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1. Introduction
We consider the problem of price equilibrium in
markets where multiple firms produce differentiated
products. Many firms face the problem of determin-
ing pricing and inventory policies in markets where
demand depends not only on their own price, but also
on the prices of competing products. Section 3 lists
several examples of operations management prob-
lems that fit this framework. Key questions include
the existence, uniqueness, and stability of equilibrium
when firms are individually setting optimal prices.
We present a set of conditions under which a unique
and stable pure-strategy equilibrium is guaranteed to
exist in a Bertrand oligopoly price competition model
when demand is determined by an attraction model
and cost functions are convex. We also show that if
individual firms follow a “best response approach” to
current prices set by other players, then prices con-
verge to the unique and stable pure-strategy equilib-
rium. Finally, we provide the convergence rate of this
tatônnement scheme.

1.1. Demand and Cost Models
In the Bertrand oligopoly price competition model
for differentiated products, a variety of demand and
cost models has been used. Table 1 illustrates com-
monly used demand models. We let n be the num-
ber of firms, which are indexed by i = 1� � � � �n.
The demand for each firm is specified as a func-
tion of prices. Let pi denote the price of firm i, and
define the price vector of competing firms by p−i =
�p1� � � � � pi−1� pi+1� � � � � pn�. Also denote the vector of
all prices by p = �p1� � � � � pn� = �pi�p−i�. The demand
for each firm i is given by di = di�p�. Demand func-
tions are deterministic but can be interpreted as
expected demands in many applications. We assume
that firm i’s demand is strictly decreasing in its price
(i.e., 	di/	pi < 0) and that products are gross substi-
tutes (i.e., 	di/	pj ≥ 0 whenever j �= i).

In this paper we consider a generalization of the
logit demand model called the attraction demand model:

di�p� 
=
ai�pi�∑

j aj �pj �+�
� (1)
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Table 1 Common Demand Models

Demand model di �p� Restriction

Linear �ai − bipi + ci
∑

j �=i pj �
+ ai > 0, bi > 0, ci ≥ 0

Constant p
1/��−1�
i /�

∑
j p

�/��−1�
j ��1−
�/�1−�
� 
� � ∈ �0�1�

elasticity
Constant p−1

i · g�pi �/
∑

j g�pj � Positive, smooth, and
expenditure strictly decreasing g∗

Logit ki exp��pi �/
∑

j kj exp��pj � � < 0, kj > 0
Attraction ai �pi �/�

∑
j aj �pj �+ �� �≥ 0, Assumption A

∗Examples include the CES function g�p� = p−r where r > 0, and the
exponential function g�p�= exp�−�p� where �> 0.

where � is either 0 or strictly positive.
The attraction function ai�·� of firm i is a positive

and strictly decreasing function of its price. Without
any loss of generality, we normalize demand so that
the total demand does not exceed 1. If �= 0, the total
demand of n firms equals exactly 1; if � is strictly
positive, it is less than 1, possibly accounting for lost
demand to an outside alternative.

Luce (1959) has shown that the attraction demand
model (1) can be derived axiomatically based on
simple assumptions about consumer behavior.1 As
discussed in Anderson et al. (1996) and Mahajan
and van Ryzin (1998), the attraction demand model
has successfully been used in estimating demand in
econometric studies and is increasingly accepted in
marketing, e.g., Besanko et al. (1998). See So (2000),
Bernstein and Federgruen (2004b), and references
therein for its applications in operations management.

We now consider the cost model. We assume that
cost is a function of demand alone. We denote firm i’s
cost function by Ci�di� defined on di ∈ �0�1� and
assume Ci is increasing and convex.

The profit of firm i is the difference between its
revenue and cost, given by

�i 
=�i�p� 
= pi · di�p�−Ci�di�p��� (2)

Each firm’s objective is to maximize �i.
In this paper, we impose mild technical conditions

on the attraction demand and cost models as outlined

1 Interested readers are referred to Debreu (1960) and Mahajan and
van Ryzin (1998) for discussions on a paradox resulting from Luce’s
(1959) axioms. To avoid this paradox, the alternatives in the attrac-
tion model should be “equally dissimilar.”

in §2. We then verify that these conditions are satis-
fied by commonly used attraction functions and cost
models.

1.2. Literature Review
The study of oligopolistic interaction is a classical
problem in economics. In the model proposed by
Cournot (1838), firms compete on production output
quantities, which in turn determine the market price.
In Bertrand’s (1883) model, competition is based on
prices instead of production quantities. In the price
competition models by Edgeworth (1922, 1925), each
firm decides how much of its demand is satisfied, in
which case a pure strategy equilibrium may or may
not exist. In addition, price competition with product
differentiation has been studied by Hotelling (1929),
Robinson (1933), and Chamberlin (1933). An extensive
treatment of the subject is found in Vives (1999). We
provide a summary of results regarding the existence,
uniqueness, and stability of equilibrium, followed by
their application in the operations management liter-
ature.

1.2.1. Existence. There are two common methods
to show existence of an equilibrium in price com-
petition games. The first method is to obtain exis-
tence through the quasiconcavity and continuity of
�i in pi. Assuming a linear cost model, Caplin and
Nalebuff (1991) show that a sufficient condition for
�i to be quasiconcave is the concavity of logdi�p� in
log pi, which is equivalent to �pi/di��	di/	pi� decreas-
ing in pi. Another sufficient condition is the convexity
of 1/di�p� in pi. From these conditions, the quasicon-
cavity of �i in pi holds in the logit demand model and
the constant expenditure demand model with CES or
exponential functions.

The second method shows existence through super-
modular games. The price competition game is
supermodular provided that for each i, �i is upper
semicontinuous in pi, and �i�pi�p

1
−i� − �i�pi�p

2
−i� is

increasing in pi whenever p1
−i ≥ p2

−i. Topkis (1979)
shows the existence of an equilibrium in supermodu-
lar games, and Milgrom and Roberts (1990) for mono-
tone transformation of supermodular games. Thus,
if the price competition game is supermodular, it
has at least one equilibrium. Similarly, Milgrom and
Shannon (1994) show the existence of a Nash equi-
librium for a generalization of supermodular games,
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called games with strategic complementarities. Such
games include instances of price competition.

Vives (1999) summarizes two additional methods
of showing existence in some special cases: (i) two-
player games with decreasing best response functions
and (ii) symmetric games in which the best response
function of a player depends only on the aggregate
actions of others and the action sets are one dimen-
sional. Dubey et al. (2003) use yet another approach
of pseudopotential games and show existence and the
convergence of a method based on fictitious plays.2

Yet they show neither the uniqueness of an equilib-
rium nor the convergence rate.

1.2.2. Uniqueness. The most common method to
show uniqueness is the following contraction condi-
tion (see, for example, Milgrom and Roberts 1990):

	2�i

	p2
i

+∑
j �=i

∣∣∣∣ 	2�i

	pi	pj

∣∣∣∣< 0� (3)

or a similar condition in which �i is replaced by
log�i. In general, it is not easy to verify this con-
dition on the entire action space unless the demand
model is symmetric. An exception is Bernstein and
Federgruen (2004b), who show uniqueness using the
attraction demand model and linear cost model under
certain conditions. In supermodular price competition
games, the contraction condition (3) is satisfied by the
linear demand model with convex costs or the linear
cost model and the constant elasticity, logit, or con-
stant expenditure demand models. Thus, these suffi-
cient conditions require either the demand model or
the cost model to be linear. In fact, when the action
space is unbounded, the above contraction condition
(3) is always violated for some large pi.3

1.2.3. Stability. By definition, a set of actions at
equilibrium is a fixed point of the best response
mapping. A simultaneous discrete tatônnement is a
sequence of actions in which the current action of
each firm is the best response to the previous actions

2 A fictitious play refers to the strategy in which each player uses
best responses to the historical averages of opponents.
3 For any fixed p−i , consider �i as we increase pi . Because �i is
strictly decreasing for large pi (see Proposition 2) and is bounded
below (from (2)), the second derivative of �i must be positive at
some point.

of other firms. An equilibrium is globally stable if
the tatônnement converges to this equilibrium start-
ing from any initial set of actions. Vives (1990) shows
that if a supermodular game with continuous payoffs
has a unique equilibrium, it is globally stable. Little
is known regarding the convergence rate of the tatôn-
nement in the price competition game.

