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REPEATED GAMES WITH ENDOGENOUS CHOICE OF
INFORMATION MECHANISMS

JÁNOS FLESCHAND ANDRES PEREA Y MONSUWE´

We consider two-player repeated games with nonobservable actions (cf. Lehrer 1989). An
information mechanism for a player is a function which assigns a private signal to every action-pair
of the one-shot game. In this paper, we extend the model to a situation in which both players can buy
an information mechanism before playing the repeated game. Within this model, we provide a
characterization of the lower equilibrium payoffs in terms of the one-shot game for the case that both
players choose a nontrivial information mechanism with probability one. Moreover, we construct a
lower equilibrium in a repeated game in which one of the players strictly randomizes between
information mechanisms. It is shown that the corresponding payoffs cannot be induced by a lower
equilibrium in which players choose a particular information mechanism with probability one.

1. Introduction. In this paper, we study two player repeated games with nonobserv-
able actions in which both players select an information mechanism before the actual game
starts. Here, an information mechanism is a function assigning a private signal to each pair
of actions chosen in the one-shot game. The mechanism chosen by a player is not observed
by his opponent. We assume that the costs for the information mechanisms are fixed and
known to both players. Furthermore, the players always have the ability to buy the trivial
information mechanism (revealing no information about the opponent’s actions) at price
zero. The model can therefore be seen as an extension of the traditional model (with fixed
information mechanisms) as studied in Lehrer (1989, 1990, 1991, 1992a, b), Fudenberg and
Levine (1989) and Radner (1986), to name just a few. Hillas and Liu (1995) investigate the
case in which signals are stochastic instead of deterministic.

We first focus on strategies in which both players choose one specific information
mechanism with probability one. Such strategies are calledsimpleand lower equilibria (cf.
Lehrer 1989) consisting of simple strategies are calledsimple lower equilibria. Our main
result provides a characterization of the class of simple lower equilibrium payoffs by means
of the one-shot game. As such, it can be viewed as an extension of Lehrer’s result to
situations where information mechanisms are not fixed but are chosen endogenously.
Roughly speaking, the characterization states that the simple lower equilibrium payoffs
coincide with the individually rational payoffs generated by some correlation on the one-shot
action pairs, such that no player can benefit from switching to another information
mechanism and subsequently transforming actions, without being detected.

Another interesting situation would be the case where both players are allowed to
randomize over the different information mechanisms that can be chosen. However, this
situation is much more complex since both players are uncertain about the mechanism that
is used by the opponent. We provide an example in which we construct a lower equilibrium
where one of the players strictly randomizes over information mechanisms at the beginning
of the game. We prove that the corresponding payoff cannot be sustained by a simple lower
equilibrium.
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2. Model. We consider a two player game in which both players, before playing a
repeated game with nonobservable actions, choose an information mechanism. Formally, a
two-player repeated game with nonobservable actionsis a tripleG 5 ^GN, l 1, l 2& where

(1) GN is a two-player normal form game with finite action setsA1, A2 and payoff-
functionsv1 , v2 , and

(2) l i : A1 3 A2 3 Li is the so-calledinformation mechanismfor player i which assigns
to every pair of actions a signal in the signals setLi . The functionsl 1, l 2 should be such that
l 1(a1, a2) Þ l 1(a91, a92) whenevera1 Þ a91 and l 2(a1, a2) Þ l 2(a91, a92) whenevera2 Þ a92.

The latter condition on the information mechanisms means that a player always observes
his own actions. The information mechanisml 1 is calledtrivial if player 1 only observes his
own actions. Formally, this means that

l 1~a1, a2! 5 l 1~a1, a92! for all a1 [ A1 and all a2, a92 [ A2.

We call the information mechanisml 1 perfectif it reveals all the opponent’s actions, i.e.,

l 1~a1, a2! Þ l 1~a91, a92! whenevera2 Þ a92.

In the remainder of this article, a two-player repeated game with nonobservable actions will
simply be called a repeated game.

