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ABSTRACT. In this paper we examine a number of different def-
initions of strategic stability and the relations among them. In
particular, we show that the stability requirement given by Hillas
(1990) is weaker than the requirements involved in the various def-
initions of stability in Mertens’ reformulation of stability (Mertens
1989, 1991). To this end, we introduce a new definition of stability
and show that it is equivalent to (a variant of) the definition given
by Hillas (1990). We also use the equivalence of our new definition
with the definition of Hillas to provide correct proofs of some of
the results that were originally claimed (and incorrectly “proved”)
in Hillas (1990).
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1. INTRODUCTION

The theory of strategic stability is an attempt to answer the question:
what are the self-enforcing outcomes of a game? The theory is based
on the intuition that the answer to such a question should 1) involve
somewhat more than just the conditions of Nash equilibrium, and 2)
should not depend on “irrelevant” aspects of the game. While much
of the literature on the refinement of equilibrium might be thought of
in this way the term “strategic stability” was introduced by Kohlberg
and Mertens (1986) who gave the first analysis systematically based on
such an approach.

Kohlberg and Mertens gave a list of requirements that a concept of
strategic stability should satisfy. They showed that even quite weak
versions of their requirements implied that the solution concept should
assign sets of equilibria as solutions to the game. Thus a stability con-
cept is a rule that assigns to each game in the domain of games under
consideration a collection of subsets of the space of (mixed) strategy
profiles of the game. Since the paper of Kohlberg and Mertens the
list of requirements a concept of strategic stability should satisfy has
been modified and expanded, particularly in the work of Mertens (1987,
1989, 1991, 1992). We shall not be concerned, in this paper, with the
justification of these requirements. The interested reader is referred
to Kohlberg and Mertens (1986), Mertens (1987, 1989, 1991, 1992), or
Hillas and Kohlberg (2001).

Up till now several attempts have been made to construct a solution
concept that satisfies all requirements (see for example Kohlberg and
Mertens (1986), Mertens (1989), Hillas (1990), McLennan (1989a) and
Vermeulen, Potters, and Jansen (1997)). Of these attempts only Mer-
tens (1989) succeeded completely. All other known versions of strategic
stability fail on at least one of the requirements.

AIM OF THE PAPER

Insight in the relationships between the various types of strategic
stability is significant from a conceptual (as well as, occasionally, a
computational) point of view, since these relations can simplify the
derivation of the requirements to a great extent. Some relations be-
tween these types are already known. For instance Govindan (1992)
proved that each strategically stable set in the sense of Mertens (1989)
contains a fully stable set as they are defined in Hillas (1990). A fairly
complete overview of how the most important types hang together is
given in Figure 1.

A connection between the two most commonly used notions of strate-
gic stability (stable sets in the sense of Mertens (1989) and Hillas
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(1990), resp.) was not yet established. This brings us to the main
goal of this paper. We will show that the reformulation of Mertens in
fact yields a stronger form of strategic stability than the one in Hillas
(1990). After this fact is established we will elaborate on some results
and simplifications of proofs of known results that arise as by-products
from our proofs.

ORGANIZATION OF THE PAPER

First in Section 2 we will introduce the notational conventions used
in this paper. In Section 3 we will give the specific versions of the
three concepts that are central in this paper. The first one, homotopy
stability, is a simplified (weak) version of the reformulation in Mertens
(1989). The second one, best reply stability or BR-stability for short,
is a slightly simplified version of stability in the sense of Hillas (1990).
The third one, CKM-stability, can be seen as a continuous version of
the definition of stability in Kohlberg and Mertens (1986). A similar
definition can be found in Vermeulen et al. (1997).

In Section 4 we show that homotopic stability is a stronger require-
ment than CKM-stability. In Section 5 we show that CKM-stability
and BR-stability are equivalent notions. In the proof we need, yet
another, type of stability, called CT-stability. First we will show that
CKM-stability implies CT-stability, then that CT-stability implies BR-
stability. Since the converse implications are quite trivial, this yields
the equivalence of these notions.

Combining the results from Sections 4 and 5 we see that homo-
topy stability implies BR-stability. Hence, since homotopy stability is
weaker than the definition of stability in Mertens (1989) in terms of
homology groups, we get the main result of this paper that stability
in the sense of Mertens (1989) implies stability in the sense of Hillas
(1990).

Finally, in Section 6 we will use the equivalence of BR-stability and
CKM-stability to give correct proofs of two properties of BR-stability
that are already mentioned in Hillas (1990) (in fact the proofs of these
properties turn out to be relatively simple for the equivalent notion
of CKM-stability) and to prove that BR-stable sets also satisfy abr-
invariance.

In order to give the reader an overview of what is basically done
in this paper, most relations between various stability concepts known

'We will explain in Section 6.2 why we use the simplification instead of the
original definition.
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to us as well as the ones that are proved here are displayed in Fig-
ure 1. The relations marked K&M were proved in Kohlberg and Mer-
tens (1986); those marked H90 in Hillas (1990); that marked McLennan
in McLennan (1989a) and that marked Mertens in Mertens (1989). The
unmarked relations are either obvious or proved in this paper.

full)E &‘E&E/}? set  K&M KMoset KEM  egsential set

HQOl THQO

fully stable set H90
(Hﬂlag 90) Q'Set TMCLennan

T

CK)M.set essential set
-se —

(McLennan)

stable set Mertens homotopy—
(Mertens) stable set

Figure 1

A number of stability concepts used in the diagram do not occur in
this paper. The definitions of full stability (Kohlberg and Mertens)
and essential set can be found in Kohlberg and Mertens (1986). The
definitions of fully stable sets and Q-sets (quasi stable sets) can be
found in Hillas (1990). In the diagram “A-set — B-set”means that
every A-set is also a B-set. If we define an A-stable set (B-stable set) to
be a minimal A-set (B-set), then the arrow implies that every A-stable
set contains a B-stable set.

2. PRELIMINARIES

We first specify some notational conventions. Most of our notation is
completely conventional. One exception is that in defining open balls
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in R™ and in defining the Hausdorff distance between compact subsets
of R™ we use the maximum norm rather than the Euclidean norm.
For any subset A of R" we denote the convex hull of A by ch(A) and
the affine hull of A by ah(A). We will only be concerned with the
boundaries or interiors of convex sets and we shall always mean the
boundaries or interiors relative to the affine hulls of these sets. That
is, if A is a closed and convex subset of R"”, the boundary 0A of A is
the collection of those points x in A for which every neighborhood U
of 2 has a non-empty intersection with ah(A)\ A and A = A\ 9A is
the relative interior of A. For a correspondence ¢: X — X we denote
by fix(¢) the set of fixed points of .

A finite n-person game (in normal form) is a pair I' = (A, u), where
A = X;enA; is a product of finite (nonempty) sets and u = (uq, ... ,uy,)
is an n-tuple of functions u;: A — R. The set A; is called the set of pure
strategies of Player i and wu; his payoff function. We abusively also use u;
to denote the multilinear extension of u; to the space A = x;enA(4;)
of strategy profiles, i.e., to denote Player i’s expected payoff function.
(The set A(A;) is Player i’s set of mixed strategies, i.e. the set of
probability vectors on A;.)

In what follows we shall use the following simplified notation. We
shall omit prefixes and simply call I' a game. We shall write A; in-
stead of A(4;), A_; = x;A; for the set of strategy profiles of the
opponents of Player i, and (x_;| y;) in A for the strategy profile in
which Player ¢ uses y; € A; and his opponents use the strategies z_; in
A_;. The correspondence BR;: A — /A; associates to a mixed strategy
profile x the set of all Player i’s mixed best replies to x_;. The best
reply correspondence BR: A — A is the product of the BR;’s, i.e.,
BR(z) = X;enBR;(x). Since BR;(x) depends only on z_; the profile
of mixed strategies of the other players, BR; defines in a natural way
a correspondence on A_; which we also denote by BR;. The set of
equilibria of I' is denoted by E(I).

We shall abuse notation by identifying a pure strategy a € A; with
the mixed strategy ef in A; that puts all weight on a. Pure strategy
profiles (i.e., elements of A) will be denoted by boldface letters to dis-
tinguish them from elements of A;. Typically we will write a = (a;);en
and b = (b;);en for a and b in A. The set of pure best replies to a
strategy profile x in A is PB;(x) = {a € A; | a € BR;(z)}. The pure
best reply correspondence PB: A — A is the product of the PB;’s, i.e.,
PB(x) = x;enPB;(z). Again PB;(z) depends only on z_; the profile
of mixed strategies of the other players and defines in a natural way
a correspondence on A_; which we also denote by PB;. Notice that
PB(z) ={a€ A|a€ BR(z)}.
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Following Kohlberg and Mertens (1986) and Selten (1975), we will
say that, for a game I' = (A, u), an n-tuple k = (k1,...,ky,) (where
Ki = (Kia)aca, 18 a vector of non-negative real numbers) is a KM-
perturbation of I' if the set

AZ(KZZ) = {JZ'Z € Az ‘ Tia 2 Ria for all a € Az}

is nonempty for each player ¢ in N.

The KM-perturbation whose coordinates are all equal to zero is
denoted by 0 and the space of all KM-perturbations by K. For a
KM-perturbation x € K, the set A(k) = X;enA;(k;) is called the k-
perturbed strategy space.

A KM-perturbation x gives rise to the k-perturbed game I'[k], whose
space of strategy profiles is the k-perturbed strategy space A(x). The
payoff function of Player 7 is simply the restriction of u; to this space
of strategy profiles.