1.2.4. Operations Management Applications.
There is a growing interest in oligopolistic price com-
petition in the operations literature. To predict and
study market outcomes, the existence and the unique-
ness of equilibrium are often required. Stability
and convergence rate indicate both the robustness
of equilibrium and the efficiency of computational
algorithms.

Bernstein and Federgruen (2004b) study a multiple-
period inventory model with linear costs where com-
petition is based on both price and service level.
They also consider the single-period price-only com-
petition, where the vector of service levels is given
exogenously and the price vector is simultaneously
determined by all sellers. This single-period com-
petition is further described in Example 3 of §3,
where demand uncertainty is multiplicative and there
is neither a minimum stocking level nor a capacity
constraint (i.e., �i = −
 and �i = 
). For a variety
of demand models, including the attraction model
and the linear model, an equilibrium exists and
is unique. Bernstein and Federgruen (2004a) study
comparative statics in pricing competition. Bernstein
and Federgruen (2003) and Bernstein et al. (2002)
study a supply chain in which multiple compet-
ing retailers are replenished from the single firm.
In particular, Bernstein et al. (2002) show that the
vendor-managed inventory arrangement can coordi-
nate the retailers’ pricing decision. All of the above
models use supermodular games. Price competition
in the queueing-based service systems is studied in
Allon and Federgruen (2004). In their model, firms
compete on price and waiting time. Their paper
employs the results of this paper for the attraction
demand model with convex costs.

Cachon and Harker (2002) study duopoly price
competition with cost function Ci�di� = c1

i di + c2
i d

�i
i ,

where c1
i > 0, c2

i ≥ 0, and �i ∈ �0�1�. Note that this
cost function is concave in demand. Using the linear
demand model or truncated logit demand, they show
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the existence of equilibrium under certain technical
conditions. Uniqueness is shown only for the sym-
metric case.

1.2.5. Supermodular Games and Price Competi-
tion. The existence, uniqueness, and stability of equi-
librium results are easily obtained in the case of
supermodular games. Yet Bernstein and Federgruen
(2004b) suggest that when the game fails to be super-
modular, “little can be said � � � in general, about the
structure or cardinality of the set of Nash equilib-
ria.” Vives (1999) shows that with nonsupermodu-
lar oligopoly games, “in general, a wide array of
outcomes between the monopoly and the competi-
tive solution are possible.” Consequently, it is not
surprising to note that nearly all uniqueness proofs
in price competition rely on the supermodularity of
games and an imposed contraction assumption. Yet
Vives (1999) remarks that oligopoly price competi-
tion games need not be supermodular and points out
examples by Roberts and Sonnenschein (1977) and
Friedman (1983). In the price competition literature, if
a supermodular game has an explicit demand model
and cost model, it typically assumes either the lin-
ear demand model or the linear cost model. The only
exceptions are Cachon and Harker (2002), Milgrom
and Shannon (1994), and Mizuno (2003). The first is
restricted to symmetric duopoly. The second shows
existence but not uniqueness. It does not require a
convex action space, but requires a compact action
space. The third shows uniqueness under a strong
assumption on demand: Namely, the demand vector
remains the same if the price vector is increased uni-
formly or multiplied by a scalar.

1.3. Contribution and Organization
We show the uniqueness of equilibrium in Bertrand
oligopoly price competition using an attraction de-
mand model with convex costs. We illustrate the
applicability of our generalization by illustrating con-
vex cost models that arise in inventory and service
systems.

Second, the action space of most previous Bertrand
oligopoly models is assumed to be compact. Thus,
even if existence can be shown for the compact space,
an equilibrium is possibly a boundary solution, and
no interior equilibrium may exist within the com-
pact action space. Consequently, to identify an inte-
rior equilibrium solution, an additional assumption

needs to be introduced, as in Benassy (1989) and Vives
(1985). In this paper, we identify sufficient conditions
for the unique equilibrium to be in the interior of the
set. In particular, we allow unbounded action spaces.

Finally, we show that the unique equilibrium is
globally stable and guarantee a linear convergence
rate of tatônnement regardless of the initial actions.
This is the first paper that identifies the conver-
gence rate of simultaneous discrete tatônnement in a
Bertrand oligopoly price competition game. Because
the unique equilibrium generally does not have an
analytic solution, this result is useful in the numerical
computation of the equilibrium.

The organization of the rest of this paper is as
follows. Section 2 outlines our modeling assump-
tions on the attraction functions and the cost func-
tions. This section also shows that many common
attraction functions satisfy these assumptions. Sec-
tion 3 lists convex cost examples in operations man-
agement, to which our model becomes applicable.
Section 4 proves the existence of unique equilibrium,
also shown to be globally stable in §5. Section 5
also proves the linear convergence of the tatônnement
scheme. Computational results follow in §6.

2. Assumptions
This section lists our assumptions on the attraction
function ai�·� in (1), the profit function �i and the cost
function Ci�·� in (2). We show that these assumptions
are satisfied by common attraction functions.

We let �i 
= inf�p
 ai�p� = 0� be the upper bound
on price pi, where �i may be infinite. Firm i’s action
space for price is an open interval �0��i�. Let � 
=
�0��1�× · · ·× �0��n�. Let

�i�p� 
=−p · a′i�p�/ai�p�

be the elasticity of firm i’s attraction function. We
adopt the following simplifying notation: f �x+� 
=
limh↓x f �h�, f �x−� 
= limh↑x f �h�, inf�=
, and y/�y+
k�= 1 if y =
 and k is finite.
Condition A. For each firm i,
(A1) ai�·� is positive, strictly decreasing and contin-

uously differentiable; i.e., ai�p� > 0 and a′i�p� < 0 for
all p ∈ �0��i�. It follows that the elasticity of attraction,
�i�·�, is positive for p ∈ �0��i�.
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(A2) The elasticity �i�·� is nondecreasing. In other
words, when the price is higher, the percentage
decrease in the attraction function per percentage
change in price is also higher. This assumption is cen-
tral to the existence and uniqueness proofs. It is used,
for example, to show that the first-order condition (4)
has a unique solution pi for any p−i.

(A3) If ai�0+� < 
, then a′i�0+� > −
. It follows
that when the price is low enough, the elasticity of
attraction is close to 0; that is, �i�0+� = 0. This is
needed to prove the interiority of equilibria (Proposi-
tion 3); in any equilibrium, firm i would never set its
price pi = 0. We remark that (A3) holds vacuously if
ai�0+�=
.
Condition B. For each firm i,
(B1) Ci�·� is strictly increasing, continuously differ-

entiable, and convex on �0�1� (i.e., ci�·� 
=C ′
i �·� is pos-

itive and increasing), and satisfies ci�0+� > 0.
Condition C. For each firm i,
(C1) ci�0� < �i · �1 − 1/�i��i��, that is, the Lerner

index �pi−ci�di��/pi at price pi = �i and demand di = 0
is strictly larger than 1/�i��i�. It means that no firm
would set the maximum price in equilibrium because
its profits are decreasing at this price. It is needed for
the interiority of equilibria.

(C2) If � = 0, then ci�1� < �i. It means that firm i

could profitably serve all demand.
(C3) If � = 0, the following technical condition

holds:
n∑
i=1

(
1− 1

�i��i� · �1− ci�1�/�i�

)
> 1�

This inequality holds when there are at least two dis-
tinct firms i satisfying �i��i�=
. Note �i <
 implies
�i��i�=
.
We note that both (C2) and (C3) are used for the
uniqueness proof only (Proposition 6).

Proposition 1 shows that these conditions are satis-
fied for arbitrary cost functions satisfying Conditions
(B1) and (C2):

• Generalized logit attraction function: ai�p� =
exp�−"ip� with "i > 0;

• Cobb-Douglas attraction function: ai�p� = p−�i

with �i > 1;
• Linear attraction function: ai�p� = #i − $ip with

#i�$i > 0.

