
MANUFACTURING & SERVICE
OPERATIONS MANAGEMENT

Vol. 14, No. 4, Fall 2012, pp. 654–669
ISSN 1523-4614 (print) � ISSN 1526-5498 (online) http://dx.doi.org/10.1287/msom.1120.0402

© 2012 INFORMS

Performance-Based Contracts for
Outpatient Medical Services

Houyuan Jiang
Judge Business School, University of Cambridge, Cambridge CB2 1AG, United Kingdom,

h.jiang@jbs.cam.ac.uk

Zhan Pang
Lancaster University Management School, Lancaster LA1 4YW, United Kingdom,

z.pang@lancaster.ac.uk

Sergei Savin
The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104,

savin@wharton.upenn.edu

In recent years, the performance-based approach to contracting for medical services has been gaining pop-
ularity across different healthcare delivery systems, both in the United States (under the name of “pay for

performance”) and abroad (“payment by results” in the United Kingdom). The goal of our research is to build
a unified performance-based contracting (PBC) framework that incorporates patient access-to-care requirements
and that explicitly accounts for the complex outpatient care dynamics facilitated by the use of an online appoint-
ment scheduling system. We address the optimal contracting problem in a principal–agent framework where a
service purchaser (the principal) minimizes her cost of purchasing the services and achieves the performance
target (a waiting-time target) while taking into account the response of the provider (the agent) to the con-
tract terms. Given the incentives offered by the contract, the provider maximizes his payoff by allocating his
outpatient service capacity among three patient groups: urgent patients, dedicated advance patients, and flex-
ible advance patients. We model the appointment dynamics as that of an M/D/1 queue and analyze several
contracting approaches under adverse selection (asymmetric information) and moral hazard (private actions)
settings. Our results show that simple and popular schemes used in practice cannot implement the first-best
solution and that the linear performance-based contract cannot implement the second-best solution. To over-
come these limitations, we propose a threshold-penalty PBC approach and show that it coordinates the system
for an arbitrary patient mix and that it achieves the second-best performance for the setting where all advance
patients are dedicated.
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1. Introduction
As the U.S. healthcare system is preparing to face a
set of fundamental changes, the task of controlling the
cost of providing medical care while maintaining a
high quality and a satisfactory level of access to care
occupies one of the central places in current politi-
cal debate. The evidence that continuing increases in
healthcare spending in many instances do not trans-
late into desired improvements in quality of care or
into better patient outcomes (Institute of Medicine
2007, McGlynn et al. 2003) suggests that reform of
the overall healthcare system should include changes
to the mechanisms of compensating healthcare ser-
vice providers. In the domain of publicly financed
healthcare programs, Medicare, which leads both in
terms of the number of patients covered and in terms
of financial spending, is currently using the fee-for-

service (FFS) scheme of physician compensation that
arguably encourages providers to increase the ser-
vice volume and to focus on more expensive treat-
ment options. In addition, because FFS payments are
not tied to the quality of provided services as mea-
sured by patient experiences and clinical outcomes,
there exist no incentives for preventive activities or
for coordination of patient care. The limitations of the
FFS approach are summarized in the seminal Insti-
tute of Medicine (2007) report, which calls for the
introduction of an alternative, “pay-for-performance”
(P4P) provider compensation scheme. Under the P4P
scheme, not only the quantity but also the qual-
ity of provided services influences the compensa-
tion amounts. In all cases of P4P adoption, the
reported quality metrics include prophylaxis mea-
sures as well as clinical outcomes (Mullen et al. 2010).
In a number of cases, clinical performance measures
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are augmented by “patient experience” metrics that
include prompt access to care (Integrated Healthcare
Association 2011).

Although the P4P framework is only now emerging
from its pilot status in the United States, it is a well-
accepted paradigm in a number of European coun-
tries as well as in Australia. In the United Kingdom,
in particular, it is already used by the National Health
Service (NHS), which coordinates both the financ-
ing and the delivery of healthcare services. Since
2002, the NHS has been using a system of hospi-
tal financing called “payment by results,” or PbR
(since 2004 this system has also been applied to pri-
mary care physicians).1 Similar to the FFS approach
adopted by Medicare, PbR ensures that a service
provider (e.g., a hospital) receives a fixed payment
from a service purchaser (a government agency) for
each delivered treatment. Under the PbR system,
primary care trusts (the commissioning agencies of
the NHS) are free to purchase healthcare services
from any qualified local provider. Unlike the fee-for-
service approach, PbR considers various service qual-
ity measures, including those related to patient access
to care. In particular, the NHS currently uses a series
of patient waiting-time targets including the 18-week
period as a maximum waiting time for any outpatient
to receive elective specialist care2 (most specialist care
in the United Kingdom is done in state-managed hos-
pitals). A representative example of how patient wait-
ing times influence provider compensation is given by
the 2008 standard NHS contract for acute services (UK
Department of Health 2012), which stipulates penal-
ties of up to 5% of the revenue from elective services
for violating the 18-week waiting target. Recently, to
facilitate better patient access to care and to stream-
line the management of outpatient appointments, a
nationwide electronic appointment booking system,
Choose and Book (CaB), was set up.

