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Abstract

We consider the problem of risk-sensitive control of a stochastic network. In controlling such
a network, an escape time criterion can be useful if one wishes to regulate the occurrence of large
buffers and buffer overflow. In this paper a risk-sensitive escape time criterion is formulated,
which in comparison to the ordinary escape time criteria penalizes exits which occur on short
time intervals more heavily. The properties of the risk-sensitive problem are studied in the
large buffer limit, and related to the value of a deterministic differential game with constrained
dynamics. We prove that the game has value, and that the value is the (viscosity) solution of
a PDE. For a simple network, the value is computed, demonstrating the applicability of the
approach.

1 Introduction

In this paper we consider a problem of risk-sensitive control (or rare event control) for queueing
networks. The network includes servers that can offer service to two or more classes of customers,
and a choice must be made regarding which classes to offer service at each time. We study a
stochastic control problem in which this choice is regarded as the control, and where the cost is a
risk-sensitive version of the time to escape a bounded set. Hence, fixing c > 0, and denoting by σ the
time when the queue-lengths process first exits a given domain, we consider Exe

−cσ as a criterion
to be minimized. Such a criterion penalizes short exit times more heavily than ordinary escape
time criteria (such as Exσ, a criterion to be maximized). There are at least two motivations for the
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use of such criteria when designing policies for the control of a network. The first is that in many
communication networks system performance is measured in terms of rare event probabilities (e.g.,
probabilities of data loss or excessive delay). The second motivation follows from the connection
between risk-sensitive controls and robust controls. Indeed, as discussed in [14], the optimization
of a single fixed stochastic network with respect to a risk-sensitive cost criteria automatically
produces controls with specific and predictable robust properties. In particular, these controls give
good performance for a family of perturbed network models (where the perturbation is around the
design model and the size of the perturbation is measured by relative entropy), and with respect
to a corresponding ordinary (i.e., not risk-sensitive) cost.

In many problems, one considers the limit of the risk-sensitive problem as a scaling parameter
of the system converges, in the hope that the limit model is more tractable. We follow the same
approach here, and show that the normalized costs in the risk-sensitive problems converge to the
value function of a differential game with constraints. As is well known, the convergence analysis
is closely related to the large deviation properties of the sequence of controlled processes. An
interesting feature in the setting of stochastic networks is that the asymptotic analysis of a sequence
of controlled networks is in many ways simpler than the analogous asymptotic analysis of a sequence
of uncontrolled networks. For example, if one were to fix a particular state feedback service policy
at each station, then the calculation of the large deviation asymptotics is very difficult. In contrast,
it turns out that calculation of the large deviation asymptotics of the optimally controlled network
is quite feasible. This is largely due to the fact that a fixed service policy invariably includes
some state discontinuities. For example, a priority policy switches drastically when the highest
priority queue empties. When the policy is left as a parameter that is to be optimized these sharp
discontinuities are not dealt with directly, since the control and the large deviation behavior are
identified simultaneously. The situation is analogous to one found in the control of unconstrained
processes such as diffusions. If a fixed nonsmooth feedback control is considered then large deviation
asymptotics are generally intractable, but when the combined large deviation and optimal control
problem is considered, much is possible [15].

For simplicity, we restrict in this paper to a class of Markovian networks, and consider just one
simple cost structure. Much more general statistical models can be treated with similar arguments,
as can a more general cost. A more fundamental restriction is on the routing in the network.
We assume a re-entrant line structure, so that the input streams follow a fixed route through the
network–we do not allow either randomized or controlled routing. Relaxing the last conditions
leads to a problem that is significantly more difficult to analyze, and would require a considerable
extension of the results we prove.

The deterministic game that is associated with the limit stochastic control problem involves
two players. One player allocates service in a way analogous to the control in the stochastic control
problem, and the other player perturbs the service and arrival rates. The cost is expressed in terms
of the large deviation rate function for the underlying arrival and service processes, cumulated up
to the time the dynamics exit the domain. Heuristically, the first player identifies those classes it
is most worthwhile to allocate service to, so as to delay the escape as much as possible and thereby
maximize the cost. The player who selects the perturbed rates attempts to minimize the cost by
driving it out of the domain, while paying a cost for perturbing the rates.
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Our main result states that as the scaling parameter of the system converges, the value for
the stochastic control problem converges to the value of the game. By way of proving the result,
we also show that the Hamilton-Jacobi-Bellman equation associated with the game has a unique
(Lipschitz continuous) viscosity solution.

Several works have considered problems of optimal exit probabilities in the context of con-
trolled diffusion processes, in the asymptotically small white noise intensity regime. Fleming and
Souganidis [19] use viscosity solutions techniques to study a controlled diffusion where the control
enters in the drift coefficient. Dupuis and Kushner [11] extend their results to the case where the
diffusion coefficient is possibly degenerate. Their technique relates the stochastic control problem
to the game in a more direct way, using time discretization, without involving PDE analysis. The
stochastic control problem studied in the current paper has the property that the jump rates in
certain directions (those that correspond to services, not to arrivals) can be controlled to assume
arbitrarily low values, including zero. It appears to be a more subtle problem than the ones in the
above cited papers, in that it is analogous to a controlled diffusion problem where the control enters
also in the diffusion coefficient, and where no uniform non-degeneracy condition is assumed. This
kind of degeneracy makes it difficult to apply the time discretization idea of [11]. The main idea
of [11], in which one directly relates the control problem to the game, is still fruitful in the current
setting. Following this approach, we relate the limit inferior [resp., superior] of the asymptotic value
for the control problem to the upper [resp., lower] value of the game. However, showing that the
game has value and thereby obtaining the full convergence result for the control problem requires
a PDE analysis.

The PDE analysis uses viscosity solutions methods. There are three types of boundary condi-
tions associated with the PDE: Neumann, Dirichlet, and “state space constraint.” The first two
types of boundary conditions correspond in the game to the nonnegativity constraint on queue
lengths and to stopping upon exit from the domain, respectively. The third type of boundary
condition arises when there are portions of the boundary where exit can be blocked unilaterally by
one of the players, and it is optimal for it to do so. It is well known since Soner [25] that such a
scenario leads to the last boundary condition mentioned above. Combining techniques of [1] and
[25], we prove uniqueness of viscosity solutions for the PDE and show that the game’s upper and
lower values are viscosity solutions, thus establishing existence of value. The trivial but crucial fact
used in the uniqueness proof is that the Isaacs condition holds (equation (38)).

As an example, we analyze a case where the domain is a hyper-rectangle, and where the network
consists of one server and many queues, each customer requiring service only once. We find an
explicit solution to the corresponding PDE, assuming the parameter c is large enough. This is only
an initial result in this direction, but it shows that explicit solutions can be found. The solution
turns out to be of particularly simple form (see equation (49)). The optimal service discipline
stemming from the solution corresponds to giving priority to class i whenever the state of the
system is within a subset Gi of the domain. The partitioning of the domain into subsets has a
simple structure too (see Figure 2 in Section 5 for an example in two dimensions). See [2] for
explicit solutions in the case of tandem queues, as well as identities relating the perturbed rates
with the unperturbed ones in a more general network.

There is relatively little work on risk-sensitive and robust control of networks. Ball et. al. have
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considered a robust formulation for network problems arising in vehicular traffic [4, 5], and have
explicitly identified the value function in certain instances. Although their model is similar to ours
in that the network dynamics are modeled via a Skorokhod Problem, many other features, most
notably the cost structure, are qualitatively different. In addition, the model they consider is not
naturally related to a risk-sensitive control problem for a jump Markov model of a network.

The organization of the paper is as follows. Section 2 introduces the network and the stochastic
control problem, describes a key tool in our analysis, namely the Skorokhod Problem (SP), intro-
duces the differential game, and states the main result. Section 3 establishes the relation between
the control problem asymptotics and the game’s upper and lower values. Characterization of the
upper and lower values of the game as viscosity solutions of a PDE, as well as uniqueness for this
PDE are established in Section 4. Section 5 presents an example, and the paper concludes with
Section 6, which gives the proofs of several lemmas. Throughout the paper, numbering such as
Lemma a.b refers to the bth item of Lemma a.

2 Problem setting and the main result

The queueing network control problem. We consider a system with J customer classes, and
without loss assume that each class is identified with a queue at one of K servers. Each server
provides service to at least one class. Thus if C(k) denotes the set of classes that are served by
k, then the control determines who receives service effort at server k from among i ∈ C(k). In
particular, the sets C(k), k = 1, . . . ,K are disjoint, with ∪kC(k) = {1, . . . , J}. The state of the
network is the vector of queue lengths, denoted by X. After a customer of class i is served, it turns
into a customer of class r(i), where i = 0 is used to denote the “outside.” We let ej denote the unit
vector in direction j and set e0 = 0 so that following service to class j the state changes by er(j)−ej.
The control will be described by the vector u = (u1, ..., uJ ), where ui = 1 if class i customers are
given service and ui = 0 otherwise. Since service can be given at any moment to only one class at
each station, the control vector must satisfy

∑

i∈C(k) ui ≤ 1 for each k. We next consider the scaled
process Xn under the scaling which accelerates time by a factor of n and shrinks space by the
same factor. We are interested in a risk-sensitive cost functional that is associated with exit from
a bounded set. Let G be a bounded subset of IRJ

+ that contains the origin (additional assumptions
on G are given in Condition 1). Define

σn
.
= inf{t : Xn(t) 6∈ G}.

Then the control problem is to minimize the cost Exe
−ncσn

, where Ex denotes expectation starting
from x, and c > 0 is a constant. With this cost structure “risk-sensitivity” means that atypically
short exit times are weighted heavily by the cost. A “good” control will avoid such an event with
high probability. The significance from the point of view of stabilization of the system is clear. (See
also [15] for the robust interpretation).

A precise description of the stochastic control problem is as follows. Let Gn .
= n−1ZZJ

+ ∩ G.
Define

U
.
=







(ui), i = 1, . . . , J :
∑

i∈C(k)

ui ≤ 1, k = 1, . . . ,K, ui ≥ 0, i = 1, . . . , J







.
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For u ∈ U and f : ZZJ → IR let

L̃uf(x)
.
=

J
∑

j=1

λj [f(x+ ej)− f(x)] +
J
∑

j=1

ujµj1{x+ṽj∈ZZJ
+} [f(x+ ṽj)− f(x)] , (1)

where ṽj = er(j) − ej . It is assumed that for each i, λi ≥ 0, while µi > 0. For each n ∈ IN consider
the scaling defined by

L̃n,uf(x)
.
= nL̃ug(nx), (2)

where f : n−1ZZJ → IR and g(·) = f(n−1·). A controlled Markov process starting from x will consist
of a complete filtered probability space (Ω,F , (Ft), P

n,u
x ), a state process Xn taking values in Gn

that is continuous from the right and with limits from the left, a control process u taking values in
U , such that Xn is adapted to Ft, u is measurable and adapted to Ft, P

u,n
x (Xn(0) = x) = 1, and

for every function f : n−1ZZJ → IR

f(Xn(t))−
∫ t

0
L̃n,u(s)f(Xn(s))ds

is an Ft−martingale. En,u
x denotes expectation with respect to Pn,u

x . For a parameter c > 0, the
value function for the stochastic control problem is defined by

V n(x)
.
= − inf n−1 logEu,n

x e−ncσn , x ∈ Gn. (3)

In this definition the infimum is over all controlled Markov processes.

A measurable function u(x, t), u : Gn × [0,∞) → U is said to be a feedback control. We will
make use of two well known facts: to each feedback control there corresponds a controlled Markov
process with u(t) = u(Xn(t), t), and in the definition of the value function the infimum can be
restricted to feedback controls.

In the formulation just given we allow the maximizing player to choose a control from the
convex set U . This is a relaxed formulation, which allows the server to simultaneously split the
effort between 2 or more customer classes. An alternative control space that is more natural in
implementation consists of only the vertices of U , in which case the server can only server one class
at a time. In a general game setting, the distinction between such “relaxed” and “pure” control
spaces can be significant. However, in the present setting it will turn out that the value is the
same for both cases. This is essentially due to the fact that the game arises from a risk-sensitive
control problem, which imposes additional structure on the game, and will be further commented
on below.

Dynamics via the Skorokhod Problem. Our main goal will be to study the asymptotics of V n,
and in particular, to show that they are governed by the value of a deterministic differential game.
In order to define the dynamics of this game we first need a formulation of the Skorokhod Problem
(SP). We give here the simplest formulation which covers our needs. The reader is referred to [17]
for a more general framework. Let

D+([0,∞) : IRJ)
.
=
{

ψ ∈ D([0,∞) : IRJ) : ψ(0) ∈ IRJ
+

}

,

where D([0,∞) : IRJ) is the space of left continuous functions with right hand limits, endowed with
the uniform on compacts topology. When restricting to continuous functions we replace “D” with
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“C”. Let a set of vectors {γi, i = 1, . . . , J} be given and set I(x)
.
= {i : xi = 0}. For each point x

on ∂IRJ
+ – the boundary of IRJ

+ – let

d(x)
.
=







∑

i∈I(x)

aiγi : ai ≥ 0,

∥

∥

∥

∥

∥

∥

∑

i∈I(x)

aiγi

∥

∥

∥

∥

∥

∥

= 1







.

