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Abstra
t

The elementary 
losure P

0

of a polyhedron P is the interse
tion of P with

all its Gomory-Chv�atal 
utting planes. P

0

is a rational polyhedron provided

that P is rational. The known bounds for the number of inequalities de�ning

P

0

are exponential, even in �xed dimension. We show that the number of in-

equalities needed to des
ribe the elementary 
losure of a rational polyhedron

is polynomially bounded in �xed dimension. If P is a simpli
ial 
one, we 
on-

stru
t a polytope Q, whose integral elements 
orrespond to 
utting planes of

P . The verti
es of the integer hull Q

I

in
lude the fa
ets of P

0

. A polynomial

upper bound on their number 
an be obtained by applying a result of Cook

et al. Finally, we present a polynomial algorithm in varying dimension, whi
h


omputes 
utting planes for a simpli
ial 
one that 
orrespond to verti
es of

Q

I

.



1 Introdu
tion

Integer programming is 
on
erned with the optimization problem

maxf


T

x j Ax � b; x 2 Zn

g; where A 2 Zm�n

and b 2 Zm

:

It is well-known that integer programming is NP-hard. However, the situation is

di�erent if the number of variables, here n, is �xed. Lenstra (1983) showed that

integer programming in �xed dimension is solvable in polynomial time. Lenstra's

algorithm relies on results from the geometry of numbers like Khint
hine's 
at-

ness theorem, latti
e basis redu
tion, and the ellipsoid method. Lov�asz & S
arf

(1992) found a way to avoid the ellipsoid method. However, present algorithms

for integer programming in �xed dimension are still far from being elementary.

The 
utting plane method pioneered by Gomory (1958) 
omputes iteratively

tighter approximations of the integer hull P

I

of a polyhedron P , until P

I

is �nally

obtained. We shortly des
ribe the method. An inequality 


T

x � bÆ
, with 
 2 Zn

and Æ = maxf


T

x j x 2 Pg, is 
alled a Gomory-Chv�atal 
utting plane. The set

of ve
tors P

0

satisfying all 
utting planes for P is 
alled the elementary 
losure

of P . Let P

(0)

= P and P

(i+1)

= (P

(i)

)

0

, for i � 0. Chv�atal (1973) showed that

every polytope P satis�es P

(t)

= P

I

for some t 2 N
0

. S
hrijver (1980) extended

this result to rational polyhedra. The number of iterations t until P

(t)

= P

I

is not polynomial in the size of the des
ription of P , even in �xed dimension

(Chv�atal 1973). Yet, if P

I

= ; and P � Rn

, Cook, Coullard & Tur�an (1987)

showed that there exists a number t(n), su
h that P

(t(n))

= ;. Cook (1990) proved

the existen
e of 
utting plane proofs for integer infeasibility that 
an be 
arried

out in polynomial spa
e. These results raise the question whether it is possible

to 
ome up with a polynomial 
utting plane algorithm for integer infeasibility in

�xed dimension. Using binary sear
h this would also yield a polynomial 
utting

plane algorithm for integer programming in �xed dimension.

In this 
ontext we are motivated to investigate the 
omplexity of the ele-

mentary 
losure in �xed dimension. More pre
isely, we will study the ques-

tion whether, in �xed dimension, the elementary 
losure P

0

of a polyhedron

P = fx 2 Rn

j Ax � bg, with A and b integer, 
an be de�ned by an inequality

system whose size is polynomial in the size of A and b.

It is well-known that the elementary 
losure P

0


an be de�ned by 
utting

planes of the form �

T

Ax � b�

T

b
, where � 2 [0; 1)

m

(see e.g. (Cook, Cunning-

ham, Pulleyblank & S
hrijver 1998, Lemma 6.34)). This leads to the insight

that P

0

is a rational polyhedron again, if P is rational. Carath�eodory's theorem

implies that the ve
tors � 
an be further restri
ted su
h that at most rank(A)

many 
omponents of � are stri
tly positive.

Proposition 1. Let P = fx 2 Rn

j Ax � bg; A 2 Zm�n

; b 2 Zm

, be a rational

polyhedron. The elementary 
losure P

0

is the polyhedron de�ned by Ax � b and

the set of all inequalities �

T

Ax � b�

T

b
, where � has at most rank(A) positive


omponents, � 2 [0; 1)

m

and �

T

A 2 Zn

.