By +1 and+2 we denote the collections of information mechanisms which can be bought
by player 1 and 2 respectively. Each information mechanisml i [ + i can be bought at a
nonnegative pricec(l i). We assume that+1 and +2 contain the trivial information
mechanism which can be bought at price zero. If the information mechanismsl 1 and l 2 are
chosen, the players enter the corresponding repeated gameG(l 1, l 2). Depending on his
information mechanisml i , playeri chooses a behavior strategys i(l i) in the repeated game
which follows. The new, larger game obtained in this way is called theextended game.1 A
behavior strategyfor player i in the extended game is a pairf i 5 (t i , s i) wheret i is a
probability distribution on+ i ands i is a function assigning to every information mechanism
l i in + i a corresponding behavior strategys i(l i) for the repeated game. In order to formalize
the notion of the behavior strategys i(l i), consider a repeated game which follows after
choosingl i . An n-stagehistory for playeri is a sequence (l i

1, l i
2, . . . , l i

n) of playeri signals.
The set ofn-stage histories of playeri is denoted byLi

n. A behavior strategyfor player i in
the repeated game is a sequences i 5 (s i

n) n51
` wheres i

1 [ D( Ai) ands i
n: Li

n21 3 D( Ai)
for n 5 2, 3, . . . .

Let (s1 , s2) be a behavior strategy pair in the repeated gameG(l 1, l 2). For everyn and
everyn-stage history pair (h1, h2), Ps1 ,s2

(h1, h2) denotes the probability that (h1, h2) will
occur. The expected average payoff for playeri at stagen is given by

v i
n~s1, s2! :5

1

n
O
k51

n F O
~h1 ,h2 ![L 1

k213L 2
k21

Ps1,s2~h1, h2!v i ~s 1
k~h1!, s 2

k~h2!!G ,

where Li
0 is some arbitrary single-element set. Byv i(s 1

k(h1), s 2
k(h2)), we denote the

1 Another possibility would be to allow the players to choose an information mechanism at each stage of the game,
before choosing the action. As such, the model would reduce to a special case of a repeated game with unobservable
actions as studied by Lehrer (1989, 1992). In this case, a player could check the opponent’s actions by choosing a
nontrivial mechanism only at a set of stages with density zero and therefore (on average) not paying anything for
this. This is not possible in our model: if a player wants to check the opponent by using a nontrivial mechanism then
he has to pay the full price in advance. For an example illustrating this difference, see Flesch and Perea y Monsuwe´
(1999).
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expected payoff for playeri in the one-shot game, if the mixed actionss 1
k(h1) ands 2

k(h2) are
played. We define

v i ~s1, s2! 5 lim inf
n3`

v i
n~s1, s2! and v# i ~s1, s2! 5 lim sup

n3`

v i
n~s1, s2!.

The payoffsv i(s 1, s 2) andv# i(s 1, s 2) are called lower payoff and upper payoff respectively.
Now, suppose that the players play the behavior strategy pair (f1 , f2) in the extended

game. The lower (upper) expected payoff for playeri is equal to the difference between the
lower (upper) expected payoff in the repeated game and the expected amount to be paid for
the information mechanism. We denote the lower and upper expected payoff for playeri by
wi(f 1, f 2) andw# i(f 1, f 2) respectively. The behavior strategy pair (f1 , f2) is called alower
equilibrium in the extended game if

(1) wi(f 1, f 2) 5 w# i(f 1, f 2) for i 5 1, 2, and
(2) w1(f91, f 2) # w1(f 1, f 2) for all f91 andw2(f 1, f92) # w2(f 1, f 2) for all f92.
A behavior strategy pair in the extended game is calledsimple if both players but

probability one on a specific information mechanism. A lower equilibrium consisting of
simple strategies is termedsimple lower equilibrium.

3. Main result.

3.1. The theorem. In the remainder of this article, we always refer to the extended
game when we talk about strategies and equilibria unless we say otherwise. By SLEP(l 1, l 2)
we denote the set of payoffs induced by simple lower equilibria in which the information
mechanismsl 1 andl 2 are chosen with certainty. In order to give a characterization of the set
SLEP(l 1, l 2) we need some more definitions. In these definitions,l 1 and l 2 are fixed.