The Skorokhod Map (SM) assigns to every path ψ ∈ D+([0,∞) : IRJ) a path φ that starts at
φ(0) = ψ(0), but is constrained to IRJ

+ as follows. If φ is in the interior of IRJ
+ then the evolution

of φ mimics that of ψ, in that the increments of the two functions are the same until φ hits ∂IRJ
+.

When φ is on the boundary a constraining “force” is applied to keep φ in the domain, and this
force can only be applied in one of the directions d(φ(t)), and only for t such that φ(t) is on the
boundary. The precise definition is as follows. For η ∈ D([0,∞) : IRJ) and t ∈ [0,∞) we let |η|(t)
denote the total variation of η on [0, t] with respect to the Euclidean norm on IRJ .

Definition 1 Let ψ ∈ D+([0,∞) : IRJ) be given. Then (φ, η) solves the SP for ψ (with respect to
IRJ

+ and γi, i = 1, ..., J) if φ(0) = ψ(0), and if for all t ∈ [0,∞)

1. φ(t) = ψ(t) + η(t),

2. φ(t) ∈ IRJ
+,

3. |η|(t) <∞,

4. |η|(t) =
∫

[0,t] 1{φ(s)∈∂IRJ
+}d|η|(s),

5. There exists a Borel measurable function γ : [0,∞) → IRJ
+ such that d|η|-almost everywhere

γ(t) ∈ d(φ(t)), and such that

η(t) =

∫

[0,t]
γ(s)d|η|(s).

Under a certain condition on {γi} (known in the literature as the completely-S condition [22]), it is
known that solutions to the SP exist in all of D+([0,∞) : IRJ

+). Under further conditions (namely,
existence of the set B – see [20, 12, 17] and also Lemma 9 below), it is known that the Skorokhod
Map is Lipschitz continuous, and consequently the solution is unique. Denoting the map ψ 7→ φ in
Definition 1 by Γ, the Lipschitz property states that there is a constant K1 such that

sup
t∈[0,∞)

‖Γ(ψ1)(t)− Γ(ψ2)(t)‖ ≤ K1 sup
t∈[0,∞)

‖ψ1(t)− ψ2(t)‖, ψ1, ψ2 ∈ D+([0,∞) : IRJ). (4)

The SP that will be considered here is the one for which γi = ei − er(i) = −ṽi. For this problem,
the following is well known.

Theorem 1 ([20, 17]) The SP associated with the domain IRJ
+ and the constraint vectors γi, i =

1, ..., J possesses a unique solution, and the Skorokhod Map is Lipschitz continuous on the space
D+([0,∞) : IRJ

+). Moreover, the Skorokhod Map takes C+([0,∞) : IRJ) into C+([0,∞) : IRJ), and
therefore Γ(φ) is continuous if φ is.
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We next define a constrained ordinary differential equation. As is proved (in greater generality)
in [12], one can define a projection π : IRJ → IRJ

+ that is consistent with the constraint directions
{γi, i = 1, ..., J}, in that π(x) = x if x ∈ IRJ

+, and if x 6∈ IRJ
+ then π(x) − x = αr, where α ≥ 0

and r ∈ d(π(x)). With this projection given, we can now define for each point x ∈ ∂IRJ
+ and each

v ∈ IRJ the projected velocity

π(x, v)
.
= lim

∆↓0

π(x+∆v)− π(x)

∆
.

For details on why this limit is always well defined and further properties of the projected velocity
we refer to [7, Section 3 and Lemma 3.8]. Let v : [0,∞) → IRJ have the property that each
component of v is integrable over each interval [0, T ], T <∞. Then the ODE of interest takes the
form

φ̇(t) = π(φ(t), v(t)), φ(0) = φ0 ∈ IRJ
+. (5)

An absolutely continuous function φ : [0,∞) → IRJ
+ is a solution to (5) if the equation is satisfied

a.e. in t. By using the regularity properties (4) of the associated Skorokhod Map and because of the
particularly simple nature of the right hand side, one can show that φ solves (5) if and only if φ is
the image of ψ(t)

.
=
∫ t
0 v(s)ds+ x under the Skorokhod Map, and thus all the standard qualitative

properties (existence and uniqueness of solutions, stability with respect to perturbations, etc.) hold
[12, 16].

As mentioned above, the SP formulation will be our means of defining the dynamics of a
deterministic game. Before discussing this game, let us show how the same formulation is also useful
for the stochastic control problem defined earlier in this section. First, since ṽj = er(j) − ej = −γj ,

it is easy to verify that for the particular SP considered here π(x, v) = v1x+v∈ZZJ
+
for all x ∈ ZZJ

+

and v ∈ {ṽj : j = 1, . . . , J}. Therefore the generator L̃u of (1) can also be written as

L̃uf(x) =
J
∑

j=1

λj[f(x+ ej)− f(x)] +
J
∑

j=1

ujµj[f(x+ π(x, ṽj))− f(x)].

A measurable function u(t), u : [0,∞) → U is said to be an open loop control. Note that this control
has no state feedback. When u is an open loop control, it is possible to write the corresponding
controlled process X as Γ(Y ). The process Y , which will be called the unconstrained controlled
process, is a controlled Markov process with a simpler structure. To be precise, let

L̃u
0f(x) =

J
∑

j=1

λj [f(x+ ej)− f(x)] +
J
∑

j=1

ujµj [f(x+ ṽj)− f(x)] ,

and let L̃n,u
0 be defined analogously to (2). A controlled Markov process Xn on Gn [respectively,

Y n on n−1ZZJ ] is defined as before, but now using the generator (Ln,uf)(t) = (L̃n,u(t)f)(x) [resp.,

(Ln,u
0 f)(t) = (L̃

n,u(t)
0 f)(x)]. The simplification that the SP introduces is that if u is an open loop

control, and if Y n is a controlled Markov process corresponding to Ln,u
0 on (Ω,F , (Ft), P

n,u
x ), then

Xn = Γ(Y n) is a controlled Markov process corresponding to Ln,u on the same filtered probability
space. The role played by the SP in relating constrained and unconstrained processes is exhibited
here in a simple fashion, for introductory purposes. We will, in fact, use it in a slightly more
complicated setting later on in Lemma 7 and Lemma 8.
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A differential game. In this paper, we prove that the value function V n(x) for a stochastic control
problem associated with our queueing network model is approximately equal (for large n) to the
value function of a related differential game. In addition, the dynamics of this game are defined
in terms of an associated SP. Before introducing the game formally we explain why this is to be
expected. In a problem with no control, the exponential decay rate of quantities such as Ee−cnσn is
given in terms of the sample path large deviation rate function associated with the process, which
in turn can be expressed in terms of the rate function for the Poisson primitives that drive the
model. This is supported by the well known Laplace’s principle [10]. Heuristically, one thinks of
the rate function as a cost paid for changing the measure so as to make the rare event of exiting
on short time interval a probable event. Laplace’s principle asserts that the decay rate can be
expressed as the solution to a deterministic optimization problem involving the cost −cσ combined
with the cost of changing the measure: cf. [24, Eq. (5.20)–(5.23)]. When the stochastic model
involves optimal control, there is one more variable to optimize over in the limit, and this results
in a game. The game’s deterministic dynamics are the natural law of large numbers limit under
the changed measure. Boundary constraints and constraining meachanisms which are present in
the prelimit model are represented in the limit model by the SP. The cost for the game involves
the large deviation rate function for the Poisson primitives, the time till the dynamics exits the
domain, and the parameter c.

We thus consider a zero sum game involving two players. One (which we call the maximizing
player) selects the service allocation and attempts to maximize. The other (called the minimizing
player) chooses the perturbed arrival and service rates and attempts to minimize. Throughout, the
perturbed rates will be denoted by an overbar, as in λ̄i, µ̄i.

Recall that for u ∈ U , ui stands for the fraction of service effort given to class i. The control
space for the maximizing player is

Ū
.
= {u : [0,∞) → U ; u is measurable}.

Let l : IR → IR+ ∪ {+∞} be defined as

l(x)
.
=

{

x log x− x+ 1 x ≥ 0,
+∞ x < 0,

where 0 log 0
.
= 0. Denoting M = [0,∞)2J , the control space for the minimizing player will be

M̄ = {m = (λ̄1, . . . , λ̄J , µ̄1, . . . , µ̄J) : [0,∞) →M ; m is measurable, l ◦m is locally integrable}.
(6)

For u ∈ U and m ∈M define

v(u,m)
.
=

J
∑

j=1

λ̄jvj +
J
∑

i=1

uiµ̄iṽi,

where vj = ej , and as before ṽi = er(i) − ei. Then the dynamics are given by

{

φ̇(t) = π(φ(t), v(u(t),m(t))),
φ(0) = x.

8



To define the cost for the game, let ρ : U ×M → IR+ ∪ {+∞} be

ρ(u,m)
.
=

J
∑

i=1

λil

(

λ̄i
λi

)

+
J
∑

i=1

uiµil

(

µ̄i
µi

)

.

By convention, if λi = 0 and λ̄i > 0 for some i, we let ρ = ∞ (recall that by assumption, µi > 0).
Let the exit time be defined by

σ
.
= inf{t : φ(t) 6∈ G}.

With c > 0 as in (3), the cost is given by

C(x, u,m) =

∫ σ

0
[c+ ρ(u(t),m(t))]dt.

As in [18] we need the notion of strategies. We endow both Ū and M̄ with the metric ρ̃(ω1, ω2) =
∑

n 2
−n(

∫ n
0 |ω1(t)−ω2(t)|dt∧1), and with the corresponding Borel σ-fields. A mapping α : M̄ → Ū

is called a strategy for the maximizing player if it is measurable and if for every m, m̃ ∈ M̄ and
t > 0 such that

m(s) = m̃(s) for a.e. s ∈ [0, t],

one has
α[m](s) = α[m̃](s) for a.e. s ∈ [0, t].

In an analogous way, one defines a mapping β : Ū → M̄ to be a strategy for the minimizing player.
The set of all strategies for the maximizing [resp., minimizing] player will be denoted by A [resp.,
B]. The lower value for the game is defined as

V −(x) = inf
β∈B

sup
u∈Ū

C(x, u, β[u]),

and the upper value as
V +(x) = sup

α∈A
inf

m∈M̄
C(x, α[m],m).

To avoid confusion, we remark that despite the terms “upper” and “lower” value, it is not in general
obvious that V − ≤ V +.

Main result. We make the following assumption on the domain G. Let

J+
.
= {i ∈ {1, . . . , J} : λi > 0}.

Condition 1 We assume that the domain G satisfies one of the following.

1. G is a rectangle given by

G = {(x1, . . . , xJ) : 0 ≤ xi < zi, i ∈ J+; 0 ≤ xj ≤ zj, j 6∈ J+},

for some zi > 0, i = 1, . . . , J .
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2. G is simply connected and bounded, and given by

G =
⋂

i∈J+

Gi,

where for i ∈ J+, we are given positive Lipschitz functions φi : IR
J−1 → IR, and

Gi = {(x1, . . . , xJ) ∈ IRJ
+ : 0 ≤ xi < φi(x1, . . . , xi−1, xi+1, . . . , xJ)}.

This condition covers many typical constraints one would consider on buffer size, including separate
constraints on individual queues (Condition 1.1) and one constraint on the sum of the queues
(Condition 1.2).

The shape of the domain is simpler in Condition 1.1, in that it is restricted to a hyper-rectangle.
On the other hand, it is also possible under this condition for the maximizing player to unilaterally
prevent an exit through a certain portion of ∂G \ ∂IRJ

+. Although it is in principle possible that
the dynamics could exit through this portion of the boundary, it will always be optimal for the
maximizing player to not allow it. Consider the simple network illustrated in Figure 1. The
maximizing player can prevent exit through the dashed portion of the boundary simply by stopping
service at the first queue. As a consequence, there are in general three different types of boundary–
the constraining boundary due to non-negativity constraints on queue length, the part of the
boundary where exit can be blocked, and the remainder. These three types of boundary behavior
will result, in the PDE analysis, in three types of boundary conditions. We now define the three
portions of the boundary. Under Condition 1.1, let

∂cG = {(x1, . . . , xJ ) ∈ G : xj = zj , some j 6∈ J+}.

For notational convenience, we let ∂cG = ∅ under Condition 1.2. In both cases we then set

∂oG = ∂G \G, ∂+G = (G ∩ ∂IRJ
+) \ ∂cG.

Note that in both cases, ∂cG, ∂oG and ∂+G partition ∂G. Also, ∂cG ⊂ G while ∂oG ⊂ Gc. As
usual, we will denote Go = G \ ∂G and Ḡ = G ∪ ∂G. ∂cG is the part of the boundary were the
maximizing player can prevent the dynamics from exiting, and ∂oG is the part where it can not.
Finally, it will be convenient to denote

∂coG = ∂oG ∪ ∂cG.

Our main result is the following.

Theorem 2 Let Condition 1 hold. Then V + = V − .
= V on G. Moreover, if xn ∈ Gn, n ∈ IN are

such that xn → x ∈ G, then limn→∞ V n(xn) = V (x).

Remark: A stronger form of the convergence statement in fact holds. Namely,

lim sup
ǫ↓0

lim sup
n→∞

sup{|V n(x)− V (y)| : x ∈ Gn, y ∈ G, |x− y| ≤ ǫ} = 0.

