
Titre:
Title:

Theoretical efficiency of the algorithm "capacity" for the maximum
flow problem

Auteurs:
Authors:

Maurice Queyranne

Date: 1978

Type: Rapport / Report

Référence:
Citation:

Queyranne, M. (1978). Theoretical efficiency of the algorithm "capacity" for the
maximum flow problem. (Technical Report n° EP-R-78-43).
https://publications.polymtl.ca/5986/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/5986/

Version: Version officielle de l'éditeur / Published version

Conditions d’utilisation:
Terms of Use: Tous droits réservés / All rights reserved

Document publié chez l’éditeur officiel
Document issued by the official publisher

Institution: École Polytechnique de Montréal

Numéro de rapport:
Report number:

EP-R-78-43

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/5986/
https://publications.polymtl.ca/5986/

Génie Industriel

THEORETICAL EFFICIENCY OF THE ALGORITHM

"CAPACITY" FOR THE MAXIMUM FLOW PROBLEM.

Maurice QUEYRANNE

Département de Génie Industriel

Ecole Polytechnique de Montréal.

RAPPORT TECHNIQUE NO. EP 78-R-43

L September 1978. J

Ecole Polytechnique de Montréal

CA2PQ A
UP4 Campus de l'Université

de Montréal
Case postale 6079
Succursale X
Montréal, Québec
H3C 3A7

7ÔRA3

2 Î OCT 1978

ECOLE POLYTECHNIQUE BIBLIOTHEQUE

THEORETICAL EFFICIENCY OF THE ALGORITHM

"CAPACITY" FOR THE MAXIMUM FLOW PROBLEM.

Maurice QUEYRANNE

Département de Génie Industriel

Ecole Polytechnique de Montréal.

RAPPORT TECHNIQUE NO. EP 78-R-43

À CONSULTER
PLACE

September 1978.

£

THEORETICAL EFFICIENCY OF THE ALGORITHM

"CAPACITY" FOR THE MAXIMUM FLOW PROBLEM*

Maurice QUEYRANNE

Ecole Polytechnique de Montréal.

ABSTRACT; The algorithm Capacity defined by Edmonds and Karp, is an

augmenting path algorithm which yields the maximum increase in flow value

For networks with real capacities, we show that Capa

city may require an infinite number of iterations, and an example of a "bad"

at each iteration.

network is produced. This result contrasts with the existence of other

less "greedy" augmenting path algorithms which are always finite. Howe

ver, we show that the sequence of flows constructed by Capacity converges

toward a maximum flow. For networks with integer capacities, with a arcs

and average capacity c, Edmonds and Karp's upper bound of the order of

0 (a(log &+ log c)) is derived and a class of networks is produced for

which Capacity requires this number of iterations.

AMS 7 970 AubjzcX cJiaM-i^caution. Primery: 90C35.

IAt)R 7 973 Aubjtct cZtlà A'Location. Main: Network Programming.

Key MOfidA. Network flows. Maximum flow problem, Algorithms, Computa
tional Complexity, Worst-case analysis.

* This research was partially supported by the National Research Council

of Canada, Grant A-4592.

1

On the algorithm "Capacity" for the

maximum flow problem.

1- INTRODUCTION

Consider a finite directed network N=(V,A,c), where V is the set

of vertices. A is the set of arcs (we allow multiple parallel arcs)

and c is a positive real-valued function defined on A. For every arc

a, we define its head (or destination) h(a), its tail (or origin) t(a)

and its capacity c(a).

the sink, we call an (s,t) - flow (or more simply a flow) any real-valued

Given two vertices s and t called the source and

function x defined on A satisfying the (Kirchhoff) conservation law

Z x(a) = I
a:t(a)=i

x(a)
a:h(a)=i

for all vertices ieN distinct from s and t. By summing all these equa

tions , we have

Z x(a) = Z
a:t(a)=s

x(a) = v(x)
a:h(a)=t

and we call this quantity v(x) the value of the flow x. If in addition

0 < x(a) < c(a) for all arcs a, we call x a feasible flow.

