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Analyse asymptotique des réseaux
de communications congestionnés

Résumé : Nous étudions le probleme de minimisation du délai de routage dans les
réseaux de télécommunications. Nous établissons des développements asymptotiques pour
la, fonction cofit et les solutions pour des réseaux congestionnés. Il s’agit d’un probleme
d’analyse de perturbations singulieres et ol chaque probleme perturbé peut avoir plusieurs
solutions. Cette étude est tres proche de celle de la méthode de barriére inverse partielle en
programmation linéaire.

Mots-clé :  Réseaux de télécommunications, multiflots, développements asymptotiques,
programmation linéaire, analyse de perturbations, fonctions barrieres, méthodes de pénali-
tés.
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1 Introduction

This paper is devoted to the study of the problem of minimizing the average delay in
low-rate packet-switched networks. This problem is described in detail in the next section.
For the moment it suffices to say that the equations are those of a multicommodity flows
problem, while the cost function is the sum over of the inverse of the residual capacities on
each arc, weighted by the capacity of that arc. This is a convex problem that may have
several solutions.

We consider the problem of computing the expansion of the value function and solution
of this problem, taking as perturbation variables the arc capacities. We assume that the
unperturbed problem is such that some arcs are congested, i.e. their residual capacities
are null, and we discuss the effect of a variation of capacities that is linear with respect to
a scalar parameter ¢, ¢ = 0 corresponding to the unperturbed problem. We assume that
congestion does not occur for positive .

This is a particular case of the general problem of computing the expansion of value
function and solution of a nonlinear programming problem. This is a very active field, see
e.g. the review [4] and the book [6]. In particular, there exist formulas, based on first-order
information, for the marginal value of a convex problem under fairly weak hypotheses. For
computing the second-order expansion of the cost and the first-order expansion of solutions,
it is necessary to use second-order information. However, most the theory of expansions of
solutions deals with the case of (locally) unique solutions, and the perturbation theory, as
well as the theory of second-order optimality conditions, is still in infancy [3, 12].

In addition, the main difficulty comes from the fact that the unperturbed problem is
singular (due to the congestion). Therefore we cannot use much the results of the literature,
rather we had to tailor specific estimates.

The results of this paper are obtained by studying an auxiliary problem (P.), with
€ > 0, in which the perturbation parameter ¢ is considered as an optimization variable, and
penalized with weight é~!. The advantage of this transformation is to ease comparisons
with the literature devoted to the central path, i.e. the set of points that minimize a given
barrier function. The central path is one of the basic concepts of the theory of interior
point algorithms [8, 11]. A local analysis of central paths associated with general penalty
functions may be found in [2]. The perturbation problem studied here is similar (although
not identical) to a partial inverse barrier method (P.I.B) in linear programming. That is,
a method in which a penalty term, proportional to the inverse of slack variables, is applied
to some inequalities, but not all. The inverse barrier method was introduced by Carroll [5]
and is studied in [7]. As possible motivation of partial barrier methods is as follows. For
large scale optimization problem with a small number of coupling variables (i.e. a recourse
problem) it might be of interest to apply a penalty barrier to the constraints on the coupling
variables when only a small number of constraints of the decoupled problems is active (and
therefore it is not efficient to deal explicitely with all of them).

RR n~3133



4 J. Frédéric Bonnans , Mounir Haddou

The paper is organized as follows. The next section is devoted to the presentation of
the problem. In §3 we obtain some preliminary estimates for some special situations like
problems in the motivation subsection. In the next section we prove some convergence
results. Asymptotic expansions of the solutions and the cost function are given in Section 4
and 5. The last section discusses some extensions.