Although these innovations are actively changing
the way healthcare delivery systems operate, the
nature of interactions between different contractual
obligations imposed on service providers remains
poorly understood. The goal of our research is to
build a unified performance-based contracting (PBC)
framework that incorporates patient access-to-care
requirements and that explicitly accounts for the com-
plex outpatient care dynamics facilitated by the use of
an online appointment scheduling system. Our model
of outpatient care is based on the UK setting, where

1 See http://www.dh.gov.uk/health/category/policy-areas/nhs/
resources-for-managers/payment-by-results/ (last accessed July
21, 2012).
2 See http://www.nhs.uk/choiceintheNHS/Rightsandpledges/
Waitingtimes/Pages/Guide_to_waiting_times.aspx (last accessed
July 21, 2012).

a hospital, based on private information about its
operational costs, makes two types of capacity alloca-
tion decisions: how many appointment slots to make
available through the online appointment schedul-
ing system (and, consequently, how many to reserve
for same-day urgent cases) and how many days in
advance to release such capacity into the online sys-
tem (CaB). Using these two decision levers, the hos-
pital allocates its service capacity between same-day
patients as well as two distinct types of patients with
advance service requests, “dedicated” and “flexible.”
Dedicated patients insist on having their service pro-
vided by a particular hospital, irrespective of whether
the CaB system shows any appointments available in
that hospital—and they have the recourse to enforce
an appointment within the 18-week horizon through
the use of a phone-based override system. Flexible
patients, on the other hand, will select another ser-
vice provider and forgo the additional inconvenience
associated with using the override if the CaB system
displays no available appointments within the hori-
zon selected by their first-choice provider.

We assume that the hospital receives a known rev-
enue from the government agency (similar to an FFS
payment) for each patient receiving care. In addi-
tion, the hospital incurs penalties if its operational
planning turns out to be inadequate. First, the over-
time penalty is incurred in cases when the total daily
demand for outpatient services exceeds the hospital’s
nominal service capacity (the value of the overtime
cost is assumed to be the hospital’s private infor-
mation). Second, every time a patient switches to
another hospital due to lack of appointment capac-
ity as declared through the CaB system, a “work
transfer” penalty is incurred. Finally, the govern-
ment agency charges the hospital an “access-to-care”
penalty proportional to the length of its appointment
waiting list. The revenue amount and the access-
to-care penalty value form the core of the hospi-
tal’s performance-based contract put forward by the
government agency. In our analysis, we consider an
asymmetric information setting in which a hospital
has perfect knowledge about the value of its overtime
costs, whereas the government knows only the distri-
bution of its potential values.

Such a contract can be modeled using the principal-
and-agent framework in which the purchaser of ser-
vices acts as a principal and the service provider as an
agent. Using this principal–agent framework, we ana-
lyze both the FFS and PBC approaches under adverse
selection (asymmetric information) and moral hazard
(private actions) settings. We study the first-best and
the second-best solutions, as well as the performance
of a simple contract that applies the same parameters
to all agents, irrespective of their overtime cost val-
ues. In our analysis, we gain important insights by
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comparing the FFS and PBC mechanisms in different
settings: with complete information, with asymmetric
information, and with private agent actions. In par-
ticular, we show that when the agent’s capacity allo-
cation decisions are observable and contractible, the
FFS and linear PBC approaches produce the same out-
come, irrespective of whether the information setting
is symmetric or asymmetric. However, if the agent’s
decisions are not observable and contractible, linear
PBC outperforms FFS. This suggests that PBC should
replace FFS in settings similar to the one observed
in the UK NHS system, where the government does
not routinely collect operational cost information and
where hospitals possess a lot of power for making
their own capacity allocation decisions.

The rest of this paper is organized as follows.
Section 2 reviews the related research. Section 3
describes our model in detail. Sections 4 and 5 ana-
lyze first-best solution (under symmetric information)
and second-best solution (under asymmetric informa-
tion), respectively, as well as their implementations
when the provider has private actions. In §6, we con-
sider threshold penalty performance-based contracts,
which can achieve the first-best outcome for any
diverting rate, and which can also achieve the second-
best outcome for the special case of dedicated-only
patients. A case study is presented in §7. We conclude
the paper in §8.

