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We propose a multi-period extension of the competitive newsvendor model of Lippman and
McCardle (1997) to investigate the impact of quick response under competition. For this
purpose, we consider two retailers that compete in terms of inventory: customers that face a
stockout at their first-choice store will look for the product at the other store. Consequently,
the total demand that each retailer faces depends on the competitor’s inventory level. We
allow for asymmetric reordering capabilities, and we are particularly interested in the case
when one of the firms has a lower ordering cost but can only produce at the beginning of
the selling season, whereas the second firm has higher costs but can replenish stock in a
quick response manner taking advantage of any incremental knowledge about demand (if
it is available). We visualize this problem as the competition between a traditional make-
to-stock retailer that builds up inventory before the season starts versus a retailer with a
responsive supply chain that can react to early demand information. We provide conditions
for this game to have a unique pure-strategy subgame-perfect equilibrium, which then allows
us to perform numerical comparative statics. Our results confirm in a competitive setting
the intuitive fact that quick response is more beneficial when demand uncertainty is higher,
or exhibits a higher correlation over time. Finally, we find that part of the competitive
advantage from quick response arises from the asymmetry in response capabilities.

1. Introduction

In recent years, the apparel industry has seen the rise of what has been called fast fashion

retailers. These are clothing companies that are able to respond quickly to market trends

and introduce new products very frequently. Most of these products have a life-cycle of no

more than a few weeks, and by the time the cycle is over, they are promptly replaced by

a more “fashionable” item. The high assortment rotation has become a distinctive feature

that has increased the average number of visits to the store, since now customers are aware

that they can always find something new.
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In Europe, where the concept began, fast fashion has been denominated a 21st-century

retailing phenomenon with representative companies such as H&M and the Inditex group,

owner of Zara (Davidson 2005). Besides their natural talent to design on-trend clothes, a

crucial part of their success is due to their flexible supply chain and operational competencies

(Ghemawat and Nueno 2003). In particular, fast fashion retailers can make in-season replen-

ishments thanks to remarkably low lead times, in the order of weeks rather than months.

The latter is achieved in most cases through local production or expediting, which obviously

translates into higher unit costs.

In the case of North America, fast fashion remains a niche that represents no more than

two percent of the apparel business (Foroohar 2006). Large clothing retailers like The Gap

seem too big and might not have the incentives to restructure their entire supply chain to

mimic their European competitors since their customers have been historically less fashion-

forward. They might however borrow a few elements of fast fashion. For example, they can

strength the link with their suppliers, or they can move the production of trendier items

to Mexico instead of Asia in order to shorten lead times. The extent to which traditional

retailers should adopt or convert to fast fashion remains an open question and serves as part

of the motivation for this paper.

Despite the incipient (but growing) success of fast fashion in North America, the concept

itself builds upon quick response (QR), which was an apparel manufacturing initiative that

started primarily in the United States during the mid 1980s (Hammond and Kelly 1990).

The main objective of QR is to drastically reduce lead times and setup costs to allow the

postponement of ordering decisions until right before (or during) the retail selling season

when better demand information might be available. A successful implementation of QR is

typically based on the effective use of information technologies. Fast fashion has taken QR

to a higher level and has leveraged on the minimal lead times by introducing new products

on a regular basis, and therefore enabling a dynamic assortment that basically fulfills the

ideal of providing “fashion on demand”.

The overall success of fast fashion is attributable to a combination of multiple factors. The

interaction between all the elements involved is at a preliminary stage of being understood.

There has been extensive qualitative work that describes the different cases or examples

of fast fashion companies. However, the academic literature on this topic remains scarce.

In this paper we aim at understanding the impact of one specific element of fast fashion.

Namely, the QR component that is arguably the basis for all the other elements that later

come into play. Therefore, we disregard assortment, pricing or market positioning decisions
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related to fast fashion, and we focus on the essential capability of having more flexibility in

terms of inventory replenishment. We look at the problem in a competitive setting, since

from its inception, QR advocates have claimed that it is the only viable strategy under the

current conditions in the apparel market, similar to what just-in-time manufacturing has

meant to the auto industry (Hammond and Kelly 1990).

We consider a model with two retailers selling a substitutable product over a finite hori-

zon. The two retailers compete based on inventory. When a stockout occurs at one retailer,

the unsatisfied customer walks into the second retailer, where she is served if stock is avail-

able. Thus, the inventory decision of a given retailer depends on the level of inventory at

the competitor. Moreover, as time goes by, the retailers can incorporate any additional de-

mand information into their stocking decisions. The model allows for asymmetric retailers

and we analyze their competitive strategies, considering the equilibrium inventory decisions.

Our model can be seen as a multi-period extension of the competitive newsboy developed

by Lippman and McCardle (1997). As in their case, we are interested in determining and

characterizing the existence of a unique pure-strategy subgame-perfect equilibrium, which

then allows us to understand and compare the outcomes for each retailer, and in particular

assess the potential benefits of implementing QR.

Our paper makes contributions to the operations literature from both the methodologi-

cal and managerial standpoint. From a methodological perspective, we solve an asymmetric

multi-period inventory-based competition model, where the asymmetry is in terms of re-

ordering and demand learning capabilities.1 We are not aware of any other paper that

studies dynamic horizontal inventory-based competition with demand correlation over time.

Several authors have previously studied the infinite horizon case, but under such conditions

that it reduces to a myopic single-period problem. On the contrary, we formulate a dynamic

finite horizon model, and we analyze four different cases. For each one of them, we provide

sufficient conditions that guarantee the existence of a unique equilibrium. The conditions

are summarized in Table 1 (the meaning of each assumption is discussed later). Note that

we pay special attention to the two-period case since it is the most common approach that

has been used in the literature to model QR (see, for instance, section 10.4 in Cachon and

Terwiesch 2005). Also, our results extend Theorem 3 of Lippman and McCardle (1997)

in two ways: (i) to asymmetric retailers in the single-period case, and (ii) to an arbitrary

number of periods with information updates in the symmetric case (under a linear demand

split). We also allow for arbitrary initial inventory levels in both cases.

1Asymmetric net margins and demand splitting functions are also allowed.
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From a managerial standpoint, this paper is a first attempt at trying to understand

what the competitive advantage of fast fashion is compared to more traditional retailing

operations. As mentioned before, our analysis is restricted to the benefits that stem from

QR. In particular, we provide a detailed numerical study where we compare the profits in a

competition of two slow response (SR) firms, with those achieved in a competition where one

or both retailers have implemented QR. Our results indicate that both retailers are better

off in the QR vs. SR competition compared to the SR vs. SR case. In addition, we show

that part of the competitive advantage for a QR retailer comes from the asymmetry, i.e.,

from being faster than the competitor, and these benefits are larger under higher demand

uncertainty or higher correlation over time.

Table 1: Sufficient conditions for a unique pure-strategy subgame-perfect equilibrium.

The remainder of the paper has the following structure. In section §2 we review the

existing literature, mostly on inventory-based competition models. Then, in §3 we develop

our model, and in §4 we establish the existence and uniqueness of a pure-strategy subgame-

perfect equilibrium for the four different cases mentioned in Table 1. In §5 we perform

numerical comparative statics in order to understand how the equilibrium depends on the

parameters of the model. Finally, in the last section §6 we conclude and discuss future

research directions. All the proofs are available in the technical appendix, unless otherwise

noted.

2. Literature Review

Fast fashion has been discussed extensively in the popular press, see for instance The

Economist (2005). In more academic terms, the literature is mostly descriptive with an

emphasis on the qualitative aspects of the retailing strategy. Many cases have been written,

in particular for the Spanish company Zara, e.g., Ghemawat and Nueno (2003), McAfee et
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al (2004), and Ferdows et al (2004). From a quantitative perspective, during the 1990s sig-

nificant progress was made in understanding the impact of QR in an isolated supply chain,

mostly in a two-period setting (see Fisher and Raman 1996, Iyer and Bergen 1997, and

references therein). More recently, Cachon and Swinney (2007) have looked at QR in the

presence of strategic customers. All this work is related to ours because we focus on the

QR aspect of fast fashion. However, as mentioned before, fast fashion goes beyond QR, in

particular by introducing a large number of new products during the retail selling season. In

that respect, Caro and Gallien (2007) provide a closed-form policy for one of the distinctive

operational challenges faced by fast fashion firms, namely the dynamic assortment problem

To the best of our knowledge, there has not been much analytical work that tries to

identify the drivers of fast fashion’s success in a competitive context. Clearly, the answer is

not simple since there are many interweaved factors that come into play. For that reason, as

a first attempt to understand the (potential) competitive advantage, in this paper we focus

exclusively on the QR capability and we openly disregard other important elements of fast

fashion. With this scope in mind, we are left with an inventory-based competition problem

for substitutable products. Several models have been developed in the literature for this

problem. In Table 2 we provide a (non-comprehensive) summary of preceding work. Our

paper contributes to this stream of research by solving a multi-period model that allows for

asymmetric retailers in terms of reordering and demand learning capabilities.

In the single-period case with n retailers, Lippman and McCardle (1997) prove the ex-

istence of a pure Nash equilibrium under the general assumption that the effective demand

faced by a particular firm is stochastically decreasing in the inventory levels of the other

firms, which comes naturally in the case of substitutable products, see Netessine and Zhang

(2005). The existence of a unique Nash equilibrium requires additional assumptions as those

listed in the last column of Table 2.

In the infinite horizon case, several authors have shown that, under suitable conditions,

there exists a Nash equilibrium in which each retailer follows a stationary base-stock policy.

All these results stem from the dynamic oligopoly model by Kirman and Sobel (1974). In

practice, this is equivalent to solving a single-period problem. Note that even if the latter has

a unique Nash equilibrium, that does not guarantee a unique subgame-perfect equilibrium

in the multi-period case.

Several other (retailing) competition models in which inventories play an important role

have been studied in the literature. For instance, in an infinite horizon setting, Li (1992)

looks at delivery-time competition and shows that when all retailers are identical they tend
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to make-to-stock. Anupindi and Bassok (1999) consider inventory-based competition à la

Parlar (1988), and study the impact of “market search” (i.e., the spill-over fraction) on the

manufacturer’s profit. Bernstein and Federgruen (2004) examine the case of retailers that

compete on price and then set their inventory levels accordingly. Gaur and Park (2007)

consider customers sensitive to negative experiences such as a stockout, and study the com-

petition of retailers on the basis of their service levels. As before, given the stationary model

formulation in these papers, the solution is myopic in the sense of Sobel (1981) and the

analysis reduces to a single-period problem.

Table 2: Inventory-based competition models for substitutable products.

Given the extremely short life-cycle of fashionable clothing, finite horizon models seem

more appropriate. In that matter, the work by Hall and Porteus (2000) is conceptually

close to ours because, despite the fact that they consider competition based on customer

service instead of (non-perishable) inventory and information updates are not allowed, the

retailers can only take actions to prevent leakage of demand to the competitor rather than

proactively attract demand to itself. Under these conditions together with a multiplicative

demand model, they are able to show the existence of a unique subgame-perfect equilibrium.

Liu et al (2007) extend the result to a more general demand model that includes the additive

case. Olsen and Parker (2006) provide an alternative extension in which the retailers can
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hold inventory over time and can advertise to attract dissatisfied customers from its competi-

tor’s market. The existence of a unique equilibrium is guaranteed by assuming a particular

salvage value function and low initial inventory levels (as in Avsar and Baykal-Gürsoy 2002).

Interestingly, in equilibrium, the game effectively becomes two parallel Markov decision pro-

cesses where each firm can make stocking decision independent of the other firm’s choices.

We obtain a similar result for the case of two symmetric retailers, though under a different

set of assumptions.

3. A Multi-Period Inventory Competition Model

In this section we formulate the multi-period inventory competition model that will be used

later to study the benefits of QR. In §3.1 we present the basic features and assumptions.

Then in §3.2, we introduce the dynamic aspect of the model and the solution approach (i.e.,

sub-game perfection).

3.1 Basic Features and Assumptions

In what follows, we present each one of the assumptions that lead to our multi-period model.

The assumptions appear in italics and an explanation or discussion follows whenever appro-

priate. Any related notation is introduced as well.

(A1) There are only two firms that sell substitute products, and each firm maximizes the

total expected profits over a finite horizon of T periods.

Let indices i and t denote retailers and periods respectively, with i = 1, 2 and t = T, . . . , 1.

Note that periods are counted backwards, and we consider a finite horizon to represent the

short product life-cycle in the fashion apparel industry. The index j is also reserved to de-

note a retailer, and throughout the paper it is understood that i 6= j. Since the retailers sell

perfect substitutes, a customer that cannot find the product at her preferred retailer will

check if it is available at the competitor.

(A2) The aggregate customer demand in period t (denoted Dt) is continuous, stochastic,

and may be correlated across periods.

Let ft be the p.d.f. of the demand in period t, Ft its c.d.f., F t ≡ 1 − Ft, and F
−1

t its

inverse. When there is correlation across time, we denote the p.d.f. and c.d.f. of the demand
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in period t as ft|It and Ft|It respectively, where It is the demand information available at

that point in time, which is assumed to be common knowledge. Typically, the information

would be the vector of past demand realizations (that is, {Dt+1, Dt+2, . . . , DT}) and/or any

data or demand signal that has become available. An important remark is that we do not

allow the information vector to be a function of the decisions in the current period. In other

words, information is uncensored, just as in most QR models.

(A3) In a given period t, the effective demand faced by retailer i is composed of two parts:

(i) the original demand, and (ii) the overflow demand. The original demand is expressed as

qi
t(Dt), where qi

t is the (initial) allocation function (also referred to as the demand splitting

function) which is assumed to be strictly increasing, and we have that Dt = q1
t (Dt)+q2

t (Dt).
2

The original demand is made of customers that naturally choose retailer i over the com-

petitor j, and the overflow demand is made of those customers that initially choose j but

end up buying at i because j runs out of stock. This overflow demand is equal to

max{0, qj
t (Dt)− yj

t}, (1)

where yj
t is firm j’s inventory level (after replenishment) in period t.3 Then the effective

(realized) demand faced by retailer i is given by Ri
t(y

j
t ) ≡ qi

t(Dt) + max{0, qj
t (Dt) − yj

t}.
Since this is a key assumption in our model, several important observations follow:

• The effective demand Ri
t(y

j
t ) depends only on the competitor’s inventory level. There-

fore, competition is based on the inventory levels, but retailer i can only limit the

customers it loses rather than influence those it gains. In an authentic fast fashion set-

ting, a retailer would typically attract more demand by sustaining a high assortment

rotation. Our model does not consider such feature since we focus on understanding

the impact of the QR capability for one particular product. We also note that, except

for Netessine et al (2006), all the papers mentioned in Table 2 consider competitive

models in which the retailer can only prevent leakage rather than attract additional

demand. The same happens in Hall and Porteus (2000) and Liu et al (2007).