For two strategy profiles  and z in A and a KM-perturbation k, the
strategy profile z is called a k-perturbed best reply to x if z is an element
of the k-perturbed strategy space and w;(x_;| z;) > u;(x_;| y;) for all
players ¢ in N and all strategies y; in A;(k;). The set of k-perturbed
best replies to « is denoted by BR(k,z). A strategy profile z in A
is called a k-perturbed equilibrium of T" if x € BR(k,x). The set of
r-perturbed equilibria of I' is denoted by E(I'[x]).

For a game I' = (A, u), a strategy profile z in A is called a perfect
equilibrium of T if there exists a sequence (k')ien of completely mixed
KM-perturbations converging to zero and a sequence (') ey in A con-
verging to x such that z' is a k!-perturbed equilibrium of I" for every ¢
in N.

3. DEFINITIONS OF THE CENTRAL CONCEPTS

In this section three types of stability are introduced. The first
one, called homotopy-stability was introduced by Mertens (1989). The
second one, BR-stability, is closely related to the notion of stability
introduced in Hillas (1990). The definition of the third type, CKM-
stability, can also be found in Vermeulen (1995). We will briefly discuss
the definitions and prove some of the more obvious relations between
these and other well-known types of stability.

Forn > 0, K" = {xk € K | |||l < n}. The real number 7 is
assumed to be small enough to guarantee that K" is a hypercube in
IC. To be more precise, let us say that for i € N and a € A;, (i,a) is
called a pair and let the set of all such pairs be denoted by P. The
boundary JK" is now assumed to be equal to the set {k € K" | ki, €
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{0,n} for some pair (i,a) € P}. Then the vertices of K are those KM-
perturbations whose coordinates are equal to either 0 or 7.
Let S be a closed subset of the graph

E ={(r,z) € L x A|zis a k-perturbed equilibrium of I'}
of the perturbed equilibrium correspondence. For n > 0,
S"={(k,x) € S|KkeK"}
is the part of S above K7 and
0,S" ={(k,z) € 8" | k € OK"}

is the part of S above 9K". Usually 0,5" is called the vertical boundary
of S™.

Definition 1. The restriction p": S” — K" to S” of the canonical
projection pi from I x A to K is called relatively null-homotopic if
there exists a continuous function F": S7 x [0, 1] — K" such that

1. F'(k,x,0) = p"(k,z) for all (k,x) € S",

2. F'(k,z,1) € OK" for all (k,z) € ST and

3. F''(k,x,t) € OK" for all ¢t € [0, 1] and all (x,z) € 0,5".

The function F" is called a homotopy for p". F" transforms p” in a
continuous way into a function that only takes values in the boundary
0K of K", while the image of the vertical boundary 9,5" of S7 remains
within the boundary 0K" of K" during this transformation.

The canonical projection px to K is called locally null-homotopic
on S if there exists a number 1y > 0 such that p7 is relatively null-
homotopic for all n < 7.

For a closed set S C &, let vintS" be the set S7\ 0,S5". This is the set
of points (k, z) in S" for which & is completely mixed and &;, < 7 for all
pairs (i,a). Let S be the collection of all nonempty, closed sets S C £
such that for all > 0, the set vintS” is connected and S = cl(vintS").

Definition 2. A closed set T' C A is called homotopy-stable if there
exists a set S € S such that

1.T={zxeA|(0,z) € S} and

2. pr is not locally null-homotopic on S.

Remark 1. It follows immediately from the definition of S that
homotopy-stable sets are connected and consist only of perfect equilib-
ria.

The definition of stability by Mertens (1989) is in terms of nonvoid
maps between homology groups. The sets given by such a definition
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may depend on the coefficient modules used. In Section (E) of that pa-
per Mertens shows that the union over all possible coefficient modules
of such solutions is equivalent to a definition in terms of homotopy.
However one needs to require not only that the projection map not
be null-homotopic, but also that this remain true for the restriction
of the projection map to some subset of the graph of the equilibrium
correspondence that is of the same dimension as the space of perturbed
games. Thus Definition 2 may be thought of as a weaker approximation
of the “right definition.” In particular, any set that satisfies the def-
inition in terms of homology will be homotopy-stable. The interested
reader may compare the definition of stability by Mertens with the
definition of homotopy-stability and construct a proof of the previous
statement using, e.g., Theorem 19.3 of Munkres (1984).

Next, we define the notion of BR-stability. This definition is similar
to the definition of stability in Hillas (1990) but differs from the original
definition in Hillas’ paper in two respects. First, we omit the part
concerning invariance. Second, we do not require minimality (with
respect to robustness against perturbations), just connectedness and
perfection. Both adjustments are due to the fact that the requirement
of invariance has become better understood during the last few years.
Therefore, we prefer to use a more careful selection of the collection of
BR-sets in the definition of BR-stability similar to the one employed
by Mertens (1989)2.

Let I' = (A, u) be a game. Note that the best reply correspondence
BR of the game I' is an element of the class H of all compact and
convex valued upper hemicontinuous correspondences ¢: A — A. For
two correspondences ¢, 1) € H we define

d(p, ) = sup{du(p(z),¥(2)) | z € A}.

Definition 3. A closed set S C A is a BR-set if for any neigh-
borhood V' of S there exists a number n > 0 such that fix(p) NV is
nonempty for every ¢ € H with d(BR,¢) < 1. A connected BR-set
that contains only perfect equilibria of I' is called BR-stable.

McLennan (1989a) introduced a related type of stable sets, which
he called essential sets. He used a larger class of correspondences to
perturb the best reply correspondence BR (he used contractible val-
uedness instead of convex valuedness) but, more importantly, he used
a coarser topology on the space of perturbations. (That is, there are
more perturbations close to a given game.) He required that all such

2Again, a more elaborate discussion of the reasons for these adjustments can be
found in Section 6.2 and Vermeulen and Jansen (1999).
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correspondences whose graph is contained in a sufficiently small neigh-
borhood of the graph of BR should have fixed points close to S. This
notion of closeness of correspondences to BR is even weaker than the
requirement that the graph of the correspondence is close to the graph
of BR in Hausdorff distance. The condition only requires that the
graph of the perturbation be within ¢ of the graph of BR. In effect this
yields a notion of stability that is stronger than BR-stability.

Finally we introduce a form of stability, called CKM-stability, that
is at first sight weaker than BR-stability. A CKM-perturbation of a
game I' = (A, u) is a continuous function £: A — K from the strategy
space A to the space K of KM-perturbations of I'.

We also write € = (&;);en. The collection C of all CKM-perturbations
is endowed with the norm ||e]| = max,en ||e(2)||oo. If € takes on only
strictly positive values we call it a completely mized CKM-perturbation.

For a CKM-perturbation ¢ € C the e-perturbed best-reply correspon-
dence

BRle]: A - A
is defined by
BRe|(z) = BR(e(z), ).

Definition 4. A closed set S C A is a continuous KM-set—CKM-
set for short—if for any neighborhood V' of S there is a number 1 > 0
such that fix(BR[e]) NV is nonempty for every ¢ € C with ||e]| < 7. A

connected CKM-set that only contains perfect equilibria of I' is called
CKM-stable.

Remark 2. The sets defined in Definition 4 would not be changed
by requiring only that fix(BR[e]) NV is nonempty for every completely
mixed € with ||e]] < n. This follows directly from the upper hemicon-
tinuity of fix: C — A, which in turn follows from the upper hemicon-
tinuity of the best reply correspondence.

It is clear that every BR-set of a given game I' is also a CKM-set
of that game. For every CKM-perturbation € of I' the e-perturbed
best reply correspondence BR|[e] is an element of H. Furthermore, by
Lemma 7 in Appendix A we know that there exists a constant C' > 0
such that d(BR[e], BR) < C||e]| for every CKM-perturbation e. Given
these two observations, it is an elementary exercise to complete the
proof.
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4. EVERY HOMOTOPY-STABLE SET IS CKM-STABLE

Our main concern in this section is to prove that every homotopy-
stable set is CKM-stable. We first give an intuition as to why this is
true and why it is unlikely that the converse is true.

Consider the graphs shown in Figure 2. This diagram is not to be
taken too literally. The spaces K" and A are typically of quite high
dimension, even for fairly simple games, but are represented here as
one dimensional. (One probably gets a better idea by at least thinking
of one additional dimension that is not shown, representing the size of
the perturbation. The set S" and the graph of ¢ are typically of the
same dimension as K" and A respectively. Their boundaries are of one
less dimension.)

The graph of S", as drawn, does not have any “holes” in it. If
there were holes then it would be possible to “stretch out” the set S",
without moving 9,5" so that it was completely above 0K". On the
other hand, if there are no holes then it is not possible to draw the
graph of a continuous function £ from A to K" whose graph has an
empty intersection with S”7. And any ¢ whose graph does not have
an empty intersection with S7 is such that the e-perturbed best reply
correspondence has fixed points close to the projection of S" onto A,
and hence —for sufficiently small n— close to the homotopy stable set.

0, S"

Figure 2

On the other hand consider the graph in Figure 3. In this case the
set S does have a “hole” in it and one could clearly stretch it out
in a continuous way so that it was completely above OK". And yet,
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it should also be clear that, even in this case, it is not possible to
find a continuous function € from A to K" whose graph has an empty
intersection with S”. Thus the set T = {x € A | (0,z) € S} would in
this case be a BR-set, and indeed even a BR-stable set, but would not
be a homotopy-stable set.

Of course we have not exhibited a game for which the graph of the
equilibrium correspondence is like this. However this kind of behaviour
of the equilibrium correspondence is not ruled out by anything that we
currently know. Indeed, it is sufficiently well behaved that there is
a strong intuition that there would be games for which the graph of
the equilibrium correspondence above the perturbed games would have
these general features.