2. Literature Review
Goddard et al. (2000) and Farrar et al. (2007) described
conceptual frameworks for designing fee-for-service
contracts from an economic perspective and out-
line potential risk factors associated with the FFS
approach, in particular, decreased quality of delivered
services and reduced access to care. De Fraja (2000)
underscored the information asymmetry between a
purchaser of services (government agency) and a
service provider (hospital) inherent in healthcare set-
tings and presented a stylized model of FFS con-
tracting based on the principal-and-agent framework.
Contract theory literature streams in economics and
operations management (see Bolton and Dewatripont
2005, and Cachon 2003 for comprehensive reviews)
include a large number of papers that focus on
designing incentives to induce desired performance.
Below we highlight several studies on service supply
chain contracting that are closely related to our work.

In the call-center context, Ren and Zhou (2008)
and Hasija et al. (2008) studied coordination mech-
anisms in the setting where a client company out-
sources call-center operations to a vendor. Ren and
Zhou (2008) modeled call-center operations using a
fluid approximation to a G/G/s queue with customer
abandonment. Hasija et al. (2008) modeled a call cen-
ter as an M/M/N queue with customer abandonment
and used a diffusion approximation. Similar to Ren

and Zhou (2008) and Hasija et al. (2008), we exam-
ine the role of the activity-based and the performance-
based incentives on the structure of service contracts.
Despite the similarity of research agenda, our mod-
eling approach differs from the ones adopted by Ren
and Zhou (2008) and Hasija et al. (2008) in several
essential ways, reflecting the reality of a typical out-
patient setting. First, our model explicitly treats out-
patient appointment and service dynamics as those of
an M/D/1 queue without using first-moment or dif-
fusion approximations. Second, the information struc-
ture of our model is different from that of Hasija et al.
(2008) (Ren and Zhou 2008 do not analyze information
asymmetry). In particular, Hasija et al. (2008) consid-
ered information asymmetry in agents’ service rates.
In the outpatient care setting we model, provider pro-
ductivity is visible to the purchaser of healthcare ser-
vices, and the most important aspect of the infor-
mation asymmetry concerns the provider’s overtime
costs. As a result, in their model the principal can
design a contract to eliminate the entire informa-
tion rent, whereas in our model the information rent
is unavoidable. Third, and most importantly, in our
model the agent’s decisions shift from capacity sizing
and effort/productivity-level management in the face
of a homogenous customer base to a rather different
task of allocating fixed service capacity among three
different patient groups.

In the context of the after-sales service supply
chains for multicomponent products, Kim et al. (2007)
introduced a multitask principal–agent model to ana-
lyze contracts observed in practice. An important dif-
ference between our work and that of Kim et al. (2007)
is the type of modeling assumption that generates
the inefficiency of basic performance-based contract-
ing approaches. In our model, both parties are risk
neutral, but there exists an information asymmetry
between them, whereas in the paper by Kim et al.
(2007), the same information is available to the risk-
averse principal and agents.

The number of applications of contract theory to
healthcare services, although somewhat limited com-
pared to retail and other service supply chains, has
been growing in recent years, in part because of the
increased popularity of the performance-based con-
tracts. Lu and Donaldson (2000) presented a review
of the economics literature dealing with performance-
based contracting and underscored the inherent infor-
mational advantage that healthcare providers have
over patients as well as purchasing agencies as one
of the major sources of potential market failure in the
healthcare domain.3 Under a dynamic principal-agent

3 An interesting exception to this general statement was analyzed
by Su and Zenios (2006), where, in the kidney transplantation
context, patients may have an informational advantage over care
providers.
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framework, Fuloria and Zenios (2001) studied an
outcome-adjusted payment system where the pur-
chaser determines the contract terms contingent on
the observed outcomes (patient deaths and medi-
cal complications) to induce the provider to choose
the optimal treatment intensities. Our analysis dif-
fers from the one presented by Fuloria and Zenios
(2001) in several ways. First, we focus on the oper-
ational performance measure (patient waiting time)
rather than on the clinical outcomes. Second, whereas
Fuloria and Zenios (2001) considered only the moral
hazard setting, we analyze an information asymmetry
setting that leads to both moral hazard and adverse
selection. Finally, Fuloria and Zenios (2001) focused
on the linear contract structure, whereas we also
study nonlinear, threshold performance-based con-
tracts. Lee and Zenios (2012) studied evidence-based
incentive systems within a multitask principal–agent
model in the context of dialysis treatment for patients
with end-stage renal disease. So and Tang (2000) con-
sidered a Medicare contract for the reimbursement
of drug prescriptions in an outpatient environment
with a clinical outcome-based performance metric
and derived the optimal drug application policy that
maximizes the outpatient clinic’s expected profit. This
paper, however, does not analyze the optimal contract
structure, nor does it impose, because of the context
of the problem analyzed, a limit on outpatient clinic
service capacity. A separate research stream within
the healthcare contracting literature focuses on the
issues of excess demand and waiting for service (for
a comprehensive review, see Siciliani 2007). Although
several existing papers model the information asym-
metry between the purchasers of services and their
providers, none of them analyze the underlying ser-
vice capacity management issues and their impact on
patient waiting times.