2 Minimizing the average delay in low-rate packet
-switched networks

We now describe the problem of minimizing the average delay in low-rate packet-switched
networks [10] when small changes can be made in capacities.
Such a network can be modeled as an oriented graph G = (N, L), where N and L are the
nodes and arcs sets, with capacities v; on each arc l;. We denote |N| = n and |L| = p,
and associate with a demand d* of value v*, between a source and sink nodes o* and s*,
a commodity k represented by a vector zF € IRP. Each component z¥ is the amount of
commodity k& which flows through the link [;. The problem is then

. Vi k 0 .
Min — Yi — Z x; =x;,1=1,..,p
0° ? i 19 y ey )y
T 1<i<p Ti 1<k<K (2.1)
AzF =bF, k=1,...K, z¢F>0,k=0,.. K.

Here A is the incidence matrix of the graph G and b* € IR" is such that

b= —ohif i=0% b =0Fif i =5 bF =0otherwise.
The cost function represents the sum of global delays occurring for packets sent through the
network.

Let us now consider the influence of a variation of arc capacities on the solution. In
order to obtain an expansion of the solution, we assume that the capacity on arc i is now
augmented of an amount tw;, where ¢ > 0 is a scalar number. The considered problems are

. i + tw; .
Min 30 BEEE b Y ab=al =1,
1<i<p T 1<k<K (2.2)

Ak =b* k=1, K, z¢>0 k=0,..K,

for any value (relatively small) of the additional variable ¢.
We find convenient to introduce an artificial variable £ and consider the family of problems

Mitn t+e¢ z Lowz, vi + tw; — Z wf:m?,i:l,...,p,
(P:) o 1<i<p T 1<k<K
Azk =v* k=1,.. K, t>0,2¢¥>0,k=0,..,K.

We will denote the cost function of the above problem as f.(z,t) :=t+¢ E Lowz.
€T~
1<i<p ?

INRIA



Asymptotic analysis of congested communication networks )

This problem may be interpreted as a penalization of the perturbation parameter .
Observe that this problem is very close to an inverse barrier method applied to the linear
program obtained by taking ¢ = 0, the barrier being applied only to the coupling constraints.

Notations Let z € IR™. The relation £ > 0 means z; > 0, ¢ = 1,2,---,n, while

x> 0means z; > 0, i = 1,2,---,n. We denote T the nonnegative part of T, i.e. x;L =
maz(z;,0), i = 1,2,---,n. Let J be a subset of I := {1,---,p}. We denote J := 1\ J
and zy := {z;,i € J}. By ||.|| we mean the Euclidean norm ||.||2 in the space given by the
context.

The notation z(¢) = O(e) (resp. z(¢) = o(e)) means that there is a constant K (de-
pendent on problem data) such that for every e > 0, ||z(e)|| < Ke (resp. limgjoe t||z(e)| =
0). We will also denote z(¢) ~ & when z(¢) = O(¢) and ||z(e)||~! = O(g). Let (P) be an
optimization problem. By F(P), S(P) and v(P) we denote respectively the feasible set, the
optimal set and the optimal value.

3 Preliminary estimates

Counsider the linear programming problem obtained by setting ¢ = 0 in (F;):

Min ¢, Yi + tw; — Z .’L'f:l‘?, i1=1,...,p,
(LP) ot 1<k<K

Azb =bv*, k=1,.,K, t>0, z* >0, k=0,.. K.
We assume throughout the paper that the following assumptions are satisfied:

(i) the optimal value v(LP) =0, and

(ii) the following congestion condition is satisfied:

3j € I such that V(z,0) € S(LP), z) = 0.

With (z,t) € F(LP) we associate the sets of active constraints
I*z,t):={iel : 2" =0}, k=0,..., K.

The sets of constraints that are active for all solutions of (LP) are denoted

If = ﬂ I*(2,0), k=0,..., K.
(z,0)€S(LP)

These sets determine the solution set S(LP) and its relative interior by

S(LP) = {(x,0) € F(LP) : If c I*(z,0), k=0,...,K},

RR n°3133



6 J. Frédéric Bonnans , Mounir Haddou

ri S(LP) = {(z,0) € F(LP) : I*(2,0) =1}, k=0,...,K}.

