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Abstract Accurate forecasting of call arrivals is critical for staffing and scheduling of a
telephone call center. We develop methods for interday and dynamic intraday forecasting of
incoming call volumes. Our approach is to treat the intraday call volume profiles as a high-
dimensional vector time series. We propose to first reduce the dimensionality by singular
value decomposition of the matrix of historical intraday profiles and then apply time series
and regression techniques. Both interday (or day-to-day) dynamics and intraday (or within-
day) patterns of call arrivals are taken into account by our approach. Distributional forecasts
are also developed. The proposed methods are data-driven, and appear to be robust against
model assumptions in our simulation studies. They are shown to be very competitive in out-
of-sample forecast comparisons using two real data sets. Our methods are computationally
fast and therefore it is feasible to use them for real-time dynamic forecasting.
Keywords dimension reduction, dynamic forecast updating, principal component analysis,
penalized least squares, singular value decomposition, vector time series.

1. Introduction

Call centers have become a primary contact point between service providers and their cus-

tomers in modern business. For example, it is estimated that in 2002 more than 70% of

all customer-business interactions are handled in call centers, and the call center industry

in US employs more than 3.5 million people, or 2.6% of its workforce (Brown et al. 2005).

With their growing presence and importance in various organizations, managing call center

operations more efficiently is of significant economic interest.

For most call centers, 60-70% of operating expenses are capacity costs, and in particular

human resource costs (Gans et al. 2003). Effective management of a call center requires

call center managers to match up call center resources with workload. To forecast workload

accurately, the first and critical step is to provide an accurate forecast of future call volumes.
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Usually two kinds of forecasts are needed by a call center manager for staffing and scheduling

purposes: 1. Forecast the call volumes several days or weeks ahead; 2. On a particular day,

dynamically update the forecast using newly available information as additional calls arrive

throughout the day.

There are empirical justifications for the within-day updating, as both Avramidis et al.

(2004) and Steckley et al. (2004) report evidence of positive correlation among time periods

within a given day, i.e. intraday dependence. This updating is operationally both beneficial

and feasible. We show that, if the within-day updating can be done appropriately, one

can reduce the forecast error for the rest of the day substantially. Furthermore, one can

perform the updating as early as a couple of hours into the working day to have a really

significant effect. In turn, operational benefits would follow from the ability to change agent

schedules according to the updated forecast. For example, to adjust for a revised forecast,

call center managers may send people home early or have them take training sessions or

work on alternative tasks; or they may arrange agents to work overtime or call in part-time

or work-from-home agents. To the best of our knowledge, Weinberg et al. (2007) seems to

be the only existing work dealing with forecast updating in the call center context.

Quantitative approaches to call arrival forecasting make use of historical call arrival data,

which record the times at which calls arrive to the center. Typically call arrival data are

aggregated into total numbers of arrivals during short time periods such as 15-minute or

30-minute intervals and subsequently the target of forecasting is future call volumes over

such periods (Jongbloed and Koole 2001). We refer to the collection of such aggregated call

volumes for a given day as the intraday call volume profile of that day (Section 3.1).

Early work on forecasting call arrivals usually ignores intraday dependence, and focuses

on interday dependence among daily total volumes, partly due to lack of relevant data. Time

series ARIMA models are usually called upon to perform the forecasting (Andrews and Cun-

ningham 1995, Bianchi et al. 1993, 1998). Recently, with the availability of call-by-call data,

stochastic models of call arrivals that take into account the intraday dependence have been

introduced. Avramidis et al. (2004) develop doubly stochastic models that reproduce three

empirically observed features of call arrival data, overdispersion, time-varying rate and intra-

day dependence. Brown et al. (2005) consider a time-varying Poisson process with random

rate, and suggest a multiplicative two-way mixed-effects model to forecast future rate. Con-

sidering both interday forecasting and intraday updating, Weinberg et al. (2007) extend the

work of Avramidis et al. and Brown et al. to model both interday and intraday depen-
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dences. A two-way multiplicative Bayesian Gaussian model is proposed, and a Markov chain

Monte Carlo (MCMC) algorithm is developed for parameter estimation and forecasting; see

Section 4.2 for details of the model. The Bayesian approach is theoretically very interesting,

but the computation (MCMC) algorithm is rather sophisticated to implement and can take

a long time to converge.

Intraday schedule updating has been investigated in the literature under the name of

real-time work schedule adjustment for various service systems other than call centers. The

real-time schedule adjustment process usually involves two phases (Hur et al. 2004). During

the first phase, forecast monitoring systems (Hur 2002) are applied to detect when a forecast

updating is needed; once an updating is determined as necessary, the forecast can be updated

using a partially known demand forecasting model (Kekre et al. 1990, Guerrero and Elizondo

1997). The second phase involves schedule adjustment to handle the updated forecast, which

has received very little attention until recently. For example, Thompson (1996) investigates

various options for adjusting intraday schedules in the context of hospitality workforce man-

agement. Hur et al. (2004) propose schedule updating techniques, which are illustrated in

the context of quick service restaurants. Easton and Goodale (2005) model absence recovery

problems for service operations. In the context of call centers, Mehrotra et al. (2006) study

in details intraday rescheduling of agent schedules and demonstrate its value.

The aforementioned forecasting approaches are mostly model-driven, where stochastic

models are carefully designed to fit real world problems. In this paper, we introduce a sys-

tem of statistical methods that can generate both interday (or day-to-day) and especially

dynamic intraday (or within-day) forecasts. Unlike the model-driven approaches, our ap-

proach is data-driven, which starts with a dimension reduction technique to let the data

suggest parsimonious underlying important features, and then uses them to build time series

forecasting models. We illustrate that it can work as a competitive and complementary

alternative to the model-driven approaches.

The data-driven nature suggests that our approach is robust (Section 4.3) and can work

for a wide range of applications, for example, electricity demand forecasting (Cottet and

Smith 2003) and bond yield curve forecasting (Diebold and Li 2006), to which it is of

interest to apply our approach and see how it performs. Furthermore, our method can be

easily implemented in widely available softwares such as MATLAB and SPLUS/R, and it

computes faster than the Bayesian method of Weinberg et al. (2007), which makes it more

suitable for real time forecast updating. In spite of its simplicity, our method is still very
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competitive in generating accurate forecasts (Section 4.5).

Our approach treats the intraday call volume profiles as a vector time series across days,

where each intraday profile is considered as one observation of the vector time series. Thus,

the dimensionality of the time series is high. We propose to first reduce the dimensionality

by applying singular value decomposition (SVD) to the matrix of the intraday profiles. As a

result, the high dimensional intraday profile series is summarized by a few pairs of interday

and intraday features, (see (1) in Section 3.1). Then the intraday features are kept fixed,

while the interday feature series are subject to time series modeling. Because the interday

feature series are orthogonal, we can apply univariate time series forecasting techniques

to forecast them separately. The resulting forecasts are subsequently combined with the

intraday features to produce day-to-day forecasts of future intraday profiles. Distributional

forecasts are also developed using a bootstrap procedure. Usually only a small number of

interday and intraday feature pairs is needed. Two or three such pairs are sufficient to

achieve very good forecasting performance for the two case studies in Section 4.

Our procedure for intraday dynamic updating is based on a technique known as penalized

least squares. For a particular day, suppose we have obtained some day-to-day time series

forecasts for the interday features. As calls arrive when the day progresses, one direct ap-

proach to update the time series forecasts is via a least squares regression using the newly

available call volume profile as the response and the corresponding part of the intraday

feature vectors as the independent variables, (see (6) in Section 3.3.1). The corresponding

regression coefficients then give the updated interday feature forecasts. However, this ap-

proach relies solely on the new arrival information of the present day, and makes no use of

the time series forecasts. Our penalized least squares method adjusts the direct approach

by pushing the least squares updates towards the time series forecasts and finding a balance

point between them, (see (8) in Section 3.3.2). This method effectively combines the newly

available information with the information up to the end of the previous day. The empirical

results in Section 4 show that such combination of information is very useful in reducing

forecasting errors.

The rest of the paper is structured as follows. Section 2 introduces the call center arrival

data that motivate the current research. Our forecasting approach is described in detail in

Section 3. Section 3.1 introduces dimensionality reduction through SVD, and it is followed

by Section 3.2 on the method for one- or multi-day-ahead intraday profile forecasting, and

Section 3.3 on dynamic intraday updating. Both point and distributional forecasts are
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considered. Section 4 presents comparative studies of several competing methods based on

their out-of-sample forecasting performance. Section 4.1 gives the forecasting performance

measures we use and Section 4.2 describes the competing methods. Two simulated examples

are presented in Section 4.3 to illustrate the robustness of our method. The data described

in Section 2 are used in Section 4.4 to compare our method with several alternatives. In

Section 4.5, a comparison between our method and the Bayesian approach of Weinberg et al.