The maximum flow problem is the problem of finding a feasible flow

of maximum value. Among the numerous algorithms which have been proposed

for solving this problem (see [6] for a recent review), we focus on those based

on augmenting paths. Given a feasible flow x we call augmenting network

N =(V,A ,c) a network with the same vertex set V as N, and with arc set
xxx

A deduced from A by
x

2

(aeA and x(a) < cCx))^ (aeA^and c^Ca) = c(a) - x(a)) (1)

(aeA ,h (a) = t(a), t (a) = h(a)
XX x

cx(a) = x(a))

(aeA and x(a) > 0)and

and (2)

Note that I A I ^ 2 I A I
x

We call direct arcs the arcs defined by (1) and reverse arcs the arcs

defined by (2). An augmenting path P relative to a feasible flow x.

is an elementary (s,t) - path in N , and its capacity c (P) is the
X X

smallest of the values c (a) for all the arcs, direct or reverse, in
x

this path. If a feasible flow x admits an augmenting path P, x is

not a maximum flow since we can define a flow x' with value

v(x') = v(x) + cx(p) by increasing (resp. decreasing) the flow on the

direct (resp. reverse) arcs of P by the amount cx(P). On the other hand

if x does not admit an augmenting path, it follows from a theorem by Ford

and Fulkerson [3] that x is a maximum flow. An augmenting path algorithm

starts with any feasible flow x (for instance x=0), seeks an augmen

ting path, than modifies x, and iterates this process until a flow is attai

ned such that no augmenting path exists. When all the capacities and the

initial flow are integer, it is known that any augmenting path algorithm

finds a maximum flow within at most v(x*) iterations, where x* is any maxi

mum flow. When real capacities are allowed,it is possible that an augmen

ting path algorithm may not terminate in a finite number of steps, (see

[3], [7] for two examples). For these two examples, the sequence of flows

constructed by the algorithm converges toward a flow which is still not

On the other hand, tucker has shown [8] that any "consistent"maximum.

augmenting path algorithm must produce a maximum flow in a finite number

of iterations.

3

The algorithm Capacity defined by Edmonds and Karp [2] is an aug

menting path algorithm which uses at every iteration an augmenting path

with largest capacity, producing the maximum possible increase in the

flow value per iteration. When the capacities and the initial flow

are integer they show that the number of iterations is bounded by

0(1 V I 2(log I V I + log c)) where I V I is the number of vertices and

c denotes the average capacity of an arc in the network. Since an aug

menting path with maximum capacity can be found within polynomial time,

it follows that Capacity is a "good algorithm" in the sense of Karp [4] .

However, Zadeh [9] states that "at the present, no bound independent

of the capacities is known for Capacity". It is the purpose of this

paper to show that no such bound can exist and that Edmonds and Karp's

bound is tight.

In the first section we produce a network with real capacities on

which Capacity cannot find a maximum flow within a finite number of

iterations. In section 2 we show that, in contrast with previously known

non-finite augmenting path algorithms [3] , [7]f the sequence of flows

constructed by Capacity converges toward a maximum flow. As a corollary

we obtain for networks with integer capacities an 0(I A I (log I A 1+ log c))

bound on the number of iterations, which is similar to the bound of Edmonds

In section 4, we construct a class of networks with integerand Karp.

capacities for which this bound is tight.

4

2. A bad network for Capacity

In this section we will denote an arc a by (t(a), h(a)), the choice

of the precise arc among the multiple arcs having same endpoints being

clear from the context.

Consider the network N=(V,A,c) given in Figure 1. It has eight

nodes, namely the source s, the sink t and six intermediate nodes numbered

from 1 to 6, and nineteen arcs, classified as follows:

(1,2) and (3,4) with capacity rspecial arcs:

(5,6) with capacity 1

(s,5) and (6,t) with capacity 1

(s,l), (2,4), (3,6) and (5,t) with capacity =-|-r +

(s,3) and (4,t) with capacity r

(s ,2) , (1,3), (4,6) and (5,t) with capacity S2 = y

(s,2), (1,4), (3,5) and (6,t) with capacity = ^ r

supplementary arcs:

1
2

= y (VT- 1) = .61803398.... We note that this network includes,where r

for ease of demonstration, multiple arcs. These multiple arcs may

be eliminated by including some additional nodes.