2In the demand signal case studied in §4.2.1, since there is no demand realization in the first period, we
let qi

2 = 0, i = 1, 2.
3Our model can be directly extended to the case of imperfect substitution. That is, when only a fraction

δ of customer choose to substitute when they face a stockout. It suffices to multiply Equation (1) by δ, and
all the equilibrium results follow through.
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• In Parlar (1988) and other similar papers, independent firm demands are aggregated

into industry demand. On the contrary, in Lippman and McCardle (1997) and its

successors, aggregate industry demand is allocated across firms. If the allocation is

deterministic, then in each period there is only one source of uncertainty, namely, the

total demand Dt. We have followed the latter approach since we believe it represents

better the case of fashionable items in which the main uncertainty is the size of the

market (i.e., how well a product will sell) rather than the initial allocation across

retailers. It is worth noting that our results for two periods (T = 2) can be extended

to the case when the initial allocation depends on the current demand information It.

• As in the proof of uniqueness by Lippman and McCardle (1997), we require the initial

allocation function qi
t to be strictly increasing in Dt. It must be strictly monotone

because we need the inverse (qi
1)
−1 to be well defined, and it must be increasing because

our analysis requires that once the stocking decisions have been made, the retailer

that runs out of stock first is the same one under all possible demand scenarios (in a

given period). These conditions implicitly impose a positive correlation between the

original demands of firms 1 and 2. Again, this is reasonable when the main source

of uncertainty is the market size. Note that the correlation can be anywhere between

0 to 1. It is perfect (equal to one) for the linear demand splitting case, but can be

close to zero as well.4 Some models in the literature, e.g., Nagarajan and Rajagopalan

(2005), assume negative correlation between the original demands of the two firms,

which is an appropriate assumption when the retailers are competing for a fixed pool

of customers. Another class of models assume that the (effective) demand allocation is

proportional to the individual stocking levels (see Cachon 2003). In that case, demands

at the retailers are perfectly correlated, and a retailer that stocks more will get more.

This goes back to the previous discussion about the retailer being able to influence its

effective demand, but also has the inconvenience of making the multi-period analysis

untractable.

(A4) At the beginning of period t both retailers decide simultaneously the order-up-to levels

(y1
t , y

2
t ) based on the initial stock levels (x1

t , x
2
t ) and the demand information It.

4Consider the following example: q1
t (Dt) = 0 for 0 ≤ Dt ≤ a and q2

t (Dt) = a when a ≤ Dt ≤ 1,

and Dt is uniform in [0, 1]. Then Cov(q1
t (Dt), q2

t (Dt)) =
a2(1− a)2

4
, V ar(q1

t (Dt)) =
(1− a)3(1 + 3a)

12
and

V ar(q2
t (Dt)) =

a3(4− 3a)
12

. Hence, Corr(q1
t (Dt), q2

t (Dt)) =
3
√

a
√

1− a√
1 + 3a

√
1 + 3(1− a)

, which is close to 0 for

a ≈ 0 or a ≈ 1.
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The status of both retailers at the beginning of a given period t is described by the initial

stock levels (x1
t , x

2
t ), and the status of the market in which the retailers compete is described

by the current demand information It. Then, the state of the system (i.e, the retailers and

the market) is given by the vector (x1
t , x

2
t , It) and we assume that the retailers decide their

actions, i.e. the order-up-to levels (y1
t , y

2
t ), contingent on the state. In other words, the

retailers play Markovian strategies (see Fudenberg and Tirole 1991).

(A5) The unit cost and price for retailer i in period t are constant parameters denoted ci
t

and pi
t respectively. The retailers are said to be symmetric if they have the same cost and

price in all periods.

We exclude pricing decisions from the model. This allows us to focus on the use of in-

ventory as a competitive lever. This assumption is consistent with the fact that fast fashion

retailers rely less on markdowns, see Ghemawat and Nueno (2003). Note that if cj
t ≥ pj

t , then

retailer j will not order in period t. Therefore, by choosing the appropriate cost and price

parameters we can model the situation in which firm j has a lower ordering cost but is only

allowed to produce at the beginning of the selling season, whereas retailer i has higher costs

but can replenish stock every period taking advantage of any incremental knowledge about

demand (if it is available). This represents the case of two retailers that are asymmetric in

terms of reordering and demand learning capabilities.

(A6) We ignore holding and lost sales penalty costs, and there is no minimum ordering

quantity.

Overall, we aim at formulating a parsimonious model. We neglect inventory holding

costs, as they are less relevant for short life-cycle products. However, these costs can also

be incorporated in the model. The same holds for the lost sales penalty costs.5 On the con-

trary, the QR problem with minimum ordering quantities lies beyond the scope of this paper.

(A7) Leftover inventory can be carried over to the next period, and is lost at the end of the

season. If both retailers stockout in a given period, the unsatisfied demand is lost as well.

5As a matter of fact, if one wished to incorporate lost sales penalty costs, one would add a term vi
tE{Ri

t−
yi

t}+ = vi
tE{Ri

t} − vi
tEmin{yi

t, R
i
t} to the revenue; to incorporate the inventory holding cost, one would add

a term hi
tE{yi

t −Ri
t}+ = hi

ty
i
t − hi

tEmin{yi
t, R

i
t}. Hence, we would replace the revenue minus the purchasing

costs pi
tEmin{Ri

t, y
i
t} − ci

t(yi
t − xi

t) by (pi
t + vi

t + hi
t)Emin{Ri

t, y
i
t} − vi

tE{Ri
t} − (ci

t + hi
t)yi

t − ci
tx

i
t.
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A salvage value could be easily incorporated in the model. Similarly, a straightforward

extension allows for backlogged demand to be share between the firms in a deterministic way.

Finally, under assumptions (A1)-(A7), the immediate expected profit of retailer i in period

t is equal to expected revenues pi
t E

{
min

{
yi

t, R
i
t(y

j
t )

}}
, minus purchasing costs ci

t(y
i
t − xi

t),

and the leftover inventory is equal to
(
yi

t −Ri
t(y

j
t )

)+
.

3.2 Sub-Game Perfect Strategies

Since the overflow demand depends on the inventory level of the competitor, see Equation (1),

we must use game-theoretical tools to analyze the replenishment decision. For expositional

purposes, we initially consider the case when the demand information It is void, and we begin

with the terminal period t = 1. Throughout the paper, when it is clear from the context, we

omit the arguments of a given function.

First, let ri
1 be firm i’s unconstrained expected profit, which can be expressed as

ri
1(y

i
1, y

j
1) = E

{−ci
1y

i
1 + pi

1 min
{
yi

1, R
i
1(y

j
1)

}}
. (2)

Second, if firm i knew firm j’s order-up-to level yj
1, then firm i’s best response would come

from maximizing expected profits taking into account its initial stock xi
1 and the competitor’s

action. In other words, retailer i would solve:

max
yi
1≥xi

1

ci
1x

i
1 + ri

1(y
i
1, y

j
1) (3)

Since the term ci
1x

i
1 in Equation (3) is constant, firm i’s best response actually comes

from maximizing ri
1(y

i
1, y

j
1) subject to yi

1 ≥ xi
1. If the solution to this optimization problem is

unique, then we can define the best-response function bi
1(x

i
1, y

j
1) = argmaxyi

1≥xi
1

{
r1(y

i
1, y

j
1)

}

as the optimal stocking level in period 1 for firm i in response to a level yj
1 from firm j,

starting with a position of xi
1.

Of course, in reality, firm i does not know what level of yj
1 firm j will select. Thus,

we use the notion of Nash equilibrium. In our setting, a Nash equilibrium, if it exists, is

given by two functions e1
1 and e2

1 that might depend on the initial stock levels (x1
1, x

2
1), and

are such that b1
1(x

1
1, e

2
1) = e1

1 and b2
1(x

2
1, e

1
1) = e2

1. Put differently, no player is better off by

unilaterally deviating from the equilibrium. We can define the equilibrium expected profit

πi
1 by replacing the equilibrium actions in the objective function of Equation (3) to obtain

πi
1(x

i
1, x

j
1) = ci

1x
i
1 + ri

1

(
ei
1(x

i
1, x

j
1), e

j
1(x

j
1, x

i
1)

)
. (4)
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If we now consider a multi-period setting, the notion of Nash equilibrium extends to

subgame-perfect equilibrium. An equilibrium is subgame-perfect if it induces a Nash equi-

librium (as defined above) in each subgame of the original game (see Fudenberg and Tirole

1991). In our context, a subgame corresponds to a game that is similar to the original one

but with one period less to go (i.e., the last period is a subgame of the two-period game, and

in turn, the latter is a subgame of the three-period game, and so on and so forth) Therefore,

in period t we can construct the best response functions just as we did for the last period,

but the only caveat is that now the expected profit is the sum of the immediate profit plus

the future profit-to-go, and the latter must be the equilibrium profits of the game with one

period less. Formally, the unconstrained expected profit in period t is given by

ri
t(y

i
t, y

j
t ) = E





−ci
ty

i
t + pi

t min
{
yi

t, R
i
t(y

j
t )

}

+πi
t−1

((
yi

t −Ri
t(y

j
t )

)+

,
(
yj

t −Rj
t (y

i
t)

)+
)



 , (5)

where πi
t−1 is the equilibrium expected profit of the subgame that starts in period t−1. The

best response functions are the same as before, i.e.,

bi
t(x

i
t, y

j
t ) = argmaxyi

t≥xi
t

{
rt(y

i
t, y

j
t )

}
, (6)

and a Nash equilibrium in period t, if it exists, is given by two functions e1
t and e2

t that might

depend on the initial stock levels (x1
t , x

2
t ), and are such that b1

t (x
1
t , e

2
t ) = e1

t and b2
t (x

2
t , e

1
t ) = e2

t .

In order to close the loop, if we want to verify the existence, and then compute a (subgame-

perfect) equilibrium in period t+1, we would need the expected equilibrium profits in period

t, which is given by

πi
t(x

i
t, x

j
t) = ci

tx
i
t + ri

t

(
ei

t(x
i
t, x

j
t), e

j
t(x

j
t , x

i
t)

)
, (7)

and the procedure repeats itself by replacing t with t + 1 in Equation (5).6

The previous definitions were given for the case when the demand information It is void.

The latter would be valid if the demand across periods were independent. However, if the

retailers can use current or past demand information to predict future demand, then their

actions, and consequently the competitive equilibrium, will be contingent on the information

that is actually available. Therefore, in that case, we replace the subindex t with t|It in

ri
t, b

i
t, e

i
t, and πi

t, and all the expectations are conditional on It. For instance, instead of

ri
t(y

i
t, y

j
t ) we write ri

t|It
(yi

t, y
j
t ), and the expectation on the right hand side of Equation (5) is

conditional on It.

6In game theory, this procedure is known as backwards induction (see Fudenberg and Tirole 1991).
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4. Existence and Uniqueness of Equilibrium

We now present the structural results of the paper. Our goal in this section is to prove the

existence of a unique pure-strategy subgame-perfect equilibrium for the four cases mentioned

in Table 1. These result have theoretical value, but also allow us to understand the benefits

of QR by computing comparative statics of the unique equilibrium (see §5).

We start by considering the single-period problem in §4.1. Then, in §4.2 we consider

the two-period case and we study the two most cited QR models in literature. Namely, the

demand signal and the mid-season replenishment models.7 The more general case with two

or more periods is studied in §4.3. There, we analyze the situation when one competitor

is passive and when both retailers are symmetric. Note that in Table 1 the mid-season

replenishment and the passive competitor cases are grouped together because they have

similar proofs.

4.1 Single-Period Case (T = 1)

The single-period problem is an essential building block in our model. To simplify the expo-

sition we omit the dependence on the demand information vector I1, but all the discussion

throughout this section remains valid if we replace the subindex t = 1 with with 1|I1, and

all the expectations are conditional on I1.

We first consider the unconstrained problem. That is, the version of the problem in which

the initial inventory levels are equal to zero. From Equation (2), it is clear that ri
1 is concave

in yi
1, for all yj

1. Thus, the optimal inventory policy is a base-stock policy with target level

si
1(y

j
1), which can be obtained from the first-order conditions Pr

(
Ri

1(y
j
1) ≥ si

1(y
j
1)

)
= ci

1/p
i
1.

Solving the latter yields

si
1(y

j
1) =

{
NV i − yj

1 when yj
1 ≤ NV i

qi
1

(
NV i

)
otherwise,

(8)

where NV i ≡ F
−1

1

(
ci
1/p

i
1

)
corresponds to the newsvendor stocking quantity of firm i when

it is a monopolist, i.e., when yj
1 = 0.

In Figure 1 we plot si
1(y

j
1) and sj

1(y
i
1). For simplicity, we omit the subindex t = 1, and

firm i is such that ci/pi < cj/pj. The base-stock functions si(yj) and sj(yi) intersect only

once, which means that in the unconstrained competitive game there exists a unique Nash

equilibrium, which we denote E = (Ei, Ej). The shaded regions (I)-(IV) are used in the

proofs provided in the technical appendix.

7In Cachon and Terwiesch (2005) these two models are defined in terms of the reactive capacity, and are
referred to as limited and unlimited but expensive respectively.
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If now we allow the initial inventory levels to be non-zero (i.e., we consider the constrained

problem), given the convexity of ri
1, it follows that firm i’s best response is

bi
1(x

i
1, y

j
1) = max{xi

1, s
i
1(y

j
1)}.

Therefore, in the constrained competitive game, a graph of the best responses would look

just as Figure 1, except that the vertical and horizonal stretches would move right and down

respectively. Hence, a graphical argument is enough to prove our first result.

Figure 1: Unconstrained single-period base-stock functions.

Theorem 1 For all (x1
1, x

2
1), there exists a unique Nash equilibrium

(
e1
1(x

1
1, x

2
1), e

2
1(x

2
1, x

1
1)

)

of the stocking game. In addition, we can characterize (e1
1, e

2
1) as follows. Without loss of

generality, assume that
c1
1

p1
1

≤ c2
1

p2
1

(firm 1 has a higher gross margin). Then

e2
1(x

2
1, x

1
1) = max

{
x2

1, q
2
1

(
NV 2

)}
and e1

1(x
1
1, x

2
1) = max

{
x1

1, q
1
1

(
NV 1

)
, NV 1 − e2

1(x
2
1, x

1
1)

}
.