(2007) is provided using their call center data. We conclude in Section 5. Some technical

details are relegated to the appendix.

2. The Data

The motivating data were gathered at an inbound call center of a major northeastern US

financial firm between January 1 and October 26, 2003. The original database has detailed

information about every call that got connected to this call center during this period (except

three days when the data collecting equipment went out of order). The center is normally

open between 7:00AM and midnight. For the current study, we are interested in understand-

ing the arrival pattern of calls to the service queue and generating out-of-sample forecasts

of future call volumes. As a result, the portion of the data of interest to us involves the

information about the time every call arrives to the service queue.

The call arrival pattern is very different between weekdays and weekends. For this reason,

we restrict our attention to weekdays. In particular, we focus on the 42 whole 5-day weeks

between January 6 and October 24. There are some obvious abnormal days in the data,

six holidays with very low call volumes and four days with no data; hence we decide to

exclude them from our analysis. For a particular day, we divide the 17-hour operating

period into sixty-eight 15-minute intervals, and record the number of calls arriving to the

service queue during each interval. The aggregated data form a 200× 68 count matrix, with

each row corresponding to a particular day in the 42 weeks considered, and each column

corresponding to one specific 15-minute interval between 7:00AM and midnight. The data

are available from the authors upon request.

We found by plotting the data that call volumes almost always occur in predictable,

repeating patterns. For example, it is typical that there is a peak around 11:00AM followed

by a second, lower peak around 2:00PM. As an illustration, Figure 1(a) plots the average

intraday arrival patterns for different weekdays. Different days of the week have different call
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arrival patterns. As shown in Figure 1(a), Fridays have the largest volumes in the morning

and the smallest volumes after 17:00PM; while the opposite holds for Mondays. In addition,

Figure 1(b) shows the intraday arrival patterns for the five days in the final week of the data

set. The regularity of arrival patterns serves as the basis of any forecasting method.

Figure 1(b) also exhibits unusual arrival pattern for the Tuesday, during which there are

too many calls arriving after 3:30PM. We shall keep such abnormal days for the case study

to be reported in Section 4.4. Alternatively, we have tried to identify anomalous days using

the technique in Shen and Huang (2005), and their call arrival profiles were then replaced

by the average of the corresponding periods (i.e. same weekday and time-of-day) in the two

adjacent weeks. This alternative treatment leads to similar forecasting comparison results

(not shown) as those reported in Section 4.4.

Our data appear to possess heteroscedasticity (i.e., nonconstant variance) and overdis-

persion (i.e., variance greater than mean) (Avramidis et al. 2004), as shown in Figure 1(c).

To stabilize the variance, we employed the root-unroot method (Brown et al., 2005) as fol-

lows. Let N denote the call volume for a certain time interval. Set X =
√

N + 1/4. Denote

the forecast of X by X̂. Then the forecast of N is given by N̂ = X̂2 − 1/4. The motivation

of the method is the following. It is a good approximation to assume that the call volume

N over a short time interval follows a Poisson distribution and, if N ∼ Poisson(λ), then X

has approximately a mean of
√

λ and a variance of 1/4.

The intraday dependence reported by Avramidis et al. (2004) and Steckley et al. (2004)

also exists in our data. For different weekdays, Figure 1(d) plots the intraday correlation

between past call demand and future demand as a function of the observation time. The

demand is calculated based on the square-root-transformed call volumes as motivated above.

The intraday correlation appears to be significantly positive for most of the time, which

empirically supports the potential effectiveness of intraday updating.

3. Forecasting Methods

3.1 Dimension Reduction via Singular Value Decomposition

Let X = (xij) be an n × m matrix that records the call volumes (or a transformation of

the volumes as described in Section 2) for n days with each day having m time periods.

The rows and columns of X correspond respectively to days and time periods within a day.

The ith row of X, denoted as xT
i = (xi1, . . . , xim), is referred to as the intraday call volume

6
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Figure 1: Exploratory plots suggesting that both predictive regularity and abnormality are
present in call center arrival data. (a) Average call volume profiles for different weekdays;
(b) Intraday arrival patterns during the final week of our data. (c) Standard deviation of
call volumes for different weekdays; (d) Intraday correlation between past call demand and
future demand for different weekdays.
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profile of the ith day. The intraday profiles, x1,x2, . . . , form a vector-valued time series

taking values in R
m. We want to build a time series model for this series and use it for

forecasting. However, commonly used multivariate time series models such as VAR (Vector

AutoRegressive models) and more general VARMA (Vector AutoRegressive and Moving

Average models) (Reinsel 2003) are not directly applicable due to the large dimensionality

of the time series we consider. For example, the dimensionality m is 68 for our data and 169

for Weinberg’s data.

Our approach starts from dimension reduction. We first seek a few basis vectors, denoted

as fk, k = 1, . . . , K, such that all elements in the time series {xi} can be represented (or

approximated well) by these basis vectors. The number of the basis vectors K should be

much smaller than the dimensionality m of the time series. Specifically, we consider the

following decomposition,

xi = βi1f1 + · · ·+ βiKfK + εi, i = 1, . . . , n, (1)

where f1, . . . , fK ∈ R
m are the basis vectors and ε1, . . . , εn ∈ R

m are the error terms. We

expect that the main features of xi can be summarized by a linear combination of the basis

vectors so that the error terms in (1) would be small in magnitude. This can be achieved by

solving the following minimization problem for fixed K,

min
βi1,...,βiK

f1,...,fK

n∑

i=1

‖εi‖2 = min
βi1,...,βiK

f1,...,fK

n∑

i=1

∥∥∥∥xi − (βi1f1 + · · · + βiKfK)

∥∥∥∥
2

. (2)

For identifiability, we require in (2) that fT
i fj = δij, where δij is the Kronecker delta which

equals 1 for i = j and 0 otherwise. The solution to this problem is actually given by the

singular value decomposition (SVD) of the matrix X as shown below.

The SVD of the matrix X can be expressed as

X = USVT , (3)

where U is an n × m matrix with orthonormal columns, S is an m × m diagonal matrix,

and V is an m × m orthogonal matrix. The columns of U, {uk = (u1k, . . . , unk)
T}, namely

the left singular vectors, satisfy uT
i uj = δij. The columns of V, {vk = (v1k, . . . , vmk)

T}, or

the right singular vectors, satisfy vT
i vj = δij. The diagonal elements of S are the singular

values, which are usually ordered decreasingly. Let S = diag(s1, . . . , sm) and r = rank(X).

Then s1 ≥ s2 ≥ · · · ≥ sr > 0, and sk = 0 for r + 1 ≤ k ≤ m.
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It then follows from (3) that

xi = s1ui1v1 + · · ·+ sruirvr.

Keeping only the terms associated with the largest K singular values, we have the following

approximation,

xi ' (s1ui1)v1 + · · ·+ (sKuiK)vK.

This K-term approximation is an optimal solution for the minimization problem (2). More

precisely, βik = skuik and fk = vk, i = 1, . . . , n, k = 1, . . . , K, solve (2), and the solution is

unique up to a sign change to fk (Eckart and Young 1936). Thus, we have formally obtained

the decomposition (1) using the SVD of X. Note that requiring fT
i fj = δij is only one way

to make the solution to (2) unique. Alternatively, if we require
∑n

i=1 βikβil = δkl, then one

solution to (2) will be βik = uik and fk = skvk, which is unique up to a sign change to fk.

Given a historical data matrix X, to estimate the model (1), we apply SVD to X and

extract the first K pairs of singular vectors, along with the corresponding singular values,

which then lead to the intraday feature vectors f1, . . . , fK, and the interday feature series

{βi1}, . . . , {βiK}. Such features will be used as the basis of our forecasting methods as de-

scribed below in Sections 3.2 and 3.3. From the decomposition (1), the high-dimensional

intraday profiles xi are concisely summarized by a small number of interday feature series,

using the same number of intraday feature vectors as the bases. The decreasing order among

the singular values suggests that the feature series/vectors are naturally ordered according to

importance in approximating the data matrix. By using a small K, we achieve a substantial

dimension reduction — from m to K. In the real data example in Section 4.4, a K of 2 or

3 already gives good forecasting results, while m is 68. One attractive feature of the decom-

position (1) is that it effectively separates out the intraday and interday variations, both of

which are present in the intraday profile time series. Another benefit is that the variations

are decomposed into orthogonal components, which greatly simplifies our forecasting model

as described below in Section 3.2.