Before describing the application of Capacity to this network, we

recall some useful properties related to the number r:

i-1 i i+1 all i > 1r r = r

v°° 3k+3 1
■ " r - 2 r = .3090169...S3
k=0

c y°° 3k+2 3 =2. r
k=0

?° 3k+l 1= -^ r + y = .8090169...= I rS1 2
k = 0

5

> r > ^ ^ - r r4 > S2 - r2

The first path identified by Capacity is (s ,5),(5,6),(6,t) with

capacity 1, and it is unique. After sending this unit of flow along

this path, we discover three paths with capacity r:

(s,3), (3,4), (4,t)

(s,l), (1,2), (2,4), (4,t)

(s,3), (3,6), (5,6), (5,t) (recall that (i,j) denotes theand reverse

arc (j,i) associated with (i,j) in the augmenting network). For the present.

assume that we select (s,3), (3,4), (4,t).we At this point the arcs

(s,3), (s,5), (4,t) and (6,t)are saturated and their flow will never be mo

dified .

At the third iteration a cyclic pattern starts. The value of flows in

the various arcs at iterations 3k, 3k+l, 3k+2 (where k is an arbitrary positive

integer) are displayed in Table 1.

Special arcs Supplementary arcs with capacity
beginning
of iteration (1,2) (3,4) (5,6) S1 S2 S3

3k-2 3k-3 3k-3 3k-3 3k-33k 0 S-^l-r S2(l-r)) S3(l-r)r r

3k-2 3k-l 3k 3k-3 3k-33k + 1 S^l-r)0 S2(l-r) S3(l-r)r r

3k 3k-1 3k 3k 3k-33k + 2 S1(l-r) S2(l-r)0 S3(l-r)r r

Table 1: Flows in the arcs during the cycle.

At the iteration 3k, the unique augmenting path with maximum capacity is

3k-2
(s,l), (1,2), (2,4), (3,4), (3,6), (5,6), (5,t), with capacity r . This

6

path contains the special arcs and the arcs with (initial) capacity S^.

3k-3 3k-2 v00 3i+l
= 2- r

3kS1(l-rThe flow on these arcs becomes) + r = S^l-r).
i=k

At the iteration 3k+l, the unique path identified by Capacity is (s,2).

3k-l
(1,2), (1,3), (3,4), (4,6), (5,6), (5,t) with capacity r , using the

special arcs and the arcs with capacity The flow on these arcs becomesV
3k

82(1-^). At the iteration (3k+2), the unique path identified by Capacity

is (s,2), (1,2), (1,4), (3,4), (3,5), (5,6), (6,t) with capacity r3k , using

the special arcs and the arcs with capacity V The flow on these arcs

3k
S^l-r). At this point, i.e. iteration 3k + 3, a pattern similar

to the one assumed at iteration 3k is obtained. Hence, the algorithm Capa-

i-2

becomes

city cycles, producing on increase of r in the flow value^At the 4—th

iteration (i ^ 2).

At the second iteration, there are two other possible choices. Note

that all the tie-breaking algorithms that could be defined using Zadeh's

terminology [9] , namely Capacity / Short / Reverse and Capacity / Reverse / Short

If a version of Capacity selectswould make the same choice as before.

(s,l), (1,2), (2,4), (4,t) at the second iteration, the next path would be (s,3),

(3,6), (5,6), (5,t) and is unique. On the other hand, if the second path

selected is (s,3), (3,6), (5,6), (5,t) the third path must be (s,l), (1,2),

(2,4), (4,t). In both cases, the flow which results is the same as the one

obtained after the third iteration in the previous development, and then

the same cyclic pattern occurs.

Finally note that, since the network is planar. Berge's algorithm

[1] applies and produces the maximum flow in nine augmentations.

7

3- Convergence :

In the previous example, the sequence of flows produced by Capacity

converges to the (unique) maximum flow. By reference to the behavior of

other non-finite algorithms for maximum flow [3], [7], which may converge

to a solution which is not a maximum flow, we prove that Capacity is a

valid algorithm, at least in this respect.

The algorithm Capacity produces a (finite or infinite) sequenceTheorem 1:

of flows which converges to a maximum flow.

Proof : to prove this theorem, we use the following well-known Lemma.

Lemma 2 : Given a network and a feasible flow, there exist a sequence of

at most I A I augmenting paths which yields a maximum flow.

Sketch of proof: One proof of this lemma uses the arc-path incidence matrix of

the augmenting network associated with the given feasible flow, and paral

lels the proof of Theorem 4.3, Chapter 4 in[5], Another possible proof is

let x be a feasible flow and x* be a maximum flow (wi-constructive:

thout circuit), and consider the flow x* - x as a feasible flow in the

identify an elementary (s-t) pathaugmenting network associated with x:

with positive flow x* - x and substract their minimum from the flows on

the arcs of this path, eliminating at least one arc, and so on until the

flow is exhausted. Note that if the initial flow has some circuits, we

may consider a maximum flow x* with the same amount of flow on these

itcircuits.