10



1

2

G

Figure 1: A simple queueing network, a rectangular domain and three types of boundary. Full
line: ∂+G, dashed line: ∂cG, and dotted line: ∂oG

This is an immediate consequence of Theorem 2 and the fact that for each n, V n is Lipschitz on
Gn, with a constant that does not depend on n (Lemma 2).

The proof is established in two major steps. Step 1 will be an immediate consequence of the
main results of Section 3, and Step 2 will follow from Section 4.

Step 1. We define a version of the game, technically easier to work with, in which all perturbed rates
(λ̄i, µ̄i) are bounded by b < ∞. The corresponding upper and lower values, defined analogously,
are denoted by V b,+ and V b,−. Then we show that for all b large enough (cf. Theorem 3)

V b,+(x) ≤ lim inf
n→∞

V n(xn) ≤ lim sup
n→∞

V n(xn) ≤ V b,−(x).

Step 2. We show that for b large, V b,+ = V b,− on G. To this end, we formulate a PDE for which
we show that uniqueness of (Lipschitz) viscosity solutions holds (Theorem 5), and also show that
both V b,+ and V b,− are viscosity solutions (Theorem 6). Since V n(x) does not depend on b, neither
do V b,±(x). Theorem 2 follows.

3 The control problem and the game

We begin by stating some basic properties of the stochastic control problem and of the deterministic
game. The proofs of these properties are deferred to Section 6.

Consider the following generators, defined for any u ∈ U and m ∈ M , for constrained and
unconstrained controlled Markov processes:

Ln,u,mf(x) =
J
∑

j=1

nλ̄j

[

f

(

x+
1

n
vj

)

− f(x)

]

+
J
∑

i=1

nµ̄iui

[

f

(

x+
1

n
π(x, ṽi)

)

− f(x)

]

,

Ln,u,m
0 f(x) =

J
∑

j=1

nλ̄j

[

f

(

x+
1

n
vj

)

− f(x)

]

+
J
∑

i=1

nµ̄iui

[

f

(

x+
1

n
ṽi

)

− f(x)

]

.

The definition of the corresponding controlled processes will be made precise in Lemmas 7 and 8.

11



Owing to the logarithmic transform in (3), one expects V n to satisfy an Isaacs equation [19].
In fact, V n satisfies

{

0 = supu∈U infm∈M [Ln,u,mV n(x) + c+ ρ(u,m)], x ∈ Gn

V n(x) = 0, x 6∈ Gn.
(7)

We comment that this is also the dynamic programming equation (DPE) for an associated stochastic
game that is related to the deterministic game via a law of large numbers scaling and limit, and
will not be further considered in this paper.

Lemma 1 The value function V n of (3) uniquely solves the DPE (7).

The following lemma gives a key estimate on the value function.

Lemma 2 Under Condition 1, V n(x) satisfies the Lipschitz property on (n−1ZZJ
+) ∩ Ḡ with a

constant that does not depend on n ∈ IN. Consequently, supn,x∈Gn V n(x) <∞.

We comment that the above result is, in general, not valid for V n on n−1ZZJ
+, since V

n changes
abruptly near the portion ∂cG of the boundary.

For each fixed u ∈ U , the mapping m → ρ(u,m), when restricted to µ̄i such that ui > 0,
is strictly convex with compact level sets. We conclude that the infimum over m in the DPE is
achieved, and denote such a point by mn(x, u). Although part 1 of the following lemma is not used
elsewhere, it indicates why the Isaacs condition should hold in (7).

Lemma 3 Let Condition 1 hold. Then

1. mn(x, u) can be chosen independently of u, and

2. there is b0 <∞ such that for all x, n and u, mn(x, u) ≤ b0.

We introduce two parametric variations of the game defined in Section 2. The first will be
associated with domain perturbation (parameterized by the symbol a), and the second with a
bound on the perturbed rates (parameterized by the symbol b).

For some fixed a0 > 0, consider perturbations Ga, a ∈ (−a0, a0) of the domain G defined as
follows. If G satisfies Condition 1.1, then Ga is defined as G, but with zi replaced by zi + a,
i = 1, . . . , J . If G is as in Condition 1.2, then Ga is defined as G, but where φi is replaced by φi+a,
i ∈ J+.

For any b ∈ (0,∞), let M b = [0, b]2J . Analogously to the definition (6) of M̄ , let

M̄ b = {m = (λ̄1, . . . , λ̄J , µ̄1, . . . , µ̄J) : [0,∞) →M b ; m is measurable}. (8)
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Strategies and values for the game are then defined analogously to the way strategies and values
are defined for the original game, using M̄ b in place of M̄ . It will be convenient to set M∞ .

= M
and M̄∞ .

= M̄ , and to refer to the original game of Section 2 as the case b = ∞.

The cost, sets of strategies, lower and upper values of the games resulting by the introduction
of the parameters a and b will be denoted as Ca(x, u,m), Ab, Bb, V b,−

a and V b,+
a . When a = 0

[resp., b = ∞], the dependence on a [b] will be eliminated from the notation, as in V −
a , V b,−.

Let b0 be as in Lemma 3. Denote

b∗
.
= max{b0, λi, µi, i = 1, . . . , J} + 1. (9)

Lemma 4 Assume Condition 1. Then

1. dist(∂coGa, ∂coG)
.
= inf{|x− y| : x ∈ ∂coGa, y ∈ ∂coG} > 0 if 0 < |a| < a0;

2. the values V b,± are bounded on G, uniformly for b ∈ [b∗,∞], and there is a constant c0 such
that for any x ∈ G, |a| < ǫ (where ǫ depends on x), and b ∈ [b∗,∞], one has |V b,−

a (x) −
V b,−(x)| ≤ c0|a| and |V b,+

a (x)− V b,+(x)| ≤ c0|a|.

The following lemma shows that any nearly optimal strategy for the minimizing player will
satisfy a uniform upper bound on the integrated running cost. Moreover, there is a finite time T0
such that for each such minimizing strategy, any open loop control used by the maximizing player
leads to exit by T0. Similarly, given any strategy for the maximizing player the minimizing player
can restrict to open loop controls that force exit by T0.

Lemma 5 Fix b ∈ [b∗,∞]. Given β ∈ Bb, write (λ̄i(·), µ̄i(·)) = β[u](·). For z, T > 0 let Bz,T

denote the set of β ∈ Bb which satisfy

∫ T

0

∑

i

[λil(λ̄i(t)/λi) + ui(t)µil(µ̄i(t)/µi)]dt ≤ z,

for all u ∈ Ū . For α ∈ Ab, let M̄(α, T ) denote the set of m ∈ M̄ for which σ(x, α[m],m) ≤ T .
Then there are constants z0, T0 > 0 such that

V −(x) = inf
β∈Bz0,T0

sup
u∈Ū

∫ σ∧T0

0
[c+ ρ(u(t), β[u](t))]dt,

and

V +(x) = sup
α∈A

inf
m∈M̄ (α,T0)

∫ σ∧T0

0
[c+ ρ(α[m](t),m(t))]dt.

In the rest of the section the strategies β will be assumed (without loss) to be in Bz0,T0 , where
z0, T0 are as in Lemma 5, and are fixed throughout. Also, m ∈ M̄ will be assumed to be in M̄(α, T0)
whenever it is clear which α is considered. With an abuse of notation, we denote Bz0,T0 by B.
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Lemma 6 Under Condition 1, V b,− and V b,+ are Lipschitz on G, uniformly for b ∈ [b∗,∞].

We are now ready to prove the following result.

Theorem 3 Let Condition 1 hold, and let b ∈ [b∗,∞). Then for any x ∈ G and any {xn} converg-
ing to x (with xn ∈ Gn),

V b,+(x) ≤ lim inf
n→∞

V n(xn) ≤ lim sup
n→∞

V n(xn) ≤ V b,−(x).

Proof of Theorem 3: The result is established by considering a sequence of stochastic processes,
defined using the constrained ODEs, but for which the controls u and m are governed by, on one
hand, a nearly optimal strategy for the game, and on the other hand, a nearly optimal control for
the stochastic control problem. The technique uses standard martingale estimates, and is based on
the construction (deferred to Section 6) of an auxiliary controlled Markov process that is controlled
by the selected strategy and stochastic control.

Upper bound

Fix b ∈ [b∗,∞). The dependence on b will be suppressed in the notation for V −, V −
a , etc. We first

show that
lim sup
n→∞

V n(xn) ≤ V −(x). (10)

According to Lemma 4.2, it is enough to show that for all a > 0

lim sup
n→∞

V n(xn) ≤ V −
a (x).

Let β ∈ Bb and a > 0 be given, and set Ca(x, β) = supu∈Ū Ca(x, u, β[u]). It is enough to show that

lim sup
n→∞

V n(xn) ≤ Ca(x, β), a > 0. (11)

We therefore fix β throughout, and turn to prove (11). We can assume without loss that

Ca(x, β) <∞. (12)

Note that in the DPE (7) the supremum is with respect to u in a compact set U , and that the
function being maximized is continuous in u (for each y). Let un(y) denote a point where it is
achieved. Then for any m ∈M and y ∈ Gn,

0 ≤ Ln,un(y),mV n(y) + c+ ρ(un(y),m). (13)

Lemma 7 Let n be fixed, and let b ∈ [b∗,∞), β and xn be as above. Then there is a filtered
probability space (Ω̄, F̄ , (F̄t), P̄ ), and F̄t-adapted RCLL processes X̄n, Ȳ n and mn such that with
P̄ -probability one mn(t) = β[ūn](t) a.e. t, ūn(t) = un(X̄n(t)), X̄n = Γ(Ȳ n), X̄n(0) = Ȳ n(0) = xn,
and for any f

f(X̄n(t)) −
∫ t

0
Ln,ūn,mn(s)f(X̄n(s))ds
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f(Ȳ n(t)) −
∫ t

0
L
n,ūn,mn(s)
0 f(Ȳ n(s))ds

are (Ft)-martingales. Moreover, with T0 as in Lemma 5 let Nn denote the total number of jumps
of Ȳ n on [0, T0]. Then

ENn ≤ 2JT0bn. (14)

Proof: See Section 6.

Returning to the proof of (11), let ūn(t)
.
= un(X̄n(t)) and let σ̄n be the first exit time of X̄n

from G. Combining (13) and Lemma 7, for any bounded stopping time S ≤ σ̄n,

V n(xn) ≤ Ēxn

[

V n(X̄n(S)) +

∫ S

0
[c+ ρ(ūn(s), β[ūn](s))]ds

]

. (15)

Denoting β[ūn](t) = {(λ̄ni (t), µ̄
n
i (t))}, define φ

n as φn = Γ(ψn), where

ψn(t) = x+

∫ t

0
v(ūn, β[ūn])ds,

and let
σ̂na

.
= inf{t : φn(t) 6∈ Ga}.

Then the definition of Ca(x, β) implies

∫ σ̂n
a

0
[c+ ρ(ūn(s), β[ūn](s))]ds ≤ Ca(x, β).

Apply (15) with S = σ̂na ∧ σ̄n ∧ T . If T is sufficiently large, then (12) and the fact that c > 0 imply
σ̂na ≤ T . Thus, using ĒxnV

n(X̄n(σ̄n))) = 0,

V n(xn) ≤ Ēxn

[

V n(X̄n(σ̂na ))1{σ̂n
a<σ̄n} +

∫ σ̂n
a

0
[c+ ρ(ūn(s), β[ūn](s))]ds

]

.

Again using the uniform boundedness of V n(x) (Lemma 2), there is a constant b2 < ∞ such that
for all n

V n(xn) ≤ b2P̄xn(σ̂
n
a ≤ σ̄n) + Ca(x, β). (16)

In what follows, we show that P̄xn(σ̂
n
a ≤ σ̄n) tends to zero. To this end, note that Ln,u,m

0 id(y) =
∑

i λ̄ivi +
∑

i uiµ̄iṽi, where id is the identity map. Therefore, using again Lemma 7,

Ȳ n(t)− xn =

∫ t

0

[

J
∑

i=1

λ̄ni (s)vi +
J
∑

i=1

ūni (s)µ̄
n
i (s)ṽi

]

ds+ ηn(t),

where ηn is a zero mean martingale. To prove that

sup
t∈[0,T ]

|ηn(t)| → 0 in distribution, (17)

it is enough, by Doob’s maximal inequality, to show that

Ē|ηn(T )|2 → 0.
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Let [x](t) =
∑

s∈[0,t] |∆xs|
2. By the Burkholder-Davies-Gundy inequality (see [9], VII.92),

Ē|ηn(T )|2 ≤ c1Ē[ηn](T ),

where c1 is a constant. Since each jump is bounded by c2n
−1 (c2 a constant) and the total number

of jumps Nn(T ) satisfies (14),

Ē|ηn(T )|2 ≤ c3n
−2ĒNn(T ) ≤ c4n

−1,

which proves (17). This implies that sup[0,T ] |Ȳ
n(t)− ψn(t)| → 0 in distribution, and therefore the

continuity of Γ implies sup[0,T ] |X̄
n(t)− φn(t)| → 0 in distribution. By Lemma 4.1,

P̄xn (σ̂
n
a ≤ σ̄n) ≤ P̄xn(X̄

n(σ̂na ) ∈ G,φn(σ̂na ) ∈ ∂coGa)

≤ P̄xn

(

sup
t∈[0,T ]

|X̄n(t)− φn(t)| ≥ b1

)

,

where b1 > 0 depends only on a. Hence by (17), P̄xn [σ̂
n
a ≤ σ̄n] → 0 as n → ∞. Therefore (16)

implies
lim sup
n→∞

V n(xn) ≤ Ca(x, β).