It follows that P

0


an be des
ribed by at most (kA

T

k

1

)

n

many inequalities,

sin
e this is a straightforward upper bound on the number of integer ve
tors of
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the form �

T

A; � 2 [0; 1℄

m

. This upper bound is exponential in the en
oding

length of A, even in �xed dimension. One 
an further restri
t the 
utting planes




T

x � bÆ
 to those 
orresponding to a totally dual integral (TDI) system de�ning

P (Edmonds & Giles 1977, Giles & Pulleyblank 1979, S
hrijver 1980). The

number of inequalities of a minimal TDI-system for a polyhedron P 
an still be

exponential in the size of P , even in �xed dimension (S
hrijver 1986, p. 317).

The 
ontributions of this paper are twofold. In the �rst part, we prove that

in �xed dimension the number of inequalities needed to des
ribe P

0

is polynomial

in the en
oding length of P . Based on this result, we develop in the se
ond part

a polynomial algorithm in varying dimension for 
omputing Gomory-Chv�atal


utting planes of simpli
ial 
ones. Our approa
h uses te
hniques from integer

linear algebra like the Hermite and the Howell normal form of matri
es. While

the Hermite normal form has been applied to 
ut generation before (see e.g.

(Hung & Rom 1990, Let
hford 1999)), the 
utting planes that we derive here

are not only among those of maximal possible violation in a natural sense, but

also belong to the polynomial des
ription of P

0

developed in the �rst part of

our paper. Caprara, Fis
hetti & Let
hford (1999) apply Gaussian elimination

to �nd mod k-
uts, for k prime, whi
h are violated by (k � 1)=k. We present

a framework that 
aptures all Gomory-Chv�atal 
uts in an algebrai
 stru
ture,

namely the kernel of a matrix and one solution of an inhomogeneous system of

linear equalities over some residue ring Z
d

, where d is not ne
essarily prime. This

stru
ture 
omfortably allows for lo
al sear
h te
hniques to improve on various


riteria for the quality of 
uts, like the Eu
lidean distan
e, norm or sparsity.

2 Notation and de�nitions

A polyhedron P is a set of ve
tors of the form P = fx 2 Rn

j Ax � bg, for

some matrix A 2 Rm�n

and some ve
tor b 2 Rm

. We write P = P (A; b). The

polyhedron is rational if both A and b 
an be 
hosen to be rational. If P is

bounded, then P is 
alled a polytope. The integer hull P

I

of a polytope P

is the 
onvex hull of the integral ve
tors in P . If P is rational, then P

I

is a

rational polyhedron again. The dimension of P is the dimension of the aÆne

hull of P . An inequality 


T

x � Æ de�nes a fa
e F = fx 2 P j 


T

x = Æg of P , if

Æ � maxf


T

x j x 2 Pg. F is 
alled a fa
et of P , if dim(F ) = dim(P )�1. If F 6= ;

and dim(F ) = 0, then F is 
alled a vertex of P . If P is full-dimensional, then

P has a unique (up to s
alar multipli
ation) minimal set of inequalities de�ning

P . They 
orrespond to the fa
ets of P . We refer to (Nemhauser & Wolsey 1988)

and (S
hrijver 1986) for further basi
s of polyhedral theory.

The size of an integer z is the number

size(z) =

(

1 if z = 0

1 + blog

2

(jzj)
 if z 6= 0

Likewise, the size of a matrix A 2 Zm�n

, size(A) is the number of bits needed to

en
ode A, i.e., size(A) = mn+

P

i;j

size(a

i;j

), (see (S
hrijver 1986, p. 29)). If P

is given as P (A; b), then we denote size(A) + size(b) by size(P ).

2



A latti
e L � Rn

is a subgroup of Rn

of the form fAx j x 2 Zn

g, where A

is a nonsingular square matrix. We write L = L(A). The dual latti
e L
�

(A)

of L(A) is the latti
e L
�

(A) = fx 2 Rn

j x

T

y 2 Z; 8y 2 L(A)g. One has

L
�

(A) = L((A
�1

)

T

) (see e.g. (S
hrijver 1986, p. 50)).

If P is a rational polyhedron, then the number of extreme points of P

I


an

be polynomially bounded by size(P ) in �xed dimension. This follows from a

generalization of a result by Hayes & Larman (1983), see (S
hrijver 1986, p. 256).