We need prove Theorem 1 only for an infinite sequence of flows. Let

v ,.. ., v , • • • denotes the sequence of values of these flows.
1 2

Sincev ,

this sequence is increasing and bounded above by the capacity of any cut.

it converges. Assume that its limit v is not the maximum value v* of a

8

*
then v - v > 0.flow. Since all the flows constructed are feasible. Thus

there is an integer h such that

*
h v

v < —h+1 - v
V ITT

Now by applying the above lemma to the flow x

tion, we know that there exists an augmenting path with capacity greater than

th
obtained at this h intera-

* v*1 , hence the value of the next flow will be

h v, *v h , v
i— ^ v + - -

or equal to v
TTT

*
h+l > h v v

V +V
I A I I A I

a contradiction. #

This results extends to networks with some infinite capacities: if

there is a cut with finite capacity separating s from t, then the pre

vious theorem applies; otherwise, Capacity finds an infinite flow in ex

actly one iteration.

9

4. Worst-case behavior for networks with integer capacities.

If the capacities (and the initial flow) are integer, we already

know (e.g. [3]) that the number of iterations of Capacity will be finite.

We can derive an upper bound on this number, similar to the one obtained

by Edmonds and Karp, from the developments in the previous section.

Corollary 3 (Edmonds and Karp [2])

If the capacities and the initial flow are integer, the algorithm

Capacity produces a maximum flow in at most 0 (I A I max (log I A I ,

log c)) iterations, where c denotes the average capacity of an arc

in the network.

Proof : in the proof of the previous theorem, we have shown that:

u 4. h h , v*-v
^ v H- - - -

h+1
v

I A I

h+1 < (v* - vh) (1 - -i-)v*-vhence
i a; I

Following the proof of Edmonds and Karp, we obtain by induction

- v*1 ^ v* (1 - ^>hv*

I Al

If the capacities and flow are integer, and if v*1 is not a maxi-

I mum flow then:
- v*1 ^ 1 so h ^ log v*

v*
i->-iogd -

I A I

1
v* < I A I c and -log (1 - for I A I 5s 1Since

I A I 21 A I 2! A I

10

log I A I + log cit follows that h < 1 1
2 I A I 2I A I

which is an 0(I A I (log I A I + log c) bound. #

In the case of networks with some infinite capacities, the term log I A 1+ log c

may be replaced by the logarithm of the finite capacity of any cut. if it exists.

I A I beingThe bound obtained by Edmonds and Karp is similar, with the term

replaced by M, an upper bound on the number of arcs in an indirected cut

separating s and t. However, this number M is usually harder to compute than to

solve the maximum flow problem and furthermore, these bounds are equivalent

in a worst-case sense.

In order to provide a class of networks with integer capacities to

which the application of Capacity leads to 0 (I A I (log I A I + log c))

steps, we begin by displaying a class of networks with fixed number of nodes

and arcs, requiring 0 (log c) iterations of Capacity. For an integer

let = (V,A,c^) where V

of the "bad" network discussed in section 1, and

where [xj denotes the largest integer less than or equal to x, and

q S* 1 and A are the vertex and arc sets

cq (a) = |_2qc(a)j

c(a) is the (real) capacity of the arc a in this bad network. This is a

class of networks with integer capacities, with log c = 0(q).

Proposition 4: The application of the algorithm Capacity to the maximum

flow problem in a network Nq requires a number of iterations of the order

of 0(q) to find a maximum flow.

The proof of this proposition is given in Appendix.

We use this class Nq of networks to construct a class of networks

11

N^' = (V^ , A^1 ,) where v is an integer > 1.

These networks are defined as follows:

rv'* - < (i,j) : ieV, je

— — vq
where s and t are respectively the source and sink of N

2, h(a,(i,j)) = (h(a),j)AVq = < (a, (i,j)) : aeA, (i,j) e / 1,.
• • »v

L
and t(a,(i,j)) = (t(a),i)

;U.x(s,i): ie<^l,. . . ,v >, h(s,i) = (s,i), t(s,i) = s

u ,t): v /> h(j , t) = t , t(j,t) = (t,j)j e • • y

cVq(a,(i,j)) =cq (a) = |^2qc(a)

cVq(s,i) = c ,t) =

2and for all aeA, (i,j)e {l,...,v

q+2
v2

q
N by reproducing each vertexVerbally, these networks are deduced from

v times, by replacing each arc by the complete bipartite graph K and
v,v

q
assigning to each such arc the capacity of the corresponding arc in N .

