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New and simplified characterizations are given for solving, as-
a linear program, the linear complementarity problem of finding an
x in R" such that Mx + g >0, x>0 and xT(Mx+q) = 0. The
simplest such characterization given here is that if there exist
n-dimensional vectors c¢,r,s which are nonnega;iye?‘and n-by-n
matrices Z], o with nonpositive off-diagonal elements such that
T

and (i) rTZ] 4 st2 > 0, then each solu-

tion of the linear program: Minimize (rT+sTM)x subject to

(i) MZ] = 22 +qgc
MXx +q2>0, x2> 0, solves the linear complementarity problem.
Conversely if thevlinear complementarity problem has at least one
vertex solution x which is nondegenerate, that is, x + Mx + q > 0,
then there exist nonnegative vectors c,r,s and matrices 21,22, with

nonpositive off-diagonal elements, such that (i)-(ii) are satisfied.
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In [5, Theorem 1] it was shown that the linear complementarity

problem of finding an x in R" such that
LcP Mx + q>0, x>0, x (Mtq) =0 (1)

is solvable, if and only, certain conditions were satisfied. When
these conditions are satisfied the linear program
LP Minimize (rT+sTM)x subject to Mx +q>0, x>0 (2)

X
is solvable and each of its solutions solves the LCP. Here, r
and s are nonnegative vectors which appear in the characteriza-
tion Theorem 1 of [5]. In this paper we give a number of consider-
ably simpler characterizations for the solvability of the linear
compiementarity problem as a linear program. We begin by showing in
Theorem 1 below that the simple conditions of Lemma 1 of [3] can be
made necessary as well as sufficient for the solvability of the LCP
as an LP. By using these conditions we establish in Theorem 2 what is
probably the simplest characterization so far of the LCP solvability
as an LP. In fact the conditions of Fhis theorem, conditions (7),
are a simplification of the sufficient conditions for the LCP solv-
ability as an LP of [4, Theorem 1]. In order to make these simplified
sufficient conditions necessary as well, we have required here that
the LCP have at least one nondegenerate vertex solution. Examples
show for this particular characterization that the nondegenerate vertex
assumption is a sharp assumption. Finally, we show in Theorem 3 that

another set of conditions, equivalent to an earlier set of sufficient



conditions for the LCP solvability as a linear program [5, Theorem 2]
also characterize an LCP that is solvable as a linear program. Re-
cently Pang [6] has shown that the conditions of [5, Theorem 2] are
satisfied by any solvable LCP.

We shall need the following dual problem associated with the LP

DP Maximize -qu subject to —MTy +r + MTS >0, y>0 (3)
y

We shall use the following notation. A1l matrices and vectors
considered here are real. If A 1is an n-by-m matrix then this is
denoted as AeRnxm, and Ai denotes its i-th row and Aij denotes
its 1ij-th element. We shall also use the notation Z],Z2 to de-
note specific matrices. This will be made clear from the context.
A matrix DeR™" is a diagonal matrix if Dj; = 0 for i #j. AN
vectors are column vectors unless transposed by a superscript T
to a row vector. If x 1is an n-dimensional vector then this is de-
noted as XeRn, and X; denotes its i-th element. The vector e
will denote %he vector of ones in R". The matrix I will denote
the diagonal matrix of ones in RV A square matrix with nonposi-
tive off-diagonal elements is said to be a Z-matrix or it is said
to belong to Z. The LCP is said to be feasible if the set
{x|Mx+q>0, x>0} is nonempty.

We begin by establishing a simple theorem which characterizes

the solvability of the LCP as an LP. This theorem is an improvement



of Lemma 1 of [3] and shows that the conditions of that lemma can
be made necessary as well as sufficient for the solvability of the

LCP as an LP.

Theorem 1 The LCP has a solution if and only if the LP is solv-
able for some r,seR", r,s>0, such that an associated dual optimal

variable y satisfies

(I-M)Ty +r + MTs >0 (4)

Furthermore, each solution of the LP solves the .CP.