Our SVD based dimension reduction is closely related to principal components analysis

(PCA) when principal components (PCs) are calculated from the covariance matrix (Jolliffe

2002). If the data matrix X is column centered such that the columns (viewed as variables)

have mean zero, then XTX is proportional to the sample covariance matrix of the columns

of X. According to (3), XTX = VS2VT , which means that the columns vk of V, or the

intraday feature vectors fk, are indeed the PC loading vectors, or Xvk are the PCs; and the
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squared singular values s2
k are proportional to the variances of the PCs. In PCA, the quantity

s2
k/

∑
i s

2
i measures the relative importance of the kth PC, and can be plotted versus k in a

scree plot. To decide on the number of PCs, one usually looks for an “elbow” in the scree

plot, formed by a steep drop followed by a relatively flat tail of small values. The number

of PCs needed then corresponds to the integer prior to the elbow. Although we do not

center columns in our context, as there is no good reason for doing it, the connection with

PCA does suggest the scree plot as a possible way to pick the number of important features

K (Shen and Huang 2005). In practice, one can also choose K by comparing out-of-sample

forecasting performance using historical data for different choices.

3.2 Interday Forecasting

Consider forecasting the intraday call volume profile xn+h (h > 0) using the historical data

x1, . . . ,xn. By making use of the model (1), forecasting a m-dimensional time series {xi}
reduces to forecasting K one-dimensional interday feature series {βi1}, . . . , {βiK}. We con-

sider the decomposition (1) with the fk’s replaced by the ones extracted using SVD from the

historical data matrix X.

3.2.1 Point Forecast

If we can obtain a forecast of the coefficients βn+h,1, . . . , βn+h,K, then a forecast of xn+h is

given by

x̂n+h = β̂n+h,1f1 + · · ·+ β̂n+h,KfK,

where β̂n+h,k is a forecast of βn+h,k, k = 1, . . . , K. Denote fk = (f1k, . . . , fmk)
T . The forecast

of the call volume of the jth time period of day n + h is then given by

x̂n+h,j = β̂n+h,1fj1 + · · ·+ β̂n+h,KfjK, j = 1, . . . , m.

Because of the way the SVD is constructed, (β1k, . . . , βnk) is orthogonal to (β1l, . . . , βnl)

for k 6= l. This lack of contemporaneous correlation suggests that the cross-correlations at

non-zero lags are likely to be small. Therefore it is reasonable to believe that it is adequate to

forecast each series {βik} separately using univariate time series methods, for k = 1, . . . , K.

To forecast each series, one could use univariate time series models such as exponential

smoothing, ARIMA models (Box et al. 1994), state space models (Harvey 1990) and other

suitable models. Which model to use would depend on the actual situation, and can be

decided on by analyzing historical data.
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In our case study of the call center data described in Section 2, we apply a varying

coefficient AR(1) model that takes into account the day-of-the-week effect. This model

works well in our out-of-sample forecasting exercise in Section 4.4.

3.2.2 Distributional Forecast

For the agent scheduling and updating problem discussed in Section 1, call center managers

also need distributional forecasts of xn+h, such as prediction intervals and densities, in ad-

dition to point forecasts. Understanding the variability around point forecasts is essential

for several reasons. A threshold on predicted volumes could be determined to trigger appro-

priate managerial actions (Jongbloed and Koole 2001). The staffing level for a time period

depends on both the mean and the variability of the forecast. As suggested by Steckley

et al. (2004), the higher the variability, the higher the staffing targets should be in order to

achieve certain service level goals. In addition, the variability in the forecasts may provide

motivation for contracting additional contingency resources, routing calls across different

sites, and cross-training across different queues (Betts et al. 2000, Wallace and Whitt 2005).

As our approach assumes no probabilistic models, we propose to use the following non-

parametric bootstrap method to derive the distributional forecasts. Bootstrapping is an

increasingly popular method for estimating the sampling distribution of an estimator by

sampling with replacement from the original sample (Efron and Tibshirani 1994).

For a fixed k, using the fitted time series model for the series {βik} recursively, we can

generate B series {β̂b
n+1,k, . . . , β̂

b
n+h,k}, 1 ≤ b ≤ B, by bootstrapping the model errors from the

fitted time series model (see Appendix A.1 for details). In our data examples (Section 4),

we set the number of bootstrap samples B to be 1000. Similarly, we can bootstrap the

approximation error profile ε in the model (1) from the fitted error profiles ε̂1, . . . , ε̂n obtained

by fitting the model (1) to the historical n call volume profiles. Let ε̂b, 1 ≤ b ≤ B, denote a

random draw with replacement from ε̂1, . . . , ε̂n. Then we obtain B forecasts of xn+h,

x̂b
n+h = β̂b

n+h,1f1 + · · · + β̂b
n+h,KfK + ε̂b, b = 1, . . . , B, (4)

from which interval and density forecasts can be derived. For a 100(1 − α)% forecast in-

terval, the two end points are correspondingly the α/2 and (1 − α)/2 empirical percentiles

of {x̂1
n+h, . . . , x̂

B
n+h}. The histogram or density estimate of {x̂1

n+h, . . . , x̂
B
n+h} then gives a

density forecast of xn+h.
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Our approach makes several implicit assumptions. First of all, the time series model

employed should be a reasonably good approximation to reality. Second, for the validity of

the nonparametric bootstrap, the time series model errors are assumed to be independent and

identically distributed with mean zero. This is the reason why the approximation error profile

ε is bootstrapped as a whole, so that we can capture any remaining intraday correlation.

These implicit assumptions remain applicable when we discuss dynamic intraday updating

in the next subsection. Note that our approach does not assume a specific parametric

distribution for the errors.

3.3 Dynamic Intraday Updating

Using the method in the previous section, a manager is able to forecast the call volume

profile for day n + h at the end of day n. In particular, h = 1 corresponds to the next day.

As calls arrive during day n + 1, the manager may want to dynamically update her forecast

for the remainder of the day using the information from the early part of that day. This

dynamic updating is useful because it adds flexibility to her allocation of available resources,

which then leads to higher efficiency and productivity, as well as better quality of service.

By reevaluating her forecast for the remainder of the day, she can then schedule meetings or

training sessions for agents free from work at short-notice, or call in back-up agents.

Suppose we have available the call volumes during the first m0 time periods of day n+1.

Denote them collectively as xe
n+1 = (xn+1,1, . . . , xn+1,m0

)T , a vector containing the first m0

elements of xn+1. Denote xl
n+1 = (xn+1,m0+1, . . . , xn+1,m)T to be the intraday call volume

profile for the later part of day n +1. For notational simplicity, we suppress the dependence

of xe
n+1 and xl

n+1 on m0.

Let β̂TS
n+1,k be a time series (TS) forecast based on {βi,k}, for k = 1, . . . , K, using infor-

mation up to the end of day n. The TS forecast of xl
n+1 is then given by

x̂TS
n+1,j = β̂TS

n+1,1fj1 + · · · + β̂TS
n+1,KfjK, j = m0 + 1, . . . , m. (5)

These forecasts do not utilize any new information of day n+1. Below, we discuss two ways

to incorporate the new information in xe
n+1 to obtain an updated forecast of xl

n+1.
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3.3.1 Direct Least Squares Updating

When being applied to the intraday profile of day n+1, the decomposition (1) can be written

as

xn+1,j = βn+1,1fj1 + · · ·+ βn+1,KfjK + εn+1,j , j = 1, . . . , m. (6)

Let Fe be a m0 × K matrix whose (j, k)th entry is fjk, 1 ≤ j ≤ m0, 1 ≤ k ≤ K, βn+1 =

(βn+1,1, . . . , βn+1,K)T , and εe
n+1 = (εn+1,1, . . . , εn+1,m0

)T . Then, with the availability of xe
n+1,

we have the following linear regression model,

xe
n+1 = Feβn+1 + εe

n+1.

This suggests that we can forecast βn+1 by the method of least squares (LS). Solving

min
βn+1

‖xe
n+1 − Feβn+1‖2,

we obtain that

β̂
LS

n+1 = (FeTFe)−1FeTxe
n+1.

The LS forecast of xl
n+1 is then given by

x̂LS
n+1,j = β̂LS

n+1,1fj1 + · · · + β̂LS
n+1,KfjK, j = m0 + 1, . . . , m. (7)

To make the LS forecast of βn+1 uniquely defined, we require that m0 ≥ K. This makes

sense intuitively in that one needs more observations than parameters, in order to carry out

the least squares estimation. Operationally, this suggests a trade-off between having more

feature factors (i.e. a larger K) and updating forecasts earlier in the day (a smaller m0).

One achieves a better approximation of the data matrix X by having more factors; however,

the manager then has to wait longer to start her direct LS forecast updating. Below we

propose a penalized LS updating approach which seems to offer a solution to this trade-off.