To this network are added a "supersource" s and a’bupersinU1 t, respec

tively connected to the "old" sources and sinks by arcs with sufficient

We have I VVq I = 8v+2,capacities.

o

I = 19v + 2v and 0(log cVq) - 0(log cq) = 0 (q)vq
I A

To every (s,t) - chain in Nqwe may associate v2 arc-disjoint (s,t)-

chains in N vq. Hence the application of the algorithm Capacity to Nq

2
can be described as sequences of v consecutive augmenting paths correspon

ding to the augmenting paths identified by Capacity in N q provided that

the augmenting paths selected at the iterations v + 1, v + 2,...,2v corres

pond to the same second augmenting path in Nq. In that case, we obtain:

12

The application of Capacity to NVc^ requires about v^O(q)

iterations, that is 0(I A I log c) iterations.

Proposition 5:

Finally, the presence of the term log I A I in the bound on the number

of iterations deserves some comments. Since any augmenting path algorithm re

quires at most 0(I A I c) iterations to find a maximum flow in a network

with integer capacities, it appears that this term loglAl plays a role only

for classes of networks such that

0(log I A I) <0(c) < 0(I A I).

For classes of networks such that c increases more slowly than log I A I ,

the best known bound on the number of iterations is still 0(I A I c) for Capa

city, the same as for any augmenting path algorithm.

13

REFERENCES

[1] C. Berge et A. Ghouila-Houri (1962). Programmes, jeux et réseaux de transport.

Dunod, Paris. (English translation (1976). Programming,Games and Trans

portation Networks, Methuen, London).

[2] J. Edmonds and R.M. Karp (1972). Theoretical Improvements in Algorithmic Effi

ciency for Network Flow Problems. J. Assoc. Comput. Mach. 19, 248-264.

[3] L.R. Ford and D.R. Fulkerson (1962). Flows in Networks. Princeton Univ. Press,

Princeton, N.J.

[4] R.M. Karp (1972). Reducibility among Combinatorial Problems. Complexity of

Computer Computations (R.E. Miller and J.W. Thatcher, eds.). Plenum

Press, New York, N.Y.

[5] E.L. Lawler (1976). Combinatorial Optimization: Networks and Matroids.

Holt, Rinehart and Winston, New York, N.Y.

[6] E.L. Lawler (1977). Shortest Paths and Network Flow Algorithms. Presented at

Discrete Optimization 77, Vancouver, B.C.

[7] J. Ponstein (1972) . On the Maximal Flow Problem with Real Arc Capacities.

Mathematical Programming 3, 254-256.

[8] A. Tucker (1977). A Note on Convergence of the Ford-Fulkerson Flow Algorithm.

Mathematics of Operations Research 2, 143-144.

[9] N. Zadeh (1973). More Pathological Examples for Network Flow Problems.

Mathematical Programming 5, 217-224.

14

Appendix: Proof of Proposition 4

It is easily verified that, for all q > 4, the algorithm Capacity uses,

at the fourth iteration, the path

(s ,2), (1,2), (1,3), (3,4), (4,6), (5,6), (5,t)

which belongs to the cycle.

Hence assume that q ^ 4 and denote by k the number of iterations

which are identical when Capacity is applied to and to the bad network

Since k 5s 4, this k-th iteration is in the cycle.

(resp x ^) the flow in (resp N) after the h-th augmentation

(that is at the beginning of the (h + l)st iteration).

N. Denote by

For commodity of demonstration, we number the special arcs as follows:

a1 =(1,2), a2 = (3,4), a3 = (5,6).

Let h be an integer such that 4 < h < k, and i, j, £ be integers

in {1,2,3} such that i = h (mod 3), j = h + 1 (mod 3) and £= h + 2 (mod 3).

Lemma 6 :

If h is odd, then:

oq h-1 2Mr Xhq(ai) < 2qrh-1 + F

q h-2 nr

h-1

2qrh 2-F W ^2
xh,(a£)

h-2

= 0.