Proof (Sufficiency) If x solves the LP and y 1is a corresponding
optimal dual variable satisfying (4) then by the equality of the optimal

primal and dual objective functions it follows that
0= (rT+sTM)x + qu = xT(—MTy+r+MTs) + yT(foq)

From the nonnegativity of x,y and of the last two terms in parentheses

and from (4) it follows that xT(Mx+q) = 0. Hence x solves the LCP. If

~

X is another optimal solution of the LP with an associjated dual opti-

mal y which does not satisfy (4) then because (rT+sTM)x = (rT+sTM)§ =

-q'§ = -q'y it follows that

0= (rT+sTM)x + qu QT(—MTy+r+MTs) + yT(M§+q)

0 and X solves the LCP.

and hence as before QT(M§+q)



(Necessity) Let x solve the LCP. Define
1 for X; = 0 1 for Mix+q1. =0
ry = < . st < (5)
0 for X5 > 0 0 for M1X+qi >0
Hence rTx + sT(Mx+q) =0 and x is a solution to the LP with the
above r and s. In addition s is dual feasible because

-MTs +ro+ MTs =r >0, and in fact s is also dual optimal because

(rT+sTM)x + qu = rlx + sT(Mx+g) = O (6)

Finally condition (4) is satisfied by y = s because

(I-M)s +r+Ms=r+s>0

where the inequality follows from the definition (5) of r and s. O

We obtain now a characterization of the LCP solvability as an LP
by simplifying the sufficient conditions of [4, Theorem 1] and by showing
that under appropriate assumptions these simplified conditions are also

necessary.

Theorem 2  If there exist c,r,seR”  and Z],Z2 R such that

T

MZ, = 22 + qc

1
rTZ] + sT22 >0 (7)

c,r,s >0, z],zzez

then the feasible LCP has a solution which can be obtained by solving



the LP. Conversely if the LCP has at least one solution x which is
a vertex of {x|Mx+q>0, x>0} which is also nondegenerate, that is

x + Mx + g > 0, then conditions (7) are satisfied and each solution

of the LP solves the LCP.

Proof We begin by showing the equivalence of conditions (7) and (7')

below. Observe first that conditions (7) are equivalent to

-MR + U +(-I+M)D-ch =0

(rT+sTM)R—(rT+sTM)D +d+qgsc =

d>0,c,rys >0, R, U, D>0, D= Diagonal

where the substitutions Zl = D-R and Z2 = D-U have been made. By

Motzkin's theorem [2] this is equivalent to the system
—MTy +(r+MTs)c >0

y
(-I+MT),-y -(r+MTs)1.?; 2

v

\
o

having no solution yeRn, zeR, for each 1i=1,---,n. This in turn

is equivalent to

—MTy +(r+MTs) >0
y >0 = (I-M)y +(r+M's) >0 (7')
-q'y > -q's

Thus conditions (7) and (7') are equivalent.



To prove the first part of the theorem we observe that the LP
js solvable because it is feasible and s is dual feasible. Let
x be any optimal solution of the LP and let y be a corresponding
dual optimal solution. Hence -qu ;:-qu and by (7) or its equiva-
lent (7') it follows that (4) holds and hence by Theorem 1, x solves
the LCP.

To prove the second part of the theorem, suppose now that the ver-
tex x solves the LCP and that x is nondegenerate. Define r and s
as in (5). "Then as before, x solves the LP and s is dual feasible
and optimal. Because x is a nondegenerate vertex and it is a solution
of the LP, it follows that its associated optimal dual variable is unique

and must be equal to s. Hence

-M y +(r+M s) >0
y >0 (I- MY Yy + r+MTs)
-qu : > r+s>0

Hence (7') holds. 0O

Iv

Remark 1 The nondegenerate vertex assumption in Theorem 2 is a sharp
assumption in the sense that relaxing it could invalidate the converse
part of the theorem. Thus, Example 1 below shows that conditions (7)
may not hold when the nondegeneracy assumption is dropped, while Ex-
ample 3 shows that conditions (7) may not hold if the vertex assumption

is dropped.