8,57 A 7577

Kcn
\alc /
Figure 3

We now turn to proving the theorem.
Theorem 1. Homotopy-stable sets are CKM-stable.

Proof. Suppose that T C A is not a CKM-stable set. If T is not
a connected set of perfect equilibria then it is clearly not homotopy-
stable by Remark 1. So, suppose that T" is not a CKM-set. Then there
is a neighbourhood V' of T" such that for any n > 0 there is a completely
mixed CKM-perturbation ¢ such that ||| < n and fix(BR[e]) NV is
empty.

Let S € S be such that T'= {x € A | (0,z) € S}. If there is no such
S then T is clearly not homotopy-stable and we are done.

Let 79 be small enough that S™ C I x V. Now consider an (ar-
bitrary) value n less than 7. Since T is not a CKM-set there is
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a completely mixed CKM-perturbation ¢ with ||| < 7 such that
fix(BR[e]) NV is empty.

For any (k,x) € S" it must be that e(x) # k. For if e(x) = k then x
is in E(I'[k]) = E(I[e(z)]). Thus z is in BR(e(z),z)) = BR[e](z) and
so x is a fixed point of BR[e]. Thus since S7 C S™ C K x V, z is in
fix(BR[e]) NV, which was assumed to be empty.

We shall now construct a homotopy with the properties given in
Definition 1. Let the function p": S — OK" be given by defining
p"(k,x) to be, for (k,z) in S", the point obtained by extending the
line from e(x) through x to until it hits OK". If (k, x) is in 0,S" this is
simply the point k = p"(k, ).

Since K" is convex and e(z) is in the interior of K7 and e(z) # &,
this point is uniquely defined. Moreover, since ¢ takes values in the
interior of K" and is continuous it is bounded away from 0K". Thus
p'! is continuous.

Then the function F7: S x [0, 1] — K" defined by

F'(k,x,t) =tp"(k,z) + (1 — t)p" (K, x)

is also continuous. The only part of Definition 1 that might not be
immediately obvious is Condition 3. However this too is obvious if one
observes that p"(k,x) = p"(k,x) on 9,5". O

5. THE EQUIVALENCE OF BR-STABILITY AND CKM-STABILITY

In this section we shall prove the following

Theorem 2. Every CKM-set is a BR-set and conversely, every BR-
set is a CKM-set. The same equivalence holds if we replace ‘set” by
‘stable set’.

The part of this Theorem stating that every BR-set of a given game
I' is also a CKM-set of that game, was already shown in section 3. In
this section we will show that the converse statement (every CKM-set
is a BR-set) is also true. The second part of the Theorem is then a
simple consequence of the first part.

One of the tools in the proof of the converse statement is yet another
(at first sight somewhat awkward) type of stability, called CT-stability.
The perturbations involved are continuous versions of what we shall call
T-perturbations. With the help of this notion the proof is split in two
parts. First we show that every CKM-set is a CT-set. After that we
show that every CT-set is a BR-set. These two facts combine to the
desired result.
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5.1. (C)T-perturbations. The space of CT-perturbations is a sub-
space of the space of BR-perturbations and it contains the space of
CKM-perturbations. Since it is difficult to show directly that a CKM-
set is a BR-set, CT-perturbations offer a convenient stepping stone in
the proof.

In order to give the reader an idea of the advantage of the use of
CT-perturbations in the proof, consider the following situation. Sup-
pose that we have a CKM-set S of a game I'. If we want to show
that S is also a BR-set we have to show that every sufficiently small
BR-perturbation ¢ has a fixed point close to S. So, if we could con-
struct a (small) CKM-perturbation € such that every fixed point of
BRIe] is also a fixed point of ¢, then the proof would be easy. How-
ever, such a construction requires a solution for two problems. The
first problem is that CKM-perturbations generate perturbed best re-
ply correspondences that cannot ‘jump’ from one place to another like
BR-perturbations can, they can only move continuously. The second
problem is that for a given strategy profile x the set BR[e|(z) is nec-
essarily parallel to BR(x) as well as a product set with respect to the
players, while the set p(z) does not need to be either of those. So, for
our purpose (the approximation of ¢ by a CKM-perturbation in such
a way that the fixed points of the CKM-perturbation are also fixed
points of ¢) CKM-perturbations seem to be too rigid in two different
ways. CT-perturbations only have the first drawback. The perturbed
best reply correspondence generated by a CT-perturbation still varies
in a continuous way, but it is better suited to approximate ¢(x) in a
given strategy profile x. Thus, by first proving that every CKM-set is
a CT-set and then that every CT-set is a BR-set, we are able to handle
these two problems one at a time.

Definition 5. A T-perturbation of a game I' = (A, u) is a function
t: A — A from the set of pure strategy profiles A to the space of mixed
strategy profiles A.

For a T-perturbation t € A4 and a strategy profile z € A,
BR(t,z) = ch{t(a) | a € PB(x)}
is the set of t-perturbed best replies to x. Further, the distance between
two T-perturbations ¢ and #' in A% is given by
d(t,t") = max{|[t(a) — t'(a)|l | @a € A}.

Note that, for the T-perturbation id defined by id(a) = a for alla € A
we have BR(id, z) = BR(x) for all z € A. So, id can be identified with
I'. Therefore, a T-perturbation ¢ € A4 is considered to be small if the
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distance d(t,id) between ¢ and id is small. Further,
II(t) = ch{t(a) |a € A}.

Remarks We shall explain some of the intuitions behind the notions
defined above. Suppose that we have a game I' with two players and
Ay = Ay = {1,2}. Then the space A = Ay x A, of strategy pairs is the
convex hull of the pure strategy pairs id(1,1) = (1,1), id(1, 2) = (1, 2),
id(2,1) = (2,1) and id(2,2) = (2,2) as indicated in Figure 4. The
strategy space of the first Player is depicted on the horizontal axis, the
vertical axis represents the strategy space of Player 2.

(1,2) (2,2)

Figure 4

For a KM-perturbation k = (K1, kg) of the game I', the s-perturbed
strategy space A(k) is represented by the smaller rectangle. Notice
that this space still has a product structure with respect to the players
since it is the product of the spaces Aj(k1) and Ay (ko).

Now take a T-perturbation ¢ € 7 of the game I'. In this two person
example, the T-perturbation ¢ is a function that assigns a point in A to
each of the four pure strategy pairs (1,1), (2,1), (2,2) and (1,2). The
point £(2, 1) is indicated in Figure 1. The polytope I1(¢) C A, indicated
by the fat lines, is the convex hull of the points (1, 1), ¢(2,1), t(2,2)
and t(1,2). Notice that the Hausdorff distance between A and II(t)
is small whenever d(¢,id) = max{||t(a,b) — id(a,b)||~ | a,b = 1,2}
is small. Further notice that II(¢) does not need to have a product
structure with respect to the players.

In order to give an impression of the structure of the t-perturbed
best replies consider Figure 5. Suppose that we have a strategy pair
r = (21,22) in A and PB(z) = {(2,1),(2,2)}. Then BR(zx) is the
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convex hull of the strategy pairs id(2,1) = (2,1) and id(2,2) = (2,2)
while BR(t, z) is the convex hull of #(2,1) and ¢(2,2).

Figure 5

In this example it can clearly be seen that the set of t-perturbed
best replies BR(t,z) need not be parallel to the set of unperturbed
best replies BR(z), in contrast to the situation for the set BR(k,x) of
r-perturbed best replies for a KM-perturbation «. Also observe that
BR(t, z) is not the collection of points in II(¢) in which the payoff vector
induced by x attains its maximum over I1(¢) (in the example this would
be the one point set {¢(2,2)}), which is a fundamental difference with
the definition of full stability by Kohlberg and Mertens (1986).

Now we turn to the definition of the continuous version of T-perturbations,
CT-perturbations. For technical reasons it is convenient to allow CT-
perturbations only to take small T-perturbations as values. Formally,

we require these values to be in the (compact and convex) neighbor-
hood

T = {t e A* | d(t,id) < |4}
of id in A4. Thus we get

Definition 6. A CT-perturbation is a continuous function 7: A —
7T from the space of strategy profiles A to the space 7 of well behaved
T-perturbations.

For a CT-perturbation 7, the 7-perturbed best reply correspondence
BR[7]: A — A is defined by, for all z € A,

BRI7](z) = BR(7(x), x).
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Since the T-perturbation id € 7 can be identified with I', a CT-
perturbation 7 is considered to be small if ||7|| = max, d(7(z),id) is
small. This naturally leads to

Definition 7. A closed set S C A is a C'T-set if for any neighbor-
hood V' of S there exists a number 7 > 0 such that fix(BR[7]) NV is
not empty for every CT-perturbation 7 with ||7]| < 7.

First we turn our attention to the proof that every CKM-set is a
CT-set. The proof is designed to solve two technical problems each of
them requiring some explanation and a fair number of specific lemmas.
These two problems are considered in the next two subsections.

The technical problem that is considered in subsection 5.3 concerns
the existence of a continuous function x that assigns to each pair (t, )
in 7 x A a KM-perturbation «(¢, x) in such a way that x is an element of
BR(t, z) (that is, z is an equilibrium of the t-perturbed game) whenever
it is an equilibrium of the x(t, z)-perturbed game. The construction of
this function however requires some knowledge of the structure of the
graph of the correspondence t — OII(t). This structure is studied in
the next subsection. The lemmas referring to this graph can be found
in Appendix B.

5.2. The boundary of II(t). Define the graph Z of the correspon-
dence t +— OII(t) by

Z={(t,x) e T x A|x € 0ll(t)}.