We can see from Theorem 1 that the equilibrium strategy of the lower-margin firm is

independent of the competitor’s initial inventory level x1
1. Indeed, when the initial inventory

levels are zero, then the higher cost drives the lower-margin firm to ignore the overflow from
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the other company. The reverse is not true: the higher-margin equilibrium strategy may

depend on x2
1.

Theorem 3 of Lippman and McCardle (1997) proves that the unconstrained competitive

game with symmetric retailers has a unique Nash equilibrium. The result requires the

initial allocation functions to be deterministic and strictly increasing, just as in our setting.

Theorem 1 in this paper extends the result by Lippman and McCardle in the sense that we

consider the constrained game (i.e., the initial inventory levels can be non-zero) and we allow

for asymmetric retailers (i.e., they can face different costs and prices).

From a technical standpoint, the unique equilibrium in the single-period problem follows

from the fact that the unconstrained expected profit ri
1 is concave in firm i’s action yi

1. In

order to prove the existence of a unique pure-strategy subgame-perfect equilibrium in the

two-period game, we will need to show that ri
2 is (strictly) quasi-concave in yi

2. For that,

we first need to show that πi
1, the equilibrium expected profit in the single-period problem,

is concave in firm i’s initial stock level xi
1. Note that we have to consider the equilibrium

expected profit because, by the definition of subgame-perfect, the retailers assume that in

the next period a Nash equilibrium will be played, given any initial state (x1
1, x

2
1, I1) (we refer

the reader back to the discussion at the end of §3.2). The following proposition provides the

theoretical result that we will need as a building block in the next section.

Proposition 1 For all I1, the expected equilibrium profit πi
1|I1(x

i
1, x

j
1) is concave in xi

1, for

all xj
1.

4.2 Two-Period Case (T = 2)

We now look at the two-period case which is arguably the most important one since QR

models typically only have two periods. In fact, the two models we consider seem to concen-

trate most of the attention in the literature (see, for instance, Cachon and Terwiesch 2005).

Figure 2 shows a schematic description of both models.

4.2.1 Demand Signal

The first QR model we consider is based on the one studied (for a single firm) in Iyer and

Bergen (1997). Similar sequence of events have been used in several other papers (see, for

instance, Cachon and Swinney 2007). The planning horizon is divided in two periods. The

last one represents the retail selling season, whereas the first one represents a period during

which a demand signal is revealed. The latter could simply represent data that is collected

right before the season starts (for example, in fashion shows, mock stores, focus groups, or

15



Figure 2: QR models, demand signal (top) and mid-season replenishment (bottom).

by consulting experts). We assume that the demand signal is informative, meaning that it

is correlated with the actual demand during the season. Otherwise, this model reduces to

the single-period problem studied in the previous section. A QR retailer can place orders

before and after observing the demand signal, whereas a traditional retailer, due to longer

lead times, can only place a single order before the additional demand information becomes

available. The sequence of events for a QR retailer are depicted in Figure 2 (top timeline).

Given that there is no demand realization in the initial period (Ri
2 = Rj

2 = 0), the

unconstrained expected profit ri
2 reduces to

ri
2(y

i
2, y

j
2) = −ci

2y
i
2 + E

{
πi

1|I1
(
yi

2, y
j
2

)}
,

where the expectation is with respect to the (a priori) distribution of I1. Note that ri
2(y

i
2, y

j
2)

is concave in yi
2, for any yj

2 (from Proposition 1). Therefore, the existence of a pure-strategy

(sub-game perfect) Nash equilibrium in the unconstrained competitive game is guaranteed

by Theorem 1.2 in Fudenberg and Tirole (1991).8 Moreover, also due to the concavity of

ri
2, firm i’s best response is a base-stock policy si

2(y
i
2). Therefore, just as in the single-

period model, the best-response function in the constrained game is equal to bi
2(x

i
2, y

i
2) =

argmaxyi
2≥xi

2

{
ri
2(y

i
2, y

j
2)

}
= max {xi

2, s
i
2(y

i
2)}. The following Theorem provides conditions

8The theorem actually requires that the strategy space is compact. Since the retailers would never order
an infinite stock, it is always possible to restrict their actions to a compact set.
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under which the equilibrium is unique.9 The proof is omitted since it follows directly from

Proposition 1 and the derivatives computed in Table 3. After stating and discussing the

theorem we provide an example that shows an application of this result.

Theorem 2 If ci
2 6= ci

1 for i = 1, 2, then the stocking game with a demand signal has a

unique subgame-perfect equilibrium. In that equilibrium, both retailers play pure-strategies.

Three technical observations about Theorem 2 are worth noting. First, when ci
2 = ci

1,

the equilibrium exists (in fact, not ordering in the initial period would be an equilibrium),

but in general it might not be unique (though the profits achieved are the same under any

equilibrium).10 Second, the theorem rules out the existence of a mixed-strategy equilibrium,

since in the unique equilibrium the retailers play pure-strategies. Third, per Assumption

(A4), the strategies played by the retailers must be Markovian. Hence, what we actually

prove is that there exists a unique Markovian perfect equilibrium (see §13 in Fudenberg and

Tirole 1991). However, since the state (x1
t , x

2
t , It) contains all the relevant information from

the past (i.e., it is sufficient), it is not hard to see that any strategy that induces a sub-game

perfect equilibrium must be Markovian, or at least equivalent to a Markovian strategy.11

This observation justifies the claim that there is a unique subgame-perfect equilibrium. A

similar justification is given in Hall and Porteus (2000).

Example 1 (Iyer and Bergen 1997): The two-period demand signal case allows us to

model the competition between a traditional retailer (i.e., one with very long lead times) and

a QR retailer that is modeled as in Iyer and Bergen (1997). In that paper, demand during

the retail selling season is assumed to be normally distributed, i.e. D1 ∼ N(θ, σ2). The

variance σ2 is assumed to be known, whereas the average size of the market θ is uncertain.

Information about θ in the initial period is modeled as a normal distribution with mean µ

and variance τ 2. Thus, at time t = 2, the prediction of season demand is normally distributed

with mean µ and variance σ2 +τ 2. Then the demand signal d is realized, and the QR retailer

performs a Bayesian update of its belief regarding θ. In other words, we have that I1 = {d},
and D1|I1 ∼ N (µ(d), σ2 + 1/ρ), where

µ(d) =
σ2µ + τ 2d

σ2 + τ 2
and ρ =

1

σ2
+

1

τ 2
.

9When the equilibrium is not unique, si
2(y

i
2) and bi

2(x
i
2, y

i
2) are actually correspondences rather than

functions.
10Notice that, if ci

2 > ci
1, then the equilibrium is to not order anything in the initial period. On the

contrary, if ci
2 < ci

1, then a positive amount is ordered in t = 2.
11To be precise, there is a Markovian strategy that plays the exact same actions than the non-Markovian

one, for all possible histories.

17



Note that 1/ρ < τ 2. Therefore, after the realization of the demand signal d is observed,

the QR retailer has a more accurate prediction of season demand. The traditional retailer

cannot make use of the demand signal because of long lead times. In other words, it cannot

place a second order after the demand signal is realized. This is incorporated in our model

by letting cj
1 = pj

1 (here we assume that index j represents the traditional retailer). As long

as it is cheaper to order in the initial period (for both retailers), the conditions of Theorem 2

hold, and the competition between the QR response and the traditional retailer has a unique

subgame-perfect equilibrium.

4.2.2 Mid-Season Replenishment

In the previous QR model, the demand signal does not deplete stock. That is, the acquisition

of additional demand information in the initial period does not affect the inventory that

is carried over to the final period. This simplifies the analysis and allows us to prove the

existence of a unique equilibrium under fairly general conditions (see Table 1). In the current

section, we consider a second QR model that differs from the previous one in few subtle but

fundamental aspects. Specifically, the selling season comprises both periods, the actual sales

that occur in the initial period play the role that the demand signal previously had, and

the procurement in the final period comes to replenish the inventory that has been depleted

(hence the name for this case). The respective sequence of events is depicted in the bottom of

Figure 2). An example that would fit this QR model is the Sport Obermeyer case (Fisher and

Raman 1996), where 20% of initial sales provides an excellent estimation of the remaining

80%.

As before, the unconstrained expected profit ri
2(y

i
2, y

j
2) in the initial period (t = 2) is given

by Equation (5). However, now the profit-to-go πi
1|I1 is evaluated in the remaining inventory,

and ri
2 is no longer guaranteed to be concave. Fortunately, we are able to show that it is

quasi-concave under certain conditions to be introduced next, and hence, the optimal policy

is still a base-stock policy dependent on yj
2.

Proposition 2 Assume that

(i) for i = 1, 2, ci
1 ≥ ci

2 and pi
1 ≤ pi

2;

(ii) D2 has infinite support and a log-concave p.d.f., i.e., log(f2(d)) is concave in d;

(iii) I1 = {D2} and D1|I1 = kD2 + ε, where k ≥ 0 and ε is a random variable independent

of D2 with p.d.f. g, such that, for all x, for i = 1, 2,
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max

{
0,

f ′2
f2

((qi
2)
−1(x))

}
≤ max

{
0,

g′

g
((qi

1)
−1(x))

}
; (9)

(iv) if k > 0, then qi
1(d) = αi

1d for i = 1, 2.

Then, ri
2(y

i
2, y

j
2) is quasi-concave for all yj

2, and the constrained best response is bi
2(x

i
2, y

j
2) =

max
{
xi

2, s
i
2(y

j
2)

}
, where si

2(y
j
2) is the (unconstrained) base-stock level, which is unique.

The first condition (i) in Proposition 2 requires that the margins do not increase over

time. This would be the case if the price is fixed and the mid-season replenishment is more

expensive than the initial procurement. The second condition (ii) requires demand D2 to

be log-concave with an infinite support.12 The former is needed to generate bounds in the

proof, and the latter is used to guarantee a unique maximum. The third condition (iii)

specifies the dependency between D1 and D2 that is allowed. Notice that the inequality (9)

is satisfied if f2 has a decreasing p.d.f., or if it is not larger than g in the likelihood ratio

order. The latter is typically the case when the initial period represents less than half of the

total season. Finally, the last condition (iv) requires (for technical reasons) a linear splitting

rule in the final period whenever D1 and D2 are not independent.

The proof of Proposition 2 involves several claims that are stated (and proved) in the

technical appendix, but the central idea is to show that the following inequality holds

∂2ri
2

(∂yi
2)

2
< φ2

(
(qi

2)
−1(yi

2)
) (

∂ri
2

∂yi
2

)
, where φ2(y) = max

{
0,

f ′2
f2

(y)

}
. (10)

Note that quasi-concavity follows directly from (10), since any critical point is a maximum,

and therefore, the function ri
2 is unimodal. We can now state the main result of this section.

Theorem 3 If the conditions (i)-(iv) of Proposition 2 are satisfied, then the stocking game

with mid-season replenishment has a unique pure-strategy subgame-perfect equilibrium.

As in Theorem 2 for the demand signal case, Theorem 3 shows existence and uniqueness

of a pure-strategy subgame-perfect equilibrium. However, there are a some differences. First,

Theorem 3 requires a few more conditions than Theorem 2 (see Table 1 for a comparison).

Second, since in the mid-season replenishment case ri
2 is quasi-concave rather than concave,

we cannot rule out the existence of a mixed equilibrium. Another consequence is that the

equilibrium profit πi
2 defined in Equation (7) is not concave either, and therefore, we are not

able to extend Theorem 3 to a larger number of periods.

12To be precise, the support must be either the real line or an interval of the type [a,+∞).
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Despite the additional conditions required in Theorem 3, there are several interesting

cases for which they hold. Two of them are given in the next corollaries. Corollary 1 shows

the simplest application of Theorem 3 by assuming i.i.d. demand. On contrary, Corollary 2

shows an application with demand that is correlated across periods. We then use the latter

in an example that resembles the QR model in the Sport Obermeyer case (Fisher and Raman

1996).

Corollary 1 (Independent demands) Assume that ci
1 ≥ ci

2, pi
1 ≤ pi

2, and qi
1 = qi

2 for

i = 1, 2. If the demands D2, D1 are i.i.d. and D2 is log-concave with infinite support, then

the stocking game with mid-season replenishment has a unique pure-strategy subgame-perfect

equilibrium.

Corollary 2 (Correlated demands) Assume that ci
1 ≥ ci

2, pi
1 ≤ pi

2, and qi
1(d) = qi

2(d) =

αid, for i = 1, 2. Let ε2, ε1 be two independent random variables such that D2 = ε2 and

D1|I1 = kD2 + ε1, with k > 0 (thus, ρ ≡ Corr(D2, D1) = k
√

V ar(D2)/V ar(D1) > 0).

Furthermore, let either

• ε2, ε1 follow normal distributions with parameters (µ2, σ2) and (µ1, σ1) respectively and

µ2 ≤ µ1 and σ2 ≥ σ1; or

• ε2, ε1 follow truncated normal distributions with parameters (µ2, σ2) and (µ1, σ1) respec-

tively and µ2 ≤ µ1 and
σ2

µ2

≥ σ1

µ1

; or

• ε2, ε1 follow gamma distributions with parameters (a2, θ2) and (a1, θ1) respectively and

θ2 ≤ θ1 and 1 ≤ a2 ≤ a1; or

• ε2, ε1 follow exponential distributions.

In the four cases above, the stocking game with mid-season replenishment has a unique

pure-strategy subgame-perfect equilibrium.

Example 2 (Fisher and Raman 1996): Consider the case when the demand vector

(D2, D1) follows a multivariate normal with marginal distributions Di ∼ N(µi, σi) and co-

variance Cov(D2, D1) = ρσ2σ1, with ρ ≥ 0. Then we have that, the demand in the last pe-

riod conditional on the demand realization in the initial period, is given by D1|I1 = kD2 + ε1

with k = ρσ1/σ2, and ε1 is normally distributed with parameters (µ1 − kµ2, σ1

√
1− ρ2)

and is independent of D2(= ε2). Notice that, if there is positive correlation (ρ > 0), then

V ar(D1|I1) = σ2
1(1 − ρ2) < σ2

1 = V ar(D1). In other words, as in Example 1, the updated
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forecast D1|I1 is more accurate than the unconditional prediction of D1.
13 It can be shown

that the condition on the normal distributions in Corollary 2, in this case, reduces to

µ2 < µ1 and σ2 ≥ σ1 max
{√

1− ρ2, ρ
µ2

µ1 − µ2

}
. (11)

Hence, if the latter holds, then Theorem 3 applies. In particular, this would be the case if a

QR retailer can place an order after observing a small fraction (e.g., 20%) of the total season

demand (so that µ2 ¿ µ1), and these early sales provide relevant information about what

should be expected in the remainder of the season (i.e., the correlation ρ is high).