The following upper bound on the number of verti
es of P

I

was proved by Cook,

Hartmann, Kannan & M
Diarmid (1992). B�ar�any, Howe & Lov�asz (1992) show

that this bound is tight.

Theorem 2. If P � Rn

is a rational polyhedron whi
h is the solution set of a

system of at most m linear inequalities whose size is at most ', then the number

of verti
es of P

I

is at most 2m

d

(6n

2

')

d�1

, where d = dim(P

I

) is the dimension

of the integer hull of P .

Last we re
all some basi
 number theory (see e.g. (Niven, Zu
kerman &

Montgomery 1991)). Z
d

denotes the ring of residues modulo d, i.e., the set

f0; : : : ; d� 1g with addition and multipli
ation modulo d. We will often identify

an element of Z
d

with the natural number in f0; : : : ; d � 1g to whi
h it 
orre-

sponds. Z
d

is a 
ommutative ring but not a �eld if d is not a prime. However Z
d

is a prin
ipal ideal ring, i.e., ea
h ideal is of the form hgi = fgx j x 2 Z
d

g / Z
d

.

Sin
e hdi = hegi for ea
h unit e 2 Z�
d

and sin
e g= g
d(d; g) is a unit of Z
d

, it

follows that hgi = hg
d(d; g)i. Therefore we 
an assume that g divides d, g j d.

Thus ea
h ideal of Z
d

has a unique generator dividing d, 
all it the standard gen-

erator. The standard generator g of an ideal ha

1

; : : : ; a

k

i /Z
d

is easily 
omputed

with the Eu
lidean algorithm.

3 The elementary 
losure of a rational simpli
ial 
one

Consider a rational simpli
ial 
one, i.e., a polyhedron P = fx 2 Rn

j Ax � bg,

where A 2 Zn�n

, b 2 Zn

and A has full rank. Observe that P; P

0

and P

I

are all

full-dimensional. The elementary 
losure P

0

is given by the inequalities

(�

T

A)x � b�

T

b
; where � 2 [0; 1℄

n

; and �

T

A 2 Zn

: (1)

Sin
e P

0

is full-dimensional, there exists a unique (up to s
alar multipli
ation)

minimal subset of the inequalities in (1) that suÆ
es to des
ribe P

0

. These

inequalities are the fa
ets of P

0

. We will 
ome up with a polynomial upper

bound on their number in �xed dimension.

The ve
tors � in (1) belong the dual latti
e L
�

(A) of L(A). Re
all that ea
h

element in L
�

(A) is of the form �=d, where d = det(L(A)) = jdet(A)j is the

absolute value of the determinant of A. It follows from the Hadamard inequality

that size(d) is polynomial in size(A), even for varying n. Now (1) 
an be rewritten

as

�

T

A

d

x �

�

�

T

b

d

�

; where � 2 f0; : : : ; dg

n

; and �

T

A 2 (d � Z)n: (2)
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Noti
e here that �

T

b=d is a rational number with denominator d. There are two


ases: either �

T

b=d is an integer, or �

T

b=d misses the nearest integer by at least

1=d. Therefore b�

T

b=d
 is the only integer in the interval

�

�

T

b� d+ 1

d

;

�

T

b

d

�

:

These observations enable us to 
onstru
t a polytope Q, whose integral points

will 
orrespond to the inequalities (2). Let Q be the set of all (�; y; z) in R2n+1

satisfying the inequalities

� � 0

� � d

�

T

A = d y

(�

T

b)� d+ 1 � d z

(�

T

b) � d z:

(3)

If (�; y; z) is integral, then � 2 f0; : : : ; dg

n

, y 2 Zn

enfor
es �

T

A 2 (d �Z)n and z

is the only integer in the interval [(�

T

b+ 1� d)=d; �

T

b=d℄. It is not hard to see

that (3) de�nes indeed a polytope.

The 
orresponden
e between inequalities (their synta
ti
 representation) in

(2) and integral points in Q is obvious. The fa
ets of P

0

are among the verti
es

of Q

I

.

Proposition 3. Ea
h fa
et of P

0

is represented by an integral vertex of Q

I

.