A basic tool in the analysis of the structure of Z is the supporting
hyperplane theorem. First we briefly discuss this theorem. Let II be a
polytope of some R™ and let x be a vector in II. A vector v € R" is
said to support II at z if for all y € 11

(v,2) < (v,9),
while the inequality is strict for at least one y € II.

Theorem 3 (Supporting Hyperplane Theorem). Let II be a poly-
tope in R™. A wvector x € Il is an element of Ol if and only if there
exists a vector that supports 11 at x.

Obviously a vector v that supports some polytope II at a point x can
be chosen to be of unit length. Furthermore, the part of v perpendicular
to ah(II) is irrelevant, so we may assume that v is parallel to ah(II).

This standardization has the following special form in case ah(IT) =
ah(A).
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A vector v € x;cyRA is called standard if

(1) olle=1  and  (2)forallie N, Y v, =0.
a€A;
If we take IT = TI(¢) for some T-perturbation ¢ € 7 we know by Lemma
5 in Appendix A that II(¢) is full dimensional in A. Hence, ah(II(t)) =
ah(A) and the supporting hyperplane theorem implies

Lemma 1. Let t be a T-perturbation in T and let x be a strategy
profile in OIL(t). Then there is a standard vector v that supports 11(t)
at .

Using this consequence of the supporting hyperplane theorem we
can describe the behaviour of those ‘facets’ G~ of Z where Player i
is playing his pure strategy a € A; with ‘sufficiently small’ probability.
Quotation marks are used here due to the fact that the subset G~
of Z is actually the union over a (finite) number of facets of Z and to
stress that we work in the product 7 x A instead of using a ‘pointwise’

approach. Thus, as a formalization of a ‘facet’, we define —for each pair
(i,a) € P— the subset G of Z by

G~ = {(t,x) € Z | there is a standard vector v
with v;, > |A|™" that supports II(¢) at x}.

That we need to define the set G~ as the union of a number of
facets of Z and not just one facet is due to the fact that the number of
pure strategy profiles a with a; # a is much higher than the dimension
of the facet of A consisting of those strategy profiles x € A that satisfy
ZTiq = 0. Thus, if we perturb A by a T-perturbation ¢, this facet will
generically break into a number of simplices that are all facets of II(t).

The next theorem expresses an essential property of the elements
of G, In words, it states that for any element (¢,x) of G~ the
points t(a) with a; = a cannot be used in any convex decomposition of
x € I1(t) into strategy profiles ¢(a) with a € A. Note that a completely
analogous statement holds for the space A of strategy profiles and its
facets.

From now on it is assumed in the paper that the game I' = (A, u)
has at least two players (n > 2) and that every player has at least
two strategies (for all i € N, |4;| > 2). Games excluded by these
assumptions are either very simple (n = 1) or can easily be reduced to
games not excluded by the assumptions (by elimination of players with
only one pure strategy).

Theorem 4. Let (t,x) € G™. Suppose for a subset B of A that
we can write the strategy profile x as a positive convexr combination of
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the collection of strategy profiles t(b) with b € B. Then b; # a for all
b e B.

Proof. Take an a € A with a; = a. The theorem is proved if we can
show that a ¢ B.

Since (t,z) € G™™, there is a standard vector v with v;, > |A|~* that
supports I1(¢) at z. In particular, the linear function (v,-): y — (v,y)
attains its minimum over II(¢) at .

(a) First we will argue that (v,-) attains its minimum over I1(¢) at
t(b) for every b € B. Since (v, - ) attains its minimum over I1(¢) at x, it
is clear that (v, z) < (v,t(b)) for every b € B. However, z is a positive
convex combination of all strategy profiles t(b) with b € B. So, if
(at least) one of the inequalities (v, z) < (v,t(b)) would be strict, we
could deduce that (v,z) < (v, x), which is clearly impossible. Hence,
all these inequalities must in fact be equalities.

(b) On the other hand, we will now show that there is a pure strategy
profile ¢ € A with

(v,t(c)) < (v, t(a)).
To this end, recall that v, > |A|™'. Assume that for all b € A;,
vip > —|A|72. Then we have

Z Vib = Vjq —f- Z Vib > |14|_1 — |Az||A|_2 Z O
beA; beA;\{a}

This contradicts the assumption that v is a standard vector. Hence,
there is a pure strategy ¢ € A; with v;. < —|A|72. Define ¢ € A by

o a; ifj#1
T {c if j = 1.
Then we can write
(v,1(a)) = (v,t(c)) = (v,t(a) —t(c)) = > wvp(t(a); — t(c)n).
(j,b)eP

First, we will derive a lower bound for each of the terms in this sum-
mation. The pairs (i, a) and (i, ¢) will be treated separately for obvious
reasons. Observe that these two pairs cannot be identical to each other,
since v, < —|A|7? < |A|7! < ;4. So, take a pair (J,0).

If (4,b) = (i,c). First of all, we know that v;. < —|A|~2. Secondly, it
is easily verified that ¢(c);. > 1 —d(t,id) and t(a);. < d(t,id). There-
fore,

(1) vie(t (@) — t(e)ic) = |A[2(1 — 2d(t, ).
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If (j,b) = (i,a). We know that v;, > |A|~!. Furthermore, (c);, <
d(t,id) and t(a);, > 1 — d(t,id). Therefore,

(2) Via(t(a)ia — t(€)ia) > |A[7(1 — 2d(t,id)).

If (j,b) # (i,a),(i,c). First of all, we know that |vj| < 1 since v
is a standard vector. Furthermore, |t(a);, — t(c);| < 2d(t,id) since
a;, = Cj,. S0, we can calculate that

(3)  wip(t(a) —t(c)jn) = —lujnl[(t(a)jp — t(a);p)| = —2d(t,id).
Now from the inequalities 1, 2 and 3 and the fact that 3, |4;] < [A]

(all players have at least two pure strategies) we can deduce that the
above summation is larger than or equal to

|A|72(1 — 2d(t,id)) + |A|7H(1 — 2d(¢,id)) — 2| Ald(t,id).

Using the facts that d(t,id) < |A|™® (since t € T) and |A] > 2 (since
there are at least two players, each having at least two pure strategies),
it is straightforward to calculate that this expression is larger than zero.
Hence, (v,t(c)) < (v,t(a)).

Since t(c) is evidently an element of II(¢), the conclusions of (a) and
(b) put next to each other show that a cannot be an element of B. [

Corollary 1. Let (t,z) € G™. Then x;, < d(t,id).

Proof. Since = € 1I(t), there is a subset B of A such that x can be
written as a positive convex combination of all strategy profiles ¢(b)
with b € B. By Theorem 4 we know that b; # a for every b € B. So,
id(b);, = 0 for every b € B, which implies that ¢(b);, < d(¢,id) for
every b € B. Hence, x;, < d(t,id) since z is a convex combination of
the strategy profiles ¢(b) with b € B. O

5.3. The construction of . In this subsection we discuss the second
technical problem. As said before, we shall construct a continuous
function k that assigns to each pair (¢,2) in 7 x A a KM-perturbation
k(t,x) in such a way that x is an element of BR(t,z) whenever it is
an equilibrium of the (¢, z)-perturbed game. It turns out that s only
needs to satisfy the conditions of the next theorem. (The proofs of the

lemmas that are relevant in this subsection can be found in Appendices
B and C.)

Theorem 5. There exists a continuous function k from T x A to
IC that satisfies the following properties: for all (t,z) € T X A,

L. ||k(t, 2) || < d(t,id)

2. if v € A(k(t,x)), then x € TI(t).

3. if v € I(t) and Kk(t,2)iq = T4q, then (t,x) € G,
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We briefly discuss the construction of the function . First the values
of k are specified on the subspace Z of 7 x A as follows. For a given
pair (i,a) Lemma 11 in Appendix B says that G~ is a nonempty
set. Thus the Hausdorff distance dy((t,z), G™**) from the one point
set {(t,z)} to the set G~ is a well defined nonnegative real number
for every (t,z) € Z. So we can define the function x*: Z — K by, for
every (t,z) € Z and every pair (i,a),

K*(t,2)iq = min{d(t,id), v, — dg((t,2), GT)]4}.

Note that x* is continuous since it is the composition of a number of
continuous functions. Next we will extend x* to a function x defined on
the whole product space 7 x A. In order to get an impression how this
is done, consider the strategy profile z € A defined by #;, = |A;|7!. To
every (t,x) € T x (A\{x}) we will assign a point z(t,z) € Z. The value
of k* in z(t, x) is then used to define the value of x in (¢, z). Points (¢, z)
are treated separately. We will first explain the geometrical intuition
behind the construction of this function z.

Remark 3. Consider the perturbed strategy space A(&) of the KM-
perturbation ¢ € K defined by &, = |A|7!. It is straightforward to
check that A(¢) is full dimensional. Furthermore, as is indicated in
Figure 6, the strategy tuple (pair, in this case) x is an element of

the relative interior of A(&) (represented by the smaller square) since
Tig = |Ai]™H > AT = i

(1,2) (2,2)

Figure 6

Now take a point (t,z) € 7 x (A\ {z}) Since z # &, we can consider
the halfline with origin z through z, indicated by the line segment from

o o

Z to x in Figure 6. Since x € A(¢) C II(¢) by Lemma 5 in Appendix
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A, this halfline intersects the boundary OII(t) of II(¢) in exactly one
point. This point is defined to be z(t,z). The unique positive number
A(t,z) for which z(t,x) = & + A(t,z)(xz — x) will also be used in the
definition of &.