4.3 Two or More Periods (T ≥ 2)

Most QR models in the literature only consider two periods, which also represents the actual

situation of a large number of retailers in practice, who have at most two procurement

opportunities in a given season. That justifies dedicating an entire section to study the

two-period case (c.f. §4.2). Now we turn to the general case with two or more periods,

which again is partly motivated by fast fashion retailers like Zara who have the ability to

replenish stock several times during the selling season. However, as it was mentioned before,

we found that extending Theorem 3 to more than two periods was not directly feasible with

the methodology used to prove Proposition 2.14 Indeed, the equilibrium profit πi
t(y

i
t, y

j
t ) may

not be concave nor quasi-concave in yi
t for t ≥ 2. This can be worked around if we can prove

that the competitor’s best response bj
t is constant within a certain range. In this section

we show two cases when that is possible. Namely, when one of the retailers does not act

strategically, and when they are symmetric.

4.3.1 Inventory control when one retailer is passive

We consider here the special situation where one retailer is passive and cannot place orders

during the season: we assume that retailer 2 is such that min
t
{c2

t} ≥ max
t
{p2

t} for all t, i.e., it

is too expensive to acquire inventory and thus b2
t (x

2
t , y

1
t ) = x2

t . In other words, competition

here does not really take place as a game, but instead retailer 1 simply responds to the

inventory level of retailer 2, who is passive and cannot purchase inventory besides its initial

quantity x2
T . This situation models the existing competition between a fashion-leader, i.e.,

a retailer that designs and produces early, without even considering the competition, and

a fashion-follower, i.e., a retailer that “copies” the fashion-leader’s designs and is able to

13Under the conditions of Proposition 2, it always holds that V ar(D1) = k2V ar(D2)+V ar(ε) ≥ V ar(ε) =
V ar(D1|I1).

14The demand signal case can be extended to have an arbitrary number of periods before the season
begins, but essentially it reduces to the two-period case.
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produce the items quickly through QR. This could represent the case of Zara, “a very quick

fashion follower”, according to Ghemawat and Nueno (2003), p.12.

Theorem 4 Assume that

(i) c1
T ≤ . . . ≤ c1

1 and p1
T ≥ . . . ≥ p1

1, and min
t
{c2

t} ≥ max
t
{p2

t};

(ii) demand is independent across periods, and for t = T, . . . , 2, Dt is log-concave and has

infinite support;

(iii) for all d,
f ′t
ft

((q1
t )
−1(d)) ≤ max

{
0,

f ′t−1

ft−1

((q1
t−1)

−1(d))

}
.

Then, the stocking game has a unique pure-strategy subgame-perfect equilibrium where,

in each period, firm 1 follows a base-stock policy with order-up-to level s1
t (x

2
t ), and firm 2

never orders.

When a retailer cannot order during the season and starts with an exogenously given

inventory level, its competitor faces a multi-period inventory problem. The theorem shows

that this non-trivial problem (as current inventory decisions influence future demands) is

well-behaved and that a base-stock policy optimal. Of course, the base-stock level depends

on the competitor’s inventory level.

4.3.2 Symmetric retailers

When additional conditions are placed on the retailers and the demand structure, stronger

results can be derived. This section provides a general result for an arbitrary number of

periods, when the retailers are symmetric, i.e., both retailers have identical costs and prices

in every period. Notice that our definition of symmetry still allows the retailers to a have

different initial inventories. Here, the generalization of the model to T ≥ 2 can be obtained

with standard methods, assuming that the demand splitting rule is linear in all periods.

Theorem 5 Assume that, given T ≥ 1, for all t = T, . . . , 1, costs and prices are identical

for both firms, i.e., c1
t = c2

t and p1
t = p2

t . In addition, assume that qi
t(Dt|It) = αiDt|It for all

t = T, . . . , 1.

Then, the T -period stocking game has a unique pure-strategy subgame-perfect equilibrium,

for all IT . In this equilibrium, at period t, et|It is characterized by

ei
t|It

(xi, xj) = max{xi, αist|It}, (12)
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where st|It is the monopoly base-stock level, i.e., the solution to the inventory problem for a

single firm that receives Dt|It per period.

As stated in the theorem, the equilibrium level of retailer i does only depend on its own

inventory level xi and is independent of the competitor’s inventory level xj. To be more

precise, we show that retailer i has a dominant strategy that involves the monopoly stocking

quantity st|It , defined as follows.

Consider the following dynamic program, with ct = c1
t = c2

t and pt = p1
t = p2

t :

U0|I0(x) ≡ 0

Ut|It(x) = ctx + max
y≥x

{
−cty + ptEmin{y, Dt|It}+ EUt−1|It−1

((
y −Dt|It

)+
)}

(13)

Since this is a standard inventory problem, it is easy to see that the optimal policy for t is

to set y = max{x, st|It}, where st|It is the order-up-to level of the respective unconstrained

problem. This is the quantity used in Theorem 5.

The proof methodology is relatively standard, and uses the same lines of Lippman and

McCardle (1997). Essentially, we show by induction that ri
t|It

(yi, yj) is concave in yi (for

all yj) and submodular, which yields that the optimal replenishment policy is a base-stock

policy. Also, a key part of the proof involves that when
yi

αi
≤ yj

αj
, retailer i never receives

overflows from j, in period t or in future periods t− 1, . . . , 1. As a result, the best response

bi
t|It

is independent of yj, and equal to αist|It , which yields the equilibrium structure presented

in Theorem 5. Figure 3 illustrates the shape of the best-response functions described by the

theorem. This plot is for T = 2, ci
t = 0.6, pi

t = 1, Dt uniform [0,1], for t = 2, 1 and i = 1, 2,

x1
2 = x2

2 = 0 and α1 = 30%. We observe that, indeed, bi
2 is flat in yj

2, when
yj

2

αj
≥ st|It .

We thus completely characterize the multi-period equilibrium in the case of symmetric

firms (in terms of cost and price, not necessarily in terms of market share). Note that it

is allowed that the firms start with any initial inventory. This contrasts with the work by

Avsar and Baykal-Gürsoy (2002), who require that the initial inventory levels of retailers are

below their equilibrium stationary base-stock levels. Also note that it is still possible that

spill-overs between retailers occur, even though the equilibrium quantity of each retailer is

independent of the competitor’s inventory level, see Equation (12).

Notice that, when both firms start with zero inventory at t = T , the aggregate industry

inventory is equal to α1sT |IT
+ α2sT |IT

= sT |IT
, which is also the industry inventory target

level under a monopoly, i.e., when firms 1 and 2 merge. Our result thus extends Theorem
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Figure 3: Shape of the best-response functions bi
2 in the case of symmetric firms.

3 of Lippman and McCardle (1997) to a multi-period setting with demand learning. Un-

fortunately, when costs are asymmetric, it turns out that the best response bi
t|It

is never

independent of yj, which prevents the use of some of the arguments of the proof. Interest-

ingly, the same sort of property is used in Nagarajan and Rajagopalan (2005) by requiring

that the newsboy ratio is larger than 0.5.

5. Quick vs. Slow Response Competition

In this section, we provide an extensive numerical study on the two-period (T = 2) inventory

game. While simple, the two-period case captures most of the interesting dynamics arising

as one moves from a single-period game to a multi-period one. In addition, Theorems 2 and

3 provide the theoretical results that guarantee the existence and uniqueness of equilibrium.

In this section we compute such equilibrium and perform comparative statics, i.e. we study

how the equilibrium depends on the key parameters of the model. We do this numerically

since analytical comparative statics in our model are not straightforward.

We are interested in quantifying the advantages of a QR retailer over a SR (slow response)

competitor, and compare inventory levels and profits of such competitive situation when

compared to the “traditional” competition between two SR retailers (we assume that both

start with zero inventory). For this purpose, we consider three main situations, all falling

within our generic model presented before (c.f. §3). The first case, that we take as a

benchmark, considers two SR retailers, in the sense that they can only place orders before

the start of the selling season, at a cost cSR. Thus, they are not able to place an order at

time t = 1. In this situation, the competition corresponds to the single period equilibrium
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Figure 4: Three market configurations: SR vs. SR competition (top), QR vs. SR competition
(middle) and QR vs. QR competition (bottom).

identified in Lippman and McCardle (1997). The second case, which is the focus of the paper,

considers the asymmetric competition between a SR and a QR retailer. The SR retailer is

identical to the ones of the first case. On the contrary, the fast retailer is characterized by

the possibility to place orders in both periods, at a cost cQR. We allow it to have the same

or possibly higher ordering cost than the slow retailer (i.e., cQR ≥ cSR), as in reality. Finally,

the third case considers two symmetric QR retailers, which will be used to evaluate how

much of the advantage of being QR arises from the asymmetries between retailers. In our

simulations, we use identical prices in each period pi
1 = pi

2 = 1, for i = 1, 2. Therefore, if

firm i is a SR retailer, then ci
2 = cSR and ci

1 = pi
1 = 1, whereas if firm i is a QR retailer,

then ci
2 = ci

1 = cQR. Figure 4 summarizes the three cases that we analyze throughout our

numerical study.

Our demand model follows the structure presented in Proposition 2, namely, D1|I1 =

kD2 + ε. This allows retailers to learn from the realization of D2 and improve the forecast

of the last period demand D1. In the demand signal case, D2 is the additional market

information gained in the initial period, whereas in the mid-season replenishment case, D2

is the actual demand in t = 2. The parameter k determines the correlation between D2 and

D1. Specifically,

ρ = Corr(D2, D1) =
k√

k2 + 1
.
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Note that, in the figures below, we plot our results directly as a function of the demand

correlation instead of k. For simplicity, and to avoid negative demand, we consider that

D2 and ε are identically distributed, and follow gamma distributions with mean µ = 1 and

standard deviation σ. Finally, we use a linear splitting rule qi
1(d) = qi

2(d) = αid with a 50%

market share for each retailer (i.e., αi = α = 0.5, for i = 1, 2).

5.1 Equilibrium Inventory and Spill-Overs

We start by comparing the (initial) equilibrium inventory levels between the benchmark (SR

vs. SR) and the asymmetric (QR vs. SR) scenarios, when both retailers start with zero

inventory, i.e., x1
2 = x2

2 = 0. Of course, when both firms are SR retailers, all the inventory

is ordered at the beginning of the season at t = 2. In the QR vs. SR case, however, the

QR retailer may place an additional order at t = 1. Notice that in this section we solely

look at the mid-season replenishment case. We do not consider here the demand signal case

because, since ci
2 = ci

1, the equilibrium in that game might not be unique (see the discussion

after Theorem 2).

In Figure 5 we show the best-response function of each retailer in the benchmark (left)

and in asymmetric case (right), when there is no demand correlation across periods. We

observe, first, that the SR vs. SR case corresponds exactly to the single-period model. The

QR vs. SR case figure illustrates a qualitatively different behavior: interestingly, the best-

response function of the QR retailer is not necessarily decreasing in the inventory level of the

competitor, as is always the case in single-period models. We found this behavior in most

of the simulations performed. Furthermore we observe that the shape of both retailers’s

best-response functions is shifted down in the asymmetric case compared to the benchmark.

Another interesting observation is that the best-response of the QR retailer is decreasing,

then increasing, and eventually becomes constant. The latter is what should be expected. In

fact, if the SR retailer has an extremely large quantity of inventory, then the best-response of

the QR retailer is to ignore the competitor since it will not face spill-over demand. The same

occurs when the competitor is passive and has a large amount of initial stock (c.f. §4.3.1).

Next, in Figure 6 we study how the equilibrium inventory levels in the initial period

change when correlation is introduced and the cost of the QR retailer (cQR) increases. The

figure shows the equilibrium values for two situations: i.i.d. demand (and hence no forecast

updating), and correlated demand with ρ = 0.7 (in both situation σ = 0.3). Notice that

the values have been normalized by the total expected original demand (αE{D2 + D1}).
We depict the SR vs. SR equilibrium levels (diamond and star in the right bottom), and
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Figure 5: Best-response functions at t = 2 for the benchmark case (left) and the asymmetric
case (right). Here we use k = 0, σ = 0.3 and cQR = cSR = 0.5.

the curves of the QR vs. SR equilibrium levels for a variety of parameter values cQR from

0.5 (bottom part of the curves) to 0.9 (top part of the curves). The cost cSR of the SR

retailer(s) remains fixed at 0.5. First, we observe that the total initial inventory placed

in the asymmetric case (QR vs. SR) decreases with respect to the benchmark case (SR

vs. SR), and the decrease is more pronounced when demand is correlated and/or when the

ordering cost of the QR retailer is higher. Intuitively, the industry initial inventory, i.e., the

sum of both retailers’ inventory, should be lower than in the SR vs. SR case because the

QR retailer can postpone (part of) its order, and will do even more so when the value of

performing forecast updates is higher (i.e., when ρ is larger). Second, we observe that not

only the inventory placed by the QR retailer is always lower than in the benchmark case, but

the inventory level of the SR retailer is higher, even though the total industry inventory level

decreases. Thus, the SR retailer takes advantage of competing with a QR retailer (which

carries lower inventory) by placing higher inventory levels, and hence in the initial period

captures higher sales in expectation.

Finally, to conclude this section, we investigate the magnitude of spill-overs between a

QR and a SR retailer. As pointed out before, the SR retailer benefits from the decrease in

inventory of the QR retailer and receives a spill-over in the initial period, t = 2. However,

as Figure 7 illustrates, the spill-over in the final period, t = 1 goes from the SR retailer

to the QR retailer and is significantly larger. For higher demand variability and demand

correlation, the average spill-over may be as high as 10% of total demand sales. It is worth

noting that in the demand signal case, since the demand realization (and hence, competition)

only takes place in the last period, we generally observed considerably lower spill-overs.
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Figure 6: Initial equilibrium inventory levels for the benchmark and asymmetric cases, with
and without demand correlation (values normalized by αE{D2 + D1}).

