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Many problems from mathematical programming, equilibrium, complementarity and other fields
can be expressed in this form. For example, if F':= V f, then (2) represents the first order necessary
optimality conditions for the problem

minimize f(z)
subject to z e’

Another important instance of (2) is the variational inequality problem, which is to find z € C
such that
=P >0, Wyed.

This problem is known to be equivalent to (2) (see [21]).

As a final example, we mention the complementarity problem; this has a wealth of applications
and appears in a variety of forms [13]. The standard nonlinear complementarity problem is to find
z € R such that

F(z) >0, and (z,F(z))=0.

It is well known [13, 15] that complementarity problems can be reformulated as variational inequal-
ities, and therefore can be treated in the context of the generalized equation (2).

A prominent tool for solving (2) is the normal map [8, 22, 26]. The normal map F¢ for a
function F : {2 — R"™ and a nonempty, closed, convex set C' D €2 is defined by

Fo(2) = Flre(x)) + 2 — 7o (@), (3)

where m¢ () denotes the projection (with respect to the Euclidean norm) of 2 onto the set C'. The
importance of the normal map lies in the fact that solving (2) is equivalent to finding a zero of
the normal map Fg. Specifically, if z is a zero of the normal map, then z := 7¢(z) solves (2).
Conversely, if z is a solution to (2), then & := z — F'(2) is a zero of the normal map. Thus, the
problem of solving the generalized equation (2), which is expressed with set-valued functions, is
reduced to finding a zero of a piecewise smooth, single-valued function.

Several algorithms have been developed based on this idea. Most of these algorithms are based
on the theory of piecewise linear homotopies given by Eaves [9]. The specialization of the general
algorithm given in [9] determines a zero of the normal map by tracing the zero curve of a piecewise
linear homotopy mapping. It is shown in [12] that Lemke’s famous method [16] for solving linear
complementarity problems is conceptually equivalent to path following in a corresponding piecewise
linear system. This idea is easily extended to more general algorithms [10, 11]. Based on Eaves’
work, Cao and Ferris [3] analyzed an algorithm for solving affine (i.e. F(z) is affine) variational
inequality problems over polyhedral sets and showed that Lemke’s method processed matrices in
the class Po [2].

For non-affine problems with C' rectangular, Ralph [18] proposed a Newton-based algorithm
where at each iteration the Newton point is calculated by solving an affine variational inequality
(AVI) that is a linearization of the normal map equation at the current point. This approach
was developed computationally by Dirkse and Ferris [5, 6, 7] to produce PATH, an efficient and
robust code for solving mixed complementarity problems. A similar approach was developed by
Rutherford [24].

In this paper, we begin to generalize the above class of algorithms by removing the restriction
that T be the normal cone to a convex set. As a first step, in this paper we focus on solving the
affine generalized equation where I’ is an affine function and 7" is polyhedral (that is, the graph of
T is the union of finitely many convex polyhedrons).



Our strategy is, in essence, a generalization of the AVI algorithm of Cao and Ferris. We use
a generalization of the normal map to reformulate (1) as a zero finding problem of a piecewise
affine function; then we use the piecewise-linear homotopy framework of Eaves [9] to generate an
algorithm for determining zeros of piecewise-affine functions. We describe this algorithm in detail
in Section 2 and prove that under the assumption of coherent orientation, the algorithm finds a
zero after a finite number of steps.

The remainder of the paper describes how the algorithm is used to solve affline generalized
equations. In Section 3 we discuss a generalization of the normal map called the T-map. This
mapping, which to our knowledge was introduced by Minty [17], provides a means of reformulating
generalized equations involving operators T' that do not necessarily correspond to the normal cone of
any set. After describing this reformulation, we focus on the case where T is polyhedral. This case
can be viewed as an extension of the special case where T := N¢, with C' a convex polyhedron. In
Section 4 we describe how the algorithm presented in Section 2 can be used to solve affine generalized
equations. In Section 5 we further specialize to the case where T' is separable. Finally, in Section 6
we discuss how the algorithm can be applied to solve piecewise linear-quadratic programming
problems [25].

Some words about notation are needed. The notation 7' : R"™XR" indicates that T is a point
to set mapping, or multifunction, which maps points in R™ to subsets of R". In discussing multi-
functions, we may refer either to a point to set mapping, 7'(-), or to the graph of that mapping,
T, which is the set T := {(z,y) | y € T(z) }. The expression T~!(-) is defined as a set inverse; i.e.,
T7(y) := {z|(z,y) € T}. Further, T7' = {(y, 2)|(x,y) € T}. The effective domain of 7T, is defined
by dom(T) := {«|T(z) # 0}.

In discussing matrices and vectors, subscripts are used to refer to components. For example
A, A, Ag; refer to the th row, jth column, and (¢, j)th entry of A, respectively. We may also
use index sets to refer to specific components. For example if o = {1,3,5}, then z, = {xy;23;25}.
Further, we use the MATLAB notation of a comma to separate columns, and a semicolon to
separate rows. For example (z,y) is a row vector, whereas (z;y) is a column vector. Unless
otherwise indicated, all vectors are taken to be column vectors. Superscripts are used to indicate
an iteration count, index, or some other label for matrices and vectors. In contrast, for scalars,
sets, and functions, subscripts are used as labels.

For a set C', aff(C'), int(C'), ri(C'), rec(C'), dim(C), and §(-|C) refer to the affine hull, interior,
relative interior, recession cone, dimension, and indicator function of C' respectively. (see [23] for
definitions of these terms).