This gives (11) and completes the proof of (10).

Lower bound

Next we prove
lim inf
n→∞

V n(xn) ≥ V +(x). (18)

By Lemma 4.2, it is enough to show that for all a < 0

lim inf
n→∞

V n(xn) ≥ V +
a (x).

Let α ∈ A be given, and set Ca(x, α) = infm∈M̄b Ca(x, α[m],m). Then it suffices to show

lim inf
n→∞

V n(xn) ≥ Ca(x, α), a < 0. (19)

Fixing α, we now prove (19).

Interchanging the order of infimum and supremum in equation (7) (see [23], Corollary 37.3.2),
and noting that the infimum over m is of a continuous function with compact level sets, we denote
by mn(y) a point where the infimum is achieved. By Lemma 3, the components λ̄ni (y) and µ̄

n
i (y)

of mn(y) are all bounded by b0. For u ∈ U and y ∈ Gn,

0 ≥ Ln,u,mn(y)V n(y) + c+ ρ(u,mn(y)). (20)

Lemma 8 Let n be fixed, and let α and xn be as above. Then there is a filtered probability space
(Ω̄, F̄ , (F̄t), P̄ ), and F̄t-adapted RCLL processes X̄n, Ȳ n and un such that with P̄ -probability one
un(t) = α[m̄n](t) a.e. t, m̄n(t) = mn(X̄n(t)), X̄n = Γ(Ȳ n), X̄n(0) = Ȳ n(0) = xn, and for any f ,

f(X̄n(t)) −
∫ t

0
Ln,un(s),mn

f(X̄n(s))ds
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f(Ȳ n(t)) −
∫ t

0
L
n,un(s),mn

0 f(Ȳ n(s))ds

are (F̄t)-martingales.

Proof: See Section 6.

Let m̄n(t) = mn(X̄n(t)) and let σ̄n be the first exit time of X̄n from G. By (20) and Lemma 8,
for any bounded stopping time S ≤ σ̄n,

V n(xn) ≥ Ēxn

[

V n(X̄n(S)) +

∫ S

0
[c+ ρ(α[m̄n](s), m̄n(s))]ds

]

. (21)

Denoting m̄n(t) = ((λ̄ni (t), µ̄
n
i (t)), define φ

n as φn = Γ(ψn), where

ψn = x+

∫ ·

0
v(ūn, m̄n)ds,

and let
σ̂na

.
= inf{t : φn(t) 6∈ Ga}.

Then the definition of Ca(x, α) implies

∫ σ̂n
a

0
[c+ ρ(α[m̄n](s), m̄n(s))]ds ≥ Ca(x, α).

Apply (21) with S = σ̂na ∧ σ̄n ∧ T , with large enough T , using the fact that V n ≥ 0 to get

V n(xn) ≥ Ēxn

[

∫ σ̂n
a∧σ̄

n∧T

0
[c+ ρ(α[m̄n](s), m̄n(s))]ds

]

≥ Ēxn

[

1σ̂n
a≤σ̄n

∫ σ̂n
a∧T

0
[c+ ρ(α[m̄n](s), m̄n(s))]ds

]

≥ P̄xn(σ̂
n
a ≤ σ̄n)Ca(x, α).

The proof that P̄xn(σ̂
n
a ≤ σ̄n) tends to one is analogous to the proof of the that P̄xn(σ̂

n
a ≤ σ̄n) → 0

in the upper bound. It is therefore omitted. Hence

lim inf
n→∞

V n(xn) ≥ Ca(x, α).

This gives (19), and the proof of (18) is established.

In fact, the value of the game is independent of b for large b, so that the game has a value with
the unbounded action space M . As the result depends on Theorems 3, 5, 6 we postpone the proof
to Section 6.

Theorem 4 For all b ∈ [b∗,∞], V b,+ = V + = V b,− = V −.

Proof: See Section 6.
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4 The PDE

In this section we show that the upper and lower values of the game are the unique Lipschitz
viscosity solutions of the PDE (23). Throughout, the parameter b ∈ [b∗,∞) is fixed. Let

H(q) = inf
m

sup
u
[〈q, v(u,m)〉 + ρ(u,m) + c]. (22)

It will be useful to note that the infimum is over the compact set M b, and the map (q, u,m) 7→
[〈q, v(u,m)〉 + ρ(u,m) + c] is continuous. The PDE of interest is











H(DV (x)) = 0, x ∈ Go,
〈DV (x), γi〉 = 0, i ∈ I(x), x ∈ ∂+G,
V (x) = 0, x ∈ ∂oG.

(23)

Here, γi are the directions of constraint that were introduced in Section 2.

Definition 2 Let a Lipschitz continuous function u : X → IR be given (where X ⊂ G). We say
that u is a subsolution [respectively, supersolution] to (23) on X if the following conditions hold.
Let θ : X → IR be continuously differentiable on X̄. Let y ∈ X be a local maximum [minimum] of
the map x 7→ u(x)− θ(x). Then

H(Dθ(y)) ∨ max
i∈I(y)

〈Dθ(y), γi〉 ≥ 0, (24)

[ H(Dθ(y)) ∧ min
i∈I(y)

〈Dθ(y), γi〉 ≤ 0, ] (25)

and
V (x) ≤ 0, x ∈ X̄ ∩ ∂oG, (26)

[ V (x) ≥ 0, x ∈ X̄ ∩ ∂oG. ] (27)

We say that V is a viscosity solution to (23), if it is both a subsolution on G and a supersolution
on G \ ∂cG.

Remark: In case that ∂cG 6= ∅, a viscosity solution is often called a constrained viscosity solution
(cf. Soner [25], Capuzzo-Dolcetta and Lions [8]). The requirement that V is a subsolution up to
the boundary ∂cG—the part of the boundary where exit can be unilaterally blocked—serves as
a boundary condition on this part of the boundary. Note that in the current paper, the term
‘constrained’ refers to the part ∂+G of the boundary, where it is the mechanism associated with
the Skorokhod Problem that constrains the dynamics to G.

First, we address uniqueness of solutions to (23).

Theorem 5 Let u be a subsolution and v a supersolution to (23). Then u ≤ v on G.

The proof combines ideas from two sources, namely [1] (which is based on [13], and discusses
how to deal with the constrained dynamics on ∂+G), and [25] (to accommodate the fact that under
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Condition 1.1 part of the boundary (∂cG) can be thought of as imposing a state-space constraint
on the maximizing player).

The following lemma will be used in proving Theorem 5. In the interest of consistency with
previous publications, we use B in Lemma 9 below to denote a certain subset of IRJ (although
everywhere except in this section, B denotes a set of strategies). Part 1 states that the “Set B”
Condition holds, namely a condition under which it was proved in [12] that the SM enjoys the
regularity property (4). The proof that this condition holds in the current setting can be found in
[17]. The existence of a smooth version of the set B is proved in [1] (before Lemma 2.1). For Parts
2 and 3, see Lemmas 2.1 and 2.2 of [1] (note that the condition that γi are independent holds).

Lemma 9 1. There exists a compact, convex, and symmetric set B ⊂ IRJ with 0 ∈ Bo, such
that if z ∈ ∂B and if n is an outward normal to B at z, then for all i ∈ {1, . . . , J}

〈z, ei〉 ≥ −1 implies 〈γi, n〉 ≥ 0 and 〈z, ei〉 ≤ 1 implies 〈γi, n〉 ≤ 0.

In addition, the unit outward normal n(x) to B at x ∈ ∂B is unique and continuous (as a
function on ∂B).

2. Let n̄ be the extension of n to IRJ satisfying n̄(x) = n(y) whenever ax = y ∈ ∂B, some
a ∈ (0,∞) (and define n̄(0) arbitrarily). Let Ξ : IRJ → IR+ be defined via

Ξ(x) = a ⇔ x ∈ ∂(aB)

for all a ∈ [0,∞), and let ξ(x) = (Ξ(x))2. Then there exist constants m,M ∈ (0,∞) and a
function ̺ : IRJ → [m,M ] such that the C1(IRJ) function ξ satisfies m‖x‖2 ≤ ξ(x) ≤M‖x‖2,
and Dξ(x) = ̺(x)Ξ(x)n̄(x).

3. There exists a constant m1 ∈ (0,∞) and a continuously differentiable function µ : IRJ
+ →

[0,m1] such that ‖Dµ‖ ≤ m1 on IRJ
+, and

〈Dµ(x), γi〉 < 0, x ∈ IRJ
+, i ∈ I(x).

In what follows, we keep the notation of Lemma 9 for B, n̄,Ξ, ξ, ̺ and µ.

Proof of Theorem 5: For a > 0, let

U(x) = u(x)− aµ(x),

V (x) = v(x) + aµ(x).

Let δ > 0. Then it suffices to show that for all small a > 0, δ > 0, one has U ≤ (1 + δ)V on G.
Arguing by contradiction, we assume that this is not true. Then there are a and δ arbitrarily small
such that

ρ = sup
x∈G

[U(x)− (1 + δ)V (x)] > 0.

Below we let ci, i = 1, 2, ... denote positive constants. Consider Condition 1.1 first. Let

Φ(x, y) = U(x)− (1 + δ)V (y)−
1

ǫ
ξ(x− y − ǫ1/2y). (28)
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Let (x̄, ȳ) ∈ Ḡ2 achieve the maximum of Φ in Ḡ× Ḡ. By continuity of U and V , there exists z̄ ∈ Ḡ
so that ρ = U(z̄)− (1 + δ)V (z̄). Note that

(1 + ǫ1/2)−1z̄ ∈ Ḡ. (29)

Hence by the Lipschitz continuity of V ,

Φ(x̄, ȳ) ≥ Φ

(

z̄,
z̄

1 + ǫ1/2

)

= U(z̄)− (1 + δ)V

(

z̄

1 + ǫ1/2

)

≥ ρ− c1ǫ
1/2. (30)

By Lipschitz continuity of U and the lower bound on ξ given in Lemma 9,

Φ(x̄, ȳ) = U(x̄)− (1 + δ)V (ȳ)−
1

ǫ
ξ(x̄− ȳ − ǫ1/2ȳ)

≤ U(ȳ) + c2|x̄− ȳ| − (1 + δ)V (ȳ)−
m

ǫ
|x̄− ȳ − ǫ1/2ȳ|2

≤ ρ+ c2|x̄− ȳ| −
c3
ǫ
|x̄− ȳ − ǫ1/2ȳ|2. (31)

By (30) and (31),

c2|x̄− ȳ|+ c1ǫ
1/2 ≥

c3
ǫ
|x̄− ȳ − ǫ1/2ȳ|2 (32)

≥
c4
ǫ
|x̄− ȳ|2 − c4|ȳ|

2.

Since x̄ and ȳ are bounded, (32) implies |x̄− ȳ|2 ≤ c5ǫ and so

|x̄− ȳ| ≤ c6ǫ
1/2. (33)

Using this in (32) we have
|x̄− ȳ − ǫ1/2ȳ| ≤ c7ǫ

3/4. (34)

By (33), x̄− ȳ → 0 as ǫ ↓ 0. Also, we claim that for all ǫ > 0 small, x̄ and ȳ are bounded away from
∂oG. To see this, assume the contrary. Then along a subsequence, both x̄ and ȳ must converge
to the same point on ∂oG. Using the continuity of u and v, (26)–(27), and the non-negativity of
ξ, lim supΦ(x̄, ȳ) ≤ lim sup [u(x̄)− (1 + δ)v(ȳ)] ≤ 0, where the limit superior is taken along this
subsequence. However, by (30), for all small ǫ, Φ(x̄, ȳ) ≥ ρ/2 > 0, which gives a contradiction.

Let

θ(x) =
1

ǫ
ξ(x− ȳ − ǫ1/2ȳ) + aµ(x),

and note that the map x 7→ u(x) − θ(x) has a maximum at x̄ ∈ G. Since u is a subsolution, (24)
must be satisfied at x̄. Denoting

qǫ = ̺(x̄− ȳ − ǫ1/2ȳ)Ξ(x̄− ȳ − ǫ1/2ȳ)n̄(x̄− ȳ − ǫ1/2ȳ), (35)

we have from Lemma 9.2 that

Dθ(x̄) =
1

ǫ
qǫ + aDµ(x̄).
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Suppose i is such that x̄i = 0. Then 〈x̄− ȳ − ǫ1/2ȳ, ei〉 ≤ 0 and so by Lemma 9.1,

〈γi, n̄(x̄− ȳ − ǫ1/2ȳ)〉 ≤ 0.