Our work is also related to the appointment
scheduling literature, which focuses on the optimal
appointment capacity allocation policies in the pres-
ence of patient choice (Gupta and Wang 2008), no-
shows (Liu et al. 2010), and multiple patient priorities
(Patrick et al. 2008). The most important distinctive
feature of our work is that we embed an appointment
capacity management problem into a strategic con-
tracting interaction between a service provider and a
service purchaser.

In our model, we use a principal–agent setup in
which the agent solves the problem of allocating its
service capacity among the same-day patients and
the patients who use the online appointment system.
The extant literature contains numerous papers that
deal with various instances of service capacity
allocation in healthcare settings (for example, see
Gupta and Denton 2008 for a comprehensive review

of recent advances in the appointment scheduling lit-
erature). However, to the best of our knowledge, our
work is the first to incorporate appointment capac-
ity allocation within the contracting principal–agent
framework.

3. Contracting for Outpatient Medical
Services: The Model

We consider a healthcare service contracting prob-
lem in which a purchaser of services (a government
agency, such as a primary care trust in the United
Kingdom) offers a contract to a provider (a hospital)
to deliver outpatient services. In particular, our model
is designed to describe a nonsurgical outpatient spe-
cialist care environment (such as cardiology, neurol-
ogy, etc.) found in many UK hospitals, where a group
of physicians work in the same clinic center.

The provider manages outpatient appointments
via an online outpatient appointment booking sys-
tem (such as Choose and Book). Demand for out-
patient services is random and is comprised of two
distinct streams: advance appointments that can be
served either on the current day or on a future
date, and same-day appointments that must be served
on the day they arrive. The provider has a limited
nominal daily service capacity, but is obligated to
serve all same-day appointments and all accepted
advance appointments due on each day; when the
total number of patients requiring service on a partic-
ular day exceeds the nominal daily service capacity,
the provider incurs overtime costs to cover the extra
demand.

A waiting list (queue) for advance appointments
arises as a result of uncertain demand and limited
service capacity. The provider manages its limited
service capacity under an incentive structure that
includes a fixed revenue for serving each patient
(a fee-for-service component) and penalties for delay-
ing or refusing patient service (the performance-based
component). The purchaser of services needs to min-
imize the service cost while meeting an appointment
waiting-time target.

3.1. Capacity Allocation Policy, Appointment
Backlog Dynamics, and Cost Structure

We assume that the provider has a nominal capac-
ity of C equal-length outpatient time slots per
day. Advance appointment requests from the online
appointment booking system (CaB) arrive according
to a Poisson process with an average daily demand
rate of � (arrivals on different days are independent).
Advance appointments are divided into two classes:
dedicated and flexible. A dedicated patient makes an
appointment either through the CaB system if she
finds an available time slot or through the override
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phone-based system (in the United Kingdom, the
Telephone Appointment Line) if no time slot is avail-
able from her chosen provider through the CaB sys-
tem. In other words, a dedicated patient insists on
being serviced by her first-choice provider for rea-
sons of geographical proximity, the provider’s repu-
tation, etc., even if this may result in a longer wait
and extra administrative costs in getting an appoint-
ment through the override route. A flexible patient,
on the other hand, is unwilling to incur the extra
cost associated with the override option and makes
an appointment with another provider if the CaB sys-
tem shows no appointment available with his first-
choice provider. We assume that a patient who finds
that no appointment slots are available through the
CaB system with the first-choice provider turns out
to be a dedicated patient with probability �, a param-
eter that describes the perceived level of provider
reputation/popularity. In particular, � = 1 describes a
unique facility with a strong reputation for a partic-
ular kind of specialist services, whereas � = 0 would
characterize an undistinguished facility with easy-to-
find substitutes. With outpatient appointments sched-
uled using the CaB system, patients who are not able
to schedule an appointment at the hospital of their
choice only observe that there are no appointments
available at all—in particular, they are not able to
ascertain the appointment capacity allocation policy
used by the hospital.