2 Algorithm for Finding Zeros of M-PA Maps

Our first task is to describe an algorithm for finding zeros of piecewise affine functions. The
algorithm we present can be viewed as a generalization of Lemke’s method for the linear com-
plementarity problem and of the algorithm for solving affine variational inequalities over convex
polyhedral sets that was described in [3]. The theoretical basis for the algorithm is derived from
the theory of piecewise-linear homotopies given in [9].

In order to describe the algorithm carefully, we need some preliminary definitions.

Definition 2.1 (cell) A polyhedral convexr set o C R" is called a cell. If dim(o) = k then o is
called a k-cell. Let o := {z|Azx < a}, where A € RP*™, and a € R?, with p a nonnegative integer.
Then (p, A, a) is said to represent o. If p is the smallest number for which a representation of o
exists, then (p, A, a) is called a minimal representation of . A set 7 € R" is called a face of o if



for some set of indices o C {1,...,p}, T={ax €0: Ayax =b,}. Ifdim(7) =1, then T is called an
1-face of 0.

Clearly any cell has a minimal representation.

Definition 2.2 (piecewise affine) Let M be a collection of n-cells and let M = J,epq0. A
SJunction F': M — R™ is said to be piecewise-afline with respect to M, denoted M-PA, if for each
o€ M, F|, (ie the restriction of I' to o) is affine. If F' is M-PA for some M satisfying the
above assumptions, then we say that F' is piecewise affine.

Note that in the above definition, if M is convex, then the function F must be continuous on
M, because I’ must be single-valued on the boundaries between cells. Furthermore, in contrast to
the work of Eaves [9], M is not required to correspond to a subdivided manifold.

Definition 2.3 (function representation) Let M be a collection of n-cells in R™, let F' be a
M-PA function, and let o be an n-cell of M. Let b € R™ and let B® be an m X n matriz. (B%,b7)
is said to represent F' on o if F'(z) = B2 4+ 07 for all x € 0.

We now describe an algorithm to find a zero of an M-PA function G, for a given collection of
cells M. We will assume that representations of the cells of M and of the map G have already
been constructed. The basis of the algorithm is to construct a piecewise affine homotopy mapping
F(z, ) with the following properties

1. (2*,0) is a zero of F' if and only if 2* is a zero of G.

2. A point (2!, u1), and a direction (d', —1) is known such that gy > 0 and F(a!—pud', p*+u) =0
for all p > 0.

The algorithm uses a method described by Eaves [9] to trace the zero curve of F'| proceeding in the
direction (d',—1) from the starting point (2!, u1). To prove that the algorithm finds a solution in
a finite number of steps, we restrict ourselves to the case where G is coherently oriented:

Definition 2.4 (coherent orientation) Let G be an M-PA map with representation (B?,b%) on
each o € M. We say that G is coherently oriented if

sgn(det(B7))

is nonzero and constant for all o in M, where

-1 <0
sgn(z) == 0 2=0
1 z>0.

Since M is finite and (J,c g 0 = R", it follows that R™ = |J,c a4 rec(o), and further that there
is a o such that int(rec(o)) # . Choose d such that —d € int(rec(c)). Then for any z° in R", and
for all u sufficiently large, 2% — ud € int(o).

In the AVI algorithm described by Cao and Ferris, the cell o and the direction d were constructed
by finding an extreme point ¢ of the set C'. The cell was then given by o := 2+ N¢(2), and the
direction d was chosen such that —d was in the interior of N¢(2¢). For our algorithm, rather than
constructing the cell and direction, we can rely instead on the fact that since R” = [J,caq rec(o),



then for any direction d, there will be a cell o4 for which —d € rec(o4). Note further that for each
cell o, the boundary rec(o) \ int(rec(c)) of rec(o) has Lebesgue measure zero. Therefore, since the
number of cells is finite, (J,ecq rec(o) \ int(rec(o)) has measure zero. Thus, for almost all d, there
will be a cell o4 for which —d € int(rec(oy)).

Thus, if z° is any point in R, then for all u sufficiently large, 29 — pd will lie interior to the
cell o4. In other words, the cell can be chosen simply by picking an arbitrary d and proceeding in
the direction —d until a cell o4 is reached for which —d is in the recession cone of ¢4. For almost
all d (excepting a set of Lebesgue measure zero), —d will be in the interior of rec(oq). We note,
however, that for some special cases, construction of an extreme point may still be preferable.

Once d and o4 have been identified, the homotopy map can be constructed. Let (B,b) be the
representation of GG in g4. Define a function F': R® X Ry — R” by

F(z,p) = G(x)+ pBd. (4)

Note that F'(z,0) = 0 exactly when G/(z) = 0. Under the assumption that (' is coherently oriented,
B is invertible. Let 2° := —B~1b and define

w(p) = 2° — pd.

Then, since —d € int(rec(oy))), there exists po > 0 such that w(p) € int(og), Vi > po. Thus, for
4 > Ko,

Flw(p),p) = G(w(p)+pBd
Bw(pu) + b4 puBd
B(2® — pd) + b+ uBd (5)
—b—uBd+b+ puBd
= 0.

By choosing p1 > g, ' = w(uy), and d' = d, we see that I satisfies the conditions needed
for the homotopy map. We are now ready to state the algorithm, which is given in Figure 1. Note
that by normalizing d in the discussion above to be a unit vector, we can start the algorithm from
the point (2!, u1) constructed above with oy := oy.

Some comments about Algorithm AGE are in order:

1. Most of the work in the algorithm is in step 8 where the direction (d**!, vy ;) is calculated.
At the end of this section, in Theorem 2.13, we show that B*** — B¥ is a rank-1 matrix. Thus,
an efficient implementation of the algorithm can be obtained by keeping the matrices B* in
factored form and performing rank-1 updates of the factors at each step of the algorithm.