The family of problems (P;) can be interpreted as a partial inverse barrier (P.I.B) method
for solving (LP). Indeed, the second part of the cost function f. implicitely implies that z°
must be nonnegative. We can then consider it as a barrier applied to the components z°.
The results of this section are very closed to those concerning the inverse barrier method
introduced by Carroll [5] and studied in [7]. Convergence of this well known method and
some other penalty and barrier methods to a particular optimal solution is also proved in

[2].

We define the set of partial centers of S(LP) as the optimal set of
. Vi
R Min —.
(R) (z,0)€S(LP) ;20 )

Using the fact that S(LP) is nonempty and bounded, it may be checked by standard ar-
guments that S(R) is nonempty, bounded, closed and convex. Since F(R) = S(LP), every
partial center (z,0) satisfies

¥ =0 if ielf, k=0,...,K.

Furthermore, as the cost function of (R) is strictly convex with respect to components z¥
for i ¢ I, all partial centers have the same components z9 for i ¢ Ig.
To begin our discussion, we recall the celebrated Hoffmann’s lemma [9)].

Lemma 3.1 Let C := {z € R": Ez=¢e¢, Gz < g} be a nonempty set. There ezists a
constant 6 > 0 depending only on the matrices E and G such that

Vz e R", dist(z,0) < §(|(Gz = g)T || + | Ez — e])).

By (z(e),t(e)) we denote an arbitrary solution of (P.). The next lemma gives the order of
magnitude of t(¢).

Lemma 3.2 One has t(g) ~ +/E.
Proof. Let (z,0) € S(LP) and define (y.,t:) by
yh=2F fork=1,...,K, t.=+f and 9y’ =2"+ Vew.
Obviously (y.,t.) € F(P.). Therefore
1) < 0(P.) < fulyerte) = O(VE). (3.3)
On the other hand, applying Lemma 3.1 to C' = S(LP) and z = (z(¢), t(¢)), we obtain that

361 > 0 such that dist((z(e),t(¢)), S(LP)) = 81t(e).

INRIA



Asymptotic analysis of congested communication networks 7

In particular, for the components z%(¢), we can conclude that
0

|29(e)| < but(e), i€y
It follows that
Yi B3| e
OWa) 2 0(P) = £ te) 2 e T iy = 181
iery *

and then t(e) = +/e. [

Lemma 3.3 The solution sets {S(P:)}c>o are uniformely bounded for e close to 0, and any
limit-point (Z,t) of {(z(¢),t(¢))}e>0 with (z(g),t(c)) € S(P:), is a partial center.

Proof. By Lemma 3.2, t(¢) =~ /e. In particular, for € small enough, t(¢) < 1 and
S(P.)C Z:={(z,t):0<t<1 and 0<zF<~y4+w k=0,...,K}.

As Z is bounded, uniform boundedness of S(P.) follows.

Let (Z,1) be a limit-point of {(z(¢),t(¢))}es0- As F(LP) is closed and t(¢) =~ /¢, t = 0 and
(z,t) = (z,0) € S(LP).

Now let g, | 0 be such that there exists {(x(ex), t(er))} € S(Ps,) converging to (Z,0). Let
(%,0) € ri S(LP). Then

(z,0) = kEr_l{loo(fs(sk),t(sk)) with T(er) = x(ep) + & — 7.

As (#,0) € 1i S(LP), we have z?(¢},) = #9(ex) whenever i € I and (2(ex),(ex)) € F(LP)
for €, small enough.
From fe, (z(e),t(er)) < fer (E(er), t(er)), we deduce that

Z Vi +0t(€k)wi < Z i -i:ot(ﬁk)wi. (3.4)
oy x} (ex) by 29(ex)
Passing to the limit in (3.4), we obtain that Z? > 0 whenever i ¢ I? and

i Y
=0 = +0°
T €T

igrd "t g1yt

This proves that (Z,0) is a partial center. O

RR n°3133



8 J. Frédéric Bonnans , Mounir Haddou

4 Asymptotic expansion of the solutions

Let (z*,0) be a fixed partial center. For each (z(e),t(¢)) € S(P:), we define (7(g),d(¢)) by
7(e) :==e ?t(e) and d(e) :=e 2 (2(e) — z*).