Proof. Consider a fa
et 


T

x � Æ of P

0

. If we remove this inequality (possibly

several times, be
ause of s
alar multiples) from the set of inequalities in (2),

then the polyhedron de�ned by the resulting set of inequalities di�ers from P

0

,

sin
e P

0

is full-dimensional. Thus there exists a point x̂ 2 Qn

that is violated by




T

x � Æ, but satis�es any other inequality in (2). Consider the following integer

program:

maxf(�

T

A=d) x̂ � z j (�; y; z) 2 Q

I

g: (4)

Sin
e x̂ =2 P

0

there exists an inequality (�

T

A=d)x � b�

T

b=d
 in (2) with

(�

T

A=d)x̂ � b�

T

b=d
 > 0:

Therefore, the optimal value will be stri
tly positive, and an integral optimal

solution (�; y; z) must 
orrespond to the fa
et 


T

x � Æ of P

0

. Sin
e the optimum

of the integer linear program (4) is attained at a vertex of Q

I

, the assertion

follows.

Remark 4. Not ea
h vertex of Q

I

represents a fa
et of P

0

. In parti
ular, if P is

de�ned by nonnegative inequalities only, then 0 is a vertex of Q

I

but not a fa
et

of P

0

.
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Theorem 5. The elementary 
losure of a rational simpli
ial 
one P = fx 2

Rn

j Ax � bg, where A and b are integral, is polynomially bounded in size(P )

when the dimension is �xed.

Proof. Ea
h fa
et of P

0


orresponds to a vertex of Q

I

by Proposition 3. Re
all

from the Hadamard bound (see e.g. (S
hrijver 1986, p. 7)) that d � ka

1

k � � � ka

n

k,

where a

i

are the 
olumns of A. Thus the number of bits needed to en
ode d is

in O(n size(P )). Therefore the size of Q is in O(n size(P )). It follows from

Theorem 2 that the number of verti
es of Q

I

is in O(size(P )

n

) for �xed n, sin
e

the dimension of Q is n+ 1.

It is possible to expli
itly 
onstru
t in polynomial time a minimal inequality

system de�ning P

0

when the dimension is �xed. As noted in (Cook et al. 1992),

one 
an 
onstru
t the verti
es of Q

I

in polynomial time. This works as follows.

Suppose one has a list of verti
es v

1

; : : : ; v

k

of Q

I

. Let Q

k

denote the 
onvex

hull of these verti
es. Find an inequality des
ription of Q

k

, Cx � d. For ea
h

row-ve
tor 


i

of C, �nd with Lenstra's algorithm a vertex of Q

I

maximizing

f


T

x j x 2 Q

I

g. If new verti
es are found, add them to the list and repeat the

pre
eding steps, otherwise the list of verti
es is 
omplete. The list of verti
es of

Q

I

yields a list of inequalities de�ning P

0

. With the ellipsoid method or your

favorite linear programming algorithm in �xed dimension, one 
an de
ide for ea
h

individual inequality, whether it it is ne
essary. If not, remove it. What remains

are the fa
ets of P

0

.

4 The elementary 
losure of rational polyhedra

Let P = fx 2 Rn

j Ax � bg, with integral A and b, be a rational polyhedron.

If A does not have full 
olumn rank, then there exists a unimodular matrix U

transforming A from the right into a matrix with only rank(A) many nonzero


olumns. Sin
e unimodular transformations applied to A from the right and the

elementary 
losure operation are 
ompliant (see e.g. (S
hrijver 1986, p. 341)), we


an assume that A has full 
olumn rank. Su
h a unimodular matrix U 
an be

found in polynomial time. Simply 
hoose rank(A) linearly independent rows

^

A

of A with Gaussian elimination and 
ompute U transforming

^

A into its Hermite

normal form (S
hrijver 1986, p. 45). Re
all that the Hermite normal form of

an integral matrix A 2 Zm�n

with full row rank is a nonnegative, nonsingular

lower triangular matrix H, su
h that there exists a unimodular matrix U with

(H j 0) = AU , where ea
h row of H has a unique maximal entry, lo
ated at the

diagonal h

i;i

. Polynomial algorithms for 
omputing the Hermite normal form

have been given by Kannan & Ba
hem (1979), Hafner & M
Curley (1991), and

Storjohann & Labahn (1996), among others.