Proposition 1. Suppose n≥ 2, and cost function Ci�·�
satisfies Conditions (B1) and (C2) for each i. Then, Condi-
tions A, B, and C are satisfied, provided that each firm i’s
attraction function is either (i) generalized logit, (ii) Cobb-
Douglas with an additional assumption �i > 2 in case of
�= 0, or (iii) linear where #i/$i > ci�1�.

Proof. (i) We get �i =
 and a′i�p�=−"i exp�−"ip�.
Thus, �i�p�= "ip, �i��i�=
, ai�0+�= 1, and a′i�0+�=
−"i, satisfying Condition A. In addition, because ci�0�
is finite, �i · �1 − 1/�i��i�� = 
 implies (C1). Further-
more, 1− ��i��i� · �1− ci�1�/�i��

−1 = 1.
(ii) We have �i = 
 and a′i�p� = −�ip

−�i−1. Thus,
the elasticity �i�p� = �i is constant for all p ∈ �0��i�,
and ai�0+� = 
, satisfying Condition A. Also, (C1)
follows from �i · �1− 1/�i��i�� = �i · �1− 1/�i� =
. If
�= 0, then we assume �i > 2 and get 1− ��i��i� · �1−
ci�1�/�i��

−1 = 1− 1/�i > 1/2.
(iii) We have �i = #i/$i and a′i�p� = −$i. Thus,

�i�p�= $ip/�#i−$ip�, and ai�0+�= #i, satisfying Con-
dition A. In addition, we obtain �i��i�=
, and thus
�i · �1− 1/�i��i�� = �i = #i/$i > ci�1� ≥ ci�0�, implying
(C1). As 1 − ci�1�/�i > 0, we obtain 1 − ��i��i� · �1 −
ci�1�/�i��

−1 = 1.
Now, (C3) follows easily, because in each of the

above three cases, 1−��i��i� ·�1−ci�1�/�i��
−1 is strictly

greater than 1/2. �

Condition (B1) essentially means that Ci�·� is a
smooth convex function in di. Examples of Ci�·� in-
clude the linear function and exponential function.
More examples are provided in §3. We remark that
attraction functions do not need to be identical. Fur-
thermore, even the form of the attraction function
may not be same among firms. Analogously, the cost
functions need not have the same form either.

For the rest of this paper, we assume Conditions A,
B, and C hold. In §5, we introduce as an additional
assumption that both Ci�·� and ai�·� are twice contin-
uously differentiable.

3. Examples
In this section, we list price competition models for
which the convex cost model is applicable. With the
attraction demand model, the results of this paper
show the existence and uniqueness of equilibrium
in these models. We present some examples from
inventory-capacity systems, followed by those from
service systems based on queues.
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3.1. Inventory-Capacity Systems
Example 1. Consider the pricing problem in the

stochastic inventory system with exogenously deter-
mined stocking levels. We denote stochastic demand
of firm i by Di�p� and its expected demand by di�p�.
Demand is a function of the price vector p= �p1� � � � �
pn�. We represent firm i’s stochastic demand by
Di�p1� � � � � pn� = &�di�p�� 'i�, where 'i is a random
variable. (We can allow & to be dependent on i.)
We suppose the continuous density function fi�·� for
'i exists and let Fi�·� denote its cumulative density
function.

Let yi be the exogenously fixed stocking level of
firm i. For the first yi units, the per unit materials cost
is wi. If realized demand is at most yi, the per unit
salvage value of wi−hi > 0 is obtained. Otherwise, the
excess demand is met through an emergency supply
at the cost of wi + bi per unit, where bi ≥ 0. The profit
of firm i is the difference between its revenue and
costs, and the expected profit is �i�p � yi�= pi · di�p�−
Ci�di�p�� yi�� where

Ci�di� yi� = widi +hiE�yi −&�di� 'i��
+

+ biE�&�di� 'i�− yi�
+�

and hi and bi are the per unit inventory overage and
underage costs, respectively.

Our goal is to show that for fixed yi, this function
satisfies Condition (B1). We achieve this goal with two
common demand uncertainty models.

• Additive demand uncertainty model: &�di� 'i� =
di + 'i where E�'i�= 0. Then,

	Ci�di� yi�

	di
= wi −hiP�yi ≥ di + 'i�+ biP �yi ≤ di + 'i�

= wi −hiFi�yi − di�+ bi�1− Fi�yi − di���

• Multiplicative demand uncertainty model: &�di�
'i�= di · 'i where 'i is positive and E�'i�= 1. Then,

	Ci�di� yi�

	di
= wi −hi

∫ yi/di

0
'dFi�'�+ bi

∫ 


yi/di

' dFi�'�

= wi −hi + �hi + bi�
∫ 


yi/di

' dFi�'��

In both cases, 	Ci�di� yi�/	di is positive, as wi > hi and
nondecreasing in di. We conclude that for fixed yi,
Ci�di� yi� is strictly increasing, twice continuously dif-
ferentiable, and convex in di. Furthermore, 	Ci�di� yi�/
	di > 0 at di = 0.

Example 2. We modify Example 1 to allow the
stocking decision to exist as an operational decision,
where the stocking level is constrained. The sequence
of events occurs as follows. (1) Firms decide prices
simultaneously. (2) The price vector p= �p1� � � � � pn� is
announced. (3) Each firm i decides on the stocking
level yi, subject to the minimum stocking level and
capacity constraint �i ≤ yi ≤ �i. (4) For each firm i,
demand is realized, and the appropriate overage and
underage cost is incurred.

For any given p, firm i’s expected demand is given
by di = di�p�, and its optimal stocking level can be
computed. Let yNV

i �di� be the solution to the newsven-
dor problem; i.e., P�&�di� 'i� ≤ yNV

i �di�� = bi/�bi +hi�
where bi and hi are defined in Example 1. Let y∗

i �di�
be the optimal stocking level, which is yi maximizing
�i�p � yi� subject to �i ≤ yi ≤ �i. Then y∗

i �di� is the point
in the interval ��i� �i� that is the closest to yNV

i �di�; i.e.,
y∗
i �di�=max��i�min�yNV

i �di�� �i��.
In the additive demand uncertainty model, we get

y∗
i �di� = max��i�min�di + zi� �i��, where zi = F −1

i �bi/
�bi +hi��. Then

Ci�di� y
∗
i �di��

=widi+hiE�y
∗
i �di�−&�di�'i��

++biE�&�di�'i�−y∗
i �di��

+

=




widi +hiE��i − di − 'i�
+ + biE�di + 'i − �i�

+�

if �i > di + zi or �i > �i

widi +hiE�zi − 'i�
+ + biE�'i − zi�

+�

if �i ≤ di + zi ≤ �i

widi +hiE��i − di − 'i�
+ + biE�di + 'i − �i�

+�

if di + zi > �i and �i ≤ �i�

We can easily show that Ci�di� y
∗
i �di�� is strictly

increasing, twice differentiable, and convex in di.
Similarly, we obtain the analogous result for the
multiplicative demand uncertainty model, in which
y∗
i �di� = min�dizi� �i�. Furthermore, if �i = −
 and
�i =
, then Ci�di� y

∗
i �di�� is linear in di.

Example 3. We modify Example 2 to model the
minimum service level requirement. Suppose that a
vector �f1� � � � � fn� is exogenously specified such that
firm i’s stock-out probability should be at most 1− fi.
We remove the capacity constraint (i.e., �i = 
 for
all i) to avoid infeasibility. Then, all the results in
Example 2 continue to hold, with the redefinition of
zi = F −1

i �max�fi� bi/�bi +hi���.
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Consider a special case of this example in which
the stocking levels are determined solely by the
�f1� � � � � fn� vector (i.e., zi = F −1

i �fi�), and the minimum
stocking levels do not exist (i.e., �i = −
). Then Ci

is linear. In this case, the uniqueness and existence
are first proven by Bernstein and Federgruen (2004b)
using supermodular games.