Since by Lemma 9.3, 〈γi,Dµ(x̄)〉 < 0, it follows that 〈γi,Dθ(x̄)〉 < 0. It follows from (24) that

H(Dθ(x̄)) ≥ 0,

namely,

H

(

1

ǫ
qǫ + aDµ(x̄)

)

≥ 0. (36)

On the other hand, let

α(y) = −aµ(y)−
1

ǫ(1 + δ)
ξ(x̄− y − ǫ1/2y).

Note that

Dα(ȳ) = −aDµ(ȳ) +
1 + ǫ1/2

ǫ(1 + δ)
qǫ

and that the map y 7→ v(y)−α(y) has a minimum at ȳ. Since x̄ ∈ Ḡ, (34) implies that ȳ ∈ G\∂cG
for all small ǫ. Since v is a supersolution, (25) is satisfied at y. An argument as above shows that

H(Dα(ȳ)) ≤ 0,

and therefore

H

(

1

1 + δ

(

1 + ǫ1/2

ǫ
qǫ − a(1 + δ)Dµ(ȳ)

))

≤ 0.

It follows from the definition of H, using ρ(u,m) ≥ 0, that

H

(

1

1 + δ
p

)

≥
1

1 + δ
H(p) +

δ

1 + δ
c,

and therefore

H

(

1

ǫ
qǫ +

1

ǫ1/2
qǫ − a(1 + δ)Dµ(ȳ)

)

+ δc ≤ 0. (37)

Now Dµ is bounded, and by (34), boundedness of n and ̺, and the Lipschitz continuity of Ξ, it
follows that ǫ−1/2qǫ converges to zero as ǫ→ 0. Note that by (22) and the following comment, H is
uniformly continuous on IRJ . Therefore, (36) and (37) give a contradiction when a > 0 and ǫ > 0
are small and δ > 0 fixed.

Under Condition 1.2 the above argument is not valid, since (29) may not hold. However, in
this case the minimizing player can force exit from any point on ∂G\∂+G, and the additional
complications due to the “state-space constraint” used under part 1 are no longer needed. In other
words, instead of (28) we can consider

Φ(x, y) = U(x)− (1 + δ)V (y)−
1

ǫ
ξ(x− y),

and a review of the above proof shows that (36) and (37) still hold if the expression ǫ1/2 is replaced
by zero everywhere in (35) and (37). A contradiction is then obtained analogously.

We next consider the upper and lower values of the game, and remind the reader that in this
section the rates m are assumed bounded.
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Theorem 6 V − and V + are solutions to (23).

Recall that from Lemma 6, V ± are Lipschitz.

Proof of Theorem 6: We use the specific form of v(u,m) and ρ(u,m). These can be written as

v(u,m) = b0(m) +
J
∑

i=1

uibi(m),

ρ(u,m) = c0(m) +
J
∑

i=1

uici(m).

We have
∑

i∈C(k) ui ≤ 1. The bi are linear, and the ci are convex. Hence, as a direct consequence
of [23, Corollary 37.3.2], the Isaacs condition holds, namely

H(q) = inf
m

sup
u
[〈q, v(u,m)〉 + c+ ρ(u,m)] = sup

u
inf
m
[〈q, v(u,m)〉 + c+ ρ(u,m)]. (38)

Another fact that we will use is that for any y ∈ G \ ∂cG there is δ0 = δ0(y) > 0 which serves as a
lower bound on the exit time. Namely, if φ solves φ̇ = π(φ, v(u,m)), φ(0) = y, then

σ
.
= inf{t ≥ 0 : φ(t) 6∈ G} ≥ δ0, u ∈ Ū ,m ∈ M̄ . (39)

The bound is an immediate consequence of the u and m being uniformly bounded.

By definition, V ±(x) = 0 for x ∈ ∂oG. Thus we only need to establish (24)–(25). The proof
consists of four parts.

Proof that V − is a supersolution on G\∂cG.

Standard dynamic programming arguments show that for δ > 0,

V −(x) = inf
β

sup
u

[

∫ σ∧δ

0
(c+ ρ(u, β[u]))dt + V −(φ(σ ∧ δ))

]

, (40)

where φ is the solution to φ̇ = π(φ, v(u, β[u])), with φ(0) = x. Let θ be smooth, and let y ∈ G\∂cG
be a local minimum of V − − θ. We can assume without loss that V −(y) = θ(y). We need to show

H(Dθ(y)) ∧ min
i∈I(y)

〈Dθ(y), γi〉 ≤ 0. (41)

We shall assume the contrary and reach a contradiction. Thus, there exists a > 0 such that
H(Dθ(y)) ≥ a, and

〈Dθ(y), γi〉 ≥ a, i ∈ I(y). (42)

From the definition of H and (38),

sup
u

inf
m
[〈Dθ(y), v(u,m)〉 + c+ ρ(u,m)] ≥ a,

and therefore there exists a u0 such that for all m,

〈Dθ(y), v(u0,m)〉+ c+ ρ(u0,m) ≥ a/2.
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For any strategy β, if ū(t) ≡ u0,

〈Dθ(y), v(ū(t), β[ū](t))〉 + c+ ρ(ū(t), β[ū](t)) ≥ a/2 (43)

for all t. Let φ denote the dynamics corresponding to ū and a generic β, starting from y. Note that
the mapping z 7→ I(z) is upper semi-continuous, in the sense that for any z there is a neighborhood
of z on which I(·) ⊂ I(z). Using the boundedness of m this implies that for any β ∈ B, one has
I(φ(r)) ⊂ I(y) for r ∈ [0, δ], if δ > 0 is chosen small enough. We now use that φ is a solution to the
SP. Choosing such a δ > 0, for any r ∈ [0, δ] there exist ai ≥ 0 (that may depend on r) such that

φ̇(r) = v(ū(r), β[ū](r)) +
∑

i∈I(y)

aiγi.

Using the continuity of Dθ and taking δ > 0 smaller if necessary, (42) and (43) imply, for t ∈ [0, δ],

d

dt
θ(φ(t)) = 〈Dθ(φ(t)), φ̇(t)〉

≥ −c− ρ(ū(t), β[ū](t)) + a/4.

Taking δ even smaller if necessary (so that it is at most δ0), we have from (39) that

θ(φ(δ)) − θ(y) ≥ −
∫ δ

0
(c+ ρ(ū(t), β[ū](t)))dt + aδ/4.

From (40), one can find a β such that

V −(y) ≥ sup
u

[

∫ δ

0
(c+ ρ(u, β[u]))dt + V −(φ(δ)) − aδ/8

]

.

Letting u = ū, the last two displays give (using θ(y) = V −(y))

θ(φ(δ)) ≥ V −(φ(δ)) + aδ/8,

so that V −(φ(δ)) − θ(φ(δ)) < 0 for all δ > 0 small, contradicting the assumption that y is a local
minimum of V − − θ. This proves that V − is a supersolution on G\∂cG.

Proof that V − is a subsolution on G.

Let θ be smooth and y ∈ G a local maximum of V − − θ. In case that y ∈ ∂cG, let Ūy,β,δ be
the set of controls u ∈ Ū for which the trajectory φ determined by u and β[u] and starting from
y does not exit G on [0, δ]. Given y ∈ ∂cG, it is clear that Ūy,β,δ is not empty for all δ small and
all β, by considering the control u = 0. Moreover, for all δ small enough, (40) is valid where the
supremum extends only over u ∈ Ūy,β,δ. Indeed, given u 6∈ Ūy,β,δ, consider u

′ that agrees with u on
[0, σ] and u′ = 0 on (σ, δ]. Then the expression in brackets in (40) is identical under u and under
u′, but u′ ∈ Ūy,β,δ.

Assume without loss that V −(y) = θ(y). We would like to show that

H(Dθ(y)) ∨ max
i∈I(y)

〈Dθ(y), γi〉 ≥ 0. (44)
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Assuming the contrary, there exists a > 0 such that H(Dθ(y)) ≤ −a, and

〈Dθ(y), γi〉 ≤ −a, i ∈ I(y). (45)

Using the definition of H and (38), for all u there exists mu such that

〈Dθ(y), v(u,mu)〉+ c+ ρ(u,mu) ≤ −a/2. (46)

Note that it is possible to choose mu so that it depends continuously on u. Define β̄ as β̄[u](t) =
mu(t) for all t. Since β̄[u] is measurable if u is, β̄ maps Ū into M̄ . Let φ be the trajectory
corresponding to β̄ and a generic u ∈ Ū , (or a generic u ∈ Ūy,β,δ if y ∈ ∂cG) starting from y.
Arguing as before by upper semi-continuity of I(·), if δ is small enough, then

φ̇(r) = v(u(r), β̄[u](r)) +
∑

i∈I(y)

aiγi, r ∈ [0, δ],

where ai ≥ 0 may depend on r. By possibly taking δ smaller, and smaller than δ0, we have, using
the continuity of Dθ and (45), (46) that

d

dt
θ(φ(t)) = 〈Dθ(φ(t)), φ̇(t)〉

≤ −c− ρ(u(t), β̄[u](t))− a/4,

and

θ(φ(δ)) − θ(y) ≤ −
∫ δ

0
(c+ ρ(u(t), β̄[u](t)))dt − aδ/4.

Now, (40) implies that for any β there is u such that

V −(y) ≤
∫ δ

0
(c+ ρ(u, β[u]))dt + V −(φ(δ)) + aδ/8.

Specializing to β = β̄, the last two displays show that V −(φ(δ)) − θ(φ(δ)) > 0 for all δ > 0 small.
This contradicts the assumption that y is a local maximum of V − − θ, and as a result, V − is a
subsolution.

Proof that V + is a supersolution on G\∂cG.

The proof is analogous to the proof that V − is a subsolution. Most details are therefore skipped.
The dynamic programming principle states that for δ > 0,

V +(x) = sup
α

inf
m

[

∫ σ∧δ

0
(c+ ρ(α[m],m))dt + V +(φ(σ ∧ δ))

]

, (47)

where φ is the dynamics corresponding to α and m, starting from x. Taking a smooth θ, and leting
y ∈ G \ ∂cG be a local minimum of V + − θ, showing

H(Dθ(y)) ∧ min
i∈I(y)

〈Dθ(y), γi〉 ≤ 0

can be obtained by an argument analogous to that used to prove (44), using (47) in place of (40).
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Proof that V + is a subsolution on G.

We need to show that
H(Dθ(y)) ∨ max

i∈I(y)
〈Dθ(y), γi〉 ≥ 0, (48)

where θ is smooth, and y ∈ G is a local maximum of V +− θ. In the special case where y ∈ ∂cG, we
can assume without loss that the supremum in (47) extends only over α ∈ Ay,δ, the set of strategies
under which, for any m ∈ M̄ b, the dynamics associated with α and m, and starting from y, does
not leave G before δ. The proof of (48) is analogous to the proof of (41), and is skipped.

This completes the proof that V − and V + are solutions to (23).

5 A competing queues example

Consider a queueing network with only one server, providing service to J classes. Each customer
requires service once. In this example all arrival rates are positive: λi > 0 for all i, hence J+ =
{1, . . . , J}. This network, “the k competing queues,” has been studied extensively, in discrete and
continuous time (see [3, 26] and references therein). When the criterion (to be minimized) is either
the average cost or the discounted cost, and the one-step cost is a positive linear combination
∑

i cixi of the queue sizes xi, the optimal policy is the µ-c rule, which is a priority discipline, giving
absolute priority to the non-empty queue for which µici is maximal. Under the cost studied here,
the optimal policy is quite different.

Proposition 1 Consider the case where G is a hyper-rectangle, given as G = {x : 0 ≤ x < zi},
where zi > 0 are constants. Assume that λi > 0 for all i = 1, . . . , J . If c is large enough, then the
viscosity solution to the PDE (23) is given as

V (x) = min
i
αi(zi − xi), (49)

where αi > 0 are constants depending on c.

We remark that the constants αi are uniquely defined by (51) below. In the totally symmetric case,
where µi = µ, λi = λ, zi = z for all i, the solution takes the form V (x) = αmini(z − xi). In this
case, the optimal service discipline can be interpreted as “serve the longest queue.” An asymmetric
two dimensional example is given in Figure 2, where the domain G is divided into two subdomains
G1 and G2 in accordance with the structure (49), and the optimal service discipline corresponds to
giving priority to class i when the state is within Gi, i = 1, 2. Thus the optimal control under our
escape-time criterion is very different from the optimal controls for the average or discounted cost
criteria.

Proof: The constraint directions are given by γi = ei. The Hamiltonian is given by

H(p) = sup
u

inf
m
H(p, u,m),
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Figure 2: Priority to class i when the state is in Gi, i = 1, 2.

where

H(p, u,m) = c+
∑

i

[

pi(λ̄i − uiµ̄i) + λil

(

λ̄i
λi

)

+ uiµil

(

µ̄i
µi

)

]

.

Using strict convexity and smoothness of the mapm 7→ H(p, u,m), the minimum over m is attained
at λ̄i = λie

−pi , µ̄i = µie
pi . Thus

H(p, u)
.
= inf

m
H(p, u,m) = c+

∑

i

[λi(1− e−pi) + uiµi(1− epi)].