In reality, patients may make choices not only in
terms of providers, but also in terms of the day and
time slots on which they would like to be seen. For
tractability, we assume that advance-booking patients
always choose the earliest appointment time slot
available through the CaB system. We also ignore
the phenomenon of no-shows and assume that all
patients punctually show up for their appointments.
The same-day demand for outpatient services, D0,
is assumed to be a discrete random variable with
cumulative distribution function (CDF) FD0

4 · 5, statis-
tically independent from the demand for advance
appointments. We also assume that, each day, same-
day patients are served after advance appointments.

Hospital management is faced with the problem
of allocating its service capacity among three patient
groups: advance dedicated, advance flexible, and
same-day patients. Although every hospital in the
United Kingdom is required to manage its advance
appointments using the CaB system, the exact frac-
tion of its service capacity to be released to the CaB
system is within hospital’s discretion. We consider
the following 4A1Z5 capacity allocation policy: the
hospital releases to CaB A out of C daily appointment
slots starting from the present day until some time in
the future so that the total number of released slots
is equal to Z. This policy ensures that C − A daily

appointment slots are reserved for same-day patients,
and that the flexible advance demand is blocked from
entering the system when the appointment backlog
exceeds Z/A days.

The 4A1Z5 policy we use in our model closely
reflects the actual appointment management prac-
tices used by the NHS hospitals. In their use of the
CaB system, NHS hospitals control their appointment
capacity by introducing the available appointment
horizon, often referred to as the “polling range” (Z),
and restrict the daily number of appointment slots
released to the online system (A). Hospital’s Choose
and Book managers are typically responsible for the
job of allocating the appointment slots to the CaB sys-
tem. All the required information on the past and the
current patient appointments is readily available from
the hospital database; however, the values of A and
Z are currently set on an ad hoc basis.

We assume that, with very high probability, the
length of appointment backlog exceeds A slots, or,
in other words, that patients almost always wait
for their appointments for more than one day. This
assumption allows us to model the evolution of the
appointment backlog under 4A1Z5 policy as that of
an M/D/1 queue, where D reflects the fixed duration
of an appointment slot, and the single-server feature
describes the patient service dynamics proceeding at
the rate of A slots per day. The single-server assump-
tion we use to describe the evolution of appoint-
ment backlog in a hospital with multiple physicians
serving patients in parallel requires a justification.
Let us consider a hospital specialty clinic that has P
physicians, each having daily service capacity mea-
sured by S appointment slots. On a daily basis, the
total appointment capacity for such a clinic is there-
fore equal to PS slots. Suppose that daily demand
for appointments can be described as a stationary
Poisson process with rate �. Because our analysis is
not focused on minute-by-minute details of patient
service but rather on daily evolution of the appoint-
ment backlog, we could use a discrete-time approach
to describing the appointment dynamics, with “day”
being the discrete time unit. Typical appointment
backlogs in outpatient care stretch for weeks, and
under this approach, the daily change in the actual
state of the backlog is equal to the difference between
the total daily demand for appointments and the
total daily supply of appointment slots, PS. Note,
however, that this daily change is equivalent to the
one obtained from a continuous-time M/D/1 model,
with a single server operating for a day at the rate
of A = PS slots per day, except on those rare days
when the appointment backlog is smaller than the
daily appointment capacity. An alternative descrip-
tion of such appointment dynamics process would be
achieved by using a continuous-time M/D/P model
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operating at the rate of S slots per server per day.
Among these three modeling choices (the discrete-
time daily model and M/D/1 and M/D/P queues),
we have selected M/D/1 dynamics on the basis of its
relative tractability, which allowed us to obtain partial
characterization of the appointment backlog perfor-
mance measures.

Note that the patient appointment backlog grows
both during and outside of office hours, because
appointment requests can arrive to the CaB system at
any point during the day. At the same time, appoint-
ment backlog reduction can happen only during the
part of the day corresponding to A slots, and dur-
ing the rest of the day no appointment patients are
served. Although such a dynamic is best described
using the framework of queues with server vaca-
tions (Tian and Zhang 2006), no closed-form expres-
sions for queueing performance measures exist within
this framework. Instead, we assume that the server
works continuously and that the entire demand for
appointments arrives only during the time period cor-
responding to A slots, at the rate of �/A per slot
if the appointment backlog is smaller than Z, and
the rate of ��/A per slot if the appointment back-
log is equal to or larger than Z (when no slots are
available through the CaB system, only dedicated
patients can get appointments). Note that this queue-
ing system, which we denote as the modified M/D/1
queue, reduces to a standard M/D/1 queue when
� = 1, and to a finite-buffer M/D/1/Z queue when
� = 0. To ensure the stability of the appointment back-
log system, we assume that the minimum offered
load value, ��/A, is strictly less than one, which
implies that ��<A. Let X4A1Z5 be the random vari-
able denoting the number of appointments in the
system under the capacity allocation policy 4A1Z5.
Then, the expected daily number of diverted patients
is �41 − �5Pr4X4A1Z5 ≥ Z5, and the expected daily
throughput for advance appointments is �41− 41−�5 ·
Pr4X4A1Z5 ≥ Z55. Note that because the stationary
distribution of X4A1Z5 depends on A only through
the value of the offered load, we can treat A as a con-
tinuous variable in our analysis.