We remark that in Examples 2 and 3, the second
derivative of Ci with respect to di may not be contin-
uous. In such cases, the existence and uniqueness still
hold; yet our results regarding stability and conver-
gence rate in §5 do not apply.

3.2. Service Systems
Example 4. We model each firm as a single server

queue with finite buffer, where the firms’ buffer sizes
are given exogenously. Let �i denote the size of
firm i’s buffer; no more than �i customers are allowed
to the system. We assume exponential service times
and the Poisson arrival process. The rate 0i of ser-
vice times is exogenously determined, and the rate di
of Poisson arrival is an output of the price competi-
tion. In the queueing theory notation, each firm i is a
M/M/1/�i system.

We assume that the materials cost is wi > 0 per
served customer, and the diverted customers’ demand
due to buffer overflow is met by an emergency supply
at the cost of wi + bi unit per customer, where bi > 0.
The demand arrival rate di = di�p� is determined as a
function of the price vector p. It follows that firm i’s
time-average revenue is pi · di −Ci�di�, where Ci�di� is
the sum of wi ·di and the time-average number of cus-
tomers diverted from the system is multiplied by bi.
Thus, according to elementary queueing theory (see,
for example, Medhi 2003),

Ci�di� = wi · di + bi ·
di · �1− di/0i��di/0i�

�i

1− �di/0i�
�i+1

� if di �=0i

= wi · di + bi ·
di

�i + 1
� if di =0i�

Algebraic manipulation shows that Ci�·� is con-
vex and continuously twice differentiable, satisfying
ci�0�=wi > 0.
Example 5. Consider price competition among

M/D/1 queueing systems in which the service level 2i
of each firm i is exogenously specified. The fol-
lowing sequence of events occurs. (1) Firms decide

their prices simultaneously. (2) The price vector
p= �p1� � � � � pn� is announced. (3) Each firm i decides
on its capacity 0i, which is the service rate. It takes
exactly 1/0i time units to serve a customer. We
assume that firm i’s capacity cost is proportional to its
capacity. The service level is defined as the reciprocal
of the expected amount of time spent in the system,
and capacity should be sufficient enough to satisfy the
minimum service level. (4) For each firm, customers
arrive at each queueing system according to a Poisson
process with rate di. We assume zero marginal cost of
production.

The expected amount of time spent by a customer
in firm i’s queueing system is given by

1
2i

= 1
0i

+ di
2�0i − di�0i

�

Thus, using the quadratic formula, firm i’s capacity
should be

0i =
di
2
+ 2i

2
+

√
d2
i + 22

i

2
�

which is convex in di. Recall that firm i’s expected
profit pi ·di−Ci�di�, where Ci�di� is proportional to 0i.
The cost function Ci is convex and continuously twice
differentiable. Furthermore, C ′

i �0� > 0.
We remark that this simple example is a special case

of a general model presented in Allon and Federgruen
(2004). They provide extensive treatment of G/G/1
queueing systems.

4. Existence and Uniqueness of
Equilibrium

In this section, we show that the oligopoly price com-
petition has a unique equilibrium. Given the price
vector, each firm’s profit function is given by Expres-
sion (2), where its demand is determined by (1). We
first show that the first-order condition 	�i/	pi = 0
is sufficient for the Nash equilibrium (Proposition 2).
For each value of a suitably defined aggregate attrac-
tion 4, we show that there is at most one candidate
for the solution of the first-order condition (Propo-
sition 3). Then we demonstrate that there exists a
unique value 4 of the aggregator such that this candi-
date indeed solves the first-order condition (Proposi-
tions 5 and 6). We proceed by assuming Conditions A,
B, and C.
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Let 5i�p� 
= �i�pi� · �1− di�p��.

Proposition 2. Firm i’s profit function �i is strictly
quasiconcave in pi ∈ �0��i�. A vector of prices p∗ =
�p∗1� � � � � p

∗
n� ∈ � satisfies 	�i�p∗�/	pi = 0 for all i if and

only if p∗ is a Nash equilibrium in �. Also, p∗i > ci�0� for
each i. Furthermore, the condition 	�i/	pi = 0 is equiva-
lent to

ci�di�p��
pi

= 1− 1
5i�p�

� (4)

Note that the condition in (4) is analogous to the
inverse elasticity condition for optimal monopoly
pricing.
Proof. Compute the partial derivative of �i with

respect to pi ∈ �0��i�. We abuse the prime notation and
use it for the partial differentiation with respect to pi.

	�i

	pi
= d′

ipi + di −C ′
i �di�d

′
i

=
(

ai∑
aj +�

)′
�pi − ci�di��+

ai∑
aj +�

= a′i�
∑

aj +��− aia
′
i

�
∑

aj +��2
�pi − ci�di��+

ai∑
aj +�

= a′i�1− di�∑
aj +�

�pi − ci�di��+
ai∑
aj +�

=
(
�1− di�pia

′
i∑

aj +�

)(
pi − ci�di�

pi
+ ai

pia
′
i

1
1− di

)
(5)

Note that the first factor is negative. Thus, 	�i/	pi = 0
is equivalent to setting the second factor to zero,
which yields (4).

Let li�pi� and ri�pi� be the left and right sides of (4)
respectively; that is,

li�pi� 
=
ci�di�p��

pi
and ri�pi� 
= 1− 1

5i�p�
�

We claim that ri�pi�− li�pi� is a strictly increasing func-
tion of pi. To see this, as di�p� is strictly decreasing
in pi, by (B1), li�·� is strictly decreasing. Also, because
1− di�p� is positive and strictly increasing in pi, (A2)
implies that 5i�p� is positive and strictly increasing
in pi. Hence, ri�·� is strictly increasing. Thus, the claim
follows.

The first factor in (5) is negative, and the second
factor is ri�pi� − li�pi�, which increases strictly. Thus,
	�i/	pi has at most one sign change (from positive to
negative), and the change occurs when li�pi� = ri�pi�,

or 	�i/	pi = 0. It follows that �i is strictly quasicon-
cave in pi. By quasiconcavity, p∗ = �p∗1� � � � � p

∗
n� ∈� is a

Nash equilibrium if it satisfies 	�i�p∗�/	pi = 0 for all i.
Because p∗ is an interior solution, 	�i�p∗�/	pi �= 0 for
some i implies that p∗ is not a Nash equilibrium.

Furthermore, because 5i�p∗� is positive, �ci�di�p∗��−
p∗i �/p

∗
i is negative by (4). Thus, p∗i > ci�di�p∗�� ≥ ci�0�,

where the second inequality follows from (B1). �

Given a price vector, let 4 
= ∑n
j=1 aj�pj � be the

aggregate attraction. The support of 4 is 8 
=
�0�

∑n
j=1 aj�0+��. From (A1), it follows that 4 ∈8. Then

di = ai�pi�/�4+��. Because a−1
i is well defined by (A1),

we get pi = a−1
i ��4+��di�. Thus, (4) is equivalent to

ci�di�

a−1
i ��4+��di�

= 1− 1
�i � a−1

i ��4+��di� · �1− di�
� (6)

Observe that there is one-to-one correspondence
between p = �p1� � � � � pn� and d = �d1� � � � � dn�, given
4 (and of course, �). Let Di�4� be the solution to (6)
given 4 (and �). The existence and uniqueness of Di�4�

are guaranteed by Proposition 3 below. The Di�4�’s
may not total the “correct” value of 4/�4+ �� unless
a set of conditions is satisfied (Proposition 5). Propo-
sition 6 shows the existence of a unique 4 such that
the Di�4�’s sum up to 4/�4+��.

Let d̄i�4� 
= min�ai�0+�/�4+���1� be an upper
bound on the market share of firm i. For each fixed
4 ∈ 8, we define the following real-valued functions
on �0� d̄i�4��:

Li�xi � 4� 
=
ci�xi�

a−1
i ��4+��xi�

and

Ri�xi � 4� 
= 1− 1
�i � a−1

i ��4+��xi��1− xi�
�

(7)

We remark that both Li�xi � 4� and Ri�xi � 4� are con-
tinuous in xi in �0� d̄i�4��.