2. At step 8 in the algorithm, there may be more than one possible choice of cells ;41. However,
a lexicographic ordering, as described by Eaves [9, Section 15], can be used to resolve any
ambiguity concerning which cell to choose. The use of such a lexicographic ordering will
be assumed in the convergence proof, and will be presented in more detail in the discussion
preceding Lemma 2.9.

3. The requirement that Hdk"'l H = 1 is arbitrarily chosen to force the choice of d**! to be unique.

4. The requirement that ' — pud" € int(o1), Vi > 0 guarantees that the zero curve of F(w, ) :=
G/(z) + pBd' contains a ray, and therefore assures us that it will not have any loops. This
fact will be useful in our convergence proof. However, we shall also show that, under the
assumption of coherent orientation, vy is always negative, which by itself guarantees that no



Figure 1: Algorithm AGE

Given a finite collection of n-cells M such that |J,caq 0 = R", and an M-PA function G on R".
Let G have representation (B* b) on oy € M.

1) [Initialization] Determine (21, uy, oy, d") satisfying
la*] = 1,
zt € int(oy),
gt — pd € int(oy), Vu >0,
Blzl + ,ulBld1 +b' =0.
2)  vpi=-—1.
Repeat for k=1,2,...
3) b= sup{0|z* + 0d* € o, g + vy, > 0}.
If 8, = +oc, then
4)  output(“ray termination”); return.
Else
5) phtl = gk 49 dk
6)  pptr = pr + 0o
If 41 = 0 then
7)  output(“solution found at”, 2**1); return.
Else
8)  determine 011 (possibly using lexicographic ordering),
dk"'l7 and vgy1 such that
okt e Ok+1,
Bk-l—ldk-l—l + Uk_|_1B1d1 — 07
a1 =1,
d**' points into ogyq from 2zF+1t,
and o1y € M\ oy.
9) goto next k.




loops occur. Thus, under the assumption of coherent orientation, it is not necessary to find a
ray start. However, in future work, we will prove convergence for a broader class of problems,
in which case the ray start requirement will be useful.

The next few pages are devoted to proving the following convergence theorem:

Theorem 2.5 Let M be a finite collection of n-cells whose relative interiors are disjoint and whose
unton is R”. Let GG be a coherently oriented, M-PA function. Algorithm AGE, using lexicographic
ordering, terminates after finitely many steps with a zero ™ of G

Proof (Outline) There are three main parts to the proof. First, as Lemma 2.9, we will show that
the algorithm terminates at a solution if M is a subdivision of R™ (see Definition 2.6). Second, in
Lemma 2.11, we will show that even if M is not a subdivision of R”, there is a refinement (see
Definition 2.10) A of M that is a subdivision. Finally, we show in Lemma 2.12 that if a subdivision
N is a refinement of M, then running the algorithm using A will generate exactly the same path
as would be generated by using M. Thus, the fact that the algorithm terminates at a solution
using A guarantees that it will terminate at a solution using M. 0

We now prove the three lemmas mentioned above. At this point, we recommend that the
impatient reader skip ahead to Theorem 2.13. Our proof technique is based on the work of Eaves
[9]. Eaves’ analysis relies heavily on the notion of a subdivided manifold:

Definition 2.6 (subdivided manifold) Let N be a set in some Fuclidean space, and let N be a
finite or countable collection of n-cells in that space such that N = J,cp 0. Let N be the collection
of all faces of elements of N'. (N, N) is a subdivided n-manifold if

1. any two n-cells of N are either disjoint or meet in a common face;
2. each point of N has a neighborhood meeting only finitely many n-cells of N';
3. each (n — 1)-cell of N lies in at most two n-cells;

If (N, JV) is a subdivided n-manifold for some subdivision N, we call N an n-manifold and we call

N a subdivision of N.

The following lemma shows that when N = R”, item 3 in Definition 2.6 is redundant. This
result was proved by Robinson [22] in the proof of Proposition 2.4. While Robinson’s proposition
is stated for the normal manifold, his proof is valid for general subdivisions of R".

Lemma 2.7 If N is a collection of cells whose union is R" and if N satisfies 1 and 2 of Defini-
tion 2.6, then N is a subdivision of R".

The next step in our analysis is to prove that the algorithm works whenever M is a subdivision
of R". In this case, by defining & := {¢ X Ry|o € M}, we see that § is a subdivision of R” x Ry
and further that I is S-PA. The starting point (2!, 1) of the algorithm lies interior to the cell
m = oy X Ry of §. Further, the ray {(z', 1) — p(d', —=1)|u > 0} lies within 7;. Let S be the
collection of all faces of elements of §. Algorithm AGLE is then seen to be equivalent to the algorithm
described by Eaves [9, Section 10.2], with the following relationships between the algorithms:



Eaves’” Algorithm Algorithm AGE

M S
F(z) F(z,p) :== G(z) + pBtd*
Ty, a*, k)
oy, M
Uk (d¥, vp)

To discuss the behavior of this algorithm in more detail, we need some definitions from [9].

Definition 2.8 (regularity) Let (N, N) be a subdivided (n 4 1)-manifold, let N be the collection
of n-cells in N, and let F : N — R” be a N-PA map. A point x in N is said to be degenerate
(otherwise regular) if @ lies in a cell o of N with dim(F(c)) < n. A value y in F(N) is said to be
a degenerate value (otherwise a regular value) if F~(y) contains a degenerate point.

Note that if y is a regular value, then F~!(y) cannot intersect any k-cells of S with & < n.