For the proposed solution, DV (x) ∈ −IRJ
+ wherever the gradient is defined. For p ∈ −IRJ

+,
maximizing H(p, u) over u clearly gives

H(p) = sup
u
H(p, u) = c+

∑

i

λi(1− e−pi) + max
i
µi(1− epi). (50)

We use the well known fact that the definition of viscosity solutions can be equivalently stated in
terms of sub- and superdifferentials (see [6], Lemma II.1.7). Note that (26) and (27) hold, since
V = 0 on ∂oG. Hence it suffices to verify that (24) [resp., (25)] holds where Dθ(y) is replaced by
any superdifferential [subdifferential] of V at y.

We show first that the equation H(DV (x)) = 0 holds wherever DV is defined. The proposed
form (49) satisfies DV (x) = −αiei, wherever the gradient is defined, with i = ix depending on x.
By the special form of the gradient, the equation H(DV (x)) = 0 takes the form

H(DV (x)) = c+ λi(1− eαi) + µi(1− e−αi) = 0, (51)

where i = ix. Denote ci = c/(λi + µi). Then equivalently, 1 + ci − Fi(αi) = 0, where

Fi(αi) =
λie

αi + µie
−αi

λi + µi
.

The function Fi is strictly convex, Fi(0) = 1, and Fi(αi) → ∞ as αi → ∞. Since ci > 0, it follows
that there are unique positive constants αi where Fi(αi) = 1 + ci, i = 1, . . . , J . These are the
constants in (49). In particular, (51) holds for i = ix, and H(DV (x)) = 0.

Next consider any interior point x at which the gradient is not defined. Clearly there are no
subdifferentials at that point, and any superdifferential is given as a convex combination of −αiei,
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i = 1, . . . , J . Let B(ei, ǫ) be the open ball of radius ǫ about ei. Denote S̃ = {ν ∈ IRJ : νi ≥
0,
∑

νi = 1}, S = {ν ∈ IRJ : νi ≥ 0,
∑

νi ≤ 1}, Sǫ = S ∩ ∪iB(ei, ǫ), and Sc
ǫ = S − Sǫ. Let

q = −
∑

i νiαiei. It suffices to show that H(q) ≥ 0 for ν ∈ S̃, but since we later need a stronger
statement than that, we show that in fact H(q) ≥ 0 holds for ν ∈ S. By (50),

H(q) = c+
∑

i

λi(1− eνiαi) + max
i
µi(1− e−νiαi).

Define
H1(q) = c+

∑

i

λi(1− eνiαi) + µ1(1− e−ν1α1),

H̄(q) = c+
∑

i

[λi(1− eνiαi) + µi(1− e−νiαi)].

By (51), c + λi(1 − eαi) + µi ≥ 0 and c + λi(1 − eαi) ≤ 0, and it follows that there are constants
A1, A2, A3 and A4 such that for all c and i = 1, . . . , J ,

A1 + log(c+A2) ≤ αi ≤ A3 + log(c+A4). (52)

We first consider small perturbations ν of e1. To show that H(q) ≥ 0, it suffices to show that
H1(q) ≥ 0. Note that (51) implies H1(q)|ν=e1 = 0. Also,

∇νH
1(q)|ν=e1 = (−λ1α1e

α1 + µ1α1e
−α1)e1 −

∑

i 6=1

λiαiei.

Hence, for γ = ei − e1 (where i 6= 1), using c+ λ1(1− eα1) ≤ 0, (51) and (52),

∇νH
1(q)|ν=e1 · γ = λ1α1e

α1 − µ1α1e
−α1 − αiλi

= α1(2λ1e
α1 − µ1 − c− λ1)− αiλi

≥ α1(c− µ1)− αiλi

≥ [A1 + log(c+A2)](c − µ1)− [A3 + log(c+A4)]λi

≥ 1,

for all c large. Analogous calculations give ∇νH
1(q)|ν=e1 · γ ≥ 1 for γ = −e1 as well. As a

result, the directional derivatives (∂/∂γ̃)H1(q)|ν=e1 in the direction γ̃, where γ̃ are of the form
γ̃ = (y − e1)/‖y − e1‖, y ∈ S, are bounded below by 1/2. Hence H1(q) ≥ 0 for ν ∈ S within a
neighborhood of e1 and c large. Consequently, a similar statement holds for H(q). Since the same
argument holds for neighborhoods of ei, i = 2, . . . , J , we conclude that there is ǫ > 0 and c0 such
that H(q) ≥ 0 for ν ∈ Sǫ and c ≥ c0.

Next consider ν ∈ Sc
ǫ . We first provide a lower bound on (∂/∂c)H̄(q). Differentiating (51) with

respect to c, α̇i
.
= ∂αi/∂c = (λie

αi − µie
−αi)−1. Using (52), for all c large, 0 ≤ α̇i ≤ (λie

αi − 1)−1.
Using this, the fact that ν is bounded away from ∪i{ei}, and by taking c large, one has

∂

∂c
H̄(q) ≥ 1−

∑

i

νiλiα̇ie
νiαi

≥ 1−
∑

i

νi[e
(1−νi)αi − 1]−1

≥
1

2
.
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Note that the above bound holds for all c ≥ c1 and all ν ∈ Sc
ǫ , where c1 is a constant. It follows

that there is c2 such that for all c ≥ c2 and all ν ∈ Sc
ǫ , one has H̄(q) ≥

∑

i µi. Since H ≥ H̄−
∑

i µi,
H(q) ≥ 0. We conclude that H(q) ≥ 0 for all ν ∈ S. In particular, H(q) ≥ 0 where q is any
superdifferential of V at any interior point.

Finally, consider a point x ∈ G ∩ ∂IRJ
+. Any superdifferential of V at x is given as q =

∑

i∈I(x) ηiei −
∑J

j=1 νjαjej , where ηi ≥ 0. If maxi∈I(x)〈q, γi〉 ≥ 0, then (24) holds. Otherwise,

〈q, γi〉 < 0 for all i ∈ I(x). Consequently, any q of the form above is given as −
∑J

j=1 ν
′
jαjej , with

ν ′ ∈ S. As we have shown, in this case, H(q) ≥ 0. Therefore (24) holds.

Similarly, any subdifferential of V at x ∈ G ∩ ∂IRJ
+ is of the form −

∑

i∈I(x) ηiei −
∑J

j=1 νjαjej .
In particular, 〈q, ei〉 ≤ 0 for all i, and (25) holds.

6 Proofs of lemmas

Proof of Lemma 1: Let
W n(x)

.
= inf Eu,n

x e−ncσn .

Since c > 0, W n is well defined. Standard iterative methods can be used to construct a solution to
the DPE

0 = inf
u∈U

[

L̃n,uW̄ n(x)− ncW̄ n(x)
]

, x ∈ Gn (53)

and the boundary condition W̄ n(x) = 1 if x /∈ Gn. We claim that this solution coincides with the
risk-sensitive cost. To see this, consider a controlled Markov process (Xn, u) that starts at x. Then

Y (t)
.
= W̄ n(Xn(t))− W̄ n(x)−

∫ t

0
L̃n,u(s)W̄ n(Xn(s))ds

is a martingale. Equation (53) implies Ln,u(s)W̄ n(Xn(s)) ≥ ncW̄ n(Xn(s)), and so

W̄ n(Xn(t))− W̄ n(x)−
∫ t

0
ncW̄ n(Xn(s))ds =

∫ t

0
Z(s)ds+ Y (t)

for some nonnegative process Z. Using Gronwall’s lemma we obtain that for each t <∞

En,u
x W̄ n(Xn(t ∧ σn))e−nc(t∧σn) ≥ W̄ n(x),

and by the Lebesgue Dominated Convergence Theorem

En,u
x e−ncσn

≥ W̄ n(x).

If we define u in terms of the feedback control that minimizes in (53) then all the inequalities above
become equalities, thus showing that W̄ n =W n.

The definition of W n implies W n(x) = exp [−nV n(x)] . If we insert this into the DPE of W̄ n

and multiply by exp [nV n(x)] then the equation

0 = inf
u∈U





J
∑

j=1

nλj

(

exp

[

−nV n
(

x+
1

n
vj

)

+ nV n (x)

]

− 1

)
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+
J
∑

i=1

nµiui

(

exp

[

−nV n
(

x+
1

n
π(x, ṽi)

)

+ nV n (x)

]

− 1

)

− nc

]

results. Recall the definition l(x) = x log x− x+1 for x > 0. We now divide throughout by n and
use the convex duality relation

[ey − 1] = sup
x>0

[xy − l(x)]

to represent the terms in the previous display. For example, in the sum on j we take x = λ̄j/λj

and y = −
[

nV n
(

x+ 1
nvj

)

− nV n (x)
]

. Representing each term in this way and multiplying by −1

produces the first line in (7). The boundary condition that is the second line in (7) follows directly
from the relation between W n and V n.

Proof of Lemma 2: We reduce the Lipschitz property on (n−1ZZJ
+) ∩ Ḡ to a Lipschitz property

near the boundary. To this end we use the following coupling. For z ∈ Gn, let un(z) be a minimizer
in (53). Given a point x on the lattice, let Xx denote the process corresponding to the generator
Ln,un

and starting at x (see the discussion following (2)). To simplify the notation we will not
explicitly denote the dependence of quantities such as Xx on n. Let u(t) = un(Xx(t)), and let Ft

be the filtration generated by Xx.

Fix a point y 6= x and let Xy denote the queueing process on this probability space that starts
at y and uses the control u. In other words, Xy is the image, under the Skorokhod map, of
y + Xx(·) − x. The evolution of the processes Xx and Xy are identical, save that jumps which
would cause Xy to leave ZZJ

+ are deleted. Automatically, u is suboptimal for the control problem
starting from y. Define

V n(y;u) = −n−1 logEu,n
x e−ncσy

(54)

where σy is the exit time of Xy from G. Note that due to the coupling we may take expectations
with respect to Eu,n

x rather then with respect to Eu,n
y . Since (Xy, u) is a (possibly suboptimal)

controlled Markov process, we have

V n(x)− V n(y) ≤ V n(x)− V n(y;u). (55)

Define σ = min{σx, σy}. By Theorem 1 on the Lipschitz continuity of the Skorokhod map we
have

dist(Xx(σ), ∂G) ≤ K1|x− y|, dist(Xy(σ), ∂G) ≤ K1|x− y|, (56)

since at least one of the processes has left G by σ. In the last display, K1 is the constant appearing
in (4). We claim that

V n(x)− V n(y) ≤ sup{V n(z) : z ∈ S} (57)

where S
.
= {z ∈ n−1ZZJ

+ ∩ Ḡ : dist(z, ∂coG) ≤ K1|x− y|}. To establish this, note that

V n(x)− V n(y, u) = −
1

n

[

logEu,n
x e−ncσx

− logEu,n
x e−ncσy

]

≤ −
1

n

[

logEu,n
x

[

e−ncσEu,n
x

(

e−nc(σx−σ) |Xx(σ)
)]

− logEu,n
x e−ncσ

]

≤ sup
z∈S

−
1

n

[

logEu,n
x

[

e−ncσEu,n
x

(

e−nc(σx−σ) |Xx(σ) = z
)]

− logEu,n
x e−ncσ

]
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= sup
z∈S

−
1

n

[

log
[

Eu,n
x

(

e−nc(σx−σ) |Xx(σ) = z
)

Eu,n
x e−ncσ

]

− logEu,n
x e−ncσ

]

= sup
z∈S

−
1

n

[

logEu,n
x

(

e−nc(σx−σ) |Xx(σ) = z
)]

However, by the strong Markov property,

−
1

n

[

logEu,n
x

(

e−nc(σx−σ) |Xx(σ) = z
)]

≤ sup
u

−
1

n
log

(

Eu,n
z e−ncσz

)

= V n(z)

and together with (55) we have (57).

To prove the lemma, one needs to show that |Vn(x) − Vn(y)| ≤ c0|x − y| for all n and all
x, y ∈ (n−1ZZJ

+) ∩ Ḡ, where c0 does not depend on x, y and n. It suffices to prove this inequality
for x, y such that |x − y| = n−1. Since the roles of x and y are symmetric, and in view of (57), it
suffices to show that for {x ∈ G : dist(x, ∂coG) ≤ K1n

−1},

Vn(x) = −n−1 log inf
u
Eu,n

x e−ncσx

≤ c1n
−1, (58)

where c1 > 0 is a constant.

Let us first treat the case where G is not a rectangle. In that case, Condition 1 implies that for
any x with dist(x, ∂coG) ≤ K1n

−1,

there is i ∈ J+ such that x+ c′n−1ei 6∈ G, (59)

where c′ is a constant. Let such i be fixed. To show (58), it is enough to show that for any x such
that dist(x, ∂coG) ≤ K1n

−1, and any n and u,

Eu,n
x e−ncσx

≥ c2 > 0. (60)

Recall that λi > 0. Let St denote the event that all service processes and all arrival processes,
except for the one corresponding to i, do not increase on [0, t]. Recall that the expected time till a
Poisson process of rate λ hits level K is K/λ. Then for any α ∈ (0, 1)

Eu,n
x e−ncσx

≥ αP u,n
x (e−ncσx

> α)

= αP u,n
x

(

σx < −
logα

nc

)

.

Choosing t0 = −(log α)/nc = 2c̃/nλi and using P u,n
x (σx < 2Eσx) ≥ 1/2,

Eu,n
x e−ncσx

≥ αP u,n
x (σx < t0|St0)P

u,n
x (St0)

≥ e−2cc̃/λi
1

2
c3

where c3 > 0 is the probability that a Poisson process with rate nc4 has not jumped by time
t0 = 2c̃/λin. This proves (60), which implies (58), and hence the statement of the lemma holds.