5.2 Profit Comparison

After analyzing the differences in inventory levels in equilibrium, we study the corresponding

retailers’ profits for the demand signal and mid-season replenishment cases. Figure 8 illus-

trates the increase of the retailers’ equilibrium expected profits as a function of the demand

correlation across time. The figure compares these profits to the benchmark case, SR vs.

SR. In each graph, three curves appear: at the top, the profits of a QR retailer competing

against a SR retailer; in the middle, the profits of a QR retailer competing against a QR

retailer; and at the bottom, the profits of a SR retailer competing against a QR retailer.

The two graphs on top correspond to the demand signal case, and the two in the bottom

correspond to the mid-season replenishment. Likewise, the graphs at the left have σ = 0.3

and the two at the right have σ = 0.6. In terms of cost we use cQR = cSR = 0.5.15

Several observations can be made from looking at any of the graphs in Figure 8. First,

since the bottom curve is positive, it implies that a SR retailer prefers to have a QR com-

petitor (intuitively, the former gains from the spill-over demand that occurs in the initial

period). Second, comparing the bottom and the middle curves shows that a SR retailer

competing against a QR opponent would rather be QR itself. This confirms that flexibility

pays off. Third, comparing the middle and the top curves shows that a QR retailer would

rather have a SR competitor. Thus, part of the competitive advantage of QR comes from

the replenishment agility asymmetry. The previous remarks are summarized in the following

15Again, the demand signal case might have multiple equilibria, but they all achieve the same profits (c.f.
§4.2.1).
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Figure 7: Net average spill-over from the SR retailer to the QR retailer (values normalized
by αE{D2 + D1}), for σ = 0.3 and σ = 0.6 (cQR = cSR = 0.5 in both graphs).

preference ordering, where < represents a situation that is preferred by the first retailer:

QR vs. SR < QR vs. QR < SR vs. QR < SR vs. SR. (14)

Figure 8 also shows that the equilibrium profit increase due to the QR capability is larger

when the correlation across periods and/or the demand uncertainty is larger. In the mid-

season replenishment case, it can generate up to 50% higher expected profits. In the demand

signal case, the increase is lower, especially for low levels of demand correlation. This is what

should be expected since there is significantly less demand spill-over (see the comment at

the end of §5.1), and it indicates that in the demand signal case the benefit of QR is mostly

explained by reduced under and overstock costs rather than capturing additional demand

that spills over from the competitor.

The results of Figure 8 analyzed the increase in equilibrium profit when cQR = cSR.

However, as cQR increases, the QR profit clearly decreases. We can thus compute the break-

even cost for which a retailer would be indifferent between being QR or SR. This result is

depicted in Figure 9 as the percentage increase over cSR that leaves a retailer indifferent

(while competing against a SR opponent). We plot the break-even costs as a function of the

demand correlation, and for several values of cSR = 0.3, 0.5, 0.7. Again, the top and bottom

graphs correspond to the demand signal and mid-season replenishment cases respectively,

and the left and right graphs have σ = 0.3 and σ = 0.6 respectively.

Interestingly, while the SR retailer always gains when its competitor moves from SR to

QR, this is not always true for the QR retailer. It all depends on the cost increase associated
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Figure 8: Increase in equilibrium profit compared to the benchmark scenario for the demand
signal (top) and the mid-season replenishment (bottom) cases, with cQR = cSR = 0.5.

with implementing QR. For fast fashion retailers, the literature estimates this cost increase

to be 15-20% higher than traditional SR firms producing in Asia (see Ghemawat and Nueno

2003, p.11). As Figure 9 shows, this is insufficient to justify QR for small demand variability

and/or small demand correlation across time. For example, in the mid-season replenishment

model (bottom left), the break-even cost is below 15% for ρ < 0.5 and σ = 0.3. However, it

can be much higher for ρ ≈ 0.9 and σ = 0.6. Thus, our model shows that for small demand

variability and correlations, a retailer would rather prefer lower flexibility and lower cost,

i.e., being SR. This applies for “basic” items, e.g., white T-shirts. On the other hand, for

high demand variability and correlations, a retailer is better off having higher production

cost but a faster response. This matches “fashion” goods, as those typically found in a Zara

store. In other words, in a competitive setting, our results confirm the fundamental rule that

the supply chain (in particular, its costs and flexibility) should match the type of product.

Functional products, such as standard garments, should have an efficient (i.e, low cost, and

usually less flexible) supply chain, whereas innovative product, such as trendy items, should
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Figure 9: Break-even cost that makes a retailer (with a SR opponent) indifferent between
being QR or SR, for the demand signal (top) and mid-season replenishment (bottom) cases.

have a supply chain that is responsive, which typically requires excess buffer capacity, and

therefore implies higher operational costs (see Fisher 1997).

6. Conclusions and Future Research

In this paper, we formulated a multi-period finite horizon inventory competition model for

two retailers selling substitutable items. The model can be used to analyze the impact

of (asymmetric) production costs and ordering flexibility on the competitive outcome, and

specifically on retailer inventory levels and profits. That is the case when one of the firms has

a lower production (ordering) cost but can only produce at the beginning of the selling season,

whereas the second firm has higher costs but can replenish stock during the planning horizon,

taking advantage of any additional demand information that might become available. We

visualize the problem as the competition between a traditional SR retailer that makes-to-

stock before the season starts, versus a QR firm that has a flexible supply chain and can

order stock more than once.
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For the symmetric case, we extended the existence and unique equilibrium result by

Lippman and McCardle (1997) to an arbitrary number of periods with demand learning and

(possibly) nonzero initial inventory, where each firm follows a base-stock policy that ignores

the competition. In other words, retailers adopt the same policy as if they were alone in

the market. For asymmetric retailers and two periods (T = 2), we provided conditions

that guarantees the existence of a unique pure-strategy subgame-perfect equilibrium for

the demand signal and the mid-season replenishment cases. In addition, we performed an

extensive numerical study to understand the impact of cost asymmetries, demand variability,

and correlation across periods on the equilibrium inventory levels and the corresponding

profits. One of the striking results of our model is that a SR retailer would rather compete

against a QR retailer than a SR opponent. Also, a retailer competing against a SR retailer

is better off being QR, if the ordering cost cQR is below a break-even value that increases

with demand uncertainty and the correlation across periods. Finally, we show that part of

the competitive advantage for a QR retailer comes from the asymmetries on supply chain

flexibility, since the increase in profits is higher in the QR vs. SR scenario than in the QR

vs. QR case.

Several extensions of this work are possible. First, in terms of inventory competition

models, ideal extensions include existence and unique equilibrium results for the asymmetric

case with an arbitrary number of periods, and possibly more general demand allocation rules

and a larger number of retailers. However, the analysis is presumably not straightforward.

Second, in terms of understanding the fast fashion phenomenon, there is still plenty to be

done. In fact, in this paper we have ignored other distinctive aspects such as the endogenous

effect of higher fill rates on market share, similar to Gaur and Park (2007). Incorporating

these elements into our model is a challenging strand of future research.
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General Remarks:

• The numbering of the equations in the appendix continues the same sequence from the

paper.

• Throughout the appendix, any interchange of integration and differentiation in definite

integrals is justified by Leibniz’ rule, which holds whenever the integrand is continu-

ously differentiable (almost everywhere).

Proof of Proposition 1

Proof. We omit I1 since it remains constant throughout the proof. We can omit the subindex

t = 1 as well, since all the functions and variables in the proof refer to the terminal period.

For each yi, yj, we use the following notation. Let κi(yi) = (qi)−1(yi) and κj(yj) = (qj)−1(yj).

Each of these quantities represents the demand at which each retailer stocks out (κ stands for

knocked-out). Note that if κi(yi) ≥ κj(yj), then there can only be a spill-over of customers

from j to i. In addition, let

βi(yi, yj) = P{yi ≤ Ri(yj)} = 1κi(yi)≥κj(yj)

∫ ∞

yi+yj

f(u)du + 1κi(yi)<κj(yj)

∫ ∞

κi(yi)

f(u)du and

βj(yi, yj) = P{κj(yj) ≤ D ≤ yi + yj} = 1κi(yi)≥κj(yj)

∫ yi+yj

κj(yj)

f(u)du,

(15)

where 1A is the indicator function of event A.
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Following Figure 1, let Ei and Ej be the equilibrium stocking quantities in the uncon-

strained competitive game, i.e, when both retailers start without any inventory. Similarly,

let si(yj) and sj(yi) be the unconstrained base-stock functions. From the definition of a Nash

equilibrium, Ei = si(Ej) and Ej = sj(Ei), and we have that ei(0, 0) = Ei and ej(0, 0) = Ej.

We now compute the partial derivatives of πi in each one of the four regions (I)-(IV) depicted

in Figure 1.

(I) When xi ≤ Ei, xj ≤ Ej, then ei = Ei and ej = Ej. Hence, from Equation (4), πi is

linear in xi, with
1

pi

∂πi

∂xi
=

ci

pi
and independent of xj.

(II) When xj ≥ Ej, xi ≤ si(xj), then ej = xj and ei = si(xj). Hence, πi = cixi− cisi(xj) +

piEmin {si(xj), Ri(xj)}. Then, we have that

1

pi

∂πi

∂xi
=

ci

pi
and

1

pi

∂πi

∂xj
= −P

{
κj(xj) ≤ D ≤ si(xj) + xj

}
= −βj

(
ei, ej

)
.

where the latter follows from the envelope theorem.

(III) When xi ≥ Ei, xj ≤ sj(xi), then ei = xi and ej = sj(xi). Hence, πi = piEmin {xi, Ri(sj(xi))}.
It is independent of xj and

1

pi

∂πi

∂xi
= P

{
xi ≤ Ri(sj(xi))

}
− dsj

dyi
P
{

κj(sj(xi)) ≤ D ≤ xi + sj(xi)
}

= βi
(
xi, sj(xi)

)− βj
(
xi, sj(xi)

)dsj

dyi
.

Notice that, from the implicit function theorem at yj = sj(yi), we have that

dsj

dyi
=

∂2rj

∂yj∂yi

− ∂2rj

(∂yj)2

= −1κi(yi)<κj(sj(yi)).

That is, when the derivative of the base-stock function sj is not zero then βj(yi, sj(yi))

is zero. In other words, βj(yi, sj(yi))
dsj

dyi
is always equal to zero. Hence,

1

pi

∂πi

∂xi
= βi

(
ei, ej

)
.

(IV) When both retailers start with inventories above their equilibrium quantities, then

ei = xi, ej = xj, and πi = piEmin {xi, Ri(xj)}. Then,

1

pi

∂πi

∂xi
= P

{
xi ≤ Ri(xj)

}
= βi

(
ei, ej

)
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Region
1

pi

∂πi

∂xi

1

pi

∂πi

∂xj

(I)
ci

pi
0

(II)
ci

pi
−βj(si(xj), xj)

(III) βi(xi, sj(xi)) 0
(IV) βi(xi, xj) −βj(xi, xj)

Table 3: Properties of πi
1.

and
1

pi

∂πi

∂xj
= −P

{
κj(xj) ≤ D ≤ xi + xj

}
= −βj

(
ei, ej

)
.

We summarize these findings in Table 3. Note that πi is continuous in xi, xj, and is differ-

entiable almost everywhere. In addition, note that
∂πi

∂xj
is continuous in xi but discontinuous

in xj in the border of regions (I) and (II) .

Interestingly,
∂πi

∂xi
is continuous in both arguments. In particular, taking xi fixed, and

increasing xj, we move from either region (I) to (II), or from region (I) to (II) to (IV), or

from region (III) to (IV). In each one of borders,
∂πi

∂xi
is continuous, as βi =

ci

pi
in the border

(II)-(IV) and sj(xi) = xj in the border (III)-(IV). Similarly, taking xj fixed, and increasing

xi, we move from either region (I) to (III), or from region (I) to (III) to (IV), or from region

(II) to (IV). Again, there is no jump in
∂πi

∂xi
as we move from region to region. Since it is

non-increasing as a function of xi inside the regions, πi is concave in xi.

Proof of Proposition 2

Proof. As before, for simplicity we omit the subscript “1|D2” and use subscript “1” instead.

The proof is quite long, but the main idea is rather simple. We want to show that the

following inequality holds

∂2ri
2

(∂yi
2)

2
< φ2

(
(qi

2)
−1(yi

2)
) (

∂ri
2

∂yi
2

)
, where φ2(y) = max

{
0,

f ′2
f2

(y)

}
. (16)

This is the same inequality as (10), and for expositional purposes, first assume that it

actually holds (we will prove it shortly). Then, consider a critical point of ri
2(·, yj

2), i.e.,
∂ri

2

∂yi
2

(yi
2, y

j
2) = 0. From inequality (16), the critical point is necessarily a strict maximum,

i.e.,
∂2ri

2

(∂yi
2)

2
(yi

2, y
j
2) < 0. This shows that ri

2(·, yj
2) is first increasing and then decreasing, i.e.,
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quasi-concave. In addition, for yi
2 very large, ri

2 is eventually decreasing. Hence, there exists

a maximizer of ri
2(·, yj

2). Furthermore, this maximizer must be unique. In fact, consider two

distinct maxima. By (16), both would have to be strict. This would imply that in between

them, there would have to be a minimum, which again would be a contradiction with (16).

As a result, denote si
2(y

j
2) the unique maximizer of ri

2(y
i
2, y

j
2). From quasi-concavity, the

optimal (unconstrained) policy is base-stock, and from Equation (6), the constrained best

response is bi
2(x

i
2, y

j
2) = max{xi

2, s
i
2(y

j
2)}. Therefore, to prove Proposition 2 it suffices to show

that the inequality (16) is valid. That is what we do next.

We start the proof of (16) using the notation and results from Table 3. We structure the

proof in three steps: in claims 1 and 2, we provide bounds on
∂2πi

1

(∂xi
1)

2
,

∂πi
1

∂xj
1

and
∂πi

1

∂xi
1

; then,

in claim 3, we finally prove the inequality (16).

Claim 1 Letting

φ1(x
i
1) = max

{
0,

f ′1
f1

(
xi

1

)}
, (17)

we have that
∂2πi

1

(∂xi
1)

2
≤ −φ1((q

i
1)
−1(xi

1))

(
ci
1 −

∂πi
1

∂xi
1

)
.

We prove the claim for each one of the four regions in Figure 1. As in the previous proof,

we use the notation of Equation (15) and let κi
1(y

i
1) = (qi

1)
−1(yi

1) and κj
1(y

j
1) = (qj

1)
−1(yj

1).

(I)
∂2πi

1

(∂xi
1)

2
= 0 ·

(
ci
1 −

∂πi
1

∂xi
1

)
.