1 1 -2
Example T M = {] ]} q-= [ }

This is a slight variation of Example 2.2 of [1]. It has a unique

i

degenerate vertex solution x = (2 0). If we let

—t
3

with uy >0, i=1,...,4, then in order to satisfy the first condi-

tion of (7) we get that

. a -(a2+u3+2c2) . 2a]+u4+4c] -Uy
1 > "2
a]+u4+2c] a, -Uy —2a2-u3
u; 2 0, i=1,....4, a, +u;+ 2c2:; 0, a; +u,+ ZC]:i 0
and hence
(rTZ +sTZ ). = rqaq + ro(aqtu,+2cy) + s.(2a,tu,tde,) + s, (-u,)
1 21 171 2'71 7471 V71 74 ' 2\ 74

<ragpt r2(a1+u4+2c]) + s](a]+u4+2c]) + s](-u4) +52(-u4)'
L0

Thus the second condition of (7) cannot be satisfied.
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Example 2 If we let q of Example 1 revert to q = [ } as orig-

inally given in Example 2.2 of [1] then the resulting LCP has two

2 3/2

nondegenerate vertex solutions x = [ } and x = [ } . Conditions
0 1/2

(7) can then be satisfied by
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However, as indicated in [1], conditions (7) cannot be satisfied with
¢ = 0 for this example. In other words for this example the sufficient
conditions of [3, Theorem 1] do not hold, but the new conditions (7)

hold.

Example 3 The following example due to Pang [7] shows that the require-
ment that the nondegenerate solution be a vertex cannot be dispensed

with in Theorem 2.
0 1 0
M= q =
1 0 0

This problem has only one vertex solution, the origin, which however is

degenerate. The positive parts of the Xy and X, axes are nondegen-



erate nonvertex solutions of the LCP. It can be easily verified that

conditions (7) of Theorem 2 cannot be satisfied for this problem.
Finally, we give a characterization which is equivalent to the

conditions of Theorem 2 of [5]. Pang [6] has shown that these latter

conditions hold whenever the LCP is solvable.

Theorem 3 The LCP has a solution if and only if the LP 1is solvable

for some r,SERn which must satisfy the following conditions

(a) Mz, =7, + ac’

(b) vz, +5'2,20

(c) rTZ] + sTZ2 + cT >0 (®)
(d) r+s >0

c,r,s >0, z],zzez

: n . X
for some vector ceR and some matrices Z],ZzeRn n. Furthermore,

each solution of the LP solves the LCP.

Proof (Necessity) Let x solve the LCP and let r and s be as de-
fined in (5). It follows than that x solves the LP. If we further
define, as in [6], c=e, Z]‘= —xeT and 22 = -(Mx+q)eT then condi-
tion (8) are satisfied.

(Sufficiency) We give a new proof here which is more transparent than

that of Theorem 2 of [5]. We have that s is dual feasible. If s

is dual optimal then

0= sT(Mx+q) + xT(-MTs+r+MTs) = sT(Mx+q) + rTx .
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Because r + s > 0 we have that xT(

Mx+q) = 0 and x solves the LCP.
Suppose now that s is not dual optimal. Then for any xeR" satisfying

Mx+q > 0, x > 0 we have that

(Y‘T+STM)X + qu >0
and hence from (8b) and (8¢c) we conclude that

Pz, + 12, + ((rT+sTM)x + sTq) ¢ > 0 (9)

Let Z, = D-V, 22 = D-U, D,U,V >0 and D is a positive diagonal

1
matrix. Let x solve the LP and let y solve the DP. Then

rTZ] + sT22 = rTZ] + sTMZ] - qucT (By (8a))
= (rTsT)z, + yT(-psmven-UracT)-sTacT  (By (8a))
= (-y"MerT+s M) (0-v) + yT(D-U) + (y-s)Tqc’
T. T T T.T

(yT(I—M) + (rT+sTM))D—(r +s M)xc' - s qc

A

(By dual feasibility and
optimality of y)

By using (9) the above gives

T,.T

T T +sTM)x+qu)cT:; (yT(I-M)+(r +s M))D

| O<r Z] +s 22 +((rT

Hence

yT(1-M) + (rT+sM) > 0



-1 -

But by linear programming duality
xT(—MTy+r+MTs) + yT(Mx+q) =0

Hence xT(Mx+q) =0 and x solves the LCP. O
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