If h is even, then:

< 2‘>rh-12qrl>-l ,thq<al)

< 2qrh'2

-Fh-1

< *hq(aj)0q h-2 2^r + Fh-2

= 0,

15

where denotes the i-th Fibonacci number, defined by

for i ^ 2 .Fo - 0, Fl - 1, F = F
i i-1

+ F
i-2

2 Vl <L 2’r J < 2'>r

2’r2 < 2<I - 2’r j < 2V2

Proof: Since

+ 1and

the lemma is verified for h = 4.
q

Whenever h ^ k, Capacity follows the same paths in N

Assume the lemma holds for h > 4 and consider the augmenting path

generated at the iteration h+1 ^ k. This augmenting

as in N.

path includes the special arcs a^

reverse arc, and the supplementary arcs with initial capacity

direct arcs.

and a^ as direct arcs, and a^ as

as

The flow driven along this path in is the flow on a^

in N) and the resulting flows verify, when h is odd:(since h + 1 < k, as

Xh+l>q(ai> ‘ °

-2qrh 1-F9q h-2
2 r *h+i,q<aj> <2,,rh'2 9q h-1

-2 r-F
h-2 h-1

2qrh-F.
h

*h+i>q<V <2qrhso

2<lrh-1 h-1Xh+1,q(a£) < 2qr<and +F
h-1

After properly redefining i, j and Z , the lemma is verified since

h+1 is even.

The argument is similar for h even and thus the lemma is proven #

Lemma 7 ; Let h be an integer such that 4 ^ h < k.
q

tary arc a, its "remaining capacity" c^(a) - x^(a) in N after the k-th

For any supplemen-

16

augmentation is bounded by

2q(c(a)-xh(a))-Fh_2~l < c(i(a)-xhci(a) < 2q(c(a)-xh(a)) + F
h-1

when h is odd, and by

2q(c(a)-xh(a))-F cq(a)-xliq(a) < 2q(c(a)-xh(a)) +F-1 <
h-1 h-2

when h is even.

Proof ; this lemma is verified for h = 4. As mentionned before, the

(h+1 ^ k) augments the flow on the supplementary arcsaugmenting path P
h+1

with initial capacity S^, Z = h+2 (mod 3) by an amount equal to the

flow on the special arc a^, i = h (mod 3). Hence, for h odd:

-l-2qrh_1-F2q(c(a)-xh(a))-F <Cq (a)‘Vl,q(a) <2q(c(a)-Xh(a))+Fh_1
h-2 h-1

„q h-1
+2 r

that is 2q(c(a)-xh+1(a))-Fh-l < cq(a)-xh+1^(a) < 2q(c(a)-xh+1(a))+Fh_1

for the supplementary arcs on P Since the flow has not been modifiedh+1'

on the other supplementary arcs, the lemma is verified for h+1 (which is even)

#and all supplementary arcs. The proof for h even is similar.

associated to Nq and the flowIn the augmenting network N , the"hq
"hq

(a)capacity c of any arc a is bounded by
"hq

(a) < 2qc (a)+F. .+12qc (a)-F -1 ^ c
h-1 h-1"hq

(a) is the capacity of the corresponding arc in Nwhere c
*h

The relation extends to augmenting paths P:

(P) < 2qc (P)+F. -+12qc (P)-F -1 ^ c
h-1h-1 "hq

for all integer h, 4 < h ^ k.

17

Let be the unique augmenting path which is selected by Capacity

By considering the flows given in table 1 and using the relationsin N.

between S^, S2, and the powers of r, one obtains:

(Pk+l) > Cx- (P)+rk"2(l-S1)c

for all augmenting path P =£ Pk+1*

It follows that

C «k+l» =• \ <P> + ^ra-S^-27^-2
Xkq

Since we assume that k is the last iteration such that P is selected,
k+1

it must be true that

2F. .+2-2qrk~2 (i-s1) > 0.
k-1

Using the well-know relation

n-1
F < (1+r)
n

where 1+r = ~ (/5+1) is the "golden ratio"

2(l+r)k_2+2 > 2qrk_2(l-S1)

JL 2
k-2 >

all n ^ 1

, one obtains:

/1+r>k-2
v r ;

q-ia-s^+so
r

Using the relation—i- 1+r<r , it follows
r

(Ü£) k"2 q-2
> 2 (1-S^^)

that is

log 2
q log(l+ï7r)

21og2 -log(l-S^)
log(l+l/r)

k > 2

//k ^ 0(q)or

for

'

1

A CONSULTED
sua PLACE

1

li

-

I
ÉCOLE POLYTECHNIQUE DE MONTRÉAL

I9334 ÔÔ268964 8

I
I

TJ

]

J

J