Proposition 3. For each i and each 4 ∈ 8, Li�· � 4� is
positive and strictly increasing, and Ri�· � 4� is strictly
decreasing. Furthermore, Li�xi � 4� = Ri�xi � 4� has a
unique solution in �0� d̄i�4��; that is, Di�4� is a well-
defined function of 4.

Proof. Fix 4. Because a−1
i ��4 + ��xi� is a strictly

decreasing function of xi, (B1) implies that Li�xi � 4�
is positive and strictly increasing in xi. Furthermore,
because �i � a−1

i �·� is positive and decreasing on
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�0� ai�0+��, Ri�xi � 4� is strictly decreasing in xi. Thus,
Li�xi � 4�=Ri�xi � 4� has at most one solution.

From (C1), ci�0� < �i · �1− 1/�i��i�� implies

Li�0+ � 4�= ci�0�
�i

< 1− 1
�i��i�

=Ri�0+ � 4��

Now, as xi → d̄i�4� = min�ai�0+�/�4+���1�, we
claim that Ri�xi � 4� → −
. To see this, consider the
following two cases:

• Case ai�0+�/�4+�� > 1: We have 0< a−1
i �4+�� <

�i, which implies 0<�i �a−1
i �4+�� <
. Thus, as xi →

1, we have 1/�1− xi�→
, and Ri�xi � 4�→−
.
• Case ai�0+�/�4 + �� ≤ 1: Suppose xi → ai�0+�/

�4+ ��. Because ai�0+� is finite, (A3) implies that �i �
a−1
i ��4+��xi� approaches 0 from above. Furthermore,

1− xi approaches a nonnegative number from above.
Thus, Ri�xi � 4�→−
.
Recall that Li�xi � 4� is positive. Thus, from the above
claim, there exists at least one solution satisfying Li�xi �
4�=Ri�xi � 4� by the intermediate value theorem. �

For any aggregate attraction 4 ∈ 8, Proposition 3
shows that there is a unique solution xi satisfying
Li�xi � 4�=Ri�xi � 4�, and this solution is Di�4�. It repre-
sents demand that maximizes firm i’s profit, provided
that the aggregate attraction remains at 4. Also, define

D�4� 
=D1�4�+ · · ·+Dn�4��

Proposition 4. All Di�4�s and D�4� are strictly
decreasing functions. Furthermore, each Di�4� is a contin-
uous function of 4.

Proof. For each i, Di�4� is a strictly decreasing
function, as any increase in 4 lifts the graph of Li�xi �
4� and drops that of Ri�xi � 4�. For the continuity of Di,
see Appendix A.1. �

Proposition 5. For fixed 4 ∈ 8, D�4� = 4/�4+��
holds if and only if there exist p = �p1� � � � � pn� and d =
�d1� � � � � dn� such that the following set of conditions holds:

(i) 4=∑n
j=1 aj�pj �

(ii) di = ai�pi�/�4+�� for each i
(iii) Li�di � 4�=Ri�di � 4� for each i.

In this case, furthermore, the price vector corresponding to
any 4 satisfying D�4�= 4/�4+�� is unique.

Proof. Suppose there exist p ∈ � and d satisfying
(i), (ii), and (iii). Then, by definition of Di�4� and (iii),
we obtain di =Di�4�, and

D�4�=
n∑
i=1

Di�4�=
n∑
i=1

di =
n∑
i=1

ai�pi�

4+�
= 4

4+�
�

Conversely, suppose 4 satisfies D�4�= 4/�4+��. Set
di =Di�4�. Then, by definition of Di�4�, (iii) holds. Let
pi = a−1

i ��4+ ��di� for each i, and (ii) holds. Also, (i)
follows from

n∑
j=1

aj�pj � =
n∑

j=1

�4+��dj =
n∑

j=1

�4+��Dj�4�

= �4+��D�4�= 4�

We have established the if and only if portion and
now consider the uniqueness portion. For any given
4, the Li�di � 4� = Ri�di � 4� equation has only one
solution by Proposition 3. Hence, from the one-to-
one correspondence between p and �4;d� given 4, the
uniqueness of di implies the uniqueness of the price
vector p. �

If there is 4 ∈8 satisfying D�4�= 4/�4+��, then by
Proposition 5, the corresponding price vector satisfies
	�i/	pi = 0 for all i. By Proposition 2, this price vec-
tor is a Nash equilibrium. For the unique existence of
the equilibrium, it suffices to show the result of the
following proposition.

Proposition 6. There exists a unique 4 ∈ 8 such that
D�4�= 4/�4+��.

Proof. There is at most one 4 ∈ 8 such that
D�4� = 4/�4 + ��, since D�4� − 4/�4 + �� is a strictly
decreasing function by Proposition 4. As each Di

is monotone and bounded in �0�1�, lim4↓0D�4� in
�0�1� and lim4↑∑i ai�0+� D�4� − 4/�4 + �� exist.
We claim (i) lim4↓0D�4� − 4/�4 + �� > 0 and
(ii) lim4↑∑i ai�0+� D�4� − 4/�4 + �� < 0. From the conti-
nuity D�4�− 4/�4+ ��, these two claims are sufficient
for the result.

First we show (i). Suppose �= 0. We note that the
domain of both Li and Ri functions is �0� d̄i�4��, and

Di�0+�≤ lim
4↓0

d̄i�4�= lim
4↓0

min
{
ai�0+�

4
�1

}
= 1�

where the last equality comes from lim4↓0 ai�4� > 0.
By rewriting Equation (6) and the continuity of all
involved functions,

Di�0+� = lim
4↓0

Di�4�

= 1− lim
4↓0

1
�i�a

−1
i �4Di�4���

· 1
1− ci�Di�4��/a

−1
i �4Di�4��
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= 1− 1
�i�a

−1
i �0+��

· 1
1− ci�Di�0+��/a−1

i �0+�

= 1− 1
�i��i�

· 1
1− ci�Di�0+��/�i

≥ 1− 1
�i��i�

· 1
�1− ci�1�/�i�

�

where the last inequality follows from (B1) and (C2).
Then

D�0+�− lim
4↓0

4

4+�
= ∑

i

Di�0+�− 1

≥ ∑
i

(
1− 1

�i��i��1− ci�1�/�i�

)
− 1�

which is greater than 0 by (C3).
Suppose � > 0. We temporarily denote Li�· � 4� and

Ri�· � 4� by Li�· � 4��� and Ri�· � 4���, respectively. Let
# 
=min��/2�

∑
i ai�0+�/2� > 0. Then,

Li�di � 0+��� = ci�di�

a−1
i ��di�

= Li�di � #��−#�

Ri�di � 0+��� = 1− 1
�i � a−1

i ��di��1− di�

= Ri�di � #��−#��

By definition of Di�0+�, we get Li�Di�0+� � #� �−#�=
Ri�Di�0+� � #��−#�. By Proposition 3, this condition
implies Di�0+� > 0. Furthermore, 4/�4 + �� → 0 as
4 ↓ 0. Thus, we complete the proof of claim (i).

Now we show (ii). From Equation (6) and Defini-
tion (7),

�4+��Di�4� = ai

(
ci�Di�4��

Ri�Di�4� � 4�
)
< ai

(
ci�0�

Ri�0 � 4�
)

= ai

(
ci�0�

1− 1/�i��i�

)
�

where the inequality follows from (B1), Di�4� > 0,
and Proposition 3. As ci�0� is positive from (B1), (C1)
implies 1− 1/�i��i� > 0 and 0 < ci�0�/�1− 1/�i��i�� <
�i. Because ai�·� is strictly decreasing by (A1), we get

4̄ 
=∑
i

ai

(
ci�0�

1− 1/�i��i�

)
<
∑
i

ai�0+��

Combining the above two inequalities, we have
D�4�=∑

i Di�4� < 4̄/�4+��. Thus,

lim
4↑∑i ai�0+�

D�4� ≤ 4̄∑
i ai�0+�+�

<

∑
i ai�0+�∑

i ai�0+�+�

= lim
4↑∑i ai�0+�

4

4+�
�

regardless of whether
∑

i ai�0+� is finite or infinite.4

We complete the proof of claim (ii). �

Theorem 1. There exists a unique positive pure strat-
egy Nash equilibrium price vector p∗ ∈�. Furthermore, p∗

satisfies p∗i > ci�0� for all i= 1� � � � �n.