Let l 91 be an arbitrary information mechanism. In the following definitions we compare
pairs (a1ul 1) consisting of an actiona1 and the information mechanisml 1 with pairs (a91ul 91).
A pair (a91ul 91) is calledmore informativethan (a1ul 1), denoted by (a91ul 91) � (a1ul 1), if l 1(a1,
a2) Þ l 1(a1, a92) implies l 91(a91, a2) Þ l 91(a91, a92) for all a2, a92. In words, all actions of player
2 that are distinguished by playing actiona1 while using information mechanisml 1 are also
distinguished by playinga91 while using l 91. A pair (a91ul 91) is calledgreater than (a1ul 1),
denoted by (a91ul 91) s l 2 (a1ul 1), if a91 ; l 2 a1 and (a91ul 91) � (a1ul 1). Here,a91 ; l 2 a1 means
thata91 anda1 are indistinguishable if player 2 usesl 2. An information mechanisml 91 is called
greaterthanl 1 with respect tol 2, denoted byl 91 s l 2 l 1, if for every actiona1 there exists an
actiona91 such that (a91ul 91) s l 2 (a1ul 1).

Let @ be the set of probability distributions onA1 3 A2, which from now on will be called
weight matrices. For an information mechanisml91, let C1(l91) be the set of functionsc1: A13 A1

with

~c1~a1!ul 91! s l2 ~a1ul 1!

for all a1 [ A1. In words, if player 1 switches froml 1 to l 91, thenC 1(l 91) contains those
functions which transform each action into a greater one. Note thatC 1(l 91) is nonempty if and
only if l 91 s l 2 l 1. For aB [ @ and a functionc 1 [ C 1(l 91), the weight matrixc 1(B) is
defined by

~c1~B!!~a1, a2! 5 O
a# 1[c 1

21~a1 !

B~a# 1, a2!

for all a1, a2. Note that, by definition, (c 1(B))(a1, a2) 5 0 if c 1
21(a1) is empty. It can be
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seen easily that the functionc1 transformingB into c 1(B) is a linear (and therefore convex)
operator. Furthermore, we define

@1~l 91! 5 $B [ @uv1~B! 2 c~l 1! $ v1~c1~B!! 2 c~l 91! for all c1 [ C1~l 91!%.

Intuitively, @ 1(l 91) contains those weight matrices for which player 1 cannot increase his
payoff by deviating to information mechanisml 91 and transforming his actions into greater
ones. By construction,@ 1(l 91) 5 @ if l 91 ê l 2 l 1 since in this caseC 1(l 91) is empty. In the same
way, we define@ 2(l 92).

THEOREM 3.1. If l 1 and l2 are nontrivial,

SLEP~l 1, l 2! 5 FF ù
l 91[+1

v~@1~l 91!!G ù F ù
l 92[+2

v~@2~l 92!!G 2 ~c~l 1!, c~l 2!!G ù IR.

Here, v(@ i(l 9i)) denotes the set of payoff pairs (v1 , v2) induced by weight matrices in
@ i(l 9i). The notation2(c(l 1), c(l 2)) means that we substract the cost-pair (c(l 1), c(l 2)) from
every element of the set. By IR we denote the set of individually rational payoff pairs of the
one-shot game. The proof can be found in §3.3. Note that the setSLEP(l 1, l 2) can be empty
for somel 1, l 2.

3.2. Detectability of deviations to other information mechanisms. In Lehrer’s
characterization of lower equilibrium payoffs with fixed information mechanisms (Lehrer
1989), a central role is played by checking the opponent’s actions. This is used as a tool to
prevent the opponent from deviating. Roughly speaking, Lehrer implements this by building
in test phases where a player is asked to report the signals he received in the past. In our
model, players have the additional possibility to deviate to other information mechanisms.
Therefore, new techniques have to be introduced to check whether the opponent has deviated
to another information mechanism. This is the aim of this subsection.

Let the information mechanismsl 1 and l 2 be fixed. We say that a deviation froml 1 to l 91
is undetectableif for all behavior strategy pairs (s1 , s2) in G(l 1, l 2) there exists a behavior
strategys91 in G(l 91, l 2) such that (s91 , s2) induces the same probability distribution on player
2’s histories as (s1 , s2).

By IH2(s1 , s2) we denote the set of infinite player 2 historiesh2 5 (l 2
1, l 2

2, l 2
3, . . .) having

a finite sub-history which is impossible if (s1 , s2) is played. We say that a deviation from
l 1 to l 91 is detectableif there exists a behavior strategy pair (s1 , s2) in the repeated gameG(l 1,
l 2) such that for all behavior strategiess91 in G(l 91, l 2) we havePs91 ,s2

(IH 2(s 1, s 2)) 5 1. This
means that, after choosingl 91, every strategy of player 1 will induce, with probability 1, a
finite history for player 2 which could not occur if player 1 had chosenl 1 and playeds1.