Hospital operational cost structure includes three
terms: fixed maintenance and labor costs, which we
normalize to zero, the cost for diverting patients, and
the overtime costs. The patient-diversion cost rep-
resents the effect of the loss of goodwill for refus-
ing to serve flexible patients and forcing them to
select another care provider. Our analysis assumes
that a patient turned away by a hospital of his/her
choice will be served at another hospital. Although
such patient transfers do not directly impact social
welfare, they are often undesirable because they come
in to contradiction with hospitals’ implicit obligation
to serve the local population. As a result, hospitals
are wary of the patient transfer process resulting

from finite capacity horizon Z used in the online
appointment system. To model hospital aversion to
patient transfer, we include a penalty term in hospi-
tal objective function. If b is the cost for diverting one
patient, the expected daily diverting cost is given by
P4A1Z5= b�41 − �5Pr4X4A1Z5≥Z50

Information asymmetries between purchasers and
providers and between providers and clients per-
vade healthcare service supply chains (Arrow 1963,
De Fraja 2000, Haas-Wilson 2001, Bloom et al. 2008,
Levaggi and Levaggi 2010). In particular, the cost
structure of the service provider often remains pri-
vate knowledge that is neither fully communicated to
nor fully verified by the purchaser. In our analysis,
we assume that the value of the overtime cost consti-
tutes private information that reflects the provider’s
ability to stretch its daily service capacity to match
unexpected surges in same-day patient demand. More
specifically, we assume that the overtime cost per
patient could take one of the k values, ot , t ∈ 811 0 0 0 1 k9,
with o1 < · · · < ok. Under the assumption that the
length of the appointment backlog almost always
exceeds A, the expected daily overtime cost for the
hospital of type t is given by

Ot4A5= otED0
64D0 −C +A5+71 (1)

where D0 is a random variable representing the same-
day demand. Under information asymmetry with
respect to the overtime cost, the purchaser of services
only knows the distributional information regarding
the value of the provider’s overtime cost: for the pur-
chaser, the hospital belongs to type t with probabil-
ity pt , 0 < pt < 1, so that

∑k
t=1 p

t = 1.

3.2. Performance Metric: Patient Waiting Time
The set of measures used in practice for evaluat-
ing the performance of healthcare providers includes
clinical outcomes as well as other quality-of-service
metrics. In our analysis, we concentrate on the
expected waiting time for advance appointments
(expressed in terms of the number of appointment
slots), Wq4A1Z5, as a measure of patient access to
care. Let Lq4A1Z5= E64X4A1Z5− 15+7 be the expected
length of the waiting list. Because the expected value
of the effective daily demand for appointments is
�41 − 41 − �5Pr4X4A1Z5≥Z55, it follows from Little’s
law that Lq4A1Z5 = �41 − 41 − �5Pr4X4A1Z5 ≥ Z55 ·

Wq4A1Z5/A0 For general values of provider reputa-
tion factor � and arbitrary capacity allocation pol-
icy 4A1Z5, there exist no closed-form expressions for
Lq4A1Z5 or Wq4A1Z5. However, it is possible to derive
monotonicity properties for these quantities, which
are helpful in analyzing performance-based contracts.

Proposition 1. For the modified M/D/1 queue,
(a) Lq4A1Z5, Wq4A1Z5, and Wq4A1Z5/A are mono-

tone increasing in �, �, and Z, and monotone decreasing
in A, and
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(b) Pr4X4A1Z5 ≥ Z5 is monotone increasing in �
and �, and monotone decreasing in A and Z.

All proofs are presented in the electronic com-
panion (available at http://dx.doi.org/10.1287/msom
.1120.0402).

Most of the results of Proposition 1 are intuitive.
On one hand, an increase in �, �, or Z indicates an
increase in the effective demand for appointments,
which implies an increase in average queue length
and in average waiting time expressed in terms of
the number of appointment slots or working days.
On the other hand, an increase in A indicates an
increase in service capacity, which implies a decrease
in average queue length and in average waiting time
expressed in terms of the number of appointment
slots or working days. The monotonicity property of
Pr4X4A1Z5≥Z5 with respect to the value of the CaB
booking limit Z is, however, less obvious because the
left-hand side of the inequality X4A1Z5≥Z is stochas-
tically increasing in Z.