It follows from Proposition 1 that any Gomory-Chv�atal 
ut 
an be derived

from a set of n inequalities out of Ax � b where the 
orresponding rows of A are

linear independent. Su
h a 
hoi
e represents a simpli
ial 
one C and it follows

from Theorem 5 that the number of inequalities of C

0

is polynomially bounded

by size(C) � size(P ).

5



Theorem 6. The number of inequalities needed to des
ribe the elementary 
lo-

sure of a rational polyhedron P = P (A; b) with A 2 Zm�n

and b 2 Zm

, is

polynomial in size(P ) in �xed dimension.

Proof. As we observed, we 
an assume that A has full 
olumn rank. An upper

bound on the number of inequalities that are ne
essary to des
ribe P

0

follows

from the sum of the upper bounds on the number of fa
ets of C

0

where C is a

simpli
ial 
one, formed by n inequalities of Ax � b. There are at most

�

m

n

�

� m

n

ways to 
hoose n linear independent rows of A. Thus the number of ne
essary

inequalities des
ribing P

0

is O(m

n

size(P )

n

) for �xed n.

Following the dis
ussion at the end of Se
tion 3 and using again Lenstra's

algorithm, it is now easy to 
ome up with a polynomial algorithm for 
onstru
ting

the elementary 
losure of a rational polyhedron P (A; b) in �xed dimension. As

we observed, we 
an assume that A has full 
olumn rank. For ea
h 
hoi
e of n

rows of A de�ning a simpli
ial 
one C, 
ompute the elementary 
losure C

0

and

put the 
orresponding inequalities in the partial list of inequalities des
ribing P

0

.

At the end, redundant inequalities 
an be deleted.

5 Finding 
uts for simpli
ial 
ones

In Se
tion 3 we saw that the verti
es of Q

I

in
lude the fa
ets of the elementary


losure P

0

of a simpli
ial 
one P (A; b). In pra
ti
e the following situation often

o

urs. One wants to �nd a 
utting plane that 
uts of the extreme point of P ,

x̂ = A

�1

b. It is easy to see that the s
enario of Gomory's 
orner polyhedron

(Gomory 1967) (see also (S
hrijver 1986, p. 364)), is of this nature. In this

se
tion, we will show how to generate su
h 
utting planes. Following Se
tion 3,

they will have the spe
ial property that they 
orrespond to verti
es of Q

I

and

thus belong to a family of inequalities whi
h grows only polynomially in �xed

dimension. While the separation problem for the elementary 
losure is NP-hard

(Eisenbrand 1999) in general, these 
utting planes 
an be 
omputed in polynomial

time in varying dimension.

Let P = fx 2 Rn

j Ax � bg again be a rational simpli
ial 
one, where

A 2 Zn�n

and b 2 Zn

. Let d = jdet(A)j denote the absolute value of the

determinant of A. Let Q be de�ned by the inequalities in (3). We will �nd a

fa
e-de�ning inequality of Q

I

that represents the 
utting planes with a maximal

rounding e�e
t. This relates to the study of maximally violated mod k-
uts by

Caprara et al. (1999). A 
utting plane

(�=d)

T

Ax � b(�=d)

T

b



an be found by solving the following linear system over Z
d

.

�

T

(A j b) = (0; : : : ; 0; �); (5)

where �=d for � 2 f0; : : : ; d � 1g is the desired value for the rounding e�e
t

(�

T

b)=d � b(�

T

b)=d
. If P is a simpli
ial 
one, then this rounding e�e
t is the

6



amount of violation of the 
utting plane by the extreme point x̂ of P . Caprara

et al. (1999) �x � in the system (5) to the maximal possible value d�1. However,

there does not have to exist a solution to (5) when � is set to d � 1. We show

here that the maximal �, denote it by �

max

, for whi
h a solution to (5) exists,


an be 
omputed eÆ
iently.

For this we have to rea
h a little deeper into the linear algebra tool-box. In

the following we will make extensive use of the Hermite and Howell normal form

of an integer matrix. The Hermite normal form belongs to the standard tools

in integer programming. Hung & Rom (1990) for example use a variant of the

Hermite normal form to generate 
utting planes of simpli
ial 
ones P , su
h that

the out
ome

~

P has in integral vertex. Let
hford (1999) uses the Hermite normal

form to 
ut o� the minimal fa
e of a 
one P (A; b) where A has full row rank.