By the assumption of coherent orientation, G is one-to-one in every n-cell of M. Thus,
dim(F(n)) = n for all (n 4 1)-cells n of S. Since the starting point (2!, 1) of the algorithm
is interior to 7y, it is a regular point of F'. According to [9, Theorem 15.13], since § is finite, the
algorithm generates, in finitely many steps, either a point (2*, y.) in the boundary of R™ x Ry,
or a ray in F~1(0) different from the starting ray. In the first case, we know that u, = 0, since
the boundary of R™ x Ry is R™ x {0}. It then follows, from our earlier remarks that z* satisfies
G(2*) = 0. Therefore, to guarantee that the algorithm finds a solution, we need only show that it
cannot produce a ray different from the starting ray.

We first consider the case when 0 is a regular value of F. In this case, by [9, Theorem 9.1],
F~1(0) is a 1-manifold which is subdivided by sets of the form 5 F~1(0). Further, since F~1(0)
cannot intersect any k-cells with k& < n, each point on F71(0) is in at most two (n + 1)-cells of S.
Thus, in step 8 of the algorithm, the choice of o1 is well-defined. (The only difficulty would be
if (%1 jgy1) lies in only one (n + 1)-cell 1 so that no gy 1 could be selected. But in this case,
(xk"'l, fk+1) would be a boundary point of R” x Ry. Thus, pg4+1 = 0, so the algorithm would have
terminated in step 5.)

Let (d*,v;) be the direction of the path within the (n 4 1)-cell 7 of S, and let G have rep-
resentation (B, 0%) on the n-cell o of M. Then by [9, Lemma 12.3], the curve indez, given
by

(sgnvy) (sgn det BY)

is constant everywhere along the path. Since v; = —1 for the starting direction (d',v;), and since
(' is coherently oriented, it follows that vy is negative in each cell that the path enters. But this
means that the parameter pu decreases strictly in each cell. Thus, after finitely many steps, we must
have p = 0.

When 0 is a degenerate value of F'; F~1(0) may intersect a k-cell of § with & < n. Thus, in
step 8 of the algorithm, there may be multiple choices for which cell o141 to enter next. To address
this problem, a lexicographic ordering can be used to resolve ambiguities concerning which cell the
path will enter. Such a scheme is conceptually equivalent to solving a perturbed problem, which
we now describe.

Let X = [¢},...,£"] be an (n+1) xn matrix such that [ X, d']is of rank (n+1). Define the vector
[€] := (e}, €2,...,€")T (note: the superscripts here refer to exponentiation). Define (21 (€); uy(€)) =
(x5 1) + X[e]. Since (2'; 1) in Algorithm AGE is interior to 7y, then (2!(e); pu1(€)) € int(ny) for



small enough e. Further, since (—d', 1) € int(rec(n1)), (z'(e), p1(€)) + p(—d*, 1) € int(m), for all
p > 0. Thus, a'(€), w1 (€), 01, and d* satisfy the starting conditions needed to apply the algorithm
to the perturbed problem given by

0= Fe,0) - ple),
where p(¢) := F(z!(¢), p1(€)). Observe that

ple) = F(z' )+ [BY, Bld']X[¢]
=[B!, B'd']X[¢] (6)
= Y[d,

where Y := [B!, B1d!]X. Y is an invertible n x n matrix, so that by [9, Lemma 14.2], p(e) is a
regular value for all € sufficiently small. Thus, by the arguments given above for regular values,
using Algorithm AGE to solve the perturbed problem will, after a finite number of steps J, produce
a point (27(e)) such that G(z7(e)) = p(e).

Let (2% (€), ux(€)) be the sequence of points generated by the algorithm for the perturbed prob-
lem. By the discussion in [9, Section 15], there is a sequence of matrices X* € RHD*7 and a
sequence of points (2%, uy) such that (z¥(€); ug(€)) = (2*; ux) + X*[¢] for all small e. The points
(xk, pi) are exactly the sequence of points generated by the algorithm for solving the unperturbed
problem using the lexicographic ordering. Since the algorithm terminates after J steps for all small
¢, we see that uy(€) = 0 and G(27(€)) = p(e). It follows that uy = 0 and further that G(z7) = 0.
Thus, using a lexicographic ordering, the algorithm finds a solution after a finite number of steps.

We have proved the following lemma:

Lemma 2.9 Let M be a subdivision of R and Ar be a coherently oriented, M-PA function.
Algorithm AGE, using lexicographic ordering, terminates after finitely many steps with a zero x*

of G.

We now address the case where M is not a subdivision of R". We begin by proving that M
can be refined to produce a subdivision.

Definition 2.10 (refinement) Let M and N be finite collections of n-cells. N is said to be a
refinement of M if each cell ¢ of M is the union of a finite collection of cells 7; of N, and if each
cell of N is contained in some cell of M.

The following lemma is proved by Hudson [14, Lemma 1.5], however, using different nomencla-
ture. In particular, the term “subdivision” is used in place of our term “refinement”.

Lemma 2.11 Let M := {C;} be a collection of J < oo n-cells which covers R™. There exists a
subdivision N of R™ such that N is a refinement of M.

We now show that using AV, the algorithm follows the same path as it would using M.

Lemma 2.12 Let G be an M-PA function, where M is a finite collection of relatively disjoint
n-cells whose union is R". Let N be a refinement of M such that N is a subdivision of R". Then
Algorithm AGE, using lexicographic ordering, will find a solution ™ to G(z) = 0 in a finite number
of steps. Furthermore, the sequence of points generated by the algorithm using M is a subsequence
of the points that would be generated using N .