In the case where G is a rectangle, the bound (57) does not suffice since V n(x) is discontinuous
near ∂cG. We therefore prove that a similar bound applies, where there supremum is over S = {z ∈
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(n−1ZZJ
+)∩ Ḡ : dist(z, ∂oG) ≤ K1|x− y|}. To apply the previous argument we need to show that if

Xx(t) is close to ∂cG, then neither Xx nor Xy will exit (locally) through that boundary. This is
clear for Xx: the only way for the process to leave G is due to a service to one of the queues, say,
queue j, leading to an increase in queue i. However, allowing this service is certainly not optimal:
it is better to avoid this control, as our objective is to increase σx. To prevent Xy from exiting
we need to modify the coupling argument as follows. The control uy used by Xy avoids a jump
that leads Xy to exit through ∂cG (that is, queue j above will not be served if Xy

i (t) = zi − 1.)
Note that this is the only possible type of jump that leads the process out of G. Moreover, the
ℓ1 distance between Xx and Xy may only decrease due to this change in control: the control is
changed only if Xx

i (t) < Xy
i (t), and following the service Xx

i increases by 1 so that |Xx
i (t)−Xy

i (t)|
decreases by 1, while Xx

j decreases by 1.

Condition 1 still implies (59), but only for x such that

zi − xi ≤ n−1, for some i ∈ J+.

For such x, the argument in the last paragraph holds. However, for x near ∂cG there is nothing to
prove, since the process never exits through such a boundary.

Proof of Lemma 3: The first part is an immediate consequence of the fact that ui ≥ 0 and both
Ln,u,mV n(x) and ρ(u,m) depend on u as

∑

i uiηi, where ηi is a function of mi, x, n but not of u.

For the second part of the lemma, one can explicitly solve for mn in terms of V n, and get
mn(x, u) = mn(x) = ((λ̄ni (x)), (µ̄

n
i (x))), where

λ̄ni (x) = λie
−nδiV

n(x), µ̄ni = µie
−nδ̃iV

n(x),

and
δiV

n(x)
.
= V n(x+ n−1vi)− V n(x), δ̃iV

n(x)
.
= V n(x+ n−1π(x, ṽi))− V n(x).

The result follows from Lemma 2, since it shows that there is a constant b2 independent of x, n
where

nδiV
n(x) ≥ −b2, nδ̃iV

n(x) ≥ −b2.

Proof of Lemma 4: We fix b ∈ [b∗,∞] and suppress it from the notation throughout the proof.
Item 1 of the lemma is trivial under Condition 1.1. Under Condition 1.2, by continuity of the
functions φi, we only need to show is that ∂coGa and ∂coG do not intersect. Consider first a > 0,
and let x ∈ ∂coGa. Then xi = a + φi(x1, . . . , xi−1, xi+1, . . . , xJ) for some i ∈ J+, and therefore x
cannot belong to the closure of G. The proof for a < 0 is similar.

Let β0[u](t) = m0 for all u, t, where m0 sets all λ̄i = λi and µ̄i = 0. Then ρ(u(t), β0[u](t)) is
bounded by a constant, and the dynamics, unaffected by u, follow X(t) = x +

∑

i λieit and leave
the bounded set G within a finite time bounded by diam(G)/maxi λi <∞. Therefore

V −(x) ≤ sup
u
C(x, u,m0) = C(x, β0) ≤ c1 < +∞.

Similarly,
V +(x) ≤ sup

α
C(x, α(m0),m0) ≤ c1 < +∞.
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It is useful to notice that for all a ∈ (0, a0) and y ∈ ∂oG there is i = iy ∈ J+ such that
y + 2aeiy 6∈ Ga. Similarly, for all a ∈ (−a0, 0) and y ∈ ∂oGa there is i = iy ∈ J+ such that
y + 2aeiy 6∈ G.

First consider a > 0 and recall that σa (resp., σ) is the exit time from Ga (resp., G), so that for
any fixed u and β[u] we have σ ≤ σa. Therefore, since c and ρ are positive,

V −
a (x) = inf

β
sup
u

∫ σa

0
(c+ ρ(u(s), β[u](s))ds

≥ inf
β

sup
u

∫ σ

0
(c+ ρ(u(s), β[u](s))ds

= V −(x).

Thus to prove the Lipschitz property a one-sided bound suffices. Recall that φ(σ) is the exit point
from G and for each β define the extension βa by

βa[u] =

{

β[u](t) t ∈ [0, σ),
m̂ t ∈ [σ,∞),

where m̂ sets all µ̄j = 0 and λ̄j = 1j=iφ(σ)
. Then for any β

V −
a (x) = inf

β
sup
u
Ca(x, β[u], u)

≤ inf
β

sup
u
Ca(x, βa[u], u)

= inf
β

sup
u

[

C(x, β[u], u) +

∫ σa

σ
(c+ ρ(u(s), m̂)ds

]

≤ V −(x) + c1a,

where the last line follows since ρ(u(s), m̂) is bounded and since by the previous paragraph, σa−σ ≤
2a. Note that c1 does not depend on b ∈ [b∗,∞]. For a < 0 the same argument shows that
V −(x) ≤ V −

a (x) + c3|a|, by interchanging the roles of G and Ga.

For V +
a (x) note that an argument as above gives V +

a (x) ≥ V +(x). For each m define ma by

ma =

{

m(t) t ∈ [0, σ),
m̂ t ∈ [σ,∞),

where m̂ is as above. Let αǫ be an ǫ-optimal strategy. Then, since for any fixed u and m we have
σ ≤ σa,

V +
a (x) = sup

α
inf
m
Ca(x,m,α[m])

≤ inf
m
Ca(x,m,αǫ[m]) + ǫ

≤ inf
m
Ca(x,ma, αǫ[ma]) + ǫ,

since we are taking the infimum over a smaller class of controls. By the definition of Ca,

V +
a (x) ≤ inf

m
C(x,m,αǫ[m]) +

∫ σa

σ
(c+ ρ(αǫ[ma](s), m̂(s)) ds + ǫ

≤ sup
α

inf
m
C(x,m,α[m]) + c2a+ ǫ
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by the previous argument, where c2 does not depend on x, ǫ and b. Since ǫ is arbitrarily small, the
proof for a > 0 and V +

a (x) is established.

Proof of Lemma 5: We suppress b from the notation, throughout the proof. It is obvious that
one can restrict the infimum over β ∈ B to the class of strategies β for which C(x, β) ≤ V −(x)+ 1.
Within this class, for every β and u,

σc ≤
∫ σ

0
[c+ ρ(u(t), β[u](t))]dt ≤ V −(x) + 1,

and therefore one always has that σ ≤ T0
.
= (V (x)+1)/c. Lemma 5 asserts an upper bound on the

cost till time a fixed time T0, and so we must define the strategy for times t ∈ [σ, T0]. Let m̂ be an
arbitrary fixed element of M . Then the extended β is just

β̂[u](t) =

{

β[u](t) t < σ.
m̂ t ≥ σ,

With this definition one has that C(x, u, β[u]) = C(x, u, β̂[u]). One can therefore further restrict
to strategies β satisfying β̂ = β. For such β, it follows that

∫ T0

0
ρ(u(t), β[u](t))dt ≤ c1T0,

where c1 does not depend on u, β. The result regarding V − follows.

Regarding V +, let m0 be a control which sets all µi and λi to zero, except that λi0 = 1 for some
i0 ∈ J+. Then for any α ∈ A and m for which

C(x, α[m],m) ≤ C(x, α[m0],m0), (61)

one has cσ(x, α[m],m) ≤ C(x, α[m],m) ≤ C(x, α[m0],m0) ≤ c1 < ∞. Note that c1 can be chosen
independent of α, since the dynamics and running cost under m0 are independent of α. Clearly,
for each α it suffices to consider, in optimizing over m, only those m that satisfy (61). It follows
that it suffices to consider only those m for which σ(x, α[m],m) ≤ c1/c. This completes the proof
of the lemma.

Proof of Lemma 6: Fix b ∈ [b∗,∞] which we omit from the notation. Recall from Lemma 4 that
V ± are bounded on G. We first show that V − is Lipschitz. Assume first that Condition 1.2 holds.
Recall that for x ∈ G,

V −(x) = inf
β

sup
u
C(x, β[u], u).

Let βxǫ be an ǫ-optimal strategy starting from x, i.e.,

sup
u
C(x, βxǫ [u], u) ≤ V −(x) + ǫ.

For any z ∈ G let σz = inf{t : φz 6∈ G}, where φz is the solution to φ̇ = π(φ, v(u, βxǫ [u])), with
φ(0) = z. Note that C(x, u, βxǫ [u]) =

∫ σx

0 [c + ρ(u(t), βxǫ [u](t))]dt (with possibly σx = ∞). Now let
y ∈ G. Note that on [0, σx ∧ σy], one has by the Lipschitz property of the Skorokhod map that
|φx(t) − φy(t)| ≤ c1|x − y|, where c1 is some constant. Recall that we are considering the case
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of Condition 1.2. Therefore, at σx ∧ σy, both φx and φy are within a distance of c1|x − y| of the
boundary ∂oG. Because of the assumptions on the domain G, there exists a constant c2 such that
at time σx ∧ σy, both φx + c2ei∗ 6∈ G and φy + c2ei∗ 6∈ G, where i∗ ∈ J+ and, moreover, c2 is
independent of x, y, b ≥ b∗ and i∗.

Define βx,yǫ as βx,yǫ [u] = βxǫ [u] on [0, σx), and, if σy ≥ σx, set β
x,y
ǫ [u] = m0 on [σx, σy]. Here,

m0 sets all µ̄i and all λ̄i to zero, except that it sets λ̄i∗ = λi∗ , where i
∗ is as above. Consequently,

σy < σx + c′|x− y| for some c′ > 0, and there exists uǫ such that

V −(y) ≤ sup
u
C(y, u, βx,yǫ [u])

≤
∫ σy

0
[c+ ρ(uǫ(s), β

x,y
ǫ [uǫ](s))]ds + ǫ

≤
∫ σx

0
[c+ ρ(uǫ(s), β

x,y
ǫ [uǫ](s))]ds + 1σx<σy

∫ σy

σx

[c+ ρ(uǫ(s), β
x,y
ǫ [uǫ](s))]ds + ǫ

≤ C(x, uǫ, β
x
ǫ [uǫ]) + c3|x− y|+ ǫ

≤ sup
u
C(x, u, βxǫ [u]) + c3|x− y|+ ǫ

≤ V −(x) + c3|x− y|+ 2ǫ.

Since x, y ∈ G and ǫ > 0 are arbitrary, and c3 does not depend on them or on b, V − is Lipschitz,
uniformly for b ∈ [b∗,∞].

In case that Condition 1.1 holds, the same argument shows that V −
a (y) ≤ V −(x)+c3|x−y|+2ǫ,

where a = c1|x− y|. By Lemma 4, this implies that V −(y) ≤ V −(x)+ c4|x− y|+2ǫ, some constant
c4, and therefore V − is Lipschitz.

Next, consider the upper value

V +(x) = sup
α

inf
m
C(y, α[m],m)

under Condition 1.2. Let x, y ∈ G. Note that there is an αx
ǫ such that

V +(x) ≤ inf
m
C(x, αx

ǫ [m],m) + ǫ.

and an mǫ = mǫ(x, y) for which

V +(y) ≥ inf
m
C(y, αx

ǫ [m],m)

≥ C(y, αx
ǫ [mǫ],mǫ)− ǫ.

Let σz = inf{t : φz 6∈ G}, where φz is the solution to φ̇ = π(φ, v(αx
ǫ [mǫ],mǫ)), with φ(0) = z.

Let i∗ be defined in an analogous way to that in the first paragraph of the proof. Now define
m̄ǫ = m̄ǫ(x, y) as follows. If σx ≤ σy, let m̄ǫ = mǫ. If σy < σx, let m̄ǫ agree with mǫ on [0, σy) and
with m0 on [σy, σx]. Here, m0 sets all µ̄i and all λ̄i to zero, except that it sets λ̄i∗ = λi∗ . Since mǫ

and m̄ǫ agree on [0, σy), the restrictions to [0, σy] of α
x
ǫ [mǫ] and of αx

ǫ [m̄ǫ] agree a.e. on [0, σy], and
therefore,

C(y, αx
ǫ [mǫ],mǫ) = C(y, αx

ǫ [m̄ǫ], m̄ǫ).
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Arguing again by the Lipschitz property of the Skorokhod map and the definition of m0, there is a
constant c4 for which (σx − σy)

+ ≤ c4|x− y|. Hence

V +(y) ≥ C(y, αx
ǫ [m̄ǫ], m̄ǫ)− ǫ

≥
∫ σx

0
[c+ ρ(αx

ǫ [m̄
x
ǫ ](s), m̄

x
ǫ (s))]ds − 1σy<σx

∫ σx

σy

[c+ ρ(αx
ǫ [m̄

x
ǫ ](s), m̄

x
ǫ (s))]ds − ǫ

≥ C(x, αx
ǫ [m̄ǫ], m̄ǫ)− c5|x− y| − ǫ

≥ inf
m
C(x, αx

ǫ [m],m)− c5|x− y| − ǫ

≥ V +(x)− c5|x− y| − 2ǫ.