Suppose that the set of possible signals for player 1 isL 1 5 { t 1
1, . . . , t 1

uL1u}. Since l 1 and
l 2 are nontrivial, there exist actionsa1

0, a1
1 [ A1 anda# 2 [ A2 such thatl 2(a1

0, a# 2) Þ l 2(a1
1,

a# 2). These actions will be used for communication between the players. For an actiona1

[ A1, thetestT^a1& is a strategy pair for 11 uL 1u stages defined as follows. At the first stage
player 2 plays each of his actions with probability 1/uA2u, while at all remaining stages he
playsa# 2. Player 1 plays actiona1 at the first stage and afterwards answers which signal he
received at the first stage. Player 1 codes his answer in the following way. At the (11 m)th
stage he plays actiona1

1 if he received signalt 1
m at the first stage and he plays actiona1

0

otherwise. Tests T̂a2& are defined analogously.
We define theinformation mechanism inspectionto be the strategy pair consisting of all

possible testsT^a1& andT^a2&. Since each test is finite and there are only finitely many tests,
it follows that this inspection has finite length.

788 J. FLESCH AND A. PEREA Y MONSUWE´



LEMMA 3.2. Let l1, l 2 be nontrivial information mechanisms and l91 some other informa-
tion mechanism.

(a) If l 91 s l2 l 1 then the deviation from l1 to l91 is undetectable.
(b) If l 91 ê l2 l 1 then the deviation can be detected by repeating the information mechanism

inspection infinitely many times.

PROOF. (a) Let l 91 s l 2 l 1 and let (s1 , s2) be a behavior strategy pair inG(l 1, l 2). We
construct a behavior strategys91 in G(l 91, l 2) such that (s91 , s2) and (s1 , s2) induce the same
probability distribution on all finite histories of player 2.

For n 5 1, we defines91
1(a1) :5 s 1

1(c 1
21(a1)) for everya1 [ A1, wheres 1

1(c 1
21(a1))

denotes the sum¥ a# 1[c1
21

(a1 )s 1
1(a# 1). Hence, player 1 usesc1 to transform the old mixed

actions1
1 into the new mixed actions91

1. Sincec 1(a1) ; l 2 a1 it follows that (s91 , s2) and
(s1 , s2) induce the same probability distributions on the one-stage histories of player 2.

For n . 1, we defines91
n as follows. If player 1 observes historyh1

n21 at stagen, he can
compute the conditional probability distributionPs1 ,s2

( z uh1
n21) on the player 1 histories up

to stagen 2 1 which would have occurred if he had playedl 1 ands1 instead ofl 91 ands91.
The latter is due to the fact that (c 1(a1)ul 91) is more informative than (a1ul 1) for everya1. For
everyh1

n21 we define

s91
n~h1

n21!~a1! :5 O
h91 n21

Ps1,s2~h91
n21uh1

n21! z s 1
n21~h91

n21!~c 1
21~a1!!

for all a1. In words, player 1 calculates the probability distribution on histories that he would
have observed while usingl 1 ands1 and for each of those histories transforms the old mixed
action into a new one by usingc1. Sincec1 transforms actions into indistinguishable ones
(from player 2’s viewpoint) and player 1 is always able to calculate the probability
distribution on histories that would have occurred when usingl 1 ands1 , it can be shown by
induction onn that (s91 , s2) and (s1 , s2) induce the same probability distribution on the set
of n-stage histories of player 2 for alln.

(b) Now, letl 91 ê l 2 l 1. Then, by definition, there is an actiona1 for which there is no action
a91 with (a91ul 91) s l 2 (a1ul 1). So, by usingl 91 and a91, player 1 either does not play in an
indistinguishable way or he cannot distinguish all the actions of player 2 that he could
distinguish by playing actiona1 while usingl 1. In the former case, since each player 2 action
occurs with strictly positive probability in the information mechanism inspection and the
inspection is repeated infinitely many times, player 2 will, with probability 1, receive a signal
that he should not get if player 1 playeda1. In the latter case, player 2 will, with probability
1, receive a wrong answer from player 1 in one of the repetitions of the testT^a1&. h

3.3. Proof of theorem. Before we prove the characterization of the simple lower
equilibrium payoffs as given in Theorem 3.1, we need some technical lemmas. In these
lemmas, the nontrivial information mechanisml 1 is fixed andl 91 is some other information
mechanism.