(II)
∂2πi

1

(∂xi
1)

2
= 0 ·

(
ci
1 −

∂πi
1

∂xi
1

)
.

(IV) We leave case (III) for the end. Here, using Equation (15), we have

βi(yi
1, y

j
1) = 1κi

1≥κj
1

∫ ∞

yi
1+yj

1

f1(u)du + 1κi
1<κj

1

∫ ∞

κi
1

f1(u)du

and thus, noting that
dκi

1

dyi
1

=
1

(qi
1)
′
(
κi

1

) ,

∂βi

∂yi
1

= −1κi
1≥κj

1
f1(y

i
1 + yj

1)− 1κi
1<κj

1

f1 (κi
1)

(qi
1)
′
(
κi

1

)

Since f1 is log-concave, i.e., log(f1) is concave, F1 is also log-concave, and for all v in

the support of f1,
f1(v)

F1(v)
≥ max

{
0,

f ′1(v)

f1(v)

}
,
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see Bagnoli and Bergstrom (2005) or Mart́ınez-de-Albéniz (2004).

Thus, we have, using that (qi
1)
′ ≤ 1 (because (qj

1)
′ = 1− (qi

1)
′ ≥ 0),

−∂βi

∂yi
≥ 1κi

1≥κj
1
f1(y

i
1 + yj

1) + 1κi
1<κj

1
f1

(
κi

1

)

≥ 1κi
1≥κj

1
max

{
0,

f ′1
f1

(yi
1 + yj

1)

} ∫ yi
1+yj

1

0

f1(u)du

+1κi
1<κj

1
max

{
0,

f ′1
f1

(κi
1)

}∫ κi
1

0

f1(u)du

= max

{
0,

f ′1
f1

(
yi

1 + yj
1

)
,
f ′1
f1

(
κi

1

)}

×




1κi
1≥κj

1

(
1−

∫ ∞

yi
1+yj

1

f1(u)du

)

+1κi
1<κj

1

(
1−

∫ ∞

κi
1

f1(u)du

)




(where to obtain the max, we used that
f ′1
f1

is non-increasing)

≥ max

{
0,

f ′1
f1

(
(qi

1)
−1(yi

1)
)} (

ci
1

pi
1

− βi

)
.

This can be rewritten as

∂2πi
1

(∂xi
1)

2
≤ −max

{
0,

f ′1
f1

(
(qi

1)
−1(xi

1)
)}(

ci
1 −

∂πi
1

∂xi
1

)
.

(III) We have
1

pi
1

∂2πi
1

(∂xi
1)

2
=

∂βi

∂yi
+

∂βi

∂yj

dsj
1

dyi
1

=
∂βi

∂yi
.

This is true because, when
dsj

1

dyi
1

6= 0, then κi
1(y

i
1) ≤ κj

1(s
j
1). This implies that βi(yi

1, s
j
1) =

∫ ∞

κi
1

f1(u)du, and hence
∂βi

∂yj
= 0 at (yi

1, s
j
1). Similarly to case (IV),

∂2πi
1

(∂xi
1)

2
≤ −max

{
0,

f ′1
f1

(
(qi

1)
−1(xi

1)
)}(

ci
1 −

∂πi
1

∂xi
1

)
.

This completes the proof of the bound. We need a second bound on the first derivatives.

Claim 2
∂πi

1

∂xi
1

≤ ci
1; for all xj such that F 1

(
(qj

1)
−1(xj

1)
)

< 1,
∂πi

1

∂xj
1

(0, xj
1) > −(pi

1 − ci
1).
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The first part of the claim,
∂πi

1

∂xi
1

≤ ci
1, is a direct consequence of concavity with respect to xi

1

and
∂πi

1

∂xi
1

(0, xj
1) = ci

1.

For the second part, we notice that (0, xj
1) belongs to regions (I) or (II). When

∂πi
1

∂xj
1

(0, xj
1) 6=

0, we must be in region (II). There,
∂πi

1

∂xj
1

(0, xj
1) = −βj

(
si
1(x

j
1), x

j
1

)
. Recall that we have, at

yi
1 = si

1(x
j
1) (unconstrained best-response),

dsi
1

dyj
1

=

∂2ri
1

∂yi
1∂yj

1

− ∂2ri
1

(∂yi
1)2

= −1κi
1(si

1)≥κj
1(x

j
1).

That is, βj(si
1(x

j
1), x

j
1) is not zero if and only if the best-response si

1(x
j
1) = F

−1

1

(
ci
1

pi
1

)
− xj

1,

from Theorem 1. As a result, when
∂πi

1

∂xj
1

(0, xj
1) 6= 0,

1

pi

∂πi
1

∂xj
1

(0, xj
1) = −βj

(
F
−1

1

(
ci
1

pi
1

)
− xj

1, x
j
1

)

= −1
κj
1(xj

1)≤F
−1
1

(
ci
1

pi
1

)




∫ F
−1
1

(
ci
1

pi
1

)

κj
1

f1(u)du




= −1
F 1(κj

1)≥ ci
1

pi
1

(
F 1

(
κj

1

)− ci
1

pi
1

)

Finally, this expression is valid (otherwise it is zero) while we are in region (II): xj
1 must

be greater than sj
1(s

i
1(x

j
1)). We know that si

1 has slope −1 here, which implies that sj
1 must

be constant, since at the intersection at most one of the best-response curves has slope −1.

In other words, xj
1 ≥ qj

1

(
F
−1

1

(
cj
1

pj
1

))
. Hence, we can express

1

pi

∂πi
1

∂xj
1

(0, xj
1) = −1

ci
1

pi
1

≤F 1((qj
1)−1(xj

1))≤ c
j
1

p
j
1

(
F 1

(
(qj

1)
−1(xj

1)
)− ci

1

pi
1

)
(18)

which completes the second part of the claim.

With these two claims we are ready to prove the key inequality (16).

Claim 3
∂2ri

2

(∂yi
2)

2
< φ2

(
(qi

2)
−1(yi

2)
) (

∂ri
2

∂yi
2

)
, where

φ2(y) = max

{
0,

f ′2
f2

(y)

}
. (19)
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For this purpose, take yj
2 as fixed. Similarly as before, let κi

2(y
i
2) = (qi

2)
−1(yi

2) and

κj
2(y

j
2) = (qj

2)
−1(yj

2). Equation (5) can be written as

ri
2(y

i
2, y

j
2) = E





−ci
2y

i
2 + pi

2 min
{
yi

2, R
i
2(y

j
2)

}

+πi
1|D2

((
yi

2 −Ri
2(y

j
2)

)+

,
(
yj

2 −Rj
2(y

i
2)

)+
)





There are two possible situations given yi
2, y

j
2. Either j stocks out before i, and hence

there may be a spill over from j to i, in which case κi
2 ≥ κj

2; or vice-versa.

The first situation occurs when κi
2 ≥ κj

2. Here, noting that the integrand is contin-

uously differentiable almost everywhere (and hence differentiation and integration can be

interchanged),

∂ri
2

∂yi
2

= −ci
2 + pi

2P
{
yi

2 + yj
2 ≤ D2

}
+ E

{
∂πi

1|D2

∂xi
1

(
yi

2 − qi
2(D2), y

j
2 − qj

2(D2)
)
1κj

2≥D2

}

+E

{
∂πi

1|D2

∂xi
1

(
yi

2 + yj
2 −D2, 0

)
1κj

2≤D2≤yi
2+yj

2

}

Since πi
1|D2

is concave in xi
1, for all D2, ri

2 is concave in yi
2. In fact, the second derivative can

be expressed as

∂2ri
2

(∂yi
2)

2
= −pi

2f2(y
i
2 + yj

2) + E

{
∂2πi

1|D2

(∂xi
1)

2

(
yi

2 − qi
2(D2), y

j
2 − qj

2(D2)
)
1κj

2≥D2

}

+E

{
∂2πi

1|D2

(∂xi
1)

2

(
yi

2 + yj
2 −D2, 0

)
1κj

2≤D2≤yi
2+yj

2

}
+

∂πi
1|D2

∂xi
1

(0, 0)f2(y
i
2 + yj

2)

< E

{
φ1|u

(
(qi

1)
−1(yi

2 − qi
2(D2))

) (
∂πi

1|D2

∂xi
1

(
yi

2 − qi
2(D2), y

j
2 − qj

2(D2)
)
− ci

1

)
1κj

2≥D2

}

+E

{
φ1|u

(
(qi

1)
−1(yi

2 + yj
2 −D2)

(
∂πi

1|D2

∂xi
1

(
yi

2 + yj
2 −D2, 0

)
− ci

1

)
1κj

2≤D2≤yi
2+yj

2

}

(using Claims 1 and 2, and the infinite support of D2)

≤ E

{
φ2

(
(qi

2)
−1(yi

2)
) (

∂πi
1|D2

∂xi
1

(
yi

2 − qi
2(D2), y

j
2 − qj

2(D2)
)
− ci

1

)
1κj

2≥D2

}

+E

{
φ2

(
(qi

2)
−1(yi

2)
) (

∂πi
1|D2

∂xi
1

(
yi

2 + yj
2 −D2, 0

)
− ci

1

)
1κj

2≤D2≤yi
2+yj

2

}

(using that φ1|u(x) = max{0, g′
g
(x− ku)} ≥ φ2(x− ku) ≥ φ2(x),

from assumption (iii) and that φ2 is non-increasing, assumption (ii))

≤ φ2

(
(qi

2)
−1(yi

2)
) (

∂ri
2

∂yi
2

− (ci
1 − ci

2)− (pi
2 − ci

1)P
{
yi

2 + yj
2 ≤ D2

})

≤ φ2

(
(qi

2)
−1(yi

2)
) (

∂ri
2

∂yi
2

)
.
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Consider now the second situation, i.e., κi
2 < κj

2. Here, since there is only spill-over from

i to j,

∂ri
2

∂yi
2

= −ci
2 + pi

2P
{
κi

2 ≤ D2

}
+ E

{
∂πi

1|D2

∂xi
1

(
yi

2 − qi
2(D2), y

j
2 − qj

2(D2)
)
1κi

2≥D2

}

+E

{
∂πi

1|D2

∂xj
1

(
0, yi

2 + yj
2 −D2

)
1κi

2≤D2≤yi
2+yj

2

}

= −ci
2 + ci

1 + (pi
2 − ci

1)

∫ ∞

yi
2+yj

2

f2(u)du

+

∫ κi
2

0

(
∂πi

1|u
∂xi

1

(
yi

2 − qi
2(u), yj

2 − qj
2(u)

)− ci
1

)
f2(u)du

+

∫ yi
2+yj

2

κi
2

(
pi

2 − ci
1 +

∂πi
1|u

∂xj
1

(0, yi
2 + yj

2 − u)

)
f2(u)du.

(20)

The second integral may not be decreasing in yi
2, since its variation is related to the second

derivative of the profit-to-go with respect to xj
1, which may not even exist. Using Equation

(18), we can express it as

∫ yi
2+yj

2

κi
2

(
pi

2 − ci
1 +

∂πi
1|u

∂xj
(0, yi

2 + yj
2 − u)

)
f2(u)du

=

∫ yi
2+yj

2

κi
2


pi

2 − ci
1 − pi

11 ci
1

pi
1

≤F 1|u((qj
1)−1(yi

2+yj
2−u))≤ c

j
1

p
j
1

(
F 1|u

(
(qj

1)
−1(yi

2 + yj
2 − u)

)− ci
1

pi
1

)
 f2(u)du

Let G(x) :=

∫ ∞

x

g(t)dt. We thus have F 1|u((q
j
1)
−1(yi

2 + yj
2 − u)) = G

(
yi
2+yj

2−u

αj
1

− ku
)
.

When k > 0, consider the change of variables v =
yi

2 + yj
2 − u

αj
1

− ku, or equivalently

u =
yi

2 + yj
2 − αj

1v

1 + kαj
1

. We obtain

∫ yi
2+yj

2

κi
2


pi

2 − ci
1 − pi

11 ci
1

pi
1

≤F 1|u((qj
1)−1(yi

2+yj
2−u))≤ c

j
1

p
j
1

(
F 1|u

(
(qj

1)
−1(yi

2 + yj
2 − u)

)− ci
1

pi
1

)
 f2(u)du

=

∫ yi
2+y

j
2−κi

2

α
j
1

−kκi
2

0


pi

2 − ci
1 − pi

11 ci
1

pi
1

≤G(v)≤ c
j
1

p
j
1

(
G(v)− ci

1

pi
1

)
 f2

(
yi

2 + yj
2 − αj

1v

1 + kαj
1

)(
αj

1

1 + kαj
1

)
dv
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As a result, the use of Leibniz’ rule for differentiation yields

∂

∂yi
2

(∫ yi
2+yj

2

κi
2

(
pi

2 − ci
1 +

∂πi
1|u

∂xj
(0, yi

2 + yj
2 − u)

)
f2(u)du

)

=





[
1−

(
1

αj
1

+ k

)
1

(qi
2)
′(κi

2)

]
× f2(κ

i
2)×

(
αj

1

1 + kαj
1

)

×

pi

2 − ci
1 − pi

11 ci
1

pi
1

≤G

(
yi
2+y

j
2−κi

2

α
j
1

−kκi
2

)
≤ c

j
1

p
j
1

(
G

(
yi

2 + yj
2 − κi

2

αj
1

− kκi
2

)
− ci

1

pi
1

)






+

∫ yi
2+y

j
2−κi

2

α
j
1

−kκi
2

0


pi

2 − ci
1 − pi

11 ci
1

pi
1

≤G(v)≤ c
j
1

p
j
1

(
G(v)− ci

1

pi
1

)
 f ′2

(
yi

2 + yj
2 − αj

1v

1 + kαj
1

)(
αj

1

(1 + kαj
1)

2

)
dv

Since 0 ≤ αj
1 ≤ 1, k ≥ 0 and (qi

2)
′(κi

2) ≤ 1, the first term is non-positive. In addition,

because of log-concavity of D2,
f ′2
f2

is non-increasing and hence for 0 ≤ v ≤ yi
2 + yj

2 − κi
2

αj
1

−kκi
2

f ′2
f2

(
yi

2 + yj
2 − αj

1v

1 + kαj
1

)(
1

1 + kαj
1

)
≤ f ′2

f2

(κi
2)

(
1

1 + kαj
1

)
≤ φ2((q

i
2)
−1(yi

2)).