Proof Consider first running the algorithm using A instead of M. By Lemma 2.9, the algorithm
will terminate after some finite number of steps J. The algorithm will visit a sequence of n-
cells {r;} C N, and will generate a sequence of points {(z*, uz)} and directions {(d*,v;)}, for
k=1,...,J.

Let j; := 1 and let oy be the unique cell in M that contains 7. Then for ¢ = 2,..., let j;
be the smallest index greater than j;_; such that 7;, ¢ o;_;, and if j; < J, let o; be the unique
cell in M that contains 7;,. Let K be such that jix = J. This process defines a sequence of cells
{o:},i=1,..., K and indices {j;},i=1,..., K + 1 such that 7 C o; whenever j; < k < ji11.

We will show that if the algorithm is run using M, then the sequence of points {(¢%,v;)}
generated by the algorithm satisfies the equation (&', v;) = (2%, u;,), for each i. Thus, (€8 vk) =
(27, 11y), so the algorithm finds a solution after a finite number of steps.

Let {(6%,¢;)} be the sequence of directions chosen by the algorithm using M. Clearly, since the
algorithm is started at the point (2!, 1) in the direction (d!, —1), the following is true: (&%, 11) =
(271, v,), (61,¢1) = (d’*, v;,), and the first cell visited by the algorithm is 0.

We now proceed by induction: Assume that (¢%,1;) = (29, v;,), (6',¢) = (d%,v},), and that,
using M, the ith cell visited by the algorithm is o;. We shall prove that (¢, v,y ) = (ali+1, Viig1)s
(51 Giy1) = (d%+1,vj,,,), and that the (i + 1)st cell visited by the algorithm is o;4;.

Let (B?, b") be the representation of G on o;. This is also the representation of G on 7 whenever
Ji <k < jiy1. Thus, in step 8 of the algorithm using A/, the direction (dk"'l7 Uk+1) chosen when
entering cell 741 must satisfy

Bid* 4o BN =0

for j; < k < jip1. Since G is coherently oriented, B® is invertible. Further, dk"'l‘ = 1 and,
by our earlier discussion, wvgyi is negative. Thus, the direction is uniquely determined by the
representation. In particular, (d’,v;) = (&', vj,11) = -+ = (d%+1,v;,,,) = (§',¢;). From this it
is clear that 27i+! lies on the ray {£'(0)|6 > 0}, where £'(6) := & + 66", Further, 27+1 is on the
boundary of o;.

If the ray {£'(8)|# > 0} contains a point in the interior of o;, then the ray cannot be extended
past 771 without exiting o;. Thus, 27+ = £1(6;) where 6; := sup{0|¢'(8) € o;}. In other words,
(xli+, :u]i+1) = (§Z+17 Vig1)-

If the ray {£°(8)|6 > 0} does not contain an interior point of o;, then we must resort to the
lexicographic ordering to prove that z/i+1 = 52(02) Since ¢; and 7;,,, are relatively disjoint convex
sets, there exists a separating hyperplane H; defined by a vector ¢*, and a scalar «; such that
e < a;, Vo € int(o;), and ¢ > a;, Yo € 7j,,,. Suppose we run the algorithm using A
to solve the perturbed problem G((z) := G(z) — p(¢) = 0, where p(¢) is defined by (6). Then,
for € small enough, the algorithm will visit the same sequence of cells {7} as it visits in the
unperturbed problem. Also, by our earlier discussion, the algorithm will generate the sequence of
points {(2%(€); up(€))} = {(2%; ux) + X*[e]}, where {X*} is a fixed sequence of matrices.

Since 0 is a regular value of G, dim (G (75 Tkt+1)) > n — 1 for any k. Thus, G7'(0) contains
only one point in 7 () Tkp1, namely z**1. Therefore, the direction d*+' must point into the interior
of Tpy1.

By similar arguments as before, z7i+1 lies on the ray {€!(6)]|6 > 0}, where £ (8) := 27 () +0(d’").
But, since d*t' points into the interior of 7j;, this ray must contain a point # in the interior of
oi;. Thus, R < «a;. But ¢l pdit > q; since 27! is in Tjip1- 1t follows that ¢l i > 0.
Thus, even for the unperturbed problem, the ray 52(0) cannot be extended past the point z7i+!
without crossing the hyperplane H;, and thereby exiting o;. Thus, 27+ = £(6;), and as before,

(xji-l-l ) :uji+1) = (€i+17 Vi-l-l)'
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Finally, note that for all small e, the point xji+1(e) is a regular point, so 7(;,,,_1) and Tj,
are the only n-cells of A that contain a7+1(¢). Thus, o; and o;41 are the only n-cells of M that
contain wj“rl(e). Thus, for all small €, the algorithm, using M will enter cell ;41 at the next
iteration. But this means that using lexicographic ordering the algorithm will enter cell o;4; next
when solving the unperturbed problem. Finally, since the representation of G on ¢;44 is identical
to the representation of G on 7j,,,, we must have (8!, (1) = (d/+1, vi+1).

The lemma is now proved by induction. 0

This completes the proof of Theorem 2.5. Our final task in this section is to establish the claim
made in Comment 1 following Algorithm AGE.

Theorem 2.13 Under the hypothesis of Theorem 2.5, let {o} be the sequence of cells chosen in
Step 8 of Algorithm AGE using lexicographic ordering, and let (Bk7 bk) represent Ay on or. Then
B — B* has rank 1.