Our purpose in this section is to prove that {(7(g),d’(e))} converges. We will consider the
other components of {d(¢)} in the last section.
The first result will concern (7(¢),d% (¢)) corresponding to the “principal part’ in the cost

function. Indeed, by Lemmas 3.2 and 3.3

fe(a(e),t(e) _ ¢ Vi +tE)wi _ i
7 _ﬁh/g; 0 _T(e)+zdo(e) +0(Ve). (4.5)

. 0 7
i€l

Formula (4.5) suggests to consider the convex optimization problem

( Min 7+ lé,
d,T d’
ierd *
st.  AdF =0, k=1,...,K,
(U) $ Twi— »  di=di, i=1,...,p,
1<k<K
k —
d]'k(m*vo)zog k—O,...,I{7
d?o>0, T > 0.
. 0

Note that for each € > 0, (d(¢), 7(g)) is feasible for (U). Furthermore, the cost function of
(U) is strictly convex with respect to dgo. Hence, d?o and consequently 7 are constant over
0 0

S(U) whenever it is nonempty.
The next lemma describes two essential properties of (U) that will be useful for proving
the expansion concerning the principal part.

~

Lemma 4.1 The feasible set F(U) is a convex cone and whenever (d,7) € S(U), we have

N Vi
T = TO
iel? d;

A~

Proof. The first property concerning F(U) is obvious. Let (d,7) € S(U) and A > 0.
Then (Ad, A7) belongs to F(U). Consider the auxiliary problem
Min A+ > o

A>0 j0
el Ad;

This problem is strictly convex and its optimal value is v(U), while its unique solution is
A = 1. The optimality condition for A = 1 achieves the proof. O
The next lemma gives the expansions of ¢(¢) and z9(¢) for ¢ close to 0.
0

INRIA
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Lemma 4.2 The optimal set S(U) is nonempty. Let (d*,7*) € S(U), then
(i) t(e) ="V + o(e)
(ii) .7:?8(5) = d*(}g\/g + 0(e)

Proof. By Lemma 3.2, 7(¢) is bounded. This implies, applying Lemma 3.1 to the linear
constraints defining F(LP) and those defining S(LP), that d%,(e) is also bounded.
0

Let (7, J?g) be a limit-point of {(7(¢), d?g (¢))}. Applying again Lemma 3.1 to the constraints
defining F(U), there exists a vector (d,7) € F(U) such that (7, 328) = (%,J(}g). For each
(d,7) in F(U), define

(T(e), t(e)) = («*,0) + Ve(d, 7).

As this vector belongs to F(P:), we have

Z’Yﬁ‘}'t Z'Yz i-

iel z iel Z

Dividing by /¢, we obtain

@ glds- 3]

EIO

Tw; T(e)w i + t(e vi + t(&)w;
f;[g‘w]+f§[ e Bl Evrc]

’l

and then

o
E)—T+Z [do(s
iell

B fzr” D] vove.  ao

i
Passing to the limit, we obtain that

T+Z% <T+Z’Yl.

zeIO i i€l ’

Therefore (d,7) € S(U) and then S(U) # 0 and (djg,7) = (@)%, 7).
i. For ¢ > 0, using the definition of S(F:), we have

Yi + VeTwi %+\fmz
(d(e),7(e)) € argmin 7+ ++/
(d,7)eF(U) ; 4} % (2%)7 + /ed?