Since c5 does not depend on x, y, ǫ or b, we have that V + is Lipschitz uniformly for b ∈ [b∗,∞].

Under Condition 1.1, the same argument shows that V +
a (y) ≥ V +(x) − c5|x − y| − 2ǫ, where

a = c1|x− y|, and again one argues by Lemma 4.

Proof of Lemma 7: The processes are constructed recursively using a sequence of standard
exponential clocks. Recall that Ln,u,m is given for every n, u ∈ U , m ∈M by

Ln,u,mf(x) =
J
∑

j=1

nλ̄j[f(x+ n−1vj)− f(x)] +
J
∑

i=1

nµ̄iui[f(x+ n−1π(x, ṽi))− f(x)].

Given n, xn and β, we construct a filtered probability space and three processes, X̄(t), ū(t) and
m̄(t) (to simplify notation, we do not write the superscript n in the notation of X̄n, ūn and m̄n)
such that (a) X̄, ū and m̄ are (F̄t)-adapted; (b) m̄(t) = β[ū](t) a.e. t ≥ 0, a.s.; (c) ū(·) = un(X(·))
a.s. (where un is as in the statement before the lemma); and (d) for any f , the process

f(X̄(t))−
∫ t

0
Ln,ū(s),m̄(s)f(X̄(s))ds

is an (F̄t)-martingale. For (a–d) to hold, it suffices that (a–c) hold, and (e) on any finite interval
the process X̄ jumps finitely many times—we denote the kth jump by τk and let τ0 = 0; (f) the
random times (τk) are stopping times on (F̄t), and (g) denoting Xk = X̄(τk), for any k,

Ē[f(Xk+1)− f(Xk)|F̄τk ] =
J
∑

i=1

Ē[Ak,ū,m̄
i +Bk,ū,m̄

i |F̄τk ],

where

Ak,ū,m̄
i = n

∫ τk+1

τk

λ̄i(s)ds[f(Xk + n−1vi)− f(Xk)],

Bk,ū,m̄
i = n

∫ τk+1

τk

µ̄i(s)ui(s)ds[f(Xk + n−1π(Xk, ṽi))− f(Xk)].

The construction is recursive. On a complete probability space (Ω̄, F̄ , P̄ ) we are given 2J
independent i.i.d. standard Poisson processes, denoted ai and bi, i = 1, . . . , J . Let T a

i (k) [resp.,
T b
i (k)] denote the first time ai [resp., bi] equals k. For each ω ∈ Ω we construct recursively a

sequence of times (τk) and the processes X̄, ū and m̄ up to time τk. Once these processes are
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defined, we will define (F̄t), F̄t ⊂ F̄ , t ≥ 0, and verify that items (a–c), (e–g) are satisfied on
(Ω̄, F̄ , (F̄t), P̄ ).

We set X̄(0) = xn and ū(0) = un(xn). Since m̄ need only be defined almost everywhere on
[0,∞), we do not define it at zero nor at any τk, k = 1, 2, . . .. Now assume that we have constructed
τi, i ≤ k as well as the processes X̄ and ū on [0, τk] and m̄ a.e. on [0, τk]. Let û

k(t) = un(X̄(t∧ τk)),
t ≥ 0. Let also m̂k = β[ûk]. With ûk(·) = (ûki (·)) and m̂

k(·) = ((λ̂ki (·)), (µ̂
k
i (·))), let

pki (t) = n

∫ t

0
λ̂ki (s)ds, qki (t) = n

∫ t

0
µ̂ki (s)û

k
i (s)ds, i = 1, . . . , J, t ≥ 0.

Denoting ∆z(s) = z(s)− z(s−), let also

τk+1 = inf{t > τk : either ∆ai(p
k
i (t)) > 0 or ∆bi(q

k
i (t)) > 0 for some i = 1, . . . , J},

where inf ∅ = +∞. We first consider the case that τk+1 < +∞. In this case,

there is i such that either ∆ai(p
k
i (τk+1)) > 0 or ∆bi(q

k
i (τk+1)) > 0. (62)

In the former case we let v̂k = vi; otherwise we let v̂k = ṽi.

The three processes are defined on the next interval as follows. Let X̄(t) = X̄(τk) for t ∈
(τk, τk+1), and X̄(τk+1) = X̄(τk) + n−1π(X̄(τk), v̂

k). Let ū(t) = un(X̄(t)) for t ∈ (τk, τk+1]. Let
ǔ(t) = un(X̄(t ∧ τk+1)) and define m̄(t) = β[ǔ](t), t ∈ [0, τk+1]. Note that since β is a strategy,
this definition of m̄ is consistent with its definition up to τk since so is the definition of ū. For the
same reason, for a.e. t ≤ τk+1, m̄(t) = m̂k(t). In particular, the equations for pki , q

k
i still hold if we

replace hats by bars, namely,

pki (t) = n

∫ t

0
λ̄i(s)ds, qki (t) = n

∫ t

0
µ̄i(s)ūi(s)ds, i = 1, . . . , J, τk ≤ t ≤ τk+1. (63)

Note that the above relations are consistent in the sense that for a given k, they hold not only
for t ∈ [τk, τk+1], but in fact for t ∈ [0, τk+1]. Hence, on the event τk → ∞, one can equivalently
consider the processes

pi(t) = n

∫ t

0
λ̄i(s)ds, qi(t) = n

∫ t

0
µ̄i(s)ūi(s)ds, i = 1, . . . , J, t ≥ 0. (64)

This completes the definition of the three processes on [0, τk+1].

In case that τk+1 = +∞, the definitions above of X̄, ū and m̄ all apply on (τk, τk+1) and there
is nothing else to define.

To complete the construction of the three processes on Ω̄× [0,+∞), we must consider the set Ω0

of ω ∈ Ω̄ for which T̄
.
= sup τk is finite. We show that this set is P̄ -null owing to the fact that the

range M̄ b of β consists of bounded functions. Suppose T̄ is finite. The construction above defines
X̄, ū and m̄ on [0, T̄ ). Let ū′(t) = ū(t) for t < T̄ and define ū′(t) arbitrarily on [T̄ ,+∞) but such
that ū′ ∈ Ū . Then m̄′ = β[ū′] agrees with m̄ a.e. on [0, T̄ ]. Since each component of m̄′ is bounded
by b,

n−1 J
max
i=1

[pi(T̄ ) ∨ qi(T̄ )] ≤ 2JT̄ b < +∞. (65)
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However, by construction, T̄ < ∞ implies that either ai(pi(t)) → ∞ or bi(qi(t)) → ∞ as t ↑ T̄ , for
some i. Hence T̄ <∞ must be a null set. We let X̄, ū and m̄ be defined arbitrarily on Ω0.

The definition of the process Ȳ is similar to that of X̄, but where π(x, v) is replaced by v
throughout. The relation X̄ = Γ(Ȳ ) is clear from the construction.

Define for each t ≥ 0 F̄t to be the σ-field generated by {Ȳ (s), s ∈ [0, t]}. Note that it is
equivalently defined as the σ-field generated by {ai(pi(t)), bi(qi(t)), i = 1, . . . , J}, where pi, qi are
as in (64). By construction, ū(t) = un(X̄(t)), t ≥ 0 and item (c) holds. Item (b), namely that
m̄ = β[ū], also holds by construction. X̄ and ū are therefore (F̄t)-adapted, and since β is a strategy,
so is m̄, and item (a) holds. Items (e) and (f) are trivial. Concerning (g), let ik ∈ {1, . . . , 2J} denote
the index i satisfying (62) in case that ∆ai(p

k
i (t)) > 0 holds, and let it denote i + J in the case

∆bki (q
k
i (t)) > 0. It suffices to show that for every i ∈ {1, . . . , 2J},

P̄ (ik = i|F̄τk) =







Ē[
∫ τk+1
τk

pi(s)ds|F̄τk ]/Zk i ≤ J,

Ē[
∫ τk+1
τk

qi−J(s)ds|F̄τk ]/Zk i > J,

where Zk is a normalization factor (not depending on i). For k = 0 (τk = 0), this is a well known
property of exponential clocks. For k > 0, the same argument holds, merely because conditional on
F̄τk , the processes

∫ ·
τk
pi(s)ds,

∫ ·
τk
qi(s)ds are independent, and moreover, ai(· − τk) − ai(τk), bi(· −

τk)− bi(τk) are still independent Poisson processes (which is a statement on the lack of memory for
exponential random variables).

The proof of the claim regarding the martingale associated with L0 is similar (only simpler).
This completes the proof of the first part of the lemma.

Clearly,
max

i
pi(T0) ∨ qi(T0) ≤ nT0b,

where T0 is as in Lemma 5. Thus, if Nn = max{k : τk ≤ T0}, then

Nn ≤
∑

i

ai(nT0b) + bi(nT0b),

and (14) follows.

Proof of Lemma 8: The proof is completely analogous to that of Lemma 7, and is therefore
omitted.

Proof of Theorem 4: By Theorems 5 and 6, V b,− = V b,+ for all b ∈ [b∗,∞). As a result, Theorem
3, implies that V n → V b,− for all b ∈ [b∗,∞), as n → ∞. In particular, V b,− does not depend on
b ∈ [b∗,∞). It remains to show that for all x, V b,−(x) → V −(x) and V b,+(x) → V +(x) as b→ ∞.

Proof that V b,− → V −. It is immediate from the definitions that V − ≤ V b,−.

Let β ∈ B, and let σ = σ(x, u, β) be the exit time of φ from G where φ̇ = π(φ, v(u, β[u])),
φ(0) = x. Let β̄ be defined by

β̄[u](t) =

{

min{b, β[u](t)} t ≤ σ,
m̂ t > σ,
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where m̂ sets all µ̄j = 0 and λ̄j = 1j=iφ(σ)
, and the minimum is componentwise. It is clear that β̄

is a strategy. Let ū be any extension of u to [0,∞), and denote by φ̄ and σ̄ the dynamics and exit
time corresponding to x, β̄, ū. Recall that by (9) b is greater than all λi and µi. Thus

C(x, ū, β̄[ū]) =

∫ σ

0
(c+ ρ(u, β̄[u])ds + 1σ̄>σ

∫ σ̄

σ
(c+ ρ(ū, m̂))ds

≤ C(x, u, β[u]) + c1(σ̄ − σ)+.

Moreover, by the Lipschitz property of the Skorokhod map, and denoting β[u] = (λ̄i, µ̄i),

(σ̄ − σ)+ ≤ c2|φ(σ)− φ̄(σ)| ≤ c2

∫ σ

0

∑

i

[(λ̄i − b)+ + (uiµ̄i − b)+]ds

Since it is enough to consider β for which (for any u) λi and uiµi are uniformly integrable over [0, σ],
we have that (σ̄−σ)+ ≤ δ(b), where δ(b) → 0 as b→ ∞. This shows that limb→∞ V b,−(x) ≤ V −(x).

Proof that V b,+ → V +. It is immediate that V + ≤ V b,+.

To show that V +(x) ≥ limb→∞ V b,+(x) it is enough to show that for b ≥ b∗ and a small,

V +(x) ≥ V b,+
−a (x). For any m ∈ M̄ let mb denote the pointwise and componentwise truncation of

m at level b. For any α ∈ A, let αb ∈ A be defined by αb[m] = α[mb]. We will write m ∈ M̄(α, a)
if m,α, a satisfy Ca(x, α[m],m) ≤ V +

a (x) + 1. In the expression for V +
a (x),

sup
α

inf
m
Ca(x, α[m],m),

it is enough to consider α ∈ A and m ∈ M̄(α, a) (including for a = 0). For such α,m, the functions
λ̄i, uiµ̄i are uniformly integrable over [0, T ]. Let α ∈ A and m ∈ M̄ (αb, 0). Consider a truncation
of λ̄i and µ̄i at b. Denote by φ [resp., φb] the dynamics that correspond to (x, αb,m), [resp.,
(x, αb,mb)]. Then the effect of the truncation on φ is such that for all a > 0 there is b such that
sup[0,T ] |φ− φb| ≤ a (by uniform integrability). In particular, |φb(σ)− φ(σ)| ≤ a. Hence, using the

monotonicity of the running cost for large values of the rates, and that αb[mb] = αb[m],

C−a(x, α
b[mb],mb) ≤ C(x, αb[m],m).

We thus have
C−a(x, α[m

b],mb) ≤ C(x, αb[m],m).

Since m ∈ M̄(αb, 0) implies that mb ∈ M̄(αb,−a),

inf
m∈M̄b

C−a(x, α[m],m) ≤ inf
m:mb∈M̄(αb,−a)

C−a(x, α[m
b],mb)

≤ inf
m∈M̄ (αb,0)

C(x, αb[m],m)

= inf
m∈M̄

C(x, αb[m],m).

Hence
sup
α∈A

inf
m∈M̄b

C−a(x, α[m],m) ≤ sup
α∈A

inf
m∈M̄

C(x, α[m],m).

Taking a→ 0 by letting b→ ∞, we have from Lemma 4 that limb V
b,+(x) ≤ V +(x).
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