Following this idea, we define the function A\: 7 x (A \ {z2}) — Ry
by, for all (t,z) € T x (A\{z}),

AMt,z) =max{A >0 |z + Nz —z) € II(¢)}.

Obviously, A(¢, z) is a well defined nonnegative number since = # & and
I1(¢) is a closed and bounded set. The function z: 7 x (A \ {z}) — A
can now be given by, for all (¢,z) € T x A with = # z,

2(t,x) =+ Nt,x)(x — 2).

Note that, since & + A(x — ) is an element of ah(II(¢)) \ II(¢) for all
A > A(t,z), we have that z(¢, x) is an element of 0II(t) and (¢, z(¢, x))
is an element of Z. Using these observations it is shown in Lemma 13
of Appendix C that both A and z are continuous functions.

Moreover it is shown in this Lemma that 0 < |A|7! — |A]7?
At z)||z — 2]|eo. So, A(t,x) > |A]7' — |A|73 since ||z — 2| <
for all z € A. Therefore we can define k: 7* x A — IC by

w(t. ) = {min{)\(t,:zr)_ YR 2t x) ifa £

0 if v =2x.

<
1

In Appendix C it is shown that this function s indeed satisfies the
conditions of Theorem 5.

5.4. Every CKM-set is a BR-set. Finally we come to the proof of
Theorem 2. As said before the proof is split up into two parts. First
we prove

Theorem 6. Fvery CKM-set is a C'T-set.

Proof. Suppose that S is a CKM-set of I'. Let V' be a neighborhood of
S. Then there is a number p > 0 such that fix(BR[e]) NV is not empty
for every CKM-perturbation € with ||e|| < p. Since 7 is a neighborhood
of id, we can choose p small enough to guarantee that 7(z) € 7T for
every x € A and every CT-perturbation with ||7]| < p. Take a CT-
perturbation 7 with ||7|| < p. We will show that fix(BR[7]) NV is not
empty.
Consider the function €: A — K defined by, for all x € A,

e(z) = k(7(x), x).
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Since k is continuous by Theorem 5 and 7 is also continuous, we know
that € is a CKM-perturbation. Furthermore, by Theorem 5 (1) we
know that for every x € A,

le(@)lloo = [18(7(2), 2)lloo < d(7(2),1d) < [|7]| < pu.

Hence, ||g|| < 1 and we can take a strategy profile y € fix(BR[e]) N V.
Clearly, y € V. We will show that y € fix(BR[7]).

Since y € fix(BR]e]), at least we know that y € A(e(y)) = A(k(7(y),y))-
So by Theorem 5 (2) we know that y € II(7(y)). So, there is a subset
B of A such that y can be written as a positive convex combination of
the collection of strategy profiles 7(y)(b) with b € B.

In order to show that B C PB(y), take an arbitrary a ¢ PB(y).
Then there is a player ¢ for whom a; is not a best reply to y_;. Fur-
thermore, since y € fix(BR[¢]), we know that y is an e(y)-perturbed
best reply to y. This implies that the strategy profile y uses the pure
strategy a; € A; with minimum probability in the £(y)-perturbed strat-
egy space. Hence, yja, = €ia,(y) = K(7(y), Y)ia,- So, by Theorem 5 (3),
(7(y),y) € G7*. Then Theorem 4 implies that, for every b € B,
b; # a; and hence, b # a. So, every b € B must be an element of
PB(y).

This means that y can be written as a convex combination of strategy
profiles 7(y)(b) with b € B C PB(y). Hence, y € BR(7(y),y) =
BRI[7](y). O

Finally we show that every CT-set is a BR-set. The techniques
involved in the proof of this statement are similar to the techniques used
in the proof of backward induction for CKM-sets and for stable sets in
the sense of Mertens. In order to give this proof we first need to prove
three preliminary results. Note that especially Lemma 3 highlights the
usefulness of the (odd) choices of 7 and BR(t, z).

Lemma 2. Let x be a strategy profile in . Then there exists a
number v(x) > 0 such that BR(t,y) C BR(t,z) for allt € T and
y € A with ||x — ylle < v(z).

Proof. Take a strategy profile x € A. First of all we can take a real
number v(z) > 0 such that for all strategy profiles y € B,(;)(z) we
have PB(y) C PB(x). Secondly, recall that for each t € 7 and z € A,
BR(t, z) is the convex hull of the set of points t(a) with a € PB(z). Now
using these two facts it is elementary to show that BR(t,y) C BR(t,x)
for allt € 7 and y € B,y (). O

Lemma 3. Let x be a strategy profile in A and let C' be a nonempty
compact convex subset of A. Then there is a T-perturbation t with

BR(t,z) C C and d(t,id) < dg(C, BR(x)).
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Proof. Let x and C be as described. First note that PB(z) is a subset
of BR(zx). So, by the compactness of C', we can choose for each pure
strategy profile a € PB(x) a strategy profile y(a) € C with |la —
y(a)|lo < dg(BR(x),C). Define the T-perturbation ¢ by

~ Jy(a) ifac PB(x)
Ha) = {a it a ¢ PB(x).

Then clearly d(¢,id) = max{|[t(a) — allo | a € A} < dy(BR(z),C).
Finally, using the convexity of C' and the fact that y(a) € C for all
a € PB(x) we get

BR(t,x) = ch{t(a) |a € PB(x)} = ch{y(a) |a€ PB(x)} C C.
U

Further, for two sets X,Y C A and a € [0,1] we write aX + (1 —
)Y ={arx+(1—-a)y|ze X,ye Y}

Lemma 4. Let t° and t' be elements of T and let x be a strategy
profile in A. Then for a € [0,1], t* = at’' + (1 — a)t® € T and
BR(t*,x) C aBR(t',z) + (1 — o) BR({°, z).

Proof. Clearly, t* is an element of 7. Take a strategy profile y €
BR(t*,x). Then y is a convex combination of the collection of strat-
egy profiles t*(a), where a ranges through PB(z), with weights say
(A(@))acr@). Now y? =37 pp(py A(@)t7 (m) is an element of BR(t/, x)
for j = 0,1 by definition of BR(#’, z), and y = ay' + (1 — a)y°. O

Theorem 7. Every CT-set is a BR-set.

Proof. Let S be a CT-set of I' and let V be a closed neighborhood
of S. Then there is an 7 with 0 < n < |A|™® such that fix(BR[7]) N
V' is nonempty for every CT-perturbation 7 with ||7|| < 7. Take a
correspondence ¢ € H with d(p, BR) < 7. We will show that fix(p)NV
is nonempty.

(a) Take an arbitrary number v > 0. Construct the CT-perturbation
7 as follows. Choose for each € A a number v(z) < v as in Lemma
2. Then {B,)(z) | € A} is an open cover of the compact space A.

So we can choose z',...,2° such that By ('), ..., By (z®) still
covers A. Then by Lemma 9 in Appendix A there is a partition of
unity a!,...,a* subordinate to this finite cover of A. Furthermore,

note that each p(2*) is a nonempty compact and convex set. So, by
Lemma 3 there is a T-perturbation t* with BR(t*, 2*) C ¢(2*) and

d(t*,id) < dg(p(2¥), BR(2")) < d(p, BR) < 1.
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Since this last inequality particularly implies that d(t*,id) < n < |A|™3
we know that t* € 7. So we can define 7: A — 7 by

T(y) = aF )t

Since each of is continuous, 7 is a CT-perturbation. Furthermore,
using the triangle inequality and the fact that o!, ..., a® is a partition
of unity we get for each y € A

),id) < Za id) < max{d( id)} <n.

Therefore, since ||7|| equals the maximum over the numbers d(7(y), id)
where y ranges through A, we get that [|7|| < 7.

(b) Now repeat this procedure for each element 7' of a sequence
(7!)1en of positive real numbers converging to zero. This yields a se-
quence (7!);cy of CT-perturbations with

s()

Z Q tlk:

and ||7!|| < 1. So, for each [ we can take a strategy profile y' €
fix(BR[7']) NV by the choice of . We may assume without loss of
generality that y' — y as | — oo for some y € A. Then y € V, since
V is closed. We will show that y € ¢(y).

Take an arbitrary real number p > 0. Since ¢ is upper hemicontin-
uous in y, we can choose a real number p > 0 such that

©(z) C Bu(e(y)) forall z € B,(y).

Take a natural number L with 3 € B%p(y) and 7' < $p whenever [ > L.

Take a fixed [ > L and an index k, 1 < k < s(I) with o/*(y') > 0. Then
by the choice of a'*,

% = 9l < 2" = 4l + I8 = Yl < v +30 <7 + 3o < 3o+ 3o =0

Hence, for every [ > L and k € {1,...,s(l)} with o'*(y') > 0,
(4) BR(t",y") C BR(t",2") C ¢(2") € Bu(p(y)).

The first inclusion follows from the definition of the function a‘* and

the fact that ||z — y'|lc < v(z'*). The second one follows by the
construction of #*. The third one follows from the inequality ||z'*
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Y|l < p and the choice of p. Now, since y' € BR[7!](y'), we can derive
for [ > L that ' is an element of

()
BR(7'(y"),y") = BR | Y _ ()", ¢/
k=1

C Z C(lk(yl)BR(tlk,yl)

k:atk(yh)>0
C Bu(e(y))-

The first inclusion follows from Lemma 4. The second one follows from
(1) and the fact that B,(¢(y)) is a convex set. So, y € cl(B,(¢(y))).
Now recall that p > 0 was arbitrary. Therefore, y € cl(¢(y)). Hence,
y € ¢(y), since p(y) is closed. O

This concludes the last step in the proof that every CKM-set is a
BR-set. In section 4 we have shown that any stable set in the sense
of Mertens is a CKM-stable set. In this section we have shown that
it is therefore also a BR-set. Hence, since a stable set in the sense of
Mertens is certainly a connected subset of the set of perfect equilibria,
it is even a BR-stable set.