RR n°3133



10 J. Frédéric Bonnans , Mounir Haddou

Since A(d(e),7(e)) € F(U) for each A > 0, we have

+/EXT(e) +\/_Z %—i—\/—)\T (&)w;

Vi
1€ argmin  A7(e +Z /\do() W+ Vo (&)’

A>0

i€l zgéIO

The first-order optimality condition implies after simplification that

Yi \/_T wi(z*)) = Vevidi(e)
T(a)—ie%di()Jr\f; PNy TPE =0. (4.7)

As (v/2d°(e),/e7(e)) converges to 0 by Lemma 3.2 and Lemma 3.3, we get

€)= d]—(s) +o(V/E). (4.8)

ield *

Since (d(e),7(¢)) € F(U), applying (4.6) for (d,7) = (d*,7*), we have

0< (e _T+2[ 2] < WZ[”"’,— ] ot
Then, the convergence of (d?g (€),7(¢)) to ((d*)IO, 7*) implies that

0<7(e) -7 +Z[

By Lemma 4.1 and (4.8), we conclude that
0 <27(g) — 27" + o(v/e) < o(Ve).
ii. We can write S(U) as follows

S(U) = {(da T) € F(U)a d?g = (d*)?g and T = 7‘*}_

0 )0] < o(Ve).

We know that (d(¢),7(¢)) € F(U) and (d?(()J (¢),7(¢)) converges to ((d*)IO, ).
By Lemma 3.1, for each ¢ > 0 there exists (d.,7*) € S(U) such that
lld: = d(e)]| < 81I((d*)go — dio (€), 7" = 7(e))I| = 0(1), (4.9)

where 6 is a positive constant independent of e.
Rewriting (4.6), for (d,7) = (d.,7*), we have

)T +§{d9(5 & ]5
Y e

i Ig

(4.10)
Vi+V/ET Wi Yi+/eT(e)w;
VR <m*>2+¢€d9<e>D'

INRIA
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Since (d(e),7(e) € F(U) and (d*,7*) € S(U) and since the cost function of (U) is strictly

convex with respect to dIo, there exists 8 > 0 such that

)T +Z { ) ] Bll(d*) 7o — dyo(e)]I*. (4.11)

To obtain the order of magnitude of d?g( g)—(d*)? 19> We will give estimate of the right hand-
side of (4.10), depending only on d%(e) — (d*)% and ¢.

0 0
Using (i) and (4.9), for i ¢ I3, we have

+/EeT*w; vitver(ew; Vertw; Ver(e)w;

(20 +VE(d:)) (@) VEd)(e) (e +VE(d))  (@)i+Ved)(e)

o VA — (@)
(4 VD () + VER )

=0(1

Furthermore, using (ii) and since d?g(a) converges to (d*)?g > 0, we have

T*w,: T(e)wi [( 1 1 ]+o(\/5)

(@)~ &) N de)] T )
1(d*)% — d% ()] 12
S T*wi (dI:)?d? (IEO) + O(\/E)
Then the inequality (4.10) implies that
)=+ 3 |~ ] SOVAIE N — @l +oe). (@13

i€l

The proof is then complete using (4.13) and (4.11) O

The second part of this section is devoted to the analysis of the other components of
{d°(¢)}c>0- In this study and also when doing the expansion of the cost function, we will
meet the following two optimization problems.

(T) N{iln {_ Z (.’1}*0)2’ (d7T ) € S(U)} )

i¢Id ¢

Mi 'Yz T*widq
(Ty) Min {zz *0 _Z (a;*(.));7 deS(T)}.

igId z i¢ I g

RR n°3133



12 J. Frédéric Bonnans , Mounir Haddou

By Lemma 4.2, t(¢) = 1/ + o(¢) and z(¢) is a solution of

(. ~i + t(e)w;
Min Z PR
i1 i
B st.  AzkF =b* k=1,..., K,
2 | yttEwi— S ab=ad i=1,...p,
1<k<K
:L.kZO: kIO,...,K,
{ ar?g = xgg (e) = \/Edjg + O(e).

Remark.The above problem can be interpreted as a perturbation of the limit problem

( \1: i
M 1
fin >, =
i¢ 10
. st.  Azk =0k, k=1,...,K,
1<k<K
zF >0, k=0,...,K,
x?():()
\ 0

that satisfies S(P) x {0} = S(R).

Lemma 4.3 The sequence {d°(g)}.>o is bounded.