In the special cases of � = 1 and � = 0, waiting-time
performance measures can be expressed in closed
form under any 4A1Z5 policy. In particular, for a
hospital with an entirely dedicated patient popula-
tion (� = 1), the offered load is � = �/A, and the
Pollaczek–Khintchine result implies that Lq4A1Z5 =

�2/4241 − �55 = �2/42A4A − �55 and Wq4A1Z5 =

�/4241 − �55 = �/424A − �55. Note that because the
daily number of advance appointment slots is A, the
expected number of days a patient has to wait is

Wq4A1Z5

A
=

�

2A4A−�5
0 (2)

On the other hand, if all patients are flexible (� = 0),
the appointment dynamics under the 4A1Z5 policy
correspond to that of a finite-buffer M/D/1/Z queue.
Closed-form expressions for the stationary distribu-
tion for such system are presented by Brun and
Garcia (2000).

The principal operates under the constraint on the
maximum value of the expected waiting time:

Wq4A1Z5

A
≤M1 (3)

where M is the waiting-time target measured in
days. Note that for � = 1 or Z = �, Wq4A1Z5/A =

�/42A4A − �55. From the result of Proposition 1 it
follows that the service-level constraint (3) implies a
lower bound for the value of A,

A∗
=

�

2
+

√

�2

4
+

�

2M
0 (4)

To ensure the feasibility of the capacity management
problem, we require that the overall daily service

capacity C is not lower than A∗:

C ≥A∗
=

�

2
+

√

�2

4
+

�

2M
0 (5)

We conclude this subsection by stating a connec-
tion between the assumption (5) and the service-level
constraint (3).

Lemma 1. Consider the modified M/D/1 queue. For
any � ∈ 60117 and any Z ≥ 0, the service-level con-
straint (3) is satisfied for any A ∈ 6A∗1C7.

3.3. Structure of Contract Payments and
Contracting Process

We assume that both the purchaser and the provider
are risk neutral. In particular, for the provider of
type t (t = 11 0 0 0 1 k), the expected profit is obtained by
combining the transfer payment T t with the patient-
diverting and overtime costs:

çt
a4A

t1Zt5 = T t
− otED0

64D0 −C +At5+7

− b�41 − �5Pr4X4At1Zt5≥Zt50 (6)

Notice that at this stage, the structure of the trans-
fer payment term T t remains undefined, because it
may take different forms based on the type of con-
tract being considered. The purchaser minimizes the
expected cost çp =

∑k
t=1 p

tT t , while ensuring that the
patient waiting-time target (3) is met.

A linear performance-based contract, a special case
of the general contract defined above, consists of two
types of payments: an activity-based, FFS payment
from the purchaser to the provider, and the penalty
payment that the purchaser extracts from the provider
based on achieved performance. Specifically, a con-
tract 4r t1 lt5 designed for a provider of type t includes
payment r t paid to the provider for serving each
patient and daily penalty lt incurred by the provider
for every day patients spend, on average, waiting for
appointments.

We assume that the FFS payment is the same for
both advance and same-day patients because these
patients require similar outpatients services in a par-
ticular outpatients clinic. As the expected number
of patients treated each day is equal to �0 + �41 −

41 − �5Pr4X4At1Zt5 ≥ Zt55, the expected daily FFS
payment is r t4�0 + �41 − 41 − �5Pr4X4At1Zt5 ≥ Zt555.
On the penalty side, the expected daily amount is
ltWq4A

t1Zt5/At , so that the total expected daily trans-
fer payment from the purchaser to the provider is
given by

T t4r t1 lt1At1Zt5

= r t
(

�0 +�41 − 41 − �5Pr4X4At1Zt5≥Zt55
)

− lt
Wq4A

t1Zt5

At
1 (7)

where �0 = E6D07 is the expected value of the same-
day demand. In the healthcare economics literature,
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it is often assumed that the service provider is altru-
istic and derives additional, nonmonetary utility from
providing a service to patients (see, e.g., Kaarboe and
Siciliani 2011). In practice, however, it is very hard
to evaluate such a utility contribution, and thus we
limit our analysis to the provider that maximizes the
expected profit. It is interesting to note that even in
the United Kingdom, where healthcare providers are
publicly funded nonprofit organizations, NHS foun-
dation trusts are often described as profit maximizers
(De Fraja 2000, Miraldo et al. 2011).