Proof Using lexicographical ordering, the algorithm will choose the same cell ox11 in step 8 as
it would when solving the perturbed problem for small ¢. However, 0 is a regular value for the
perturbed problem, so 7, = o;()0ok41 must have dimension n — 1. Now, for any two points
xl, = TL

Bt (2! — 2% = BF (2! — 2?) = (2! — 2%) € ker(BF! - BY)

Thus, dim ker(B*! — B¥) = n — 1 so rank(B**! — B¥) = 1. 0

3 The T-map

The T-map, denoted Fr, is a generalization of the normal map that is formed by replacing the
projection operator m¢ in (3) by the resolvent operator Pr := (I + T)~!. Specifically, the T-map
is given by

Fr(z):=F(Pr(z))+« — Pr(z). (7)

We assume throughout that 7' is a maximal monotone operator. In this case, Minty [17] showed
that Pr is a continuous, single-valued, nonexpansive function defined on all of R”. Since the image
of Pr is dom(7T') (which is contained in the domain of F, ), it follows that Fr is a single-valued
function defined on all of R”™.

By [1, Example 2.1.2], I + T is monotone, and therefore Pr is monotone. We now show that
solving GE(F, T) is equivalent to finding a zero of Fr.

Theorem 3.1 Given a mazimal monotone multifunction T : R"XR"™, and a function F : Q C
R™ — R", let Fr be defined by (7). If x is a zero of Fr, then z := Pr(z) solves GE(F,T).
Conversely, if z solves GE(F,T ), then © := z — I'(z) is a zero of Fr.

Proof Suppose Fr(z) =0 and let z :== Pr(z). Then 0 = Fr(z) = F/(2) + 2 — z, and

-F(z) = z-=
€ U+T)(I+T) N a) - =
= I+T)() -
= T(z2).

Conversely, suppose —F(z) € T(z) and let 2 := 2z — F'(2). Then 2z € 2+ T(2) = (I +T)(2), so
Pr(z) = (I +T) Yz) = 2. Thus Fr(z) = F(z)+a — 2= F(z2) — F(2) = 0. O
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So far, we have not made any assumptions on T other than that it is maximal monotone. We
now focus on the case where T is polyhedral.

Definition 3.2 (polyhedral) A multifunction T is polyhedral if its graph is the union of finitely
many polyhedral convex sets.

Our first task will be to show that, for polyhedral T, the resolvent operator Pr := (I +T)7!is
a piecewise-affine map.

Lemma 3.3 A single-valued multifunction T : R"IR™ whose graph is a convex polyhedron is
affine on dom(7T).

Proof Assume dom(T) # ). (Otherwise the lemma is true vacuously). Since the graph of T is a
polyhedron, T can be written as T = {(2,y)|Az + By > ¢} for some A € RP** B € RP*™, and
¢ € R?, where p is some nonnegative integer. Let K := {i|4;.2 + B,y = ¢;,¥(z,y) € T}. In words,
K is the set of row indices for which the corresponding constraint is active for all points in 7.

We first establish the fact that ker Bx. = {0}. To do this, let H := {i|: ¢ K}. Then for
each i € H,3(a',y') € T with A;.2° + Biy® > ¢ Let (3,9) = S ien(2%,y")/|H|, where |H] is the
cardinality of the index set H. Note that (Z,7) is a convex combination of points in 7" and is
therefore also in T. Further, A;. & + B;.y > ¢;,Vi € H. Now, if § € ker Bg., then for ¢ > 0 small
enough, Az + B(y + €j) > ¢. Thus, (z,7+ €g) € T. But since T is single-valued, § = 0. Thus,
ker Bx. = {0}.

Now, by the definition of K, we have (2,y) € T' = Ax.2 + Bx.y = cx. Conversely, suppose
(x,y) satisfies Ax.x + Bx.y = cx. If @ € dom(7T'), then 37 such that (z,9) € T. But this means
that Ax.x + Bx.y = cx, which implies that § — y € ker Bx. = {0}. That is § = y. We have thus
shown that

(2,y) €T & @ € dom(T) and Ax.2 + Bx.y = cx.

Finally, since ker Bx. = {0}, Bx. has a left inverse R € R™*?. Thus, for 2 € dom(T),

(2,y) €T & Ax.a+ Bry=cx
< y= Rex — RAx.x.

So T'is an affine function on dom (7). 0

Theorem 3.4 Given a mazimal monotone polyhedral multifunction T : R"XR™, the resolvent
operator Pp := (I + T)™! is a piecewise affine function on all of R™.

Proof Since T is polyhedral, I+T is also polyhedral [19] and therefore sois Pr = (I+7)~!. Thus,
Pr =T, where {I';} is a finite collection of polyhedral convex sets. Let C; be the projection of I';
onto the domain of Pr (i.e., C; = m(I';), where my := (z,y) — 2). Define M := {C;| dim(C;) = n}.

Since Pr is defined on all of R", (JC; = R". Let M := [Jg,epm Ci- Since M is closed, its
complement, \M := R™ \ M, is open. Thus, \M is either the empty set, or it has nonempty
interior. But \M C Ugim(c,)<n Ci- Thus, \M has no interior. In other words \M = ) and thus,
M = R"

To show that Pp is M-PA, all that is needed is to show that for each C; € M, the restriction
of Pr to C; is affine. However, since Py is single-valued, the graph of Pr restricted to C; is simply
the convex polyhedral set I';. By Lemma 3.3, Pr is affine on (. 0

Corollary 3.5 If T is polyhedral and F' is affine, then the T-map, Fr, defined by (7) is piecewise
affine.

12



4 Affine Generalized Equations

We now show how to apply the algorithm of Section 2 to construct an algorithm to solve the affine
generalized equation:

0€ Az —a+T(z), (8)

where A € R"™", a € R”, and T is a maximal monotone polyhedral multifunction. For this
problem, the T-map is given by

Ap:= APr(z)+2 — Pr(z) — a. (9)

As was shown in Section 3, for polyhedral T, Ay is piecewise affine with respect to some finite
collection M of n-cells whose union is R". Thus, to complete the description of the algorithm for
affine generalized equations, it remains to show how to generate the representations.