3.3.2 Penalized Least Squares Updating

Direct least squares updating makes use of the additional information available at the early

part of day n+1, but it needs a sufficient amount of data (i.e. a large enough m0) in order for

β̂
LS

n+1 to be reliable. This might create a problem if the manager wants to update her forecast

early in the morning, for example, at 8:00AM with m0 = 4 or 10:00AM with m0 = 12 for the

data in Section 2. Another disadvantage of the direct LS updating is that it does not make
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full use of the historical information other than the estimated intraday feature vectors. In

particular, it ignores the day-to-day dependence present in the interday feature series.

We propose combining the least squares forecast with the time series forecast of βn+1 by

using the idea of penalization. Specifically, we minimize with respect to βn+1,1, . . . , βn+1,K

the following penalized least squares (PLS) criterion,

m0∑

j=1

∣∣∣∣xn+1,j − (βn+1,1fj1 + · · ·+ βn+1,KfjK)

∣∣∣∣
2

+ λ
K∑

k=1

|βn+1,k − β̂TS
n+1,k|2, (8)

where β̂TS
n+1,k is a time series forecast based on the information up to the end of day n, and

λ > 0 is a penalty parameter. Since only one penalty parameter is used, it makes sense for

the K time series {βik}, 1 ≤ k ≤ K, to be roughly on the same scale. This can be achieved

by requiring
∑n

i=1 βikβil = δkl or (1/n)
∑n

i=1 βikβil = δkl in (2).

The PLS criterion (8) involves two terms: the first term measures how well the model

prediction matches the observed call volumes in the early part of the day, while the second

term penalizes a large departure from the time series forecast. The βn+1 obtained as the

solution to the minimization problem will be a compromise between the two terms based on

the size of λ, the penalty parameter. In practice, λ can be selected based on the forecasting

performance on a rolling hold-out sample; see Section 4.4.2 for a detailed description of one

selection procedure. The case study in Section 4.4.2 also exemplifies how one can understand

the relative importance of the two terms.

For each given λ, the PLS problem can be rewritten in a constrained optimization form:

minimize
K∑

k=1

|βn+1,k − β̂TS
n+1,k|2 subject to

m0∑

j=1

∣∣∣∣xn+1,j − (βn+1,1fj1 + · · ·+ βn+1,KfjK)

∣∣∣∣
2

≤ ξ,

where ξ = ξ(λ) is chosen appropriately so that the solution to this problem and the previous

one are the same for the given λ. The optimization problem can then be interpreted as

follows, among all the βn+1’s that yield forecasts which adequately match the observed call

volumes of the early part of the day, find the one that is closest to the time series forecast.

We can express the PLS criterion (8) in the following matrix form,

(xe
n+1 − Feβn+1)

T (xe
n+1 − Feβn+1) + λ(βn+1 − β̂

TS

n+1)
T (βn+1 − β̂

TS

n+1). (9)
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Minimizing this criterion gives us the PLS forecast of βn+1 as

β̂
PLS

n+1 = (FeTFe + λI)−1(FeTxe
n+1 + λβ̂

TS

n+1). (10)

The PLS forecast of xl
n+1 is then given by,

x̂PLS
n+1,j = β̂PLS

n+1,1fj1 + · · ·+ β̂PLS
n+1,KfjK, j = m0 + 1, . . . , m. (11)

The following Theorem 1 suggests that the PLS forecast β̂
PLS

n+1 is actually a weighted

average of the LS forecast and the TS forecast with the weights controlled by the penalty

parameter λ. Note that, if λ = 0, β̂
PLS

n+1 is simply β̂
LS

n+1; if λ → ∞, then β̂
PLS

n+1 reduces to

β̂
TS

n+1.

Theorem 1

β̂
PLS

n+1 = A(λ)β̂
LS

n+1 + (I − A(λ))β̂
TS

n+1,

where A(λ) is a K × K matrix satisfying A(0) = I and A(λ) → 0 as λ → ∞.

We point out that the PLS idea can be derived from a Bayesian perspective. To this end,

we treat the TS forecast β̂
TS

n+1 as our prior knowledge of βn+1, and model βn+1,k (1 ≤ k ≤ K)

as random draws from a “prior” normal distribution with mean β̂TS
n+1,k and variance σ2

0 . The

error term εn+1,j in the expression (6) is modeled as normal with mean 0 and variance σ2.

Then the “posterior” density function of βn+1 is maximized by the solution of the PLS

problem (8) with λ = σ2/σ2
0 .

There exists a connection between our PLS approach and the widely used ridge regression

(Hoerl and Kennard 1970a,b) in regression analysis. Define x̃e
n+1 = xe

n+1 − Feβ̂
TS

n+1 and

β̃n+1 = βn+1− β̂
TS

n+1. Consider a ridge regression with x̃e
n+1 as the response, Fe as the design

matrix, and β̃n+1 as the regression coefficient vector. The ridge estimate of β̃n+1 is

̂̃
βn+1 = (FeTFe + λI)−1FeT x̃e

n+1,

which minimizes the criterion

(x̃e
n+1 − Feβ̃n+1)

T (x̃e
n+1 − Feβ̃n+1) + λβ̃

T

n+1β̃n+1. (12)

This is the same as the PLS criterion in (9) up to a reparametrization β̃n+1 = βn+1 − β̂
TS

n+1.

Therefore the minimizers of the two optimization problems are linked through
̂̃
βn+1 = β̂

PLS

n+1−
β̂

TS

n+1. The ridge estimate in (12) shrinks the corresponding least squares estimate toward
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0. Correspondingly, our PLS forecast modifies the least squares forecast β̂
LS

by shrinking

it towards the TS forecast β̂
TS

. As noticed by Hoerl and Kennard, the shrinkage of ridge

regression has the beneficial effect of reduced variance. Similar variance reduction is expected

for our PLS forecast.

3.3.3 Distributional Forecast Updating

The PLS provides a point forecast updating scheme. For the corresponding distributional

updating of xl
n+1, we use a nonparametric bootstrap procedure similar to the one described in

Section 3.2.2. First, by bootstrapping the errors from the time series forecasting models for

βn+1, we obtain B time series forecasts β̂
TS,b

n+1 as discussed in Appendix A.1. These forecasts

in turn lead to B PLS forecasts β̂
PLS,b

n+1 according to (10).

Then, we derive B PLS updates of xl
n+1 as follows,

x̂PLS,b
n+1,j = β̂PLS,b

n+1,1fj1 + · · ·+ β̂PLS,b
n+1,KfjK + ε̂b

j, j = m0 + 1, . . . , m; b = 1, . . . , B,

where ε̂b = (ε̂b
1, . . . , ε̂

b
m)T is sampled with replacement from the fitted error profiles ε̂1, . . . , ε̂n

of the historical data. The interval and density forecasts of xn+1,j are then obtained using

the empirical distribution of {x̂PLS,b
n+1,j : 1 ≤ b ≤ B}. For a 100(1 − α)% forecast interval, the

two end points are the α/2 and (1 − α)/2 empirical percentiles of {x̂PLS,b
n+1,j}. The histogram

or density estimate of {x̂PLS,b
n+1,j} then gives a density forecast of xn+1,j .

4. Forecasting Performance Comparison

We conduct out-of-sample rolling forecasting exercises on simulated and real data sets to

evaluate the proposed forecasting method and compare it with competing methods. Both

one-day-ahead forecasting and dynamic intraday updating are considered. The root-unroot

method (Section 2) is applied to all forecasting methods to deal with heteroscedasticity.

The methods are described on the root-transformed data, while the unroot-transformation

is needed to derive forecasts of the call volumes.

Section 4.1 presents several forecasting performance measures. Several competing meth-

ods are described in Section 4.2. Two simulated examples are used in Section 4.3 to compare

our data-driven approach with two model based approaches. The two case studies are re-

ported separately in Sections 4.4 and 4.5, using the data described in Section 2 and the

data used in Weinberg et al. (2007). By showing the forecast-accuracy comparison on two

datasets, it provides evidence of the robustness and general applicability of our approach.
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4.1 Performance Measures

Two measures are used for assessing and comparing point forecast performances. Let Nij

denote the call volume on day i during period j, and N̂ij be a forecast of Nij. Suppose

we are interested in forecasting the whole intraday profile for day i, as for example, in one-

day-ahead forecasting. Then, the root mean squared error (RMSE) and mean relative error

(MRE) are defined for day i as follows,

RMSEi =

√√√√ 1

m

m∑

j=1

(N̂ij − Nij)2 and MREi =
100

m

m∑

j=1

|N̂ij − Nij|
Nij

.

We now discuss how to evaluate our bootstrap based forecast intervals. As described

in Section 3.2, we first obtain a bootstrap sample of B forecasts of Nij. It is proposed to

use [N̂
100(α/2)
ij , N̂

100(1−α/2)
ij ] as one 100(1− α)% forecast interval of Nij, where N̂Q

ij is the Qth

quantile of the bootstrap sample. In practice, people commonly use 95% prediction intervals,

which correspond to α = 0.05. For day i, we compute the 95% coverage probability (COVER)

and the average forecast interval width (WIDTH) as follows

COVERi =
1

m

m∑

j=1

I(N̂2.5
ij < Nij < N̂97.5

ij ) and WIDTHi =
1

m

m∑

j=1

(N̂97.5
ij − N̂2.5

ij ),

with I being the indicator function. We expect the empirical coverage probability to be close

to the nominal value, and the narrower the forecast interval, the better.

For dynamic updating, suppose we update our forecast after time period j, then the above

measures can be calculated by averaging over only those remaining periods after time period

j. Summary statistics (over days in the forecasting set) such as mean, median, quartiles of

the measures can be reported to compare the performance of different forecasting methods.

4.2 Competing Methods

4.2.1 Interday Forecasting

The Benchmark. The first alternative is a simple method that is currently used in the

call center industry (Cleveland and Mayben 2004, Weinberg et al. 2007), which incorporates

both day-of-the-week and time-of-day effects in a linear additive model. Specifically, let di

denote the day-of-the-week of day i, and xij =
√

Nij + 1/4 with Nij being the call volume

during period j of day i. Then the model is

xij = µ + αdi
+ βj + εij, εij ∼ N(0, σ2).
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We refer to this approach as the historical average (HA) approach, because it essentially uses

historical averages of the same day-of-the-week as a forecast for the current day’s square-

root-transformed call volumes.

A Bayesian Gaussian Model. The second alternative is the Bayesian approach pro-

posed in Weinberg et al. (2007), which assumes Nij is a Poisson random variable with a

random rate that depends on both day-of-the-week and time-of-day. Using the root-unroot

method, the following Bayesian Gaussian (BG) model is proposed,





xij = gdi
(tj)yi + εij, εij ∼ N(0, σ2),

yi − αdi
= β(yi−1 − αdi−1

) + ηi, ηi ∼ N(0, φ2),
d2gdi

(tj)

dt2j
= τdi

dWdi
(tj)

dtj
,

where tj is the center of time period j, gdi
(·) models the smooth intraday call arrival pattern

that depends on day-of-the-week di(= 1, . . . , 5), yi is a random effect with an autoregressive

structure adjusting for di, and Wdi
(t) are independent Wiener processes with Wdi

(0) = 0 and

var{Wdi
(t)} = t. To fit the model, the authors suggest suitable priors on the parameters,

α1, . . . , α5; τ 2
1 , . . . , τ 2

5 ; σ2; φ2 and β, and propose a MCMC algorithm to estimate them.

We also consider the following two models which are related to the above existing ap-

proaches. The models may appear to be classical, but they have not been explicitly used in

the call center forecasting literature. In addition, we use the two models in the simulation

study reported in Section 4.3.

A Multiplicative Model. We assume the following multiplicative (MUL) model,





xij = yiγdij + εij,
∑

j γdij = 1, εij ∼ N(0, σ2),

yi − αdi
= β(yi−1 − αdi−1

) + ηi, ηi ∼ N(0, φ2),

i = 1, . . . , n; j = 1, . . . , m; di = 1, 2, 3, 4, 5.

(13)

In the call center context, this model assumes that, on the square-root-transformed scale,

the daily total (yi) follows an AR(1) model that depends on day-of-the-week (αdi
); each

weekday has its own intraday arrival profile (γdij). The model is in essence the same as the

above Bayesian model used in Weinberg et al. (2007), except that the intraday profiles are

not required to be smooth. We provide details about one estimation/forecasting procedure

for Model (13) in Appendix A.3.
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An Additive Model. The following additive (ADD) model is assumed on xij,





xij = µ + αi + βj + γdij + εij, εij ∼ N(0, σ2),

αi − adi
= b(αi−1 − adi−1

) + ηi, ηi ∼ N(0, φ2),∑
i αi =

∑
j βj =

∑
i γdij =

∑
j γdij =

∑
ij γdij = 0,

i = 1, . . . , n; j = 1, . . . , m; di = 1, 2, 3, 4, 5.

(14)

This essentially corresponds to a linear additive model with time-of-day (βj) and daily (αi)

effects as well as their interactions (γdij), and the day-of-the-week main effects are assumed to

be an AR(1) process adjusting for day-of-the-week (adi
). Such a model is also reasonable for

our call center application. One estimation/forecasting procedure of Model (14) is detailed

in Appendix A.4.

4.2.2 Dynamic Intraday Updating

Weinberg et al. (2007) propose an updating algorithm for the Bayesian approach, while the

HA/MUL/ADD approaches do not perform any intraday updating. Besides the Bayesian

updating, we compare our proposed dynamic updating approach with the following two

updating methods.

The Historical Proportion Method. The first method is a simple updating that

combines the HA/MUL/ADD forecasts with historical proportions (HP). Suppose the HA

forecast for day n + 1 is x̂HA
n+1. For an updating point m0,

• calculate the ratio R between the (square-root-transformed) number of calls received

up to time period m0 and the number forecasted up to that time,

R =

∑m0

j=1 xn+1,j∑m0

j=1 x̂HA
n+1,j

;

• update the HA forecasts for the remaining of the day as,

x̂HP
n+1,j = R x̂HA

n+1,j, j = m0 + 1, . . . , m.

We can replace the HA forecast with the MUL/ADD forecast in the above algorithm, and

refer to the corresponding updates as HPM and HPA, respectively. A non-trivial observation

needs to be pointed out here. Due to the specific forms/estimations of the HA model and

the MUL model, for the same forecasting day, the MUL forecast turns out to be the HA

forecast multiplied by a constant that takes into account the interday correlation. Hence,
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MUL and HA produce the same HP updates, because the constant gets canceled out as one

can see from the above algorithm.

The Multiple Regression Method. The second method is based on a multiple linear

regression (MR). Let Xe = (xe
1, . . . ,x

e
n)T be a n×m0 matrix containing the historical square-

root-transformed count up to period m0, and Xl = (xl
1, . . . ,x

l
n)T be the corresponding

n × (m − m0) matrix after period m0. The MR method works as follows,

• regress Xl on Xe and obtain the regression coefficient matrix as

(XeTXe)−1XeTXl;

• update the forecast of xl
n+1 as the model prediction of xe

n+1,

x̂lMR
n+1 = XlTXe(XeTXe)−1xe

n+1.

Note that here we are updating the multivariate response xl
n+1 simultaneously, which is

equivalent to updating each element of xl
n+1 separately.

4.3 Two Simulated Examples

The proposed forecasting approach is data-driven, which assumes no probabilistic model on

the underlying data generating process. Here we use two simulation examples to illustrate

that our approach is actually very robust to various model assumptions, in the sense that it

performs almost as good as the method that uses the true data generating model. On the

other hand, the method based on a specific model gives inferior forecast when the model

assumed is different from the underlying data generating model. In this case, we refer to the

assumed model as a mis-specified model, and the data generating model as the true model.

Note that such a distinction of true/mis-specified models is only feasible in simulation studies.

For real data, we never know what the true model is.

For the two examples, the multiplicative model (13) and the additive model (14) are

respectively considered as the true data generating model. To choose reasonable model pa-

rameters, we fit the models to the data described in Section 2 (on the square-root-transformed

scale). The obtained parameter estimates are rounded properly for use in the simulations.

In particular, some estimated model parameters are reported below,

• for Model (13): α1 = 2045, α2 = 1935, α3 = 1900, α4 = 1890, α5 = 1885, β = 0.65,

σ = 0.5, φ = 35, n = 200 and m = 68;
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• for Model (14): µ = 28.5, b = 0.65, σ = φ = 0.5, n = 200 and m = 68.

Data sets are generated using each of the two models. Each simulation example is

repeated 100 times. During each simulation run, a rolling out-of-sample forecasting exercise

is performed with the last 50 days as the forecasting set; and for each day in the forecasting

set, the preceding 150 days are used to derive the forecast. Seven forecasting methods

are applied to both simulations, including forecasting using the multiplicative model (13),

forecasting using the additive model (14), and our methods TS1 to TS5. The parameters

involved in all the methods are re-estimated for each update in the rolling forecast exercise

for each simulated dataset. Note that, when the data is generated using the multiplicative

model, the additive model is a mis-specified model; and vice versa. In both cases, our TS

methods do not use the model assumptions.

Figure 2: Comparison of Empirical CDF of Mean RMSE for several forecasting methods
under the multiplicative simulation model (13). TS4 and TS5 perform comparably to the
true model, while the wrong additive model (14) performs worse.
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For each simulation run, we calculate the Mean RMSE and Mean MRE (%) over the

forecasting set for each method. Based on the 100 runs, we calculate the empirical cumulative
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Figure 3: Comparison of Empirical CDF of Mean RMSE for several forecasting methods
under the additive simulation model (14). TS4 and TS5 perform comparably to the true
model, while the wrong multiplicative model (13) performs worse.
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distribution functions (CDF) of the Mean RMSE, which are plotted in Figure 2 when the

data are generated from the multiplicative model and in Figure 3 when the data are from

the additive model. The true model is highlighted in the legend using an asterisk. The

results for Mean MRE (%) are similar and not shown. To help read these graphs, note that,

if the CDF of one random variable is above that of the other random variable, then the first

variable is stochastically smaller than the second one.

We observe that the forecasts based on mis-specified models have stochastically larger

Mean RMSE and Mean MRE (%) than the forecasts based on the correctly specified mod-

els. Hence inferior forecasts are obtained when using the mis-specified models. For our

proposed TS methods, when the number of feature vectors K increases, both performance

measures get stochastically smaller and smaller; and TS4 and TS5 have about the same

forecasting performance, which are competitively close to the true model. Note that the

CDFs of TS4/TS5 and the true model are hard to distinguish in each plot. The robust good
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performance of the proposed method is important in practice since the proposed method

does not require the information of the true underlying model.

4.4 Case Study I: Our Data

In this section, we use our data (Section 2) to illustrate the proposed methods for interday

forecasting as well as intraday updating. In order to implement the sophisticated Bayesian

approach in Weinberg et al. (2007), one needs the expertise with programming MCMC. Hence

we did not apply their approach to our data. Instead, we apply our forecasting methods to

their data in Section 4.5 to compare with their published results.

As described earlier, there are in total 200 intraday call volume profiles (aggregated into

quarter hours) in our data. To perform the rolling-forecast, we use the final 50 days as the

forecasting set; for each day in the forecasting set, we use the 150 preceding days as the

historical data to re-estimate the model and generate the forecast.

4.4.1 Interday Forecasting

Our approach for one-day-ahead forecasting as described in Section 3.2 relies on a dimension

reduction by SVD. The original high-dimensional vector time series is represented using a

small number K of basis vectors. In this study, we consider K = 1, . . . , 4 and denote the

methods as TS1, ..., TS4 respectively. The scree plot based on the first 150 days suggests

that we only need to consider up to five pairs of feature vectors, which makes sense in that

the five weekdays appear to have different arrival patterns (Figure 1(a)). We note that TS4

and TS5 turn out to have very similar forecasting performance.

To help interpret the feature factors, Figure 4 plots the first four pairs of intraday feature

vectors and interday feature series, all of which are extracted from the first 150 days. As it

turns out, the first intraday feature summarizes the average intraday call arrival pattern dur-

ing a regular weekday; while the first interday feature illustrates a strong weekly effect, and is

actually highly correlated with total daily call volume. The remaining pairs are second-order

effects as indicated by the much smaller scales of the second to fourth interday feature series.

The corresponding intraday features capture certain contrasts between arrival patterns of

different within-day segments. For example, the second intraday feature compares morning

arrivals with afternoon and evening arrivals; when combined with the second interday fea-

ture, they suggest the following specific phenomenon: Fridays usually have above average
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call volumes in early mornings and below average volumes in late afternoons and evenings,

while the opposite is true for Mondays.

Further analysis of the interday feature series suggest that they can be modeled separately

by an AR(1) time series model with a day-of-the-week effect. Specifically, for k = 1, . . . , 4,

we model the series {βik} by

βik = ak(di−1) + bkβi−1,k + εi,

where the varying intercept ak(di−1) depends on the day-of-the-week of day i − 1, and the

εi’s are independent identically distributed errors with mean 0. The same model has been

obtained in Shen and Huang (2005) when analyzing the arrival data from the same call

center for a different year. A closely related model is used in Weinberg et al. (2007).

Table 1 compares summary statistics of the RMSE and MRE of the forecasts from the

HA/MUL/ADD methods and the four TS methods. The best forecasting method is high-

lighted with boldface for each summary statistic separately. Based on RMSE, all TS methods

show substantial improvement over the benchmark HA, while TS4 gives the best overall per-

formance. As for MRE, TS1 performs comparable with HA, because MRE is more sensitive

to forecasting performance at the beginning and the end of the day where call volumes are

low. At least two feature vectors are needed to capture the difference among different week-

days in those regions. Both ADD and MUL also improve significantly over HA, with ADD

performing similar to TS2 and MUL similar to TS4.

Table 1: Summary statistics (mean, median, lower quartile Q1, upper quartile Q3) of RMSE
and MRE in a rolling forecast exercise. The forecasting set contains 50 days.

RMSE MRE (%)
Q1 Median Mean Q3 Q1 Median Mean Q3

HA 43.81 65.57 72.89 90.04 5.2 6.7 7.3 8.7
ADD 41.71 52.56 59.28 63.67 4.8 5.6 6.5 6.9
MUL 41.55 48.54 57.49 59.33 4.6 5.3 6.1 6.6
TS1 42.91 53.52 60.09 63.76 5.2 6.6 7.4 8.6
TS2 39.57 51.29 57.96 61.04 4.9 5.6 6.6 7.1
TS3 42.90 51.96 57.65 58.01 4.8 5.5 6.4 6.9
TS4 41.85 48.23 56.88 59.27 4.6 5.3 6.2 6.7

We also compare the performance of the 95% bootstrap prediction intervals for our TS

methods. The bootstrap procedure described in Section 3.2 is implemented with B = 1000.
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Figure 4: The first four pairs of intraday feature vectors and interday feature series.
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The average empirical coverage probabilities of the prediction intervals turn out to be 94.4%,

94.9%, 94.8% and 94.6% respectively, which are quite accurate. Table 2 compares the distri-

bution of the average prediction interval width among the four TS approaches, which suggests

that the intervals get stochastically narrower as one increases the number of components,

K, in the forecasting model; hence the forecasting becomes more and more precise.

Table 2: Summary statistics (mean, median, lower quartile Q1, upper quartile Q3) of Average
Width in a rolling forecast exercise. The forecasting set contains 50 days. TS4 performs the
best. The intervals are stochastically narrower as one increases K.

Q1 Median Mean Q3
TS1 234.2 242.0 243.1 249.4
TS2 225.4 232.3 233.3 242.4
TS3 220.3 226.9 227.8 234.0
TS4 215.1 221.8 223.1 229.7

4.4.2 Dynamic Intraday Updating

For each day in the forecasting set, we consider dynamically updating the forecast for the rest

of the current day at every half hour starting from 8:00AM, using available information up to

that time. In addition to the HP/HPM/HPA and MR updating methods (Section 4.2.2), we

consider the three updating methods described in Section 3.3, namely TS, LS, and PLS; see

(5), (7) and (11). We expect that the PLS method should give the best forecast performance.

This is confirmed empirically below. To implement these three methods, we need to choose

K, the number of intraday feature vectors for dimension reduction. In light of the one-day-

ahead forecasting performance presented above in Section 4.4.1, we decide to use K = 4

and the three methods are therefore denoted as TS4, LS4, and PLS4. For each day in the

forecasting set, we use its 150 preceding days to derive the time series forecast TS4. We

employ the current day’s incoming call volume information in addition to the 150 preceding

days to produce the LS4 and PLS4 forecasts. The intraday updating starts at 8:00AM,

corresponding to m0 = 4, in order to have enough data to estimate the parameters for LS.

To use the PLS updating approach, we need to decide on the value of the penalty param-

eter λ at each updating point. To this end, we use the beginning 150 days in our data set

as the training set, and perform an out-of-sample rolling forecast exercise on this training

set. Note that this training set does not overlap with the forecasting set we initially hold
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out for out-of-sample forecast evaluation. For the purpose of selecting λ, the last one third

(i.e., 50 days) of the training set is used as a rolling hold-out sample. For a given day in

this hold-out sample, we use the preceding 100 days to extract the interday feature series

to generate the time series forecast TS4. The extracted intraday feature vectors and the

obtained TS4 forecast are used for all updating points within that day.

Fix an updating point, for example, 10:00AM. For each given λ, we construct the PLS

updating for the given day. Pick a performance measure such as RMSE or MRE. Compute

the performance measure for all days in the hold-out sample and calculate the average value.

Select λ by minimizing this average performance measure over a grid of candidate values. In

this study, we choose λ from {0, 10, . . . , 109}. When λ = 0, the PLS approach is the same

as the LS approach. As λ goes to infinity, the PLS approach should converge to the TS

approach, which is essentially achieved when λ = 109 in our study. Second-round tuning can

be carried out over a finer grid around the selected λ to improve performance if needed.

For a given updating point, the selected λ is kept fixed for all days in the forecasting

set to generate the PLS forecast for the corresponding updating. We observe that, for every

selection criterion (RMSE or MRE), the selected λ in general has a decreasing trend as the

updating time progresses into the later part of the day. Note that a smaller λ value would

let the PLS forecast put more weight on the LS forecast. Thus the observed decreasing trend

for the selected λ makes intuitive sense. Because, as time progresses, more information is

available about the current day’s call arrival pattern, and the forecaster needs less influence

from the TS forecast.

Figure 5 plots the average of RMSE as functions of the updating points for the seven

approaches, where the averages are taken over the 50 days in the forecasting set. TS4

is treated as the benchmark as it essentially performs no intraday updating. It just uses

the information up to the end of the previous day and does not employ the current day’s

information. Note that RMSE is calculated at each updating point since we are interested

in the performance of the updated forecasts at all time periods after the updating point. For

PLS4, RMSE is used to select λ as it is the performance measure in Figure 5.

From the plot, PLS4 is clearly the winner, which has the smallest error measure at all

updating points. The improvement over TS4 starts to become really significant as early

as updating at 10:00AM, which is 3 hours into the working day. Thus, the significant

improvement of PLS4 over TS4 shows the benefit of dynamic updating using the current

day’s information. One can also see that LS4 performs rather badly at the beginning of the
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Figure 5: Comparison of Mean RMSE as functions of the updating points, which are calcu-
lated over the 50 days in the forecasting set. PLS4 performs the best.
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day, which is due to the high collinearity between the initial parts of the higher order intraday

feature vectors. This also justifies the necessity for penalization. The MR updating performs

no better than TS4, and much worse prior to 10:00AM; this suggests that the interday

dependence plays a much bigger role in improving forecasting, which isn’t incorporated in

MR. As discussed in Section 4.2.2, HP and HPM lead to the same updates. The HP/HPM

approach behaves rather badly in early mornings, and starts to beat TS4 at 11:00AM; it

performs worse than PLS4 until 16:00PM, when the performance converges to PLS4’s. It

seems that a call center manager needs enough information for the present day in order for

the HP/HPM updating to work well. To the extent that she has that information, HP/HPM

is a nice candidate to perform updating due to its simplicity. The HPA approach performs

uniformly worse than HP/HPM.

Below, we look at the 10:00AM updating and the 12:00PM updating, in order to get

some idea about how different approaches perform for individual updating. Table 3 presents

summary statistics of the RMSE of the forecasts from TS4, LS4, HP/HPM, HPA, MR
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and PLS4. The averages are calculated over the 50 days in the forecasting set. For a fair

comparison, we only use data after 12:00PM when calculating the RMSE. The superior

performance of PLS4 over the other methods is again quite clear. The LS4 method has the

worst performance, even much worse than TS4. For every method except TS4, updating later

always improves the forecasting accuracy. Note that TS4 performs no intraday updating.

Table 3: Summary statistics (mean, median, lower quartile Q1 and upper quartile Q3) of
RMSE for the 10:00AM and 12:00PM updatings. PLS4 outperforms the other methods.

10:00AM updating 12:00PM updating
Q1 Median Mean Q3 Q1 Median Mean Q3

TS4 36.15 41.74 52.55 54.60 36.15 41.74 52.55 54.60
LS4 83.28 106.90 119.20 128.10 54.92 73.83 79.90 97.46

HP/HPM 37.64 49.76 59.30 70.10 35.68 39.60 49.46 49.74
HPA 37.66 52.17 60.13 71.11 35.84 41.05 50.57 50.38
MR 41.06 48.24 56.50 62.96 40.45 47.04 52.21 52.20

PLS4 37.04 42.08 50.77 58.07 33.69 37.87 44.96 44.25

Intraday updating not only can reduce forecasting errors, but also narrow the width

of forecast intervals while maintaining the same coverage probability. To illustrate this

point, Table 4 reports a width comparison of 95% forecast intervals among three forecasting

approaches: TS4 where no updating is performed, PLS4 with 10:00AM updating, and PLS4

with 12:00PM updating. The intervals are stochastically narrower as more observations

are used for the updating. The two updatings reduce the average interval width by 11.5%

and 9.0% sequentially. The average empirical coverage probability of the three intervals are

respectively 93.7%, 93.3% and 94.0%, close to the nominal value.

Table 4: Summary statistics (mean, median, lower quartile Q1 and upper quartile Q3) of
Average Width of 95% forecast intervals among three approaches: TS4 (i.e. no updating),
PLS4 (10:00AM updating) and PLS4 (12:00PM updating).

Q1 Median Mean Q3
TS4 193.1 199.8 200.1 205.2

PLS4 (10:00AM) 171.2 175.8 177.1 182.0
PLS4 (12:00PM) 155.5 161.2 161.2 164.6

We recall that the PLS criterion (8) involves two terms. To understand their relative

importance, one can evaluate the criterion at the selected λ and β̂
PLS

n+1, and calculate the
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percentage of each term relative to the total. For the current study, the first term accounts

for 89.2% and 90.1% of the total for the 10:00AM and 12:00PM updatings, respectively. The

first term becomes more important as one postpones the updating, which makes sense.

4.5 Case Study II: Weinberg’s Data

In this section, we compare our method with the Bayesian Gaussian (BG) approach proposed

by Weinberg et al. (2007). To compare with their published results, we apply our method

to the same cleaned data used by Weinberg et al. Their data consist of 5-minute aggregated

call volume profiles from 7:00AM to 9:05PM for 164 days; thus the dimensionality is 169.

In Weinberg et al. (2007), the data set was cleaned by excluding anomalous days such as

holidays. For the rolling-forecast, the final 64 days are used as the forecasting set. For each

day in the forecasting set, its 100 preceding days are considered as the historical data.

4.5.1 Interday Forecasting

For our forecasting approach, we consider two methods, one using three intraday feature

vectors (TS3) and the other using five (TS5). The reason of such a choice is that the BG

approach assumes a separate intraday pattern for each weekday, which corresponds to the

model with five intraday feature vectors, and the use of three intraday feature vectors has

already given good forecast results. Note that Weinberg et al. constrain the intraday patterns

to be smooth while we do not impose such a constraint. We again use the varying-coefficient

AR(1) model to forecast the interday feature series.

Table 5 reports summaries of the RMSE and MRE of the forecasts from various competing

approaches. The results for BG are quoted from Weinberg et al. (2007). As expected, all the

approaches improve greatly over HA. It is also observed that our approaches perform very

competitively with the BG approach. Through personal communication, we find out that

the Bayesian approach might take a long time to run due to the many MCMC iterations

needed. As a comparison, our approach is computationally fast, which makes it amenable

for realtime updating. The results also suggest that a forecasting model with three intraday

features (TS3) might be sufficient. Both ADD and MUL methods perform similar to our TS3

approach with TS3 using the least number of intraday features. We point out in Section 4.2.1

that the only major difference between MUL and BG is that BG assumes smooth intraday

patterns. The close performance between them suggests that smoothing is not necessary for

the one-day-ahead forecasting of the current data.
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Table 5: Summary statistics (mean, median, lower quartile Q1, upper quartile Q3) of RMSE
and MRE for six competing approaches: HA, ADD, MUL, BG, TS3 and TS5. Note that the
forecasting exercise is performed on the data used in Weinberg et al. (2007).

RMSE MRE (%)
Q1 Median Mean Q3 Q1 Median Mean Q3

HA 16.22 19.12 21.32 21.82 7.8 9.3 10.1 11.6
ADD 14.49 15.89 18.46 19.84 7.0 7.6 8.5 8.7
MUL 14.42 15.81 18.28 19.97 6.9 7.3 8.4 8.7
BG 14.25 15.83 18.28 19.83 7.0 7.4 8.4 8.5
TS3 14.34 15.76 18.19 20.22 6.9 7.5 8.5 8.8
TS5 14.20 15.82 18.16 19.99 6.8 7.3 8.3 8.6

4.5.2 Dynamic Intraday Updating

Weinberg et al. (2007) also propose a Bayesian procedure to perform intraday updating.

In this section, we are interested in comparing their updating procedure (BG) with our

penalized least squares updating approach (PLS3).

The penalty parameter λ for the PLS updating is chosen using the data-driven procedure

described in Section 4.4.2. We use the last 30 days of the 100-day training set as a rolling

hold-out sample. For each day in this sample, its preceding 70 days and early part of the

current day are used to generate the updated forecast for some candidate values of λ. We

then select λ as the value that minimizes some performance measure averaged over the

hold-out sample.

To compare with the results reported in their paper, we look at the 10:00AM updating

and the 12:00PM updating, and the forecasting measures are calculated only using data after

12:00PM. Table 6 reports the summaries of RMSE for the BG approach (quoted from their

paper) and PLS3, which suggest that PLS3 improves slightly over BG in all cases.

The Bayesian approach naturally generates prediction intervals using the MCMC sample.

To compare the performance of the intervals, summaries of the Average Width for 95%

prediction intervals are presented in Table 6 for BG and PLS3. We observe that PLS3 with

12:00PM updating leads to the narrowest intervals in all categories. All the methods have

approximately the right coverage probability with the empirical averages around 94%.
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Table 6: Summary statistics (mean, median, lower quartile Q1, upper quartile Q3) of RMSE
and Average Width of 95% prediction intervals for BG and PLS3. Note that the forecasting
exercise is performed on the data used in Weinberg et al. (2007).

RMSE Average Width
Q1 Median Mean Q3 Q1 Median Mean Q3

10:00AM
BG 14.00 15.50 17.86 19.87 58.87 60.74 61.11 63.50

PLS3 13.31 14.87 16.48 17.25 59.58 61.17 61.32 62.81

12:00PM
BG 13.56 14.80 16.59 16.58 58.78 60.42 60.80 62.34

PLS3 13.33 14.60 16.13 16.39 58.14 59.27 59.56 61.38

5. Conclusion

Our approach to forecasting call arrivals is based on the viewpoint that the intraday call

volume profiles form a vector time series. This point of view represents clearly that the data

have a two-way temporal structure, that is, the interday and intraday variations. Such a

structure exists in other applications as well. The SVD, used as a dimensionality reduction

tool, effectively separates out these two types of variations. The intraday variation is sum-

marized by a few intraday feature vectors that can be extracted from historical data, while

the interday variation is modeled by a few interday feature time series (see Section 3.1).

The effectiveness of SVD for dimension reduction is shown in our data examples: three

pairs of interday and intraday features are sufficient to generate good forecasts for a 68 (or

169)-dimensional time series.

Assuming that the intraday features won’t change in the near future, the problem of

forecasting intraday profiles reduces to the problem of forecasting the interday features. We

propose to use univariate time series techniques to forecast the interday feature series in

order to generate one- or multi-day-ahead forecasts. For dynamic intraday updating, we

have considered three ways to update the interday feature forecasts: 1. Apply the interday

forecast, using information available up to the end of the previous day (i.e. no updating);

2. Fit a least squares regression using the observed portion of the current day’s volume

profile on the corresponding components of the intraday feature vectors (i.e. LS updating);

3. Combine the current day’s available information with the previous day’s information

using penalized least squares (i.e. PLS updating). Not surprisingly, the third method (PLS)

performs the best and is the recommended method.

Our methods show improvements over various alternatives in two out-of-sample fore-
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casting comparisons using real data. Despite the good performance, our methods are not

much more complicated than the alternatives. They are easy to implement. SVD can be

obtained using any software that does matrix computation such as MATLAB and SPLUS/R;

and solving penalized least squares is as straightforward as performing a ridge regression.

The R codes for performing our forecasting and updating methods, as well as the data, are

available from the authors upon request. Our methods generate very competitive or slightly

better forecasts when compared with a sophisticated Bayesian approach recently proposed

by Weinberg et al. (2007). Another advantage of our approach is its fast computation, which

makes it a feasible technique for real-time forecasting and updating.

A natural direction for future research is to combine our dimensionality reduction idea

with stochastic modeling, such as modeling the arrival process as an inhomogeneous Poisson

process (Brown et al. 2005). In this paper, all the methods considered employ a square-root

transformation to overcome the non-constant variance problem. The data transformation

is not necessary if a distribution based approach is employed in the spirit of stochastic

modeling. One possibility is to model the number of arrivals as a Poisson random variable

with a random rate possessing both interday and intraday dependence, which we can model

using the dimension reduction idea in this paper. Since the Poisson rate is not observable,

such an approach will be inevitably more complex than the current approach. It would be

interesting to investigate whether the distributional approach can yield better forecasts.

The current paper focuses on one-day-ahead forecasting and intraday dynamic updating.

One closely-related interesting problem is two-week-ahead forecasting, which has gained some

research interests lately (Taylor 2007, Aldor-Noiman 2006). However, existing empirical

results remain rare, and a careful systematic study is needed. We are currently working on

extending our framework to this problem, and initial empirical analysis has shown promising

results.

Appendix

A.1 Bootstrapping the β’s in (4) of Section 3.2.2

For each k, we describe how to obtain the B bootstrap series {β̂b
n+1,k, . . . , β̂

b
n+h,k}, 1 ≤ b ≤ B,

as used in (4). Suppose the time series model for {βik} can be written as

βik = M(Hik) + εik,
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where Hik = {βi−1,k, βi−2,k, . . . , β1,k} represents the collection of historical data from the

series {βik} up to time i−1, M represents the function that gives the prediction of βik based

on the historical data, and εik is the model error. For example, for an AR(1) model,

M(Hik) = a0 + a1βi−1,k.

Let M̂ denote the fitted function using the data and let ε̂ik = βik −M̂(Hik) be the fitted

model errors. The bootstrapped model errors εb
n+1,k, 1 ≤ b ≤ B, are obtained by sampling

with replacement from the set {ε̂n,k, ε̂n−1,k, . . . , ε̂1,k}. A bootstrap sample of βn+1,k is then

obtained using βb
n+1,k = M̂(Hn+1,k) + εb

n+1,k, 1 ≤ b ≤ B.

We generate the bootstrap sample of βn+h,k for h > 1 in a sequential manner, assuming

availability of {βb
n+1,k, . . . , β

b
n+h−1,k}. The historical information set used to generate βn+h,k

depends on b and is defined as Hb
n+h,k = {βb

n+1,k, . . . , β
b
n+h−1,k} ∪ Hn+1,k. The bootstrap

model errors εb
n+h,k, 1 ≤ b ≤ B, are obtained by sampling with replacement from the

set {ε̂n,k, ε̂n−1,k, . . . , ε̂1,k}. A bootstrap sample of βn+h,k is then generated using βb
n+h,k =

M̂(Hn+h,k) + εb
n+h,k, 1 ≤ b ≤ B.

A.2 Proof of Theorem 1

This can be easily seen as follows,

β̂
PLS

n+1 = (FeTFe + λI)−1FeTFe(FeTFe)−1FeT xe
n+1 + λ(FeTFe + λI)−1β̂

TS

n+1

= (FeTFe + λI)−1FeTFeβ̂
LS

n+1 + λ(FeTFe + λI)−1β̂
TS

n+1

≡ A(λ)β̂
LS

n+1 + (I − A(λ))β̂
TS

n+1. �

A.3 Estimation and Forecasting of Model (13)

The model is multiplicative, which means that one need to use nonlinear least squares to

derive estimates. Below we provide a set of simple estimates, which are close to the true

least squares estimates (Brown et al. 2005),




ŷi = xi· =
∑

j xij; α̂di
=

P

i′:d
i′

=di
xi·

#{i′:di′=di}
;

γ̂dij =

P

i′:d
i′

=di
xi′j

#{i′:di′=di}α̂di

;

The AR(1) coefficient β can then be estimated using linear regression.

For day n + 1, the forecast is then

xn+1,j = ŷn+1γ̂dn+1j,

where ŷn+1 is forecasted to be α̂dn+1
+ β̂(ŷn − α̂dn

).
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A.4 Estimation and Forecasting of Model (14)

Here we provide a set of least squares estimates for the model parameters:





µ̂ = x̄·· =
P

ij xij

nm
;

α̂i = x̄i· − x̄·· =
P

j xij

m
− x̄··; β̂j = x̄·j − x̄·· =

P

i xij

n
− x̄··;

âdi
=

P

i′:d
i′

=di
x̄i′·

#{i′:di′=di}
− x̄··;

γ̂dij =

P

i′:d
i′

=di
x̄i′j

#{i′:di′=di}
− µ̂ − âdi

− β̂j;

The AR(1) coefficient b can then be estimated using linear regression.

Due to the normality assumption of the model errors, the above estimates should be close

to the maximum likelihood estimates.

For day n + 1, the forecast is then

xn+1,j = µ̂ + α̂n+1 + β̂j + γ̂dn+1j,

where α̂n+1 is forecasted to be âdn+1
+ b̂(α̂n − âdn

).
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