Proof. We first prove that S(T') # 0. Indeed, this result will be necessary for the rest of
the proof. Since (T') is a feasible linear program, we only need to prove that v(T") > —oo.
Suppose the contrary, then there exists a feasible descent direction y satisfying:

0
Yi 0 _ k —
_Z (x*z))z <0; ylg—O, yIk(m*,O)ZO, k—O,...,K,
i¢I ¢
Ayt =0, k=1,...,K, — Z yf:y?, i=1,...,p.
1<k<K

Then, for g > 0 small enough, we have

* D Vi Vi
B
z#:=z" +py € F(P) and oy < e

737 IR T'S  B

This contradicts the optimality of z* for (P). ~
In order to prove that {d°(e)} is bounded, we will give two estimates of v(P.) depending on &

INRIA



Asymptotic analysis of congested communication networks 13

and ||wg—0(5) - (w*)g_OH These two estimates will then imply that ||w2—0(6) — (= *)0—|| = 0(y/e).
0 0 0 N
Let d € S(T). Since t(e) = /eT™ + o(e), Lemma 3.1 applied to the set F(P.) ensures that
dist(z* + v/zd, F(P.)) = O(e).

So there exists a vector Z(¢) := z* + y/ed + O(e) belonging to F(P,).
Therefore, an upper bound of v(F;) is

i + t(e)ws + t ¥i + t(e)w;
ZO 23 ( Z (@*)? + ved] + O(e)’
i#lo i#lo e (4.14)
VR 2 (@ + Vi) +owr

By Lemma 4.2,

(d(e),7(e)) € F(U), 7(¢) =7*+0(v/e) and d?g(z-:) = (d*)?g + O0(Ve).
Applying again Lemma 3.1, there exists (d(¢), 7*) € S(U) such that
d(e) — d(e) = O(Ve). (4.15)

tle)ws  VerT*w;
26 " aE T
and
Vi __T _’yi\/gd?(e) 2yi[2P(e) — (2*)7]? o(129(e) — (2*)012
29(e) - (z*)? ((z*)0)? + ((z*)9)3 +o([z;(e) — (=%);1%),
Vi vivedi(e) | vilad(e) — (a)i]?
SN @R T (@
Then,
5 Vi —idi(e) | Trwi] | vlad(e) = ()9
“(PE’Z%<<x*)9+ﬁ[<<w*>?>2 + o)+ G ) + o0,

and by (4.15), a lower bound for v(P.) is

0 *1012 *
o(B) > Vao(T v ilE©) Z @ 2T o). (a6)
; ( (@) mi-’(E))

RR n°3133



14 J. Frédéric Bonnans , Mounir Haddou

Thus (4.14) and (4.16) yield to

— (2*)9)2 T'wi  T'w;
Z vi(z ) z);) < \/EZ (ﬁ _ mo_(g)) +0(e). (4.17)

i¢1d E i

For i ¢ I, (z*)? > 0 and then there exist two constants & > 0 and 3 > 0 independent of ¢
such that

allabs(e) — (&)l < BVEllale) - (o)l + O(c), (418)

completing the proof. 0O
Lemma 4.4 The sequence {d°(g)}.>0 is convergent.

Proof. By Lemma 4.3, d°(¢) has at least a limit point. Let d € F(U) be such that

4 is a limit-point of d°(e). Such a vector d exists by applying Lemma 3.1 to F(U). By
Lemma 4.2, (d,7*) € S(U). If S(U) is reduced to a singleton the conclusion follows. Else,
let (d,7*) € S(U) be such that d # d. Consider a sequence (d°(¢y),7(ex)) converging to
(@, ). Set ] )

(d(er), F(er)) = (d,7) = (d,7%) + (d(er), T(er))-

We have do (e) = do(ex), 7(ex) = 7(ex) and lim (d(g), 7(ex)) = (d, 7).
Choosing (d,7) = (d(ex), 7(ex)) in (4.6), we have

vt tlerwi Vi + t(er)wi

g1 W - im0 1’*? + \/gkdg)(ek) (4.19)
and then
YivErd (er) | 2vier(d] (er))? \/_ ter)ws|d? — ;)
21:0 (xl;?) * (m*°)3 = (°9)2 <

> i l m*O) o * Farldi(e) + o(ek)-

P (z0)?