The task of constructing M is dependent upon how 7' is described. For example, in [22], T' is
taken as the normal cone Ng to a polyhedral convex set C'. M is then chosen to be the normal
manifold, which is defined in terms of the nonempty faces F; of C'. Specifically, the cells of the
normal manifold are defined by

o;:=F; + N,
where Np, is the common value of N, for z € ri(F;). This particular choice of cells leads to the
algorithm given in [3].

For more general T', we assume that T is described as the union of a finite collection of polyhedral
convex sets C;. We can then describe Pr as the union of the sets S; := {(z +y,2)| (z,y) € C; }.
By projecting each S; onto the domain of Pr, we produce a collection of sets

op =1z +yl(e,y) € Cij.
Since we know dom(Pr) = R", it follows that [Jo; = R™ and thus M := {o; | int(o;) #0}.

To provide an example of this process, we return to the case where T'= N¢. Observe that

Ne =] U {2} x Np = JF x NF,.

F; zekF; F;

Thus, we see that N¢ is the union of the polyhedral convex sets

It follows that the process described above yields the normal manifold.

Robinson [22, Proposition 2.4] proved that the normal manifold is a subdivision of R”. However,
in general, the collection of cells M generated by the above process is not a subdivision. This can
be demonstrated by the following example. Let

¢, = {($,0) € R? x R2| z1 < 0}
02:{@memxmmgm@z@
QB:{@meWmeQmmgﬂ

and let T := |J2_, C;. Observe that T is simply the zero mapping, and is thus a maximal mono-

tone multifunction. However, employing our procedure for constructing M, we obtain o, =
{x €ER?|z; < 0}, o9 = {x €ER?| 2y > 0,29 > 0}, o3 = {x ER?|z;>0,22 < 0}. Since o1 ()02

is not a face of o, we see that M := {0y, 09,03} is not a subdivision of R".
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Since Pr is single-valued, then by Lemma 3.3, Pr is affine on each cell o; € M. A representation
of A7 on each cell is then given by (9). In order to have a workable description of these affine maps,
it would appear necessary to exploit the underlying structure of T'. One such case is the subject of
the next section.

5 Separable T

A particularly important class of affine variational inequalities is that for which the set C'is rect-
angular, i.e., C' is defined by the constraints

[<z<u

where [ and u are vectors in R”, with [; € [—o0,00) and u; € (—o0, 00| for 1 <4 < n. This problem
class has a number of features that are very attractive for pivotal algorithms similar to Algorithm
AGE. In particular, the cells of linearity of the normal map are rectangular, and furthermore the
normal map itself takes on a very simple form. Specifically, for an affine function F(z) := Az + b,
the matrix used to represent the normal map on any cell is formed simply by replacing some of the
columns of A by the corresponding columns of the identity matrix.

Rectangular variational inequalities are also attractive from a theoretical standpoint. In par-
ticular, if at least one of [; and wu; is finite for each ¢, then the normal map is coherently oriented
with respect to C' if and only if A is a P-matriz.

Definition 5.1 ([4]) A matriz A is said to be a P-matrix if all its principal minors are positive.

Note that when C'is rectangular, then Ng(z) = Ny (2) = [Ti2 Np, (7). This suggests
that we can extend the notion of rectangularity to generalized equations by requiring that the
multifunction T be separable, i.e., it is of the form

T,(20)

where for each ¢, T; is a maximal monotone polyhedral multifunction from R to R. With such a T,
we shall see that the cells of linearity of the T-map Ap are rectangular.
We begin by looking at the resolvent operator Pr = (I +T)~!. Note that

PTI (xl)

Pr(z) = PTQ:(QCZ) ’

PTn‘(wn)

where for each ¢, Pr, = (1+71;)~!. Since Pr is a continuous piecewise affine function, it follows that
Pr, is a a continuous piecewise affine function from R into R. Let k; be the number of breakpoints
of Pr,. Then, for some strictly increasing sequence of breakpoints {&;;}, j = 1,..., k; and some set
of coefficients {d;;,b;;}, j =0,...,k;,

dior +bio <&
Pr(z) =9 dijz+by & <a<&Gqa), 157<k
dig,x 4 b, Sy < 2.
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Note that since Pr is monotonic and nonexpansive, 0 < d;; < 1.
The breakpoint sequence defines a subdivision of R given by M; = Ufi:o 0;;, where

v <& j=0
o= |& <ae <oy 0<y<k
Sit, <@ j=k;
We then define a subdivision of R" by M = [[;_; M; with n-cells defined by oy; ; . ;=01 X

024, X oo X Opjp .

Clearly, Pr (and therefore A7) is M-PA. This establishes our earlier statement that the cells of
linearity of Ay are rectangular. For each cell oy;, ;, ;1 of M, define a diagonal matrix Dy; j, ;]
by Dij javoin](8:8) = dij,. Further, define the vector by, . 51 = [b1j,;025,5- -3 0n5,]. Then on

, Pr is represented by (D br . Thus, on g} , the T-map is given

OLjy 1z rvemnin] i1d2reeminds Otz seenin]) 1202 menin]

by
Ar(z) = A(Pr(z))+a+2— Pr(z)
= (AD o ) T 1= Dl o)) @ + (A = Db o] + @
= [d1j1A~1 + (1 — dljl)l.h d2j2A.2 + (1 — d2j2)[2, R dn]‘nA.n
(1= dpj ) Ln] @+ (A= Dby jy,.ooju) T @
=t My yein)® F 01 21en]
Thus, we see that the matrix M[; j, . ;.1 which represents Az on oy; 5 .1
are convex combinations of columns of A and the corresponding columns of I.
We now set about proving the main result of this section. Namely, if A is a P-matrix, then Ap

is coherently oriented for any separable polyhedral maximal monotone multifunction T". We first
need to prove two technical lemmas.

has columns which

Lemma 5.2 If A and B are n x n matrices where B is rank-1 such that det(A) > 0 and det(A +
B) > 0, then det(A+ AB) > 0 for all A € [0, 1].