6. PROPERTIES OF BR-STABLE SETS

In this section we will use the results from the previous sections to
derive some properties of BR-stable sets.

As is already stated in the introduction, the original motivation in
the search for stability concepts is a list of requirements composed by
Kohlberg and Mertens (1986) and Mertens (1989). The list presented
here is a somewhat modified and expanded version of the original one.

1. Existence.
FEvery game possesses at least one stable set.
2. Connectedness.
Stable sets are connected.
3. Admissibility.
FEvery stable set consists of perfect equilibria.
4. Backward Induction.
Every stable set contains a proper equilibrium.
5. Independence of Inadmissible Strategies.
A stable set S contains a stable set of the game obtained by deleting
a strategy that is not an admissible best reply anywhere in S'.
6. Ordinality.
A stability concept is ordinal.
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7. The Small Worlds Axiom
For a game in which there is a set I (the "insiders”) of players
whose payoff does not depend on the strategies of the players out-
side I (the "outsiders”) each stable set of the game played by the
insiders can be extended to a stable set of the original game.

We shall briefly comment on some of the requirements. For a more
profound argumentation we refer to the above-mentioned papers.

The domain of games we consider here is that of all finite games. Of
course, even for single agent decision problems one would not expect
solutions if the strategy sets were not compact or the utility functions
not continuous. The restriction to finite games gives us a domain in
which requirement 1 seems reasonable. See Mertens (1989, p. 582) for
a discussion of why one wants a solution defined on all games rather
than simply on a generic subset of games.

The restriction to perfect equilibria is a rather strong form of admis-
sibility. The form of the backward induction requirement is justified
by the result of Kohlberg and Mertens (1986) and van Damme (1984)
that any proper equilibrium “is” a sequential equilibrium. Mailath,
Samuelson, and Swinkels (1997) and Hillas (1998) prove a partial con-
verse.

The independence of inadmissible strategies is a strengthening of
both the requirements of iterated dominance and forward induction
occurring in the original list of requirements of Kohlberg and Mertens.
This strengthening is used in the Reformulation papers of Mertens. It
is also used in van Damme (2001) under the name of Independence of
irrelevant alternatives.

The ordinality condition is a strengthening of the requirement, known
as invariance, that the solution should only depend on the reduced nor-
mal form. It was first introduced by Mertens (1987). There Mertens
shows that ordinality is implied by invariance and admissible best reply
invariance (abr-invariance). The requirement of abr-invariance means
that games that have the same strategy spaces have the same solutions
if their admissible best reply correspondences are the same.

Using the results of Hillas (1990) we can easily prove that BR-stable
sets satisfy requirements (1) to (4). To do this, first note that, although
Hillas used an additional condition concerning invariance, his proofs
of (1) to (4) are also valid without any alteration for minimal BR-
sets. Thus, given a game I', there exists a minimal BR-set of I', and
this minimal BR-set is both connected and contained in the set of
perfect equilibria of I'. Hence, this minimal BR-set is a BR-stable set
in the sense of this paper and we have verified (1). Concerning (2) and
(3), BR-stable sets of a game I' are connected and contained in the
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collection of perfect equilibria of I by definition. As for the backward
induction requirement, note that every BR-stable set of a game I' is
also a BR-set of this game. Then the proof of Hillas shows that such a
set must contain a proper equilibrium of the game I'.

Concerning the independence of inadmissible strategies, it might be
expected that the proof would be similar to the proofs of iterated dom-
inance (Proposition 8) and forward induction (Proposition 9) by Hillas
(1990). However, the correspondence F constructed in the proof of
Proposition 8 is not close to BR in Hausdorftf distance, which is one
of the assumptions in the proof. This effect is caused by the use of
the orthogonal projection in the definition of F'. This projection does
not respect the values of the best reply correspondence, and therefore
certain strategies may be used in the construction of F'(¢) that are not
a best reply to o. It is possible to directly construct extensions of a
correspondence F’ that do satisfy the three conditions mentioned in
the proof of Proposition 8. However, both methods known to us to
do this are very intricate, and it is an arduous task to check that they
work. The same remarks can be made concerning Proposition 9. The
result of the previous section provides a much shorter proof.

6.1. Independence of inadmissible strategies. Originally Kohlberg
and Mertens required that a stability concept should satisfy two other
conditions, namely iterated dominance and forward induction. How-
ever, both these conditions are implied by independence of inadmissi-
ble strategies and the techniques introduced in this section can also be
used to prove the latter requirement. Therefore we will work with the
independence of inadmissible strategies in this paper.

A strategy y; of Player 7 is an admissible best reply against an ele-
ment x € A—denoted as y; € BR?(z)—if there is a sequence (z*)ren
of completely mixed strategy profiles in A converging to x such that
y; € BR;(z",), for all k. The set BR"(z) is defined in the obvious way.
For a subset S of A, BR}(S) = |J,cg BR{(x) is the set of admissible
best replies (of Player i) against S. A pure strategy b of Player j is
called an inadmissible reply against S if b ¢ Bf(S).

Loosely speaking, independence of inadmissible strategies means that
a stable set S of a game I' remains stable if a pure inadmissible reply
against S is deleted from I'. In order to get a formal definition of this
property, we need to describe how a pure strategy b of a player j can
be deleted.

Let I' = (A, u) be a game. Fix a pure strategy b € A; of a player
j, who has at least two pure strategies. The game I induced by the
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deletion of b is by definition (A’, «'), wherein

AN =

and w; is the restriction of u; to A’. The strategy spaces of I' and I"
are denoted by A and A’, respectively. From y € A’ the lift y in A
is obtained by adding zero as the b-th coordinate to y;. Further, let
m = (m;)ien be any continuous function such that (1) for all ¢ # j, 7; is
the identity from A; to itself, and (2) m;: A(A;) — A(A)) is such that
m(y) = y.

Now let S be a CKM-stable set of the game I'. Let b be an inadmis-
sible reply against S. Let S’ C A’ be defined by S' = {y € A" |y € S}.

Theorem 8 (Independence of inadmissible strategies). The set.S” con-
tains a CKM-stable set of the game I induced by the deletion of b.

Proof. 1t is sufficient to show that S’ is a CKM-set of IV. To this
end, note that S’ is closed. Moreover, since S is included in the set
of perfect equilibria of T’ it is easy to see that S is a subset of {¥ |
y € S'}. Hence, S’ is not empty. Take a neighborhood V' of S’
Then 7—'(V’) is a neighborhood of S. Since b is not an element of
BR}(S) D BRj(T), n=*(V') contains a neighborhood V of S with
b ¢ BR}(V). Furthermore, since S is a CKM-set of the game I, there
is a number 7 > 0 such that the intersection of V' and fix(BR]e]) is not
empty whenever ||e]| < 7. Now take a completely mixed perturbation
d" of I'" with ||0’]] < n. Define the extension ¢ of ¢’ by, for all z € A,

Sia(z) = Ojo(m(w)) fi#jora#b
o ifi=janda=b.

It is evident that  indeed is a CKM-perturbation and that ||d]| = |||
So there is a fixed point z of BR[J] contained in V. Obviously, 7(z) €
V’. We will show that 7(z) is a fixed point of BR[J'].

(a) First we will prove that 2, = 0. Since b ¢ BR}(V) and z € V we
know that b ¢ BR{(2_;). Furthermore, z_; is completely mixed since
¢" is completely mixed. So, b ¢ BR{(z_;) = BR;(2_;). Hence, since
z; € BR;(z_;), we have that zj, = 0.

(b) Now we will prove that 7(z) € BR[¢'](7(z)). Because of Lemma
8 (1) in Appendix A we know that 7(z) € A(d'(7(2))). Take a strategy
profile x € A(¢'(7(z))). We will prove that m;(z;) is at least as good a
reply as x; to m(z)_; in A;(6'(7w(2))).
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—_—

First note that z = 7(z), since zj, = 0. Furthermore, 7 € A((z))
by Lemma 8 (2) in Appendix A. So, since z € BR[d](z), we get

ui(m(2) =il mi(2:) = wilm(2) ;| mi(2) = wi(z-i] 2)
> ui(z-i| Ti) = wi(w(2) | mi(@)) = wi(mw(2) =i @)
Hence, 7(z) € BR[d'](7(2)) and we have shown that S” is a CKM-set
of I'" by Remark 2. O

6.2. Ordinality. As said before, in this section we will first give an
account of the reasons why we chose to use a slightly simplified version
of the original definition of BR-stability in Hillas (1990).

The ordinality requirement is a modern version of the requirement
that the solution of a game should be robust against both duplication
of strategies and deletion of duplicate strategies. This informal require-
ment was originally referred to as “invariance”, and by now has several
formalizations apart from the strongest one known as ordinality.

The definition of BR-stable sets in Hillas (1990) was specifically de-
signed to satisfy one of the earlier, and weaker, invariance requirements.
As it turned out, the robustness requirement against sufficiently small
perturbations of the game did not automatically imply this weaker re-
quirement. Therefore an additional condition was included in the defi-
nition stating that the robustness requirement should also be valid for
any “equivalent” game. Because of this extra condition the resulting
solution concept automatically satisfied the above-mentioned weaker
variety of invariance.