We obtain after a simple calculus

5 [2% () = (B(er)? | Twild! ~ ]

(z*3)® (z*)?

%‘(E? — UZ?)
— *0\2
Z¢Ig \/Ek(m ’L)

+o(1).  (4.20)

ig 19

Since the left hand-side is bounded and lim — = 400, it follows that

~>+OO\/_k

Z %[dzi()_dZ] >0, forall (d,7*)e S(U).
2y
0

INRIA



Asymptotic analysis of congested communication networks 15

This inequality proves that d belongs to S(T'). Choosing d € S(T) in (4.20) and passing to
the limit, we prove that d is also a solution of T;. The proof is then complete since d° is
constant over S(77). O

Finally we can state a theorem that summarizes all results of this section:

Theorem 4.1 Every path {(z(g),t(¢))} such that (x(),t(c)) € S(P:) satisfies
t(e) = 7*/e + o(e),
sy (¢) = VE(@*)y + 0,

(&) = (2% + VE(d")S + o(/2),

Io

where (z*,0) € S(R), (d*,7*) € S(U) and d* € S(T1).

5 Asymptotic expansion of the cost function

In this section we study the cost function v(-) : € — v(P.) and give an asymptotic expansion
for e close to 0. The method that we follow is reminiscent of asymptotic techniques [13]
based on epiconvergence theory [1]. Here is the result of this section.

Theorem 5.1 The function v(-) satisfies

T*wi

(d*)?

v(P.) =vev(U) +e [ v(R) + Z

ield

+ o(e),

where (7*,d*) € S(U).

Proof. Let a be a nonnegative real number that we will choose next. Set

fel@,t) = fs(m’t)g_ oE (2,t) € F(LP) (5.21)

+o0 else.

This rescaling is motivated by the expansion of the solutions. Indeed, the obtained expansion
suggests that a part of the cost function is of order /. More about similar rescaling
techniques in optimization problems can be found in [13]. ~

Observe first that solving (P.) is equivalent to solve the scaled problem 1\2111511 fe(z,t).

Let {(z(er),t(er))} ((z(ek),t(ex)) € S(P:,)) be a sequence converging to a partial center

(%,0) and consider an other sequence {(Z,,%,)} converging to (#,0) and defined by

Te, =&+ /erd* and t., =7 \/x,

RR n°3133



16 J. Frédéric Bonnans , Mounir Haddou

where (7*,d*) is a fixed solution of (U). For each ¢, we know that

fEk (x(gk)7t(6k)) < fEk (E‘fk)EEk)'

Let us study the two hand-sides of this inequality. We have first

~ tler o i t i z+t
Falaten) o) = -2 +§($9Z6k) )y

k i1

+ (
\/_l +Z % +Z 5k Z% $0 ;k

i€l ‘ i€l ’ i¢I9

(The notations 7(ex) and d(ey) are those used in Section 3.)
Since (d(ex),7(ex)) € F(U), choosing a = v(U) we have

fsk(w(ek);t(fk)) > Z ( Z Yi +t Ek

eI i¢19

Passing to the limit and using Lemma 4.2, we obtain

liminf £, (2(ex), ter) = 3 (T Y Z Z T “” (R).

€k l0 i z i z eIO l

Now, consider the right hand-side of (5.22); we have

~ fgk U(U) tasz vi + tesz
ex (Tegste =——-——+ +
f k( k k) £k \/5_k Z ( Ek Z ) Z

eI zEIO Tex ¢TI0 Tex)
v R R G W z
Ek ZEIg ( )1 EIO ’L ¢IO x.‘.‘k

Since (7*,d*) € S(U), the last equality becomes

fgk(fgk,fgk) _ Z Z’ Wi Z 'Yz:;tssz _ Z T*wé +’U(R) +O(1).

d*)?
i€l 2 i¢IQ 2 iEIg( )i

Passing to the limit and using (5.22), we have

lim sup -, (s(c4), e) < Z @t

Formulas (5.24) and (5.25) imply the result. O

(5.22)

(5.23)

(5.24)

(5.25)

INRIA
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6 Extensions

In this section we consider a special path {(Z(¢),#(¢)) € S(P.)} converging to some partial
center (#,0). For this special path we establish an asymptotic expansion near 0 of all
components of the solutions and not only z°.