By V1(l 91) we define the set of payoff pairsv which can be written as a convex combination

v 5 O
a1

a a1v~a1, p2
a1!

with

O
a1

a a1v1~a1, p2
a1! 2 c~l 1! $ O

a1

a a1v1~c1~a1!, p2
a1! 2 c~l 91!
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for all c 1 [ C 1(l 91). Here,p2
a1 denotes a mixed action for player 2 in the one-shot game, i.e.,

a probability distribution onA2.

LEMMA 3.3. v (@1(l91)) 5 V1(l91).
The proof is elementary and can be found in Flesch and Perea y Monsuwe´ (1999).
It can be checked easily thatv(@ 1(l 91)) is a convex and compact set.
Now, suppose that (s1 , s2) is a behavior strategy pair inG(l 1, l 2) inducing a payoff pair

v ¸ v(@ 1(l 91)). Then, we can find two disjoint, closed half-spacesK1 and K2 such that
int(K1) containsv andK2 containsv(@ 1(l 91)). Here, int(K1) denotes the interior ofK1.

LEMMA 3.4. There is ag . 0 such thatv (B) [ K1 implies thatv1(c1(B)) 2 c(l91)
$ v1(B) 2 c(l 1) 1 g for somec1 [ C1(l91).

PROOF. Let @1 be the set of weight matricesB with v(B) [ K1. Let f be the function
assigning to every weight matrixB the number

max
c1[C1 ~l 91 !

@@v1~c1~B!! 2 c~l 91!# 2 @v1~B! 2 c~l 1!##.

By construction,f is continuous andf(B) . 0 for all B [ @1. Since@1 is compact,f attains
a minimumg . 0 on @1. h

PROOF OFTHEOREM 3.1.
(a) “,” Obviously,SLEP(l 1, l 2) , IR since both players can guarantee their individually

rational payoff of the one-shot game by choosing the trivial information mechanism and
playing the max-min action in every stage of the game.

By symmetry, it suffices to show thatSLEP(l 1, l 2) , v(@ 1(l 91)) 2 (c(l 1), c(l 2)) for every
l 91. Assume by way of contradiction that (f 1, f 2) 5 ((l 1, s 1), (l 2, s 2)) is a lower-
equilibrium with payoffv 2 (c(l 1), c(l 2)) ¸ v(@ 1(l 91)) 2 (c(l 1), c(l 2)) for somel 91, sov
¸ v(@ 1(l 91)). For convenience, we writes i instead ofs i(l i) andP instead ofP(s1,s2). For
everyn [ N, let Pn(a1, a2) be the probability that the action paira1, a2 is played in stage
n and letBn be the weight-matrix given byBn(a1, a2) 5 Pn(a1, a2) for all a1, a2. By
definition, it holds that

v 5 lim
N3`

1

N
O
n51

N

v~Bn! 5 lim
N3`

vS 1

N
O
n51

N

BnD .

Sincev ¸ v(@ 1(l 91)), we can find setsK1 andK2 as constructed above. Using the fact that
v [ int (K1), it follows thatv((1/N) ¥ n51

N Bn) [ K1 for largeN. We may assume, w.l.o.g.,
thatv((1/N) ¥ n51

N Bn) [ K1 for all N. By Lemma 3.4, there is ag . 0 such that for every
N we can find ac 1

N [ C 1(l 91) with

v1Sc 1
NS 1

N
O
n51

N

BnDD 2 c~l 91! $ v1S 1

N
O
n51

N

BnD 2 c~l 1! 1 g,

implying that

1

N
O
n51

N

v1~c 1
N~Bn!! 2 c~l 91! $

1

N
O
n51

N

v1~Bn! 2 c~l 1! 1 g.
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For every stagen, let c# 1
n [ C 1(l 91) be such thatv 1(c# 1

n(Bn)) is maximal. With the inequality
above, it follows that

1

N
O
n51

N

v1~c# 1
n~Bn!! 2 c~l 91! $

1

N
O
n51

N

v1~c 1
N~Bn!! 2 c~l 91! $

1

N
O
n51

N

v1~Bn! 2 c~l 1! 1 g

for all N.
Let s91 be the behavior strategy which is obtained froms1 by transforming the actions in

stagen according toc# 1
n. The strategys91 is constructed in the same way as the strategys91

in the proof of Lemma 3.2. Since the deviation froms1 to s91 cannot be detected, (s91 , s2)
induces the same probability distributions on the player 2 histories as (s1 , s2). By
construction,

v1~s91, s2! 2 c~l 91! 5 lim inf
N3`

1

N
O
n51

N

v1~c# 1
n~Bn!! 2 c~l 91!