However, the example given in Vermeulen and Jansen (1999) shows
that the solution concept generated by this definition does not satisfy
the stronger invariance requirements. In particular it does not satisfy
ordinality. Therefore, since it does not give any additional virtue, we
decided to leave out the complicating extra condition referring to equiv-
alent games, and only use the robustness requirement with respect to
the game itself.

Secondly, the example in Vermeulen and Jansen (1999) points out
that the minimality condition —stable sets were usually defined as sets
that were minimal with respect to the robustness requirement— upsets
ordinality as well. For this reason we choose to leave out the minimality
condition too, and only insist on perfection and connectedness. This
way we get a version of BR-stability that satisfies at least some of the
invariance requirements, as we will readily show.

As it was already noted in the introduction of this section, Mertens
has proven that a solution concept is ordinal if it is both invariant
and abr-invariant. Although Vermeulen and Jansen (1999) provides an
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ordinal selection from the collection of BR-sets, the invariance of BR-
stable sets sec is still an open problem.? Nevertheless, using the result
of the previous section we can construct a relatively simple proof of the
abr-invariance of BR-stable sets. In order to define abr-invariance, take
two games I' = (A, u) and I'* = (A, u*) with the same set of strategy
profiles A = A4. The distinction between notions like (admissible)
best replies for the game I' and the game I'* is made by adding an *
as superscript to the notions that refer to I'*.

Definition 8. The games I' and I'* are said to be admissible best
reply equivalent (abr-equivalent) if BR*(x) = BR*(x) holds for each
strategy profile x € A.

Theorem 9 (Abr-invariance). Let I' and I'* be two abr-equivalent
games. Then a subset of A is a CKM-stable set of I if and only if it
1s a CKM-stable set of I'*.

Proof. (a) First we will prove that BR(k,z) = BR*(k, z) for any KM-
perturbation x and completely mixed strategy profile z € A. Since x is
completely mixed, we have BR*(z) = BR(x) and BR*(x) = BR*(z).
Then, using the assumption that I and I'* are abr-equivalent, it follows
that

BR(x) = BR"(z) = BR™(z) = BR"(x).

From the equality BR(z) = BR*(x) we can deduce that PB(x) =
PB*(x). Finally, from this last equality and Lemma 6 from Appendix
A it follows that BR(k,x) = BR"(k, z).

(b) Now let S be a CKM-stable set of I'. By symmetry we know
it is sufficient to prove that S is a CKM-stable set of I'*. First of all,
note that S is connected. Furthermore, since S is contained in the
set of perfect equilibria I' and perfect equilibria are abr-invariant, we
know that S is contained in the set of perfect equilibria of I'*. So we
only need to prove that S is a CKM-set of I'*. Take a neighborhood
V of S. Since S is a CKM-set of I' there exists a number 1 > 0 such
that fix(BR[e]) NV is not empty for every completely mixed CKM-
perturbation ¢ with ||¢|| < 7. Take such a completely mixed CKM-
perturbation ¢ with ||e]| < . We will show that fix(BR*[e]) NV is
not empty. By the choice of 7 we can choose a strategy profile z in
fix(BR[e]) N V. Obviously, z € V. We will show that z € fix(BR*[¢]).

30ne of the referees conjectures that CKM-stability, and therefore also BR-
stability, might fail invariance for basically the same reason —pointed out in Mertens
(1991)— why homotopy stability might fail to do so.
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To this end, observe that
z € BR[e](z) = BR(g(z), 2).

Furthermore, the KM-perturbation e(z) is completely mixed, since &
is completely mixed. Therefore, since clearly z € A(e(z)), z is also
completely mixed. So by (a), z € BR(¢(z),z) = BR*(¢(z),z). So,
z € BR*[¢](z) and z is a fixed point of BR*[¢]. Hence, S is a CKM-set
of I'* by Remark 2. O

APPENDIX A

Define the fixed KM-perturbation ¢ € K by &, = [A|7'. Tt is
straightforward to check that A(¢) is full dimensional. Furthermore,

Lemma 5. For anyt in T the set A(§) is a subset of TI(t).

Proof. Suppose that A(¢) ¢ I1(t). Then we can take a strategy profile
y € A(E) \ II(¢). Since II(t) is compact and not empty we can take
a strategy profile z in II(¢) whose distance in maximum norm to y is
minimal over II(¢). Since x € II(t) and y ¢ II(¢),  # y. So we can
define z € A by

z=y+X(y—x) with N =max{A>0]y+ Ay —z) € A}

Then ||z — y|loo > |A|™! since at least one of the coordinates of z must
be equal to zero, while the fact that y € A(&) implies that y;, > &, =
|A]=! for all i € N and a € A;. Now it is also clear that Ay > 0 and we
can deduce that ||z — 7|l = (1 + Ay 1|2 — ¥lleo > |A|~L. Furthermore,
by the construction of z and the convexity of II(¢), x is a strategy
profile in TI(¢) whose distance in maximum norm to z over II(t) is
also minimal. So, for all ' € T1(¢), ||z — 7|l > ||z — z]leo > A7
This implies that dg(I1(¢),A) > |A|~! since z € A. On the other
hand, dy(T1(t),A) = dg(T1(¢), 11(id)) < d(t,id) < |A|73 since t € 7.
Contradiction. O

For a KM-perturbation x € K and a pure strategy profile a € A,
define the strategy profile d®(k) € A by

ia if 1
e
— ata; Riq 1 a = a;.

Using this notation we have

Lemma 6. For every k € K and x € A, BR(k,x) = ch{d?(k) | a €
PB(x)}.

It is straightforward to show this once we note that A(k) equals the
convex hull of the collection of points d* with a € A.



THE RELATION AMONG STABILITY CONCEPTS 31

Lemma 7. There exists a constant C' > 0 such that for all k,u € K
and x € A,

Proof. Take two KM-perturbations x,u € K and a strategy profile
x € A. Then using the previous Lemma we can calculate that

du(BR(%, x), BR(p, ) = du(ch{d*(x) [ a € PB(z)}, ch{d®(p) | a € PB(x)})
< dp({d*(x) | a € PB(z)}, {d*(n) | a € PB(x)})
< [A[-[lr = pllce-
So we can take C' = |A| > 0. O
Lemma 8. Let I' be a game and let z € A. Then for the extension
e of a CKM-perturbation &' of the game 1" the following holds
L. ify € A(e(2)) and yj, = 0, then 7(y) € A(e'(7(2)))
2. ify € A(g(m(2))), then g is an element of A(e(z)).
Proof. (1) Let y € A(e(z)) and yjp, = 0. Then for a € A}, 7(y)i, =
Yia = Sia(Z) = Sga(ﬂ'(Z)).
(2) Let y € A(e'(w(2))). For (i,a) € P with i # j, or i = j and
a#b, Gia = Yia > €y(7(2)) = €i0(2). Otherwise, g, =0 =¢e;(2). O
Lemma 9 (Partition of unity). Letz!, ..., 2 € Aandvy >0, ..., vy >
0 be such that B, (z'), ..., B, (z*) covers A. Then there are contin-

uous functions ', ..., a® from A to [0, 1] such that >_,_, a*(y) =1
for ally € A and for each k: o*(y) >0 & y € B, (a").

Proof. Define for k € {1, ..., s} the function 5*: A — R by g*(y) =
(1= |lz* — ?J’|oo(l/k)’1)+. Define for £ € {1, ..., s} the function
ot A — [0, 1] by a"(y) = B*(y) (Xies ﬁk(y))fl. It is straightforward

to show that o', ..., o® have the properties mentioned. O

APPENDIX B

This section of the Appendix contains the (proofs of the) lemmas
needed in subsection 5.3 and Appendix C.

Lemma 10. Z is a closed subset of T x A.

Proof. Take a sequence (t*, 2%),cy in Z that converges to (¢, 7) € A x
A. Observe that (¢t,z) € T x A, since 7 is a closed subset of A4 and
th € T for all k.

So we only have to prove that « € OII(t). First observe that z € I1(t)
since x¥ € TI(t*) for all k and t* — ¢. Now take an arbitrary number
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n > 0. The proof is complete if we can show that there is a vector
y € ah(II(¢)) = ah(A) with || —y||oc < 71 that is not contained in TI(t).

For each k € N there is a standard vector v* that supports II(t*) at
2¥ by Lemma 1. Since v* is standard, it is parallel to ah(A), so we can
define the vector y* € ah(A) by y* = 2% — inv*. We will show that (a)
|z — y¥||eo < and (b) y* ¢ I1(t) for large k.

(a) Since v* is standard we know that ||2* — y*|| = in||v* | = 3.
Furthermore, ||z — 2*|| < 37 for large k because z*
|z — y¥||oe < n for large k by the triangle inequality.

(b) Take a fixed k € N and an arbitrary strategy profile z € II(t*).
Then (vF,z — %) > 0 since v* supports II(t*) at z*. Furthermore,
|v*¥]]2 > 1 since v* is a standard vector. Therefore,

— x. Hence,

Iz = 4113 = Iz — 2* + Gnv"|I3
= [lz = 2"I3 + n{v®, 2 — %) + p?llv*3
(g
i
Thus ||z — y*|ls > 3n. Let D = >,y |A;[. The last inequality then
implies that

(A\VARAVS

Iz = 4"l > D72 ||z — ¥
_1
> %D 2.

Thus dg(y*, T1(tF)) > %D’%n since z was an arbitrary strategy profile
in I1(t*). Now the triangle inequality for the Hausdorff distance yields

dp(y*, T1(t)) > dp (y*, TI(E")) — dp (T1(2), TL(2Y))
> 1Dz — dy (T1(t), TI(F)).

dy

And this is true for any k in N. Thus, since II(t*) —= TI(t), for any
sufficiently large k we have dg(y*, I1(t)) > 0. O

Lemma 11. For every pair (i,a), G™" is a closed set. Further,
(t,x) € G for every strategy profile v € A with x;, = 0 and T-
perturbation t € T with x € 11(t).