Let (#(¢),%(¢)) be defined by

t(¢) := argmin ¢t (6.26)
(zt)ES(P:)
and
Z(e) == argmin g(z):= Z Z(zf—i‘f)Q (6.27)

(z,8(e))eS(P:) 1<k<K i€l

Lemma 6.1 {(Z(¢),%(c))} is well defined and Hﬁ)l Z(e) = .

Proof. Since S(P.) is closed and bounded #(¢) exists and is unique. Then, the strict
convexity of f. (resp. g) with respect to the components in I° (resp. in I*, 1 < k <
K) implies the uniquness of #(e). Furthermore, it is already proved in lemma 3.3 that
{(z(¢),%(e)} is bounded and all its limit-points belong to S(R).

Let (Z,0) = kgrfm(ic(ak),f(ak)) for some sequence {¢;} converging to 0.

Then

(%,0) = kli)rfoo(x(ak),t(ek)) where (z(ex), t(ex)) = (Z(er), t(er)) + (%,0) — (T, 0).

0 0

Since z° = ", we have
t(er) = t(ex) and  T0(ex) = i%(er),
then (6.27) gives
Y2 @ e —E )< Y D (el ) — )%
1<k <K i€l 1<K <K il
Passing to the limit we obtain that = 2. O

Consider like in the previous section d(e) := ¢ */2(&(¢) — ) and 7(¢) := e~ '/2i(¢). From the
results of Theorem 4.1, (¢) = y/e7* + o(¢) and Z(e) is a solution of the perturbed problem

h/‘!:vin Z Z(mﬁ - fi.f)27

1<k<K i€l
] st.  Azk =bk, k=1,...,K,
(PSe) . k_ 0 .
Vi + t(e)w; — Z x; =x;, i=1,...,p,
1<k<K

>0, 2°=3"+d*°/c+o0(\/5).

RR n°3133



18 J. Frédéric Bonnans , Mounir Haddou

The corresponding limit problem is

h/‘[zin Z Z(xf - 5’.?)27

1<k<K i€l
— t. Azk =pk =1,...,.K
(PS) 8.t T b7 . o k ) s Iy
Yi — Z Ti; =Ty, 7/:]-;---7]7;

1<k<K

z>0, z%=3°

Remark. F(PS) x {0} = S(R) and S(PS) = {&}.
Using Lemma 3.1, there exists #(¢) € F(PS,) such that

dist(2(e), %) = O(Ve)

Y D (@)~ &) =0(e)

1<k<K i€l

and in particular

This obviously implies that

v(PS:) = Y Y (@) - #) = 0),

1<k<K i€l

and consequently
dist(#(e), %) = O(Ve),

or equivalently, the sequence {d(¢)}e>o is bounded.
Lemma 6.2 #(¢) = & + d*\/e + o(\/€), with

{d*} = argmin Y > (df)”. (6.28)
deS(T1) 1<p<K iel
Proof. Applying Theorem 4.1, liﬁ]l 7(e) = 7* and any limit-point of {d(¢)} belongs to
g

S(Ty). Let d be one these limit-points and d be an other element of S(T};). We can write,
for some sequence {e;} converging to 0, that

d= kli:{l d(ey) and d= . lirf d(ey) with d(eg) =d(ep) —d +d.

Rewriting the definition of #(ej) we obtain, since d®(e;) = a (er), that

Y Yd@Enyr< S S @)y

1<k<K iel 1<k<K il

Passing to the limit the result holds. O

INRIA
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