In our analysis, we focus on the structure of the
general contract and the performance-based contract
under different information settings, starting with
the benchmark case of symmetric information, under
which the provider’s cost structure is known to
the purchaser, and following up with the asymmet-
ric information case in which the provider’s cost
information is private. The sequence of events dur-
ing the contracting process is as follows. Under the
symmetric information setting, the provider’s type
t ∈ 811 0 0 0 1 k9 is revealed, and the purchaser sets the
contract terms for the provider. Under asymmetric
information, the purchaser determines the contract
terms for each provider type and offers a menu
consisting of k contracts to the provider. Next, the
provider either accepts the offered contract (under the
symmetric information setting) or selects one contract
from the offered menu (under the asymmetric infor-
mation setting) and delivers the contracted service.
Finally, the total number of activities (served patients)
is counted and the service performance (expected
waiting time) is evaluated, after which the provider
receives contractual compensation.

4. Symmetric Information
Under the symmetric information setting, the pur-
chaser learns the provider’s type t before deciding
on the contract terms, and can therefore tailor a
contract to the specific provider type. In a number
of European countries, an active use of centralized
appointment and record-keeping systems provides
purchasing agencies with a visibility of providers’
capacity management actions. In more decentralized
healthcare delivery environments, such as the one
used in the United States, capacity allocation poli-
cies often constitute the provider’s “private actions,”
which remain unobservable to the purchaser. In such
environments, the purchaser has to rely on finan-
cial levers to incentivize the provider to act on the
purchaser’s behalf. Below we analyze both of these
environments.

4.1. Observable and Contractible Actions:
First-Best Solution

If the provider’s capacity allocation policy 4A1Z5 is
observable and contractible, the purchaser solves the

following problem faced with the provider of type
t ∈ 811 0 0 0 1 k9:

min
T t1At1Zt

T t4At1Zt5 (8)

s.t. 4At1Zt5 ∈R4M1C1�1�51 (9)

çt
a4T

t1At1Zt5= T t
− otED0

64D0 −C +At5+7

− b�41 − �5Pr4X4At1Zt5≥Zt5≥ 01 (10)

T t
≥ 01 (11)

where

R4M1C1�1�5 =

{

4A1Z5

∣

∣

∣

∣

Wq4A1Z5

A
≤M1

��

2
+

√

�2�2

4
+

��

2M
≤A≤C1 Z ∈N

}

0

The objective for the purchaser is to minimize the
payout T t for each type of provider. The first con-
straint, (9), specifies a service-level requirement stat-
ing that the expected number of days a patient spends
waiting for her appointment does not exceed M , and
that At cannot be below ��/2+

√

4�2�25/4 + 4��5/42M5,
the value that guarantees that the expected waiting-
time target is met even for Zt = 0. The second con-
straint, (10), is the individual rationality constraint,
which guarantees the provider of type t accepts
his designated contract. The following proposition
describes the optimal solution for the complete infor-
mation problem, also known as the first-best solution.

Proposition 2. (a) For

��

2
+

√

�2�2

4
+

��

2M
≤A≤C1

let

ZM 4A5= max
Z∈N

{

Z

∣

∣

∣

∣

Wq4A1Z5

A
≤M

}

0 (12)

The family of optimal first-best contracts 4T t
FB1A

t
FB1Z

t
FB5 is

characterized by

At
FB = arg min

4��5/2+

√
4�2�25/4+4��5/42M5≤At≤C

{

otED0
64D0 −C +At5+7

+ b�41 − �5Pr4X4At1Zt
M 4At55≥Zt

M 4At55

}

1 (13)

Zt
FB =ZM 4At

FB51

and

T t
FB = otED0

64D0 −C +At
FB5

+7

+ b�41 − �5Pr4X4At
FB1Z

t
FB5≥Zt

FB50

(b) The first-best capacity allocation decisions At
FB and

Zt
FB are nonincreasing functions of ot and nondecreasing

functions of b.
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The results of Proposition 2(a) state that the first-
best capacity allocation policy 4At

FB1Z
t
FB5 minimizes

the sum of the expected overtime cost and the patient
diverting cost, while ensuring that the expected wait-
ing time is as close as possible to the target value.
The optimal payment T t is set to extract the entire
surplus from provider of type t, so that çt

a4T
t

FB1A
t
FB1

Zt
FB5= 0.
It is easy to show that the linear performance-based

contract defined in (7) can achieve the optimal first-
best performance if and only if

r tFB =
(

otED0
64D0 −C +At

FB5
+7

b�41 − �5Pr4X4At
FB1Z

t
FB5≥Zt

FB5

+ ltFBWq4A
t
FB1Z

t
FB5/A

t
FB

)

·
(

�0 +�41 − 41 − �5Pr4X4At
FB1Z

t
FB5≥Zt

FB55
)−1

1

ltFB ∈R+1 t ∈ 811 0 0 0 1 k90 (14)

As (14) implies, there exists an infinite number
of 4r tFB1 l

t
FB5 pairs that achieve the first-best solu-

tion, so that the first