Proof. The result follows immediately from Propo-
sitions 5 and 6. Proposition 2 implies p∗i > ci�0�. �

5. Convergence of Tatônnement
Scheme

In this section, we show that the unique equilibrium
is globally stable under the tatônnement scheme. Sup-
pose each firm i chooses a best-response pricing strat-
egy: choose pi maximizing his profit �i�p1� � � � � pn�

while pj ’s are fixed for all j �= i. This section shows
that the sequence of prices obtained by iterative appli-
cation of this best-response strategy globally con-
verges to the unique Nash equilibrium price vector
(Theorem 2). The tatônnement convergence result not
only shows the stability of the equilibrium, but also
provides a computational method of finding it. We
show the convergence rate is linear (Theorem 3), guar-
anteeing a certain degree of stability and computa-
tional efficiency.

In the tatônnement scheme we propose, a firm does
not need to know the attraction functions of other
firms. For the best response pricing strategy, he only
needs to observe the aggregate attraction quantity of
the other firms in each iteration, which can easily be
deduced from its own demand and attraction value
as well as �.

In this section, we introduce additional assump-
tions on Ci�·� and ai�·�. We restrict them to be con-
tinuously twice differentiable to ensure the application
of the implicit function theorem. This guarantees the
existence of the derivatives of best-response functions.
These additional assumptions are satisfied by most
common cost and attraction functions.

By Theorem 1, there exists a unique equilibrium
vector, which is denoted by p∗ = �p∗1� � � � � p

∗
n� ∈ �.

Define � 
= �0� a1�0+�� × · · · × �0� an�0+��. Let q∗ =
�q∗1� � � � � q

∗
n� ∈ � be the corresponding attraction vec-

tor where q∗i 
= ai�p
∗
i �. Let q̂i 
=

∑
j �=i qj be the sum of

4 If
∑

i ai�0+�=
, then the strict inequality still holds, because 4̄ is
always finite.
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attraction quantities of firms other than i. Set 2∗i 
=
q∗i /�q̂

∗
i + �� and d∗

i 
= q∗i /�q
∗
i + q̂∗i + ��, which are both

positive. Suppose we fix the price pj for all j �= i, and
let qi 
= ai�pi� be the corresponding attraction.

Because ai is one-to-one and 4 = qi + q̂i, condition
(6) is equivalent to

ci�qi/�qi + q̂i +���

a−1
i �qi�

= 1− 1
�i � a−1

i �qi�

(
1+ qi

q̂i +�

)
� (8)

Using an argument similar to Proposition 3 and ensu-
ing discussion, it can be shown that there is a unique
solution qi to (8) for each q̂i given by any positive
number less than

∑
j �=i ai�0+� (see Appendix A.2). We

call this solution qi the best response function =i�q̂i� for
firm i. The unique equilibrium satisfies =i�q̂

∗
i � = q∗i

where q̂∗i = ∑
j �=i q

∗
j . Furthermore, it is easy to show

that =i�·� is strictly increasing. (See Appendix A.2 for
the sketch of proof.)

Proposition 7. =i�·� is a strictly increasing function.

From the definition of 2∗i and =i�q̂
∗
i �= q∗i , we know

=i�q̂i�/�q̂i + �� = 2∗i at q̂i = q̂∗i . The following propo-
sition characterizes the relationship between =i�q̂i�/

�q̂i +�� and 2∗i .

Proposition 8. =i�q̂i�/�q̂i + �� is strictly decreasing
in q̂i and satisfies =i�q̂

∗
i �/�q̂

∗
i +��= 2∗i . Thus,

=i�q̂i�

q̂i +�




> 2∗i � for q̂i < q̂∗i

= 2∗i � for q̂i = q̂∗i

< 2∗i � for q̂i > q̂∗i �

Furthermore, =′
i�q̂i� is continuous and satisfies 0 < =′

i ·
�q̂∗i � < 2∗i .

Proof. From the definition =i�q̂i� and (8), we get

ci�=i�q̂i�/�=i�q̂i�+ q̂i +���

a−1
i �=i�q̂i��

= 1− 1
�i � a−1

i �=i�q̂i�

(
1+ =i�q̂i�

q̂i +�

)
� (9)

To see the existence of =′
i�·�, we apply the implicit

function theorem to

F �x�y� = ci�x/�x+ y+���

a−1
i �x�

− 1

+ 1
�i � a−1

i �x�

(
1+ x

y+�

)
= 0

with open domain, �x�y� ∈ �0� ai�0+�� × �0�
∑

j �=i ·
ai�0+��. The Jacobian with respect to x is

Fx�x�y�=−�K1�x�y�+ J1�x�y�+K2�x�y�+ J2�x�y���

where

K1�x�y� 
= −c′i�x/�x+ y+����y+��

a−1
i �x� · �x+ y+��2

�

K2�x�y� 
= − 1
�i � a−1

i �x� · �y+��
�

J1�x�y� 
=
ci�x/�x+ y+���

�a−1
i �x��2

· �a−1
i �′�x��

J2�x�y� 
=
(
1+ x

y+�

)
· ��i � a−1

i �′�x�
��i � a−1

i �x��2
�

By Conditions (A) and (B1), ci is positive and increas-
ing, a−1

i is positive and strictly decreasing, and �i �
a−1
i is positive and decreasing. Thus, both K1�x�y�+
K2�x�y� and J1�x�y� + J2�x�y� are strictly negative.
Hence, Fx�x�y� > 0 and the implicit function theorem
confirms the existence of the continuous derivative,
=′�·�, locally. Differentiating Equation (9) with respect
to q̂i yields

−K1�=i�q̂i�� q̂i� ·
(
=′
i�q̂i�−

=i�q̂i�

q̂i +�

)
− J1�=i�q̂i�� q̂i� ·=′

i�q̂i�

=K2�=i�q̂i��q̂i�·
(
=′
i�q̂i�−

=i�q̂i�

q̂i+�

)
+J2�=i�q̂i��q̂i�·=′

i�q̂i��

Thus,

=′
i�q̂i� = �K1�=i�q̂i�� q̂i�+K2�=i�q̂i�� q̂i��

· �J1�=i�q̂i�� q̂i�+ J2�=i�q̂i�� q̂i�+K1�=i�q̂i�� q̂i�

+K2�=i�q̂i�� q̂i��
−1 · =i�q̂i�

q̂i +�
<

=i�q̂i�

q̂i +�
� (10)

and it follows
d

dq̂i

(
=i�q̂i�

q̂i +�

)
= =′

i�q̂i��q̂i +��−=i�q̂i�

�q̂i +��2
< 0� (11)

Furthermore, (10) implies =′
i�q̂i� is continuous, and

2∗i > =′
i�q̂

∗
i � follows from the definition of 2∗i and

=i�q̂
∗
i �= q∗i . Proposition 7 implies 2∗i > 0. �

Let q = �q1� � � � � qn�. We denote the vector of best
response functions by @�q�= �=1�q̂1�� � � � �=n�q̂n�� ∈ �,
where q̂i =

∑
j �=i qj . Note that q∗ = �q∗1� � � � � q

∗
n� is a fixed

point of @ ; i.e., @�q∗�= q∗. By Proposition 7, we have
@�q1� < @�q2� whenever two vectors q1 and q2 sat-
isfy q1 < q2. (The inequalities are componentwise.)
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We now show that best-response pricing converges
to the unique equilibrium. We define the sequence
�q�0��q�1��q�2�� � � ��⊂ � by q�k+1� 
=@�q�k�� for k≥ 0.

Theorem 2. If each firm employs the best response
strategy based on the prices of other firms in the previ-
ous iteration, the sequence of price vectors converges to the
unique equilibrium price vector.

Proof. Let q�0� ∈ � denote the attraction vec-
tor associated with the initial price vector. Choose
q�0�� �q�0� ∈ � such that q�0� < q�0� < �q�0� and q�0� < q∗ <
�q�0�. Such q�0� and �q�0� exist because � is a box-shaped
open set.