Proof. In order to prove that G~ is closed, take a sequence (t*, 2*)yen
in G~ with (t*, 2%) — (¢, z). We will prove that (t,x) € G~%.
Clearly, (t,x) € Z since (t*,2F) € G7" C Z for all k € N, and
Z is closed by Lemma 10. In order to show that there is a standard
vector v with vy, > |A|~! that supports I1(t) at x, take standard vectors
(v*)ren such that v* supports TI(#*) at z* and vF > |A|7'. Assume,
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without loss of generality, that v* — v. Obviously v is a standard
vector with vy, > |A|™'. In order to prove that v supports II(t) at z,

take a y € II(¢). Since II(¢*) dn, I1(t), there is a sequence (y*)ren that
converges to y with y* € II(t*) for all k. Since n* supports II(t*) at
xF, we know that (v*,4*) > (v*, 2%). Then the continuity of the inner
product yields (v,y) > (v, z). Finally, observe that the linear function
(v,-) is not constant on A since v is standard. Then the fact that I1(#)
is full dimensional in A by Lemma 5 implies that there is a strategy
profile in TI(¢) for which the inequality is strict.

In order to prove that G~ take a strategy profile z € A with
Zi, = 0 and a T-perturbation ¢ € 7 with x € II(t). We will show that
(t,z) € G™". To this end, define the standard vector v by

—(JA;]—1)"t ifj=iandb#a
v =4 1 ifj=diandb=a
0 if .

Then z — nv € ah(A) \ A for n > 0, since v is standard, z;, = 0 and
v;, = 1. However, ah(A) \ A is a subset of ah(II(¢)) \ II(¢) by Lemma
5. So, since x € 1I(t), we get that (¢,z) € Z. Further it is easily
checked that v supports A D TI(t) at =, and v, = 1 > |A|~!. Hence,
(t,z) € G O

In analogy to the idea that the sets G~ are the ‘facets’ of the space
of points (¢, z) with x € TI(t) we will show that the boundary Z of this
space is the union of these ‘facets’.

Lemma 12. {G™™|i € N, a € A;} covers Z.

Proof. Take (t,x) € Z. Then x € 01I(t) by the definition of Z. So, by
Lemma 1, there is a standard vector v that supports II(¢) at .

We only have to prove that there is a pair (i,a) with v, > |A|7%
Since v is a standard vector, we know that ||v||« = 1. So, there is a pair
(4,0) with |vp| = 1. If v, = 1, we choose (i,a) = (j,b). If vj, = —1,
the assumption that v;, < |A|™! for all a € A; leads to

Zvja:vjb+ Z Vjg < —1+|A||A|_1 =0,

aGAj aEA]- \{b}

contradicting the fact that v is a standard vector. Hence, also in this
case, there is a pair (j, a) with vj, > [A|7". O
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APPENDIX C

In this section of the Appendix it is shown that the functions A and 2
are continuous and that the function s defined in subsection 5.3 indeed
satisfies the condition in Theorem 5.

Lemma 13. Both A and z are continuous. Furthermore, for any
(t,x) € T x A with x # z, |A|™ — |A]72 < At 2)||7 — 2| oo
Proof. Since z(t,z) = 4+ A(t,z)(x — ), the continuity of z is a direct
consequence of the continuity of A. To prove the continuity of A, take
a sequence (t*, 2%)pen in 7 x (A\ {#}) converging to a point (¢, z) with
x # &. Then [|z* — || > 3||z — &||w for large k. So,

AtF, 2) 2" — 2]

At 2¥) |2 — oo

12> [|2(t",2") = il

> 3
for large k. Hence the sequence \(t*, 2%)ien is bounded since || — 7|
is larger than zero. This implies that A(t*, 2*)ren converges to A(¢, x)
if and only if every convergent subsequence of \(t*, 2*).cn converges to
A(t, ).

In order to prove the latter statement, take an arbitrary subsequence
At 2%)1en that converges to some number p. We will show that p =

A(t,z). To this end, note that z € AE&) C HZt) since T, = A7 >
|A|7! = &, for all pairs (i,a). This implies that the halfline emanating
from @ through x intersects OII(t) only once. Now, on one hand we
know that z(¢, z) is an element of this intersection. On the other hand,
recall that (¢, 2(#!,2!)) € Z for all I. Then also (t,% + u(x — %)) € Z
since (!, z(t!, 2!))jen converges to (¢, + u(z — )) and Z is closed by
Lemma 10. Therefore, 24 (x—12) is also an element of this intersection.
Hence, z(t,x) = & + p(z — ) and then A\(t,x) = p since = # .

Take a point (¢, ) € T xA with x # . Since (t, 2(t,z)) € Z we know
by Lemma 12 that there is a pair (i,a) such that (¢,2(¢,z)) € G7.
Then, using Corollary 1 and the fact that ¢t € 7, we get z(t,x);, <
d(t,id) < |A|™3. Then we can deduce that |A|™' — |A]™? < @y, —
2(t,x)ia < [|2(F, 2) = oo = Alt, 2)[|7 — £ |- O

Finally in this Appendix we show that the function k defined in
subsection 5.3 satisfies the conditions of Theorem 5.

Proof. Of Theorem 5 (0) Continuity. Take a sequence (t*,z").ey in
7 x A converging to a point (¢, z). Assume that x # &. Then z* # &
for large k. So, in this case, the continuity of x in (¢, z) follows from
the continuity of A, * and z in the point (¢,z). If on the other hand
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r = &, then we may assume that 2* # & for all k. So, A\(tF,2%) — oo
by Lemma 13. Now the fact that x* is bounded implies that

k(5 2%) = min{\(t*, %) 71 1 R (E7, 2(#5, 2%)) — 0 = k(t, 1) = K(t, 2).

In order to prove the properties (1) till (3), take a fixed point (¢,z) €
T x A.

(1) [[(t, 2)[loo < d(t,id).

If x = 2 then k(t,z) = 0, so clearly ||k(t,= )| < d(t,id).
If © # & then the definitions of x and x* show that ||k(f,2)]e <
It (8, 2) oo < dit,id).

(2) If x € A(k(t,x)), then x € I1(¢).

Assume that x ¢ I1(¢). We will show that = ¢ A(k(t,z)).

(a) Since = ¢ II(t), we know that x # & by Lemma 5. So, z(t,z) is
defined and (¢, z(t,z)) € Z. Then by Lemma 12 we can take a pair (¢, a
such that (¢, 2(¢,x)) € G~ We will first show that (¢, z);a = 2(¢, T)a-
To this end, note that A\(¢,z) < 1 since, by assumption, = ¢ II(¢). So,

K(t, ) ie = min{ \(¢, 2) "1, 136*(t, 2(, 7))ia = K7 (L, 2(t, ) )ia-

Next, since (¢, z(t,z)) € G, we know that dg((t, 2(t,z)), G™*) = 0.
So,
K5 (t, 2(t,@))ia = min{d(t,id), [2(t, 2)ia — du((t, 2(t, ), GT)]+ }
= min{d(t,id), z(t, 2)ia }-
Now by Corollary 1 we know that z(¢,x);, < d(t,id). Hence, together
with the displayed equalities this yields (¢, x);a = 2(t, 2)iq-

(b) To complete the proof, note that z(t,z);, < d(t,id) < |A|™ <
|A|7Y < @44. So, Ty — 2(t,x);q > 0. Therefore, since T — x =
At z) (2 —2(t, ), we get that &, —2;, > 0. Secondly, since x ¢ TI(t),
we know that 1 — A(¢,2) > 0. Hence, using these last two inequalities
and (a), we get that

R(t,x)ia = 2(t, 2)ia = Tig + (1 = A, 2))(Tig — Tia) > Tia.
Hence, = ¢ A(k(t,x)).
(3) If z € TI(t) and k(t,x);q = Tia, then (t,2) € G
Suppose that x € TI(t) and k(t,x);, = x;, for some pair (i,a). We
will prove that (¢,x) € G7%.

(a) We will first show that A\(¢,z) = 1 and z(t,x) = x. Since
K(t, )i = Tiq, it can easily be seen that x;, < Z;,. This implies that
x # x. So, A(t,x) is defined and A\(¢,xz) > 1 since = € TI(¢). Assume
that A(¢,2) > 1. Then on one hand, since z(t,z) = = + \(t,z)(z — z)
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and x;, < T, it implies that z(t,x);, < x;,. On the other hand it
implies that

Tig = K(t, 2)ia = Mt, 1) 7 65t 2(8,2) )i < K5 (8 2(82))ia < 2(t 2)ia
where the last inequality easily follows from the definition of x*. Con-
tradiction. Hence, A\(¢t,x) = 1, and z(t,z) = = + A(t,z)(x — ) =
T+ (x—2)=u.

(b) If x;, = 0, then we know that (¢, ) € G™ by Lemma 11. So we
may assume that z;, > 0. Since x # &, A(t,x) = 1 and = = z(¢,x) by
(a), our assumption that x(¢,x);, = x;, implies that

Liqg = K'(ta x)ia
= min{\(t,2) ™", 1}x*(t, 2(t, 7) )ia
= K" (t,2)iq
= min{d(t,id), [zia — du((t,z), G4}
So, Tiy < [Tia — du((t,z),G™*)],. Since z;,, > 0, this implies that

dy((t,z), G7*) equals zero. Hence, (t,x) € G, since G~ is closed
by Lemma 11. O
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