Proof
det(A+ AB) = Z det[C},, ..., C},],
(j17"'7jn)

where the summation is taken over all possible choices of (ji, ..., j,) such that C, is either A.; or
AB.;. Since B is rank-1, the determinants in the above sum are zero for all choices that include at
least two columns of AB. Thus,

det(A+AB) =det A+ S det[A.q, ..., ABi, ..., A,]
=det A+ A (X0 det[A,..., B, ..., A))

Thus, det(A + AB) is an affine function of A, which is positive at A = 0 and A = 1. Thus, it is
positive for all A € [0, 1]. 0

Lemma 5.3 Let A be an nxn matriz and let {B", ..., B*} be a collection of rank-1 n x n matrices.
Ifdet(A—l—/\lB1 +.. -—I—/\kBk) > 0 for all choices of \; = 0 or 1, then det(A—I—/\lB1 +.. -—I—/\kBk) >0
for all choices of \; € [0,1].

Proof (By induction). The lemma is true for £ = 1 by Lemma 5.2. Now, suppose the lemma is
true for all & < m, we shall prove the lemma true for &k = m.
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Suppose {B!,..., B™} is a collection of rank-1 n X n matrices such that det(A+ X\ B' 4+ .-+
A B™) > 0 for all choices of \; = 0 or 1. Let A:= A+ B™. Then A and {B!,..., B!} satisfy
the conditions of the lemma for k = m — 1. Thus, if A; € [0, 1], V7, then

det((A+B™) + M B ' +---4+ X, _1B™ 1) > 0.
Similarly, with A= A, we have
det(A+ M\ B' 4+ -+ X\, B™ 1) > 0.

From these two results, we see that if we let A=A+ AMBY 4+ 4 X,_1B™ ! then A and B™
satisfy the hypotheses for Lemma 5.2. Thus, for A, € [0, 1]

0 <det(A4 \,B™),
=det(A+ X\ B'+ .- -+ )\, B™).

O

Theorem 5.4 If A is a P-matriz, then for any separable mazimal monotone polyhedral multi-
function T, the T-map At defined by (9) has the property that in any cell of linearity, the matriz
representing At has positive determinant. In particular, Ar is coherently oriented.

Proof Let A7 have the representation (fl, b) in the n-cell o. By the our earlier discussion, A can be
formed by replacing columns of 4 by a convex combination of columns of A and the corresponding
columns of the identity matrix. Thus, the matrix is of the form

A=A+ \B ' +---+)1,B", X\ e[o,1]

where B := (I; — A)IT. Observe that B' is a rank-1 matrix.
Since A is a P-matrix, the matrix formed by replacing an arbitrary set of columns of A by corre-
sponding columns of the identity matrix has positive determinant. Thus, the matrices A, B!, ..., B”

satisfy the hypotheses of Lemma 5.3. Thus, by Lemma 5.3, det(4) > 0. 0

Corollary 5.5 If A is a P-matriz and T is a separable maximal monotone polyhedral multifunction,
then using lexicographic ordering, Algorithm AGE will find a solution to Ar(z) = 0 in a finite
number of steps.

6 Piecewise Linear-Quadratic Programming

We conclude by giving an example of a well known problem in mathematical programming that
can be solved using the technique we have presented. The piecewise linear-quadratic programming
problem (PLQP) is given by

min h(z) = f(z) + ¢(Az), (10)

where 4 € R™*" and f: R" — RUU{oco} and ¢ : R™ — RJ{oo} are convex piecewise linear-
quadratic functions, defined below.

Definition 6.1 A function f: R"” — R|J{oo} is piecewise linear-quadratic if domf is closed and
conver and there exists a finite subdivision M of dom(f) such that for each o0 € M, f, is a
quadratic function.
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Note that dom f is polyhedral, and further that since the cells in the subdivision are closed, f is a
continuous function on domf.
The optimality conditions for PLQP are stated by the relation

0 € Oh(z),
where 0h is the convex subdifferential operator defined by
Oh(z) == {z|h(w) > h(z) + 2 (w — 2),Yw € dom(h)}.
Under an appropriate constraint qualification (i.e. ri(A(dom(f))) Nri(dom()) # 0), it follows that
Oh(z) = df(z) + AT9¢(Ax).

Thus, for the optimality conditions to be satisfied, there must be an 2 € dom(f) and y € 90¢(Az)
such that —ATy € df(z). By [23, Theorem 23.5], the first statement is equivalent to

Az € 09" (y),

where ¢* is the conjugate of ¢. The optimality conditions are then

—-ATy e 9f(x)
Az € 0¢"(y).
Thus, if we define
i | 0 AT ) | OF(@)

the optimality conditions for PLQP can stated as the generalized equation

—A(z;y) € T(z3y). (11)
The fact that 7" is polyhedral was shown in [25]. Thus, the optimality conditions for the piecewise
linear-quadratic program can be expressed as an affine generalized equation, which can then be
solved using our algorithm.
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