For each k ≥ 0, we define q�k+1� 
= @�q�k�� and
�q�k+1� 
=@��q�k��. From the monotonicity of @�·� (Prop-
osition 7) and @�q∗�= q∗, we get

q�k� < q�k� < �q�k� and q�k� < q∗ < �q�k�� (12)

Let u�k� 
= maxi� ˆ̄q�k�i /q̂∗i �. Clearly, u�k� > 1 for all k by
(12). We show that the sequence �u�k��
k=0 is strictly
decreasing. For each i,

q̄
�k+1�
i = =i

( ˆ̄q�k�i

)
<
( ˆ̄q�k�i +�

) · 2∗i
= ( ˆ̄q�k�i +�

) · q∗i
q̂∗i +�

≤
ˆ̄q�k�i

q̂∗i
· q∗i ≤ u�k�q∗i �

where the first inequality comes from Proposition 8,
the second one from (12), and the last one from the
definition of u�k�. Thus,

ˆ̄q�k+1�
i =∑

j �=i

q̄
�k+1�
j <

∑
j �=i

u�k�q∗j = u�k�q̂∗i � (13)

and u�k+1� =maxi� ˆ̄q�k+1�
i /q̂∗i � < u�k�.

As �u�k��
k=0 is a monotone and bounded sequence,
it converges. Let u
 
= limk→
 u�k�. We claim u
 = 1.
Suppose, by way of contradiction, that u
 > 1. By
Proposition 8, =i�q̂i�/�q̂i+�� is strictly decreasing in q̂i.
Thus, for any q̂i ≥ 1

2 �1+ u
� · q̂∗i , there exists B ∈ �0�1�
such that for each i, we have

=i�q̂i�

�q̂i +��
≤ �1− B� · =i�q̂

∗
i �

q̂∗i +�
= �1− B� · q∗i

q̂∗i +�
�

For any k, if ˆ̄q�k�i ≥ 1
2 �1+u
� · q̂∗i , then

q̄
�k+1�
i = =i

( ˆ̄q�k�i

)≤ ( ˆ̄q�k�i +�
) · �1− B� · q∗i

q̂∗i +�

≤
ˆ̄q�k�i

q̂∗i
· q∗i · �1− B�≤ �1− B� ·u�k� · q∗i �

Otherwise, we have q̂∗i < ˆ̄q�k�i < 1
2 �1+u
� · q̂∗i . By Propo-

sition 8,

q̄
�k+1�
i = =i

( ˆ̄q�k�i

)
<
( ˆ̄q�k�i +�

) · q∗i
q̂∗i +�

≤
ˆ̄q�k�i

q̂∗i
· q∗i ≤

1
2
�1+u
� · q∗i �

Therefore, we conclude, using an argument similar
to (13),

u�k+1� ≤max��1− B� ·u�k�� �1+u
�/2��

From u�k+1� > u
 > �1+ u
�/2, we obtain u�k+1� ≤ �1−
B� · u�k�, implying u�k� → 1 as k→
. This is a contra-
diction.

Similarly, we can show that l�k� 
=mini��q�k�i
/q̂∗i � is a

strictly increasing sequence converging to 1. �

The following corollary identifies a sufficient condi-
tion for the monotonicity of the sequence of attraction
vectors (and also for price vectors).

Corollary 1. If q�0� > @�q�0�� or q�0� < @�q�0��, then
�q�k��k≥0 is monotone.

Proof. Suppose q�0� > @�q�0��= q�1�. We proceed by
induction. Assume that q�j� > q�j+1� for all j < k. Then,
q�k� − q�k+1� = @�q�k−1�� − @�q�k�� > 0 because @�·� is
strictly increasing and q�k−1� > q�k�. �

The following proposition shows the linear conver-
gence of tatônnement in the space of attraction values.

Proposition 9. The sequence �q�k��k≥0 converges lin-
early.

Proof. Consider �q�k��
k=0 and ��q�k��
k=0 in the proof
of Theorem 2. Recall q�k� < q�k� < �q�k� and q�k� < q∗ <
�q�k�. We will show that q�k� and �q�k� converges to q∗

linearly. As � is a box-shaped open set, there exists a
convex compact set �⊂ � containing all elements of
�q�k��
k=0 and ��q�k��
k=0. From (11) in the proof of Propo-
sition 8, there exists 4> 0 such that for any q ∈�, we
have

d

dq̂i

(
=�q̂i�

q̂i +�

)
≤−4�

From integrating both sides of the above expression
from q̂∗i to ˆ̄q�k�i ,

=i� ˆ̄q�k�i �

ˆ̄q�k�i +�
− =�q̂∗i �

q̂∗i +�
≤−4� ˆ̄q�k�i − q̂∗i ��

as the line segment connecting q∗ and �q�k� lies
within �.
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Table 2 Tatônnement Computation Output/Generalized Logit Attraction Model

� p∗ d∗ ∑
i d

∗
i Iter

0 �3�6987�2�5936�2�0659�1�7702�1�5826� �0�2499�0�2271�0�2013�0�1738�0�1479� 1 14
0.01 �3�6807�2�5837�2�0602�1�7666�1�5801� �0�2467�0�2238�0�1980�0�1708�0�1452� 0�9844 14
0.05 �3�6170�2�5490�2�0401�1�7538�1�5714� �0�2348�0�2118�0�1862�0�1600�0�1356� 0�9283 13
0.1 �3�5512�2�5137�2�0198�1�7409�1�5626� �0�2219�0�1989�0�1738�0�1487�0�1257� 0�8689 12
0.5 �3�2722�2�3687�1�9366�1�6879�1�5265� �0�1582�0�1375�0�1172�0�0985�0�0823� 0�5937 9

Notes. ��1� � � � � �5�= �0�5�0�75�1�1�25�1�5�. �y1� � � � � y5�= �0�5�0�6�0�7�0�8�0�9�.

Table 3 Tatônnement Computation Output/Generalized Logit Attraction Model

� p∗ d∗ ∑
i d

∗
i Iter

0 �1�6427�1�7932�2�0625�2�5429�3�5335� �0�1334�0�1666�0�1993�0�2328�0�2679� 1 14
0.01 �1�6391�1�7890�2�0569�2�5347�3�5192� �0�1313�0�1639�0�1961�0�2292�0�2641� 0�9846 14
0.05 �1�6264�1�7743�2�0376�2�5055�3�4686� �0�1236�0�1542�0�1847�0�2164�0�2502� 0�9291 13
0.1 �1�6136�1�7594�2�0179�2�4757�3�4164� �0�1154�0�1440�0�1726�0�2028�0�2353� 0�8701 12
0.5 �1�5613�1�6989�1�9362�2�3498�3�1930� �0�0779�0�0969�0�1169�0�1391�0�1642� 0�5948 9

Notes. ��1� � � � � �5�= �1�5�1�25�1�0�75�0�5�. �y1� � � � � y5�= �0�5�0�6�0�7�0�8�0�9�.

Define 41 
= 4 ·mini minq∈���q̂i + �� · q̂∗i /q∗i � > 0. We
choose 4 > 0 as sufficiently small such that 41 < 1.
Recall q̄�k+1�

i = =i� ˆ̄q�k�i � and q∗i = =�q̂∗i �. Rearranging the
above inequality and multiplying it by � ˆ̄q�k�i +��/q∗i ,

q̄
�k+1�
i /q∗i ≤ ( ˆ̄q�k�i +�

)
/�q̂∗i +��−4·( ˆ̄q�k�i − q̂∗i

)·( ˆ̄q�k�i +�
)
/q∗i

≤ ˆ̄q�k�i /q̂∗i − 41 ·
( ˆ̄q�k�i /q̂∗i − 1

)
= �1− 41� · ˆ̄q�k�i /q̂∗i + 41�

where the second inequality comes from ˆ̄q�k�i > q̂∗i and
the definition of 41.