We use the Hermite normal form be
ause it allows us to represent the image and

kernel of matri
es A 2 Zm�n

d

in a 
onvenient way. Noti
e that Z
d

is not a �eld

if d is not a prime. Therefore, standard Gaussian elimination does not apply for

these tasks in general.

5.1 The Howell and Hermite normal form

Let us study the 
olumn-span of a matrix B 2 Zm�n

d

span(B) = fx 2 Zm

d

j 9y 2 Zn

d

; By = xg:

The 
olumn-span of an integral matrix B 2 Zm�n

is de�ned a

ordingly. We

write span

Z

d

(B) and span

Z

(B) to distinguish if ne
essary. The span of an empty

set of ve
tors is the submodule f0g of Zm

d

.

Consider the set of ve
tors S(i) � span(B), i = 0; : : : ;m, whose �rst i


omponents are 0. Clearly S(i) is a Z
d

-submodule of span(B). We say that a

nonzero matrix B is in 
anoni
al form if

i. B has no zero 
olumn, i.e., a 
olumn 
ontaining zeroes only,

ii. B is in 
olumn-e
helon form, i.e., if the �rst o

urren
e of a nonzero entry

in 
olumn j is in row i

j

, then i

j

< i

j

0

, whenever j < j

0

(the 
olumns form

a stair
ase \downwards"),

iii. S(i) is generated by the 
olumns of B belonging to S(i).

We shortly motivate this 
on
ept. If B 2 Zm�n

d

is in 
anoni
al form and

y 2 Zm

d

is given, then it is easy to de
ide whether y 2 span

Z

d

(B). For this, let

i be the number of leading zeroes of y. Clearly y 2 span

Z

d

(B) if and only if

y 2 S(i). Conditions ii) and iii) imply that if y 2 S(i), then there exists a unique


olumn b of B with exa
tly i leading zeroes and

b

i+1

� x = y

i+1

(6)

being a solvable equation in Z
d

. It is an elementary number theory task to

de
ide, whether su
h an x exists and if so to �nd one (see e.g. (Niven et al. 1991,
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p. 62)). Now subtra
t x b

i+1

times 
olumn b from y. The result is in S(i + 1).

One pro
eeds until the out
ome is in S(n), whi
h implies that y 2 span

Z

d

(B), or

the 
onditions dis
ussed above fail to hold, whi
h implies that y =2 span

Z

d

(B).

Storjohann & Mulders (1998) show how to 
ompute a 
anoni
al form of a

matrix A with O(mn

!�1

) basi
 operations in Z
d

, where O(n

!

) is the time re-

quired to multiply two n � n matri
es. The number ! is less then or equal

to 2:37 as found by Coppersmith & Winograd (1990). In the rest of this pa-

per, we use the O-notation to 
ount basi
 operations in Z
d

like addition, mul-

tipli
ation, or (extended)-g
d 
omputation of numbers in f0; : : : ; d � 1g. The

bit-
omplexity of a basi
 operation in Z
d

is O(size(d) log size(d) log log size(d)) as

found by S
h�onhage & Strassen (1971) (see also (Aho, Hop
roft & Ullman 1974)).

Re
all that size(d) = O(n size(A)).

Storjohann & Mulders (1998) give Howell (1986) 
redit for the �rst algo-

rithm and the introdu
tion of the 
anoni
al form and 
all it Howell normal form.

However, there is a simple relation to the Hermite normal form already used in

Se
tion 4.

Proposition 7. Let A 2 Zm�n

d

be a nonzero matrix and let H be the Hermite

normal form of (A j d � I) where (A j d � I) is interpreted as an integer matrix.

Then a 
anoni
al form of A is the matrix H

0

whi
h is obtained from H by deleting

the 
olumns h

(i)

with h

i;i

= d (noti
e that h

i;i

j d).

Proof. Clearly, span

Z

d

(H

0

) � span

Z

d

(A) and H

0

is in 
olumn-e
helon form. We

need to verify iii). Let u 2 span

Z

d

(A) with u 2 S(i), where i is maximal. Property

iii) is guaranteed if i = m. If i < m, then u

i+1

6= 0. Interpreted over Z, this

means that 0 < u

i+1

< d. Clearly u 2 span

Z

(H), and sin
e u

i+1

2 h

i+1;i+1

� Z

(re
all that H is a lower triangular matrix with nonzero diagonal elements and

that u

i+1

is the �rst nonzero entry of u), it follows that the 
olumn h

(i+1)

appears

in H

0

. After subtra
ting u

i+1

=h

i+1;i+1

times the 
olumn h

(i+1)

from u, the result

will be in S(i+1) and, by indu
tion, the result will be in the span of the 
olumns

of H

0

belonging to S(i + 1). All together we see that u is in the span of the

ve
tors of H

0

belonging to S(i).