$ lim
N3`

1

N
O
n51

N

v1~Bn! 2 c~l 1! 1 g 5 v1 2 c~l 1! 1 g

which is a contradiction to the fact that (f1 , f2) is a lower equilibrium.
(b) “.” Let v be a payoff in the right-hand side. We construct a simple lower equilibrium

((l 1, s 1), (l 2, s 2)) with payoff v. The implementation of the strategiess1 ands2 consists of
the following six phases which are repeated infinitely many times. The phases 2a, 2b, 3a and
3b are constructed in a similar way as in Lehrer (1989).

Phase1a. Player 1 plays his information mechanism inspection, as described in §4.2.

Phase1b. Same for player 2.

Phase2a. Letl 91 be an information mechanism in+1. By Lemma 3.3,v can be written
as

v 5 O
a1

a a1v~a1, p2
a1!

with

(3.1) O
a1

a a1v1~a1, p2
a1! 2 c~l 1! $ O

a1

a a1v1~c1~a1!, p2
a1! 2 c~l 91!

for all c 1 [ C 1(l 91).
For everye . 0, let p2

a1(e) be the unique mixed action closest top2
a1 which puts minimal

weight e on every action.
If the nth stage is reached, letK be the block containing the nextnn stages. We divideK

into sub-blocksKa1 such that the relative length ofKa1 in K is close to the corresponding
coefficienta a1. In each stage of blockKa1, player 1 and 2 playa1 andp2

a1(e) respectively,
wheree has to be chosen small enough. Below, we specify what we mean by “small enough”.

On the other hand, the values fore have to be chosen in such a way that, starting from an
arbitrary stage, the probability that a player 2 action is played in the future, is equal to 1.
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We repeat this process until every information mechanisml 91 has been chosen.

Phase2b. Similar to phase 2a, but now the roles of player 1 and 2 are exchanged.

Phase3a. LetSbe the set of stages containing all repetitions of phase 2b up to the current
stage. If this is thenth repetition of phase 3a, player 1 asks his opponent the question “Which
signal did you receive at thenth stage ofS?” Afterwards, player 2 answers the question. The
question and answer are implemented in the same way as described in the information
mechanism inspection. Since player 2 is supposed to play only pure actions in phase 2b,
player 1 knows exactly which signal player 2 should have received at thenth stage ofS.

Phase3b. Same as phase 3a, but now with exchanged roles of player 1 and 2.
At the end of phase 3b, the players return to phase 1a and so on.
If at any moment in the game, a player notices that his opponent has deviated from the

prescribed strategy, he will punish him by playing his min-max action forever.
For a setM of stages, lim supN3` (uM ù {1, . . . , N} u/N) is called theupper densityof

M, whereas lim infN3` (uM ù {1, . . . , N} u/N) denotes thelower densityof M. By
construction, the set of stages belonging to phases 1a, 1b, 3a and 3b has upper density zero.
Therefore, these phases have no influence on the final payoff.

The sub-blocksKa1, Ka2 should be arranged in such a way that the average payoffs
converge. The lengths of the sub-blocksKa1, Ka2 in phase 2a and 2b respectively and the
value ofe in the same phases can be chosen in such a way thatv (f1 , f2) 5 v.

Finally, we show that ((l 1, s 1), (l 2, s 2)) is a lower equilibrium. Suppose that player 1
would deviate to a strategy (l 91, s91). If l 91 is not greater thanl 1, then, with probability one,
the deviation will be detected in one of the repetitions of phase 1b and player 1 will be
punished. So the only possible way for player 1 to improve his payoff is by deviating to an
l 91 s l 2 l 1.

Look at an arbitrary blockK in phase 2b which corresponds to the information mechanism
l 91. The length of blockK is equal tonn , wheren is the number of preceding stages. Let_
be the collection of blocksK which correspond tol 91 and let_* be the set of final stages of
blocksK [ _. Let x1

n be the player 1 expected payoff at stagen when (s91 , s2) is played.
Since in the long run, the average payoff until some stage in_* is completely determined by
the payoffs at stages in_, it follows that

lim inf
N[_*

1

N
O
n51

N

x1
n 5 lim inf

N[_*

1

N
O

n[_ù$1, . . . ,N%

x1
n.