Let ��k� 
=maxi�q̄
�k�
i /q∗i �. Thus, q̄�k�j ≤ ��k� · q∗j holds

for all j , and summing this inequality for all j �= i, we
get ˆ̄q�k�i ≤ ��k� · q̂∗i . Thus, q̄�k+1�

i /q∗i is bounded above by
�1− 41� ·��k�+ 41 for each i, and we obtain

��k+ 1�≤ �1− 41� ·��k�+ 41�

Using induction, it is easy to show

��k�≤ �1− 41�
k · ���0�− 1�+ 1�

Therefore, we obtain

max
i

{(
q̄
�k�
i − q∗i

)
/q∗i

} = ��k�− 1≤ �1− 41�
k · ���0�− 1�

= �1− 41�
k ·max

i

{(
q̄
�0�
i − q∗i

)
/q∗i

}
and

max
i

{
q̄
�k�
i −q∗i

}≤ �1−41�
k ·max

i
�q∗i � ·max

i

{(
q̄
�0�
i −q∗i

)
/q∗i

}
�

showing the linear convergence of the upper bound
sequence �q�k� (Bertsekas 1995). A similar argument
shows the linear convergence of q�k�. �

The linear convergence in the above proposition is
not with respect to the price vector but with respect
to the attraction vector, i.e., not in p but in q. Yet the
following theorem also shows the linear convergence
with respect to the price vector. Let �p�k��k≥0 be the
sequence defined by p

�k�
i 
= a−1

i �q
�k�
i �.

Theorem 3. The sequence �p�k��k≥0 converges linearly.

Proof. Consider �q�k��
k=0 and ��q�k��
k=0 in the proof
of Proposition 9. Let �p�k��
k=0 and ��p�k��
k=0 be the
corresponding sequences of price vectors. Within the
compact interval ��p�0�i � p

�0�
i �, the derivative of ai is

continuous and its infimum is strictly negative. By the
inverse function theorem, the derivative of a−1

i �·� is
continuous in the compact domain of �q�0�

i
� q̄

�0�
i �. Recall

p∗i = a−1
i �q∗i �. There exists some bound M > 0 such that

�pi − p∗i � = �a−1
i �qi�− a−1

i �q∗i �� ≤M · �qi − q∗i �

whenever ai�pi� = qi ∈ �q�0�
i
� q̄

�0�
i � for all i. From the

proof of Proposition 9, we get q�k�i ∈ �q�k�
i
� q̄

�k�
i �⊂ �q�0�

i
�

q̄
�0�
i �. Therefore, the linear convergence of �q�k��k≥0

implies the linear convergence of �p�k��k≥0. �
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Table 4 Tatônnement Computation/Generalized Logit Attraction Model

n ��1� � � � � �n� �y1� � � � � yn�

2 �0�5�1�5� �0�5�0�9�
5 �0�5�0�75�1�1�25�1�5� �0�5�0�6�0�7�0�8�0�9�
10 �0�5�0�6�0�7�0�8�0�9�1�1�1�2�1�3�1�4�1�5� �0�45�0�5�0�55�0�6�0�65�0�7�0�75�0�8�0�85�0�9�

Note. Input data for Figure 2.

6. Numerical Results
In this section, we perform the computation of the
tatônnement scheme using Example 1 and report on its
convergence behavior.

We first consider the price competition among n= 5
firms. We use generalized logit attraction functions.

Figure 1 Generalized Logit Attraction Model/Initialization p�0� =
�C ′

1�0�� � � � � C
′
n�0��. n= 5.
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Thus,

di�p�=
exp�−"ipi�∑n

j=1 exp�−"jpj�+�

where the parameter "i > 0 depends on each firm i.
We used �= 0�0�01�0�05�0�1�0�5 values. For stochas-
tic demand, we use the additive demand uncertainty
model 4�di� '�= di + 'i, where 'i has a Gaussian dis-

Figure 2 Generalized Logit Attraction Model/Initialization p�0� =
�C ′

1�0�� � � � � C
′
n�0��. �= 0�01.
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tribution with mean 0 and variance 0.2. The cost func-
tion in Example 1 is given by

C ′
i �di�=wi −hiP�yi ≥ di +'i�+ biP�yi ≤ di +'i�� (14)

where wi = 1�0, hi = 0�2, and bi = 2�0 for each firm i.
The value of yi depends on firm i. We initialize the
algorithm with p�0� = �C ′

1�0�� � � � �C
′
n�0��. The algorithm

is terminated when the Euclidean distance between
two successive p�k� vectors is less than tolerance 10−8.
We use Matlab 5.3 on a PC notebook with 900 mega-
hertz processor speed and 384 megabytes of mem-
ory. A typical iteration takes several seconds, most

Figure 3 Cobb-Douglas Attraction Model
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Notes. di �p� = �p
−�i
i �/�

∑n
j=1 p

−�j
j + ��, where � = �1�1�1�6�2�1�2�6�3�1�.

Initialization p�0� = �C ′
1�0�� � � � � C

′
n�0��. n= 5.

of which is spent invoking the Gaussian cumulative
density function in (14).

Table 2 shows the equilibrium price vector p∗ and
expected demand vector d∗ provided �"1� � � � �"5� =
�0�5�0�75�1�1�25�1�5� and �y1� � � � � y5� = �0�5�0�6�0�7�
0�8�0�9�. The column marked by

∑
i d

∗
i is the total

expected demand as a function of �. The last col-
umn shows the number of iterations until termi-
nation. We repeat computation with �"1� � � � �"5� =
�1�5�1�25�1�0�75�0�5�, and report results in Table 3.

Using the same " vector and y vector as in Table 2,
Figure 1 plots �q�k� − q∗� as a function of iteration

Figure 4 Linear Attraction Model
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0�7�0�9� and the ratios �i/��i · ci �1��’s are given by �1�01�1�02�1�03�
1�04�1�05�. Initialization p�0� = �C ′

1�0�� � � � � C
′
n�0��. n= 5.
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count for each value of �. It shows linear conver-
gence as predicted by Proposition 9. The convergence
rate of the price vector is also linear, as illustrated
by Figure 1. This figure indicates that the number
of required iterations is smaller when there are more
competing firms.

We now vary the number of firms in competition
and use n = 2�5�10. For each n, the set of "i values
and yi values is given in Table 4. We fix � at 0�01.
We obtain similar linear convergence results, shown
in Figure 2.

Additional tests have been carried out for the
Cobb-Douglas and linear attraction functions. See Fig-
ures 3 and 4.

Appendix

A.1. Continuity of Di�4�
By the continuity assumptions on all involved functions,
fi�xi� 4� 
= Li�xi � 4�− Ri�xi � 4� is continuous in �xi� 4�. For
each 4 ∈ 8, there is a unique Di�4� satisfying fi�Di�4��4�=
0 by Proposition 3. Furthermore, the argument following
Proposition 3 shows Di�4� is strictly increasing in 4.

Consider any sequence 4k → 40. If limk→
Di�4k� exists,
then by the continuity of f , we have

0 = lim
k→


f �Di�4k��4k�= f
(
lim
k→


Di�4k�� lim
k→


4k

)

= f
(
lim
k→


Di�4k��40

)
�

implying limk→
Di�4k� = Di�40�. Assuming limk→
Di�4k�
does not exist, apply the above argument to subsequences
converging to limsupk→
Di�4k� and lim infk→
Di�4k�,
respectively. Then, their limits should be the same. Thus,
Di�4� is continuous in 4.

A.2. Existence and Monotonicity of =i

Because ai�·� is one to one and 4 = qi + q̂i, condition (6) is
equivalent to (8). Because ci�·� is nondecreasing and a−1

i �·�
is strictly increasing, the left side of (6) increases strictly.
Because �i � a−1

i �·� is nonincreasing and 1 + �·�/�q̂i +�� is
strictly increasing, the right side of (6) decreases strictly. As
qi approaches 0 and ai�0�, both limits are the same as those
in the proof of Proposition 3. Thus =i�·� is well defined.

Now the lifting-and-dropping argument following
Proposition 3 can be applied to prove Proposition 7, which
shows the monotonicity of =i�·�.
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