It is now easy to see that the 
anoni
al forms of a matrix A have a unique

representative B that, using the notation of ii), satis�es the following additional


onditions that we will assume for the rest of the paper:

iv. the elements of row i

j

are redu
ed modulo b

i

j

;j

(interpreted over the inte-

gers) and

v. the natural number b

i

j

;j

divides d.

5.2 Determining the maximal amount of violation

We now apply the 
anoni
al form to determine the maximal amount of violation

�

max

=d. Noti
e that P 6= P

I

if and only if there exists a � 6= 0 su
h that (5)

has a solution. If (A j b)

T


onsist in Z
d

of zeroes only, then P = P

I

. Otherwise

let H be the 
anoni
al form of (A j b)

T

, whi
h 
an be found with O(n

!

) basi
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operations in Z
d

(Storjohann & Mulders 1998). Sin
e P 6= P

I

, the last 
olumn

of H is of the form (0; : : : ; 0; g)

T

, for some g 6= 0. The ideal hgi / Z
d

generated

by g is exa
tly the set of � su
h that (5) is solvable for �. Sin
e g j d, the largest

� 2 f1; : : : ; d� 1g \ hgi is

�

max

= d� g:

Thus we 
an 
ompute �

max

in O(n

!

) basi
 operations in Z
d

and the inequality

(b

T

;0

T

;�1)(�; y; z) = b

T

�� z � �

max

(7)

will be valid for Q

I

, de�ning a nonempty fa
e of Q

I

,

F = (Q

I

\ (b

T

�� z = �

max

)): (8)

Theorem 8. Let P = fx 2 Rn

j Ax � bg be a rational simpli
ial 
one, where

A 2 Zn�n

is of full rank, b 2 Zn

and d = jdet(A)j. Then one 
an 
ompute in

O(n

!

) basi
 operations of Z
d

the maximal possible amount of violation �

max

=d.

Here, �

max

is the maximum number � 2 f0; : : : ; d � 1g for whi
h there exists a


utting plane (�=d)

T

Ax � b(�

T

b)=d
 separating A

�1

b with (�

T

b)=d�b(�

T

b)=d
 =

�=d.

5.3 Computing verti
es of Q

I

We pro
eed by 
omputing a vertex of F , whi
h will also be a vertex of Q

I

. First

we �nd in O(n

!

) basi
 operations of Z
d

, a solution �̂ to

�

T

(A j b) = (0; : : : ; 0; �

max

): (9)

Let K 2 Zn�k

d

represent the kernel of (A j b)

T

, i.e.,

span

Z

d

(K) = fx 2 Zn

d

j x

T

(A j b) = (0; : : : ; 0)g:

The 
anoni
al form of K again 
an be 
omputed in time O(n

!

) (Storjohann &

Mulders 1998). The solution set of (9) is the set of ve
tors

S = f�̂+ �� j �� 2 span

Z

d

(K)g: (10)

Noti
e that S is the set of integral ve
tors in F . Verti
es of Q

I

will be obtained

as minimal elements of S with respe
t to some ordering on S. For i = 1; : : : ; n

and a permutation � of f1; : : : ; ng, we de�ne a quasi-ordering �

i

�

on S by

� �

i

�

~� i� (�

�(1)

; : : : ; �

�(i)

) �

lex

(~�

�(1)

; : : : ; ~�

�(i)

):

Here, �

lex

denotes the lexi
ographi
 ordering on f0; : : : ; d� 1g

i

.