Since

v1~s91, s2! 5 lim inf
N

v 1
N~s91, s2! # lim inf

N[_*

1

N
O
n51

N

x1
n,

it suffices to show that

lim inf
N[_*

1

N
O

n[_ù$1, . . . ,N%

x1
n # v1~s1, s2!.

In other words, it remains to prove that by playings91 , the average payoff at stages in_ does
not exceedv1(s1 , s2). If player 1 only deviates on a set of stages with lower density zero,
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it cannot increase the lower expected payoff. Therefore, it suffices to consider player 1
deviations on a set of stages with positive lower density.

Suppose that player 1 deviates in_ by transforming actions into distinguishable actions on
a set of stages with positive lower density. Then, with probability 1, player 2 will detect this
deviation in one of the repetitions of phase 2a.

If player 1 deviates in_ by transforming actions into less informative actions on a set of
stages with positive lower density, then, with certainty, this deviation will be detected by
player 2 in one of the repetitions of phase 3b.

So the only possible way for player 1 to increase his payoff is by transforming actions into
greater actions on a set of positive lower density. In the long run, the expected average payoff
in stages of_ converges to

v 5 O
a1

a a1v~a1, p2
a1!

with

O
a1

a a1v1~a1, p2
a1! 2 c~l 1! $ O

a1

a a1v1~c1~a1!, p2
a1! 2 c~l 91!

for all c 1 [ C 1(l 91). Therefore, player 1 cannot increase his long run average payoff in stages
of _ by transforming actions into greater actions, which leads to the conclusion that

lim inf
N[_*

1

N
O

n[_ù$1, . . . ,N%

x1
n # v1~s1, s2!.

Since this holds for everyl 91, it follows that v1(s91 , s2) # v1(s1 , s2). h

4. Nonsimple strategies.

EXAMPLE. Consider the repeated game in which the one-shot game is given by

L R
U 2, 0 21, 0
M 3, 0 0, 1
D 3, 0 0, 1

.

Assume that+ 1 5 {trivial, perfect} and + 2 5 {trivial, l 2
1, l 2

2} where

l 2
1 5

a c
b c
a c

and l 2
2 5

a c
a c
b c

.

All mechanisms can be obtained at price zero.

Claim. The payoff (2, 0) is a lower equilibrium payoff if players are allowed to
randomize over choosing different information mechanisms but cannot be obtained as a
simple lower equilibrium payoff.

Proof of claim. First we construct a lower equilibrium in which player 2 strictly
randomizes betweenl 2

1 andl 2
2 resulting in the payoff (2, 0). Let the strategies for player 1 and

2 be as follows. Player 1 chooses the perfect mechanism with probability one and playsU at
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every stage, irrespective of the history. Player 2 choosesl 2
1 and l 2

2 both with probability1
2,

playsL as long as he observes signala and playsR if he observed signalb or c in one of
the previous stages. Clearly, these strategies induce the payoff (2, 0). If player 1 deviates
from U to another action at some stage then player 2 will detect this with probability1

2. The
lower payoff for player 1 by deviating at some stage can therefore not exceed1

2 z 3 1 1
2 z 0

, 2. Since player 1 has no incentive to choose the trivial mechanism and player 2 has no
incentive for deviation, these strategies constitute a lower equilibrium.

Next we prove that there is no simple lower equilibrium which induces payoff (2, 0).
Suppose that player 2 chooses one of his information mechanisms with probability one. Let

P~U! :5lim inf
n3`

1

n
O
k51

n

P k~U!,

wherePk(U) is the probability that player 1 playsU at stagek. If P(U) . 0 then player 1
can always replace the actionU by D or M (depending on whether player 2 usesl 2

1 or l 2
2,

respectively) without being detected and increase his payoff. Therefore this cannot be a lower
equilibrium. If P(U) 5 0 then the strategies cannot induce the payoff (2, 0). Consequently
there is no lower equilibrium with payoff (2, 0) in which player 1 and 2 choose one of their
mechanisms with certainty.h

However, if we try to characterize the set of lower equilibrium payoffs in a situation where
players may randomize over the information mechanisms that can be bought, we encounter
some very difficult problems. This is due to the fact that players are uncertain about the
mechanism used by the opponent. Detecting deviations becomes therefore a very compli-
cated matter.
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