As a result,

∂

∂yi
2

(∫ yi
2+yj

2

(qi
2)−1(yi

2)

(
pi

2 − ci
1 +

∂πi
1|u

∂xj
(0, yi

2 + yj
2 − u)

)
f2(u)du

)

≤ φ2((q
i
2)
−1(yi

2))

(∫ yi
2+yj

2

(qi
2)−1(yi

2)

(
pi

2 − ci
1 +

∂πi
1|u

∂xj
(0, yi

2 + yj
2 − u)

)
f2(u)du

)

When k = 0, i.e., D1 is independent from D2, then the same result is obtained using the

change of variables v = yi
2 + yj

2 − u, since

∫ yi
2+yj

2

κi
2


pi

2 − ci
1 − pi

11 ci
1

pi
1

≤F 1|u((qj
1)−1(yi

2+yj
2−u))≤ c

j
1

p
j
1

(
F 1|u

(
(qj

1)
−1(yi

2 + yj
2 − u)

)− ci
1

pi
1

)
 f2(u)du

=

∫ yi
2+yj

2−κi
2

0


pi

2 − ci
1 − pi

11 ci
1

pi
1

≤G((qj
1)−1(v))≤ c

j
1

p
j
1

(
G((qj

1)
−1(v))− ci

1

pi
1

)
 f2

(
yi

2 + yj
2 − v

)
dv.

Note that in this case no assumption on the linearity of qj
1 is made.
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Thus, differentiating Equation (20) yields

∂2ri
2

(∂yi
2)

2
= −(pi

2 − ci
1)f2

(
yi

2 + yj
2

)
+

∂πi
1|κi

2

∂xi
1

(
0, yj

2 − qj
2 (κi

2)
)− ci

1

(qi
2)
′(κi

2)
f2(κ

i
2)

+

∫ κi
2

0

∂2πi
1|u

(∂xi
1)

2

(
yi

2 − qi
2(u), yj

2 − qj
2(u)

)
f2(u)du

+
∂

∂yi
2

(∫ yi
2+yj

2

κi
2

(
pi

2 − ci
1 +

∂πi
1|u

∂xj
(0, yi

2 + yj
2 − u)

)
f2(u)du

)

<

∫ κi
2

0

∂2πi
1|u

(∂xi
1)

2

(
yi

2 − qi
2(u), yj

2 − qj
2(u)

)
f2(u)du

+φ2

(
(qi

2)
−1(yi

2)
) (∫ yi

2+yj
2

(qi
2)−1(yi

2)

(
pi

2 − ci
1 +

∂πi
1|u

∂xj
(0, yi

2 + yj
2 − u)

)
f2(u)du

)

where we used
∂πi

1|κi
2

∂xi

(
0, yj

2 − qj
2

(
κi

2

))− ci
1 ≤ 0 from Claim 2 and the infinite support.

Using Claim 1 and assumption (iii) of the proposition, we have that

∂2πi
1|u

(∂xi
1)

2

(
yi

2 − qi
2(u), yj

2 − qj
2(u)

) ≤ φ1|u
(
(qi

1)
−1(yi

2 − qi
2(u))

) (
∂πi

1|u
∂xi

1

(
yi

2 − qi
2(u), yj

2 − qj
2(u)

)− ci
1

)

≤ φ2

(
(qi

2)
−1(yi

2 − qi
2(u)

) (
∂πi

1|u
∂xi

1

(
yi

2 − qi
2(u), yj

2 − qj
2(u)

)− ci
1

)

≤ φ2

(
(qi

2)
−1(yi

2)
) (

∂πi
1|u

∂xi
1

(
yi

2 − qi
2(u), yj

2 − qj
2(u)

)− ci
1

)
,

where we used that f2 is log-concave (so that φ2 is non-increasing). Hence,

∂2ri
2

(∂yi
2)

2
< φ2((q

i
2)
−1(yi

2))

∫ (qi
2)−1(yi

2)

0

(
∂πi

1|u
∂xi

(
yi

2 − qi
2(u), yj

2 − qj
2(u)

)− ci
1

)
f2(u)du

+φ2((q
i
2)
−1(yi

2))

∫ yi
2+yj

2

(qi
2)−1(yi

2)

(
pi

2 − ci
1 +

∂πi
1|u

∂xj
(0, yi

2 + yj
2 − u)

)
f2(u)du

= φ2

(
(qi

2)
−1(yi

2)
) (

∂ri
2

∂yi
2

− (ci
1 − ci

2)− (pi
2 − ci

1)

∫ ∞

yi
2+yj

2

f2(u)du

)

≤ φ2

(
(qi

2)
−1(yi

2)
) (

∂ri
2

∂yi
2

)
.

This ends the proof of the third claim, and therefore, the proof of the proposition is also

complete.

Proof of Theorem 3

Proof. We use first the following claim.

Claim 4
∂2πi

1

(∂xi
1)

2
≤ ∂2πi

1

∂xi
1∂xj

1

≤ 0 almost everywhere.
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Note that these quantities are well-defined almost everywhere because, as seen in the proof

of Proposition 1,
∂πi

1

∂xi
1

is continuous, and the points of non-differentiability are at the borders

of regions (I)-(IV) only. The first inequality is easily proved using that
∂2r1

(∂yi
1)

2
≤ ∂2r1

∂yi
1∂yj

1

.

The second part comes from the fact that, in each region, the cross-derivative is either zero,

in regions (I)-(III), or non-positive in region (IV).

Similarly as in the previous proofs, let κi
2(y

i
2) = (qi

2)
−1(yi

2) and κj
2(y

j
2) = (qj

2)
−1(yj

2). When

κi
2 ≥ κj

2,

∂2ri
2

(∂yi
2)

2
− ∂2ri

2

∂yi
2∂yj

2

= E

{[
∂2πi

1|D2

(∂xi
1)

2
−

∂2πi
1|D2

∂xi
1∂xj

1

]
(
yi

2 − qi
2(D2), y

j
2 − qj

2(D2)
)
1κj

2≥D2

}
≤ 0

(21)

and

∂2ri
2

∂yi
2∂yj

2

= −
(

pi
2 −

∂πi
1|D2

∂xi
1

(0, 0)

)
f2(y

i
2 + yj

2) + E

{
∂2πi

1|D2

∂xi
1∂xj

1

(
yi

2 − qi
2(D2), y

j
2 − qj

2(D2)
)
1κj

2≥D2

}

+E

{
∂2πi

1|D2

(∂xi
1)

2

(
yi

2 + yj
2 −D2, 0

)
1(qj

2)−1(yj
2)≤D2≤yi

2+yj
2

}

≤ 0.
(22)

In addition, when κi
2 < κj

2,

∂2ri
2

(∂yi
2)

2
− ∂2ri

2

∂yi
2∂yj

2

= −pi
2f2(κ

i
2)

(qi
2)
′(κi

2)

+
f2(κ

i
2)

(qi
2)
′(κi

2)

([
∂πi

1|κi
2

∂xi
1

−
∂πi

1|κi
2

∂xj
1

]
(0, yj

2 + yi
2 − κi

2)

)

+E

{[
∂2πi

1|D2

(∂xi
1)

2
−

∂2πi
1|D2

∂xi
1∂xj

1

]
(
yi

2 − qi
2(D2), y

j
2 − qj

2(D2)
)
1(qi

2)−1(yi
2)≥D2

}

<
f2(κ

i
2)

(qi
2)
′(κi

2)
(pi

1 − pi
2)

≤ 0
(23)

because
∂πi

1|D2

∂xi
1

(0, z) −
∂πi

1|D2

∂xj
1

(0, z) < ci
1 + (p1

i − ci
1) = pi

1 from Claim 2 in the previous

proof.

From the implicit function theorem,
dsi

2

dyj
2

=

∂2ri
2

∂yi
2∂yj

2

− ∂2ri
2

(∂yi
2)2

. Thus, using Equations (21) and (23),

we have that
dsi

2

dyj
2

≥ −1. In addition, since at each point, either κi
2 < κj

2 or the reverse, we

must have either
dsi

2

dyj
2

≤ 0 and
dsj

2

dyi
2

> −1; or
dsi

2

dyj
2

> −1 and
dsj

2

dyi
2

≤ 0. This implies that in
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each point,
dsi

2

dyj
2

dsj
2

dyi
2

< 1.

The two best-response functions are continuous. si
2(y

j
2) is decreasing for small yj

2, while

(qi
2)
−1

(
si
2(y

j
2)

)
≥ (qj

2)
−1(yj

2). As a result, the two best-response functions intersect in the

region [0, si
2(0)] × [0, sj

2(0)]: equilibrium exists. In addition, since in any equilibrium point
dsi

2

dyj
2

dsj
2

dyi
2

< 1, equilibrium is unique, see Cachon and Netessine (2004).

Proof of Theorem 4

Proof. Since retailer j is passive, it is clear that for all t, sj
t(y

i
t) = 0. Thus, we need to

show that firm i’s policy is a base-stock policy that may depend on yj
t = xj

t . In other words,

show that bi
t(x

i
t, y

j
t ) = max{xi

t, s
j
t(y

j
t )}. For this purpose, we follow the lines of proof from

Proposition 2. Specifically, we show by induction on t = 1, . . . , T , that,

(i) for all yj
t , ri

t(·, yj
t ) is quasi-concave; hence a base-stock policy of level si

t(y
j
t ) is optimal;

(ii) there is a unique equilibrium: ej
t(x

j
t , x

i
t) = xj

t and ei
t(x

i
t, x

j
t) = max{xi

t, s
i
t(x

j
t)};

(iii) πi
t is concave in xi

t,
∂πi

t

∂xi
t

(xi
t, x

j
t) ≤ ci

t;

(iv) Denoting

φt(y) = max

{
0,

f ′t
ft

(y)

}
, (24)

we have
∂2πi

t

(∂xi
t)

2
≤ −φt

(
(qi

t)
−1(xi

t)
) (

ci
t −

∂πi
t

∂xi
t

)
≤ 0;

(v)
∂2πi

t

(∂xi
t)

2
≤ ∂2πi

t

∂xi
t∂xj

t

;

(vi)
∂πi

t

∂xj
t

(0, xj
t) ≥ −(pi

t − ci
t).

(i)-(vi) are true for t = 1, from the proofs of Proposition 1 and Theorem 3.

Assume that the induction properties are true for t − 1. For t, fix yj
t . Similarly as in

the previous proofs, let κi
t(y

i
t) = (qi

t)
−1(yi

t) and κj
t(y

j
t ) = (qj

t )
−1(yj

t ). There are two possible

situations given yi
t, y

j
t : either j stocks out before i, and hence there may be a spill over from

j to i, i.e., κi
t ≥ κj

t ; or vice-versa. When κi
t ≥ κj

t ,

∂ri
t

∂yi
t

= −ci
t + pi

tP
{
yi

t + yj
t ≤ Dt

}
+ E

{
∂πi

t−1

∂xi
t−1

(
yi

t − qi
t(Dt), y

j
t − qj

t (Dt)
)
1κj

t≥Dt

}

+E
{

∂πi
t−1

∂xi
t−1

(
yi

t + yj
t −Dt, 0

)
1κj

t≤Dt≤yi
t+yj

t

}

46



Since πi
t−1 is concave in xi

t−1, ri
t is concave in yi

t. In fact, the second derivative can be

expressed as

∂2ri
t

(∂yi
t)

2
= −pi

tft(y
i
t + yj

t ) + E
{

∂2πi
t−1

(∂xi
t−1)

2

(
yi

t − qi
t(Dt), y

j
t − qj

t (Dt)
)
1κj

t≥Dt

}

+E
{

∂2πi
t−1

(∂xi
t−1)

2

(
yi

t + yj
t −Dt, 0

)
1κj

t≤Dt≤yi
t+yj

t

}

≤ E
{

φt−1

(
(qi

t−1)
−1(yi

t − qi
t(Dt))

) (
∂πi

t−1

∂xi
t−1

(
yi

t − qi
t(Dt), y

j
t − qj

t (Dt)
)
− ci

t−1

)
1κj

t≥Dt

}

+E
{

φt−1

(
(qi

t−1)
−1(yi

t + yj
t −Dt)

(
∂πi

t−1

∂xi
t−1

(
yi

t + yj
t −Dt, 0

)
− ci

t−1

)
1κj

t≤Dt≤yi
t+yj

t

}

(using part (iv) of the induction)

≤ E
{

φt

(
(qi

t)
−1(yi

t)
) (

∂πi
t−1

∂xi
t−1

(
yi

t − qi
t(Dt), y

j
t − qj

t (Dt)
)
− ci

t−1

)
1κj

t≥Dt

}

+E
{

φt

(
(qi

t)
−1(yi

t)
) (

∂πi
t−1

∂xi
t−1

(
yi

t + yj
t −Dt, 0

)
− ci

t−1

)
1κj

t≤Dt≤yi
t+yj

t

}

(using (iii) of the proposition and that φt is non-increasing, from (ii) of the proposition)

≤ φt

(
(qi

t)
−1(yi

t)
) (

∂ri
t

∂yi
t

− (ci
t−1 − ci

t)− (pi
t − ci

t−1)P
{
yi

t + yj
t ≤ Dt

})

≤ φt

(
(qi

t)
−1(yi

t)
) (

∂ri
t

∂yi
t

)
.

(25)

Also,
∂2ri

t

(∂yi
t)

2
≤ ∂2ri

t

∂yi
t∂yj

t

, using part (v) of the induction step.

Consider now the second situation, i.e., κi
t < κj

t . Here, since there is only spill-over from

i to j,

∂ri
t

∂yi
t

= −ci
t + pi

tP
{
κi

t ≤ Dt

}
+ E

{
∂πi

t−1

∂xi
t−1

(
yi

t − qi
t(Dt), y

j
t − qj

t (Dt)
)
1κi

t≥Dt

}

+E

{
∂πi

t−1

∂xj
t−1

(
0, yi

t + yj
t −Dt

)
1κi

t≤Dt≤yi
t+yj

t

}

= −ci
t + ci

t−1 + (pi
t − ci

t−1)

∫ ∞

yi
t+yj

t

ft(u)du

+

∫ κi
t

0

(
∂πi

t−1

∂xi
t−1

(
yi

t − qi
t(u), yj

t − qj
t (u)

)− ci
t−1

)
ft(u)du

+

∫ yi
t+yj

t

(qi
t)
−1(yi

t)

(
pi

t − ci
t−1 +

∂πi
t−1

∂xj
t−1

(0, yi
t + yj

t − u)

)
ft(u)du.