Proposition 9. If � 2 S is minimal with respe
t to �

n

�

, then (�; y; z) is a vertex

of Q

I

, where y and z are determined by � a

ording to (3).
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Proof. Assume without loss of generality that � = id. Let � 2 S be minimal with

respe
t to �

n

�

and suppose that � =

P

j=1;::: ;l

�

j

�

(j)

is a 
onvex 
ombination

of verti
es of Q

I

, where ea
h �

(j)

6= � and �

j

> 0. Clearly, ea
h �

(j)

is in

S. Therefore, there exists an index i 2 f1; : : : ; ng su
h that �

i

� �

(j)

i

, for

all j 2 f1; : : : ; lg, and �

i

< �

(j)

i

, for some j 2 f1; : : : ; lg. Sin
e �

j

� 0 and

P

i=1;::: ;l

�

j

= 1, we have

P

j=1;::: ;l

�

j

�

(j)

i

> �

i

, a 
ontradi
tion.

We now show how to 
ompute a minimal element � 2 S with respe
t to �

n

�

.

For simpli
ity we assume that � = id, but the algorithm works equally well for

any other permutation. For � 2 S, we 
all (�

1

; : : : ; �

i

) the i-pre�x of �. We

will 
onstru
t a sequen
e �

(i)

; i = 0; : : : ; n; of elements of S with the property

that the i-pre�x of �

(i)

is minimal among all i-pre�xes of elements in S with

respe
t to the �

lex

order. Sin
e �

lex

is a total order, the i-pre�x of �

(i)

is unique

and the i-pre�x of �

(j)

is the i-pre�x of �

(i)

, for all j � i. In other words, the

j-pre�x of �

(j)


oin
ides with the i-pre�x of �

(i)

ex
ept possibly in the last (j� i)


omponents.

De�ne K(i) � span

Z

d

(K) as the Z
d

-submodule of span

Z

d

(K) 
onsisting of

those elements having a zero in their �rst i 
omponents. For j � i, the ve
tor

�

(j)

is obtained from �

(i)

by adding an element of K(i). Suppose that K is in


anoni
al form and let K

(i)

be the submatrix of K 
onsisting of those 
olumns

of K that lie in K(i). Noti
e that K

(i)

is in 
anoni
al form, too, and that

span

Z

d

(K

(i)

) = K(i).

We initialize �

(0)

with an arbitrary element of S. Suppose we have 
onstru
ted

�

(i)

. By the pre
eding dis
ussion, �

(i+1)

is of the form �

(i)

+�, for some � 2 K(i).

We have to take 
are of the (i + 1)-st 
omponent. Let � be the �rst 
olumn of

K

(i)

and let g be the (i + 1)-st 
omponent of �. If g = 0, then �

(i)

is minimal

with respe
t to �

i+1

. Otherwise the smallest 
omponent that we 
an get in the

(i + 1)-st position is is the least positive remainder r of the division of �

(i)

i+1

by

g (remember that g j d). We have �

(i)

i+1

= qg + r with an appropriate natural

number q and some r 2 f1; : : : ; g � 1g. Thus, by subtra
ting q� from �

(i)

,

we obtain a ve
tor �

(i+1)

that is minimal with respe
t to �

i+1

. Noti
e that

the 
omputation of �

(i+1)

from �

(i)

involves O(n) elementary operations in Z
d

.

Repeating this 
onstru
tion n times we get the following theorem.

Theorem 10. Let P = fx 2 Rn

j Ax � bg be a rational simpli
ial 
one, where

A 2 Zn�n

is of full rank, b 2 Zn

and d = jdet(A)j. Then one 
an 
ompute

in O(n

!

) basi
 operations of Z
d

a vertex of Q

I


orresponding to a 
utting plane

(�=d)

T

Ax � b(�=d)

T

b
 separating A

�1

b with maximal possible amount of viola-

tion �

max

=d.

In pra
ti
e one would want to generate several 
utting planes for P . Here is

a simple heuristi
 to move from one 
utting plane 
orresponding to a vertex of

Q

I

to the next. If one has 
omputed some � 2 S then it 
an be easily 
he
ked,

whether a 
omponent of � 
an be individually de
reased. This works as follows.

Suppose we are interested in the i-th 
omponent �

i

. Compute the standard

10



generator g of the ideal of the i-th 
omponents of span

Z

d

(K). Re
all that g j d.

Now �

i


an be individually de
reased, if g < �

i

. In this 
ase we swap rows i and

1 of K and 
omponents i and 1 of � and pro
eed as dis
ussed in the previous

paragraph. This \swapping" 
orresponds to another permutation. It results in

a new order �

�

and a new vertex of Q

I

.
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