= −ci
t + ci

t−1 + (pi
t − ci

t−1)

∫ ∞

yi
t+yj

t

ft(u)du

+

∫ κi
t

0

(
∂πi

t−1

∂xi
t−1

(
yi

t − qi
t(u), yj

t − qj
t (u)

)− ci
t−1

)
ft(u)du

+

∫ yi
t+yj

t−κi
t

0

(
pi

t − ci
t−1 +

∂πi
t−1

∂xj
t−1

(0, v)

)
ft(y

i
t + yj

t − v)dv,
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where we made the change of variables v = yi
t + yj

t −u in the last integral. First, observe

that
∂2ri

t

(∂yi
t)

2
≤ ∂2ri

t

∂yi
t∂yj

t

. Moreover, differentiation yields

∂2ri
t

(∂yi
t)

2
= −ft(y

i
t + yj

t )(p
i
t − ci

t−1)

+
ft (κi

t)

(qi
t)
′(κi

t)

(
∂πi

t−1

∂xi
t−1

(
0, yi

t + yj
t − κi

t

)− ci
t−1

)

+

(
1− 1

(qi
t)
′(κi

t)

)
ft

(
κi

t

)
(

pi
t − ci

t−1 +
∂πi

t−1

∂xj
t−1

(0, yi
t + yj

t − κi
t)

)

+

∫ κi
t

0

∂2πi
t−1

(∂xi
t−1)

2

(
yi

t − qi
t(u), yj

t − qj
t (u)

)
ft(u)du

+

∫ yi
t+yj

t−κi
t

0

(
pi

t − ci
t−1 +

∂πi
t−1

∂xj
t−1

(0, v)

)
f ′t(y

i
t + yj

t − v)dv

≤
∫ κi

t

0

∂2πi
t−1

(∂xi
t−1)

2

(
yi

t − qi
t(u), yj

t − qj
t (u)

)
ft(u)du

+

∫ yi
t+yj

t−κi
t

0

(
pi

t − ci
t−1 +

∂πi
t−1

∂xj
t−1

(0, v)

)
f ′t(y

i
t + yj

t − v)dv,

where we used part (iii) and (vi) of the induction step, i.e.,
∂πi

t−1

∂xi
t−1

− ci
t−1 ≤ 0, and

pi
t − ci

t−1 +
∂πi

t−1

∂xj
t−1

(0, ·) ≥ 0. In addition, from the log-concavity of Dt,
f ′t
ft

is non-increasing

and so is φt. Hence for v ∈ [0, yi
t + yj

t − κi
t],

f ′t
ft

(yi
t + yj

t − v) ≤ f ′t
ft

(κi
t) ≤ φt((q

i
t)
−1(yi

t)).

Finally, from part (iv) of the induction, for u ∈ [0, (qi
t)
−1(yi

t)],

∂2πi
t−1

(∂xi
t−1)

2

(
yi

t − qi
t(u), yj

t − qj
t (u)

)

≤ φt−1

(
(qi

t−1)
−1(yi

t − qi
t(u))

) (
∂πi

t−1

∂xi
t−1

(
yi

t − qi
t(u), yj

t − qj
t (u)

)− ci
t−1

)

≤ φt−1

(
(qi

t−1)
−1(yi

t)
) (

∂πi
t−1

∂xi
t−1

(
yi

t − qi
t(u), yj

t − qj
t (u)

)− ci
t−1

)

(because the term in parentheses is non-positive)

≤ φt((q
i
t)
−1(yi

t))

(
∂πi

t−1

∂xi
t−1

(
yi

t − qi
t(u), yj

t − qj
t (u)

)− ci
t−1

)

(from assumption (iii) of the proposition)
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As a result,

∂2ri
t

(∂yi
t)

2
≤ φt((q

i
t)
−1(yi

t))




∫ κi
t

0

(
∂πi

t−1

∂xi
t−1

(
yi

t − qi
t(u), yj

t − qj
t (u)

)− ci
t−1

)
ft(u)du

+

∫ yi
t+yj

t−κi
t

0

(
pi

t − ci
t−1 +

∂πi
t−1

∂xj
t−1

(0, v)

)
ft(y

i
t + yj

t − v)dv




≤ φt((q
i
t)
−1(yi

t))

(
∂ri

t

∂yi
t

− (ci
t−1 − ci

t)− (pi
t − ci

t−1)

∫ ∞

yi
t+yj

t

ft(u)du

)

≤ φt

(
(qi

t)
−1(yi

t)
) (

∂ri
t

∂yi
t

)
.

(26)

Consider a critical point of ri
t(·, yj

t ), i.e.,
∂ri

t

∂yi
t

(yi
t, y

j
t ) = 0. We have shown that this is

necessarily a maximum, i.e.,
∂2ri

t

(∂yi
t)

2
(yi

t, y
j
t ) ≤ 0. This proves that ri

t(·, yj
t ) is first increasing

and then decreasing, i.e., quasi-concave. Since, ri
t is eventually decreasing for large yi

t,

there is a unique unconstrained maximizer, si
t(y

j
t ), and the optimal policy is base-stock:

bi
t(x

i
t, y

j
t ) = max{xi

t, s
i
t(y

j
t )}. This proves part (i) of the induction. Part (ii) is shown recalling

that retailer j does not order at all: ej
t = xj

t , and thus ei
t = max{xi

t, s
i
t(x

j
t)}.

Hence, there are two regions to consider:

πi
t(x

i
t, x

j
t) =

{
ci
tx

i
t + ri

t(s
i
t(x

j
t), x

j
t) for xi

t ≤ si
t(x

j
t)

ci
tx

i
t + ri

t(x
i
t, x

j
t) otherwise.

In the first region (replenishment, first line in the expression above),
∂πi

t

∂xi
t

= ci
t and hence

∂2πi
t

(∂xi
t)

2
≤ 0 = −φt

(
(qi

t)
−1(yi

t)
) (

ci
t −

∂πi
t

∂xi
t

)
. Also,

∂2πi
t

(∂xi
t)

2
=

∂2πi
t

∂xi
t∂xj

t

= 0.

In the second region,
∂πi

t

∂xi
t

= ci
t +

∂ri
t

∂yi
t

≤ ci
t, because xi

t ≥ si
t(x

j
t). In addition, from

Equations (25) and (26),

∂2πi
t

(∂xi
t)

2
=

∂2ri
t

(∂yi
t)

2
≤ φt

(
(qi

t)
−1(xi

t)
) (

∂ri
t

∂yi
t

)
= −φt

(
(qi

t)
−1(xi

t)
) (

ci
t −

∂πi
t

∂xi
t

)
.

Also,
∂2πi

t

(∂xi
t)

2
≤ ∂2πi

t

∂xi
t∂xj

t

since
∂2ri

t

(∂yi
t)

2
≤ ∂2ri

t

∂yi
t∂yj

t

(shown before).

Hence, πi
t is concave in xi

t, and parts (iii)-(v) are shown. Finally, from the envelope

theorem,

∂πi
t

∂xj
t

(0, xj
t) =

∂ri
t

∂yj
t

(si
t(x

j
t), x

j
t)
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Interestingly, since
∂2ri

t

(∂yi
t)

2
≤ ∂2ri

t

∂yi
t∂yj

t

,
∂ri

t

∂yi
t

− ∂ri
t

∂yj
t

is non-increasing in yi
t. Since

∂ri
t

∂yi
t

(si
t(x

j
t), x

j
t) =

0,

∂ri
t

∂yi
t

(0, xj
t)−

∂ri
t

∂yj
t

(0, xj
t) = pi

t − ci
t ≥

∂ri
t

∂yi
t

(si
t(x

j
t), x

j
t)−

∂ri
t

∂yj
t

(si
t(x

j
t), x

j
t) = −∂πi

t

∂xj
t

(0, xj
t).

This shows part (vi) and completes the induction.

Proof of Theorem 5

Proof. In the proof, we use the dynamic program presented in Equation (13). This is

a standard inventory problem, and it is easy to show that for all t, for all possible past

information It, Ut|It is concave. It follows that the optimal policy is a base-stock policy with

level st|It , where st|It satisfies

ct = E
{

pt1st|It
≤Dt +

dUt−1|It−1

dxt−1

(st|It −Dt)1st|It
≥Dt

∣∣∣∣ It

}

We show by induction on t = 1, . . . , T that for all It (which we omit as a subscript below,

i.e., we write subscript ”t” instead of ”t|It”),

(i) for all yj
t , ri

t(·, yj
t ) is concave and

∂2ri
t

(∂yi
t)

2
≤ ∂2ri

t

∂yi
t∂yj

t

≤ 0;

(ii) si
t

(
yj

t

)
is non-increasing in yj

t and when
si

t

(
yj

t

)

αi
≤ yj

t

αj
, si

t

(
yj

t

)
= αist;

(iii) we have existence and uniqueness of equilibrium and for i = 1, 2, ei
t(x

i
t, x

j
t) = max{xi

t, α
ist};

(iv) when
xi

t

αi
≤ xj

t

αj
, then πi

t

(
xi

t, x
j
t

)
= αiUt

(
xi

t

αi

)
;

(v)
∂2πi

t

(∂xi
t)

2
≤ ∂2πi

t

∂xi
t∂xj

t

≤ 0.

For t = 1, fix I1 (and hence omitted below). We know that ri
1 is concave in yi

1 for all

yj
1. From Table 3, it is clear that

∂2ri
1

(∂yi
1)

2
≤ ∂2ri

1

∂yi
1∂yj

1

≤ 0, point (i). Point (ii) follows from

Theorem 1: for
yj

1

αj
≥ yi

1

αi
, P{yi

1 ≤ Ri
1(y

j
1)} = P{yi

1 ≤ αiD1}, and hence si
1(y

j
1) = αis1.

Since the best-response functions are non-increasing with slope greater than -1, a Nash

equilibrium exists (Theorem 1 again); and since either si
1(y

j
1) or sj

1(y
i
1) are constant (depend-

ing on
yj

1

αj
≥ yi

1

αi
or not), then the equilibrium is unique. In addition, it is easy to check that

Ei
1 := ei

1(0, 0) = αis1 and Ej
1 := ej

1(0, 0) = αjs1, and that above the equilibrium level Ej
1,

si
1(e

j
1) is constant equal to αis1. This implies ei

1 = max{xi
1, α

is1}, point (iii).
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In particular, if
xi

1

αi
≤ xj

1

αj
, then

ei
1

αi
≤ ej

1

αj
. This implies that there is no spill-over from

retailer j’s demand into i’s: min{ei
1, R

i
1(e

j
1)} = min{ei

1, α
iD1}. Hence,

πi
1(x

i
1, x

j
1) = −c1(max{xi

1, α
is1} − xi

1) + p1Emin{max{xi
1, α

is1}, αiD1} = αiU1

(
xi

1

αi

)
,

point (iv). Finally, since

πi
1(x

i
1, x

j
1) = ci

1x
i
1 + ri

1(max{xi
1, α

is1}, max{xj
1, α

js1})

it is clear that
∂2πi

1

(∂xi
1)

2
≤ ∂2πi

1

∂xi
1∂xj

1

≤ 0, point (v). Thus the inductive property is proved for

t = 1.

Assuming that it is true for t− 1, for all It−1, fix It (omitted as subscript below).

ri
t(y

i
t, y

j
t ) = −cty

i
t + ptEmin{yi

t, R
i
t(y

j
t )}+ Eπi

t−1|It−1

((
yi

t −Ri
t(y

j
t )

)+

,
(
yj

t −Rj
t (y

i
t)

)+
)

and hence

∂ri
t

∂yi
t

= −ct + ptP{yi
t ≤ Ri

t(y
j
t )}+ E

∂

∂yi
t

πi
t−1|It−1

((
yi

t −Ri
t(y

j
t )

)+

,
(
yj

t −Rj
t (y

i
t)

)+
)

.

We have that

πi
t−1|It−1

((
yi

t −Ri
t(y

j
t )

)+

,
(
yj

t −Rj
t (y

i
t)

)+
)

=





either πi
t−1|It−1

(yi
t + yj

t −Dt, 0)

or πi
t−1|It−1

(0, yi
t + yj

t −Dt) = αiUt−1|It−1(0)

or πi
t−1|It−1

(yi
t − αiDt, y

j
t − αjDt)

or πi
t−1|It−1

(0, 0) = αiUt−1|It−1(0)

Using point (v) of the induction step on πi
t−1|It−1

, we have that
∂2ri

t

(∂yi
t)

2
≤ ∂2ri

t

∂yi
t∂yj

t

≤ 0, point

(i).

This implies that the optimal policy is a base-stock policy with base-stock level si
t(y

j
t ),

and from the implicit function theorem and point (i), we have that si
t(y

j
t ) is non-increasing.

In addition, if
yi

t

αi
≤ yj

t

αj
, there is no spill-over from j to i, and hence min{yi

t, R
i
t(y

j
t )} =

min{yi
t, α

iDt} and

πi
t−1|It−1

((
yi

t −Ri
t(y

j
t )

)+

,
(
yj

t −Rj
t (y

i
t)

)+
)

= αiUt−1|It−1

(
(yi

t − αiDt)
+

αi

)
,

from point (iv) of the induction. Hence, when
si

t

(
yj

t

)

αi
≤ yj

t

αj
, si

t

(
yj

t

)
= αist. This shows

(ii).
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Again, since the best-response functions are non-increasing and with slopes greater than

-1, there exists a Nash equilibrium; as one of the best-response functions is constant, this

equilibrium is unique. Similarly as before, ei
t = max{xi

t, α
ist} since the best-response func-

tion si
t(y

j
t ) is flat when yj

t ≥ αjst. This shows (iii).

Again, if
xi

t

αi
≤ xj

t

αj
, then

ei
t

αi
≤ ej

t

αj
. We then have that min{ei

t, R
i
t(e

j
t)} = min{ei

t, α
iDt}.

Hence,

πi
t(x

i
t, x

j
t) = −ct(max{xi

t, α
ist} − xi

t) + ptEmin{max{xi
t, α

ist}, αiDt}
+EαiUt−1|It−1

(
(max{xi

t, α
ist} − αiDt)

+

αi

)

= αiUt

(
xi

t

αi

)
,

point (iv). Finally, since

πi
t(x

i
t, x

j
t) = ci

tx
i
t + ri

t(max{xi
t, α

ist}, max{xj
t , α

jst}),

it is clear that
∂2πi

t

(∂xi
t)

2
≤ ∂2πi

t

∂xi
t∂xj

t

≤ 0, using part (v) of the induction step. This proves point

(v) for t, for all It, completes the induction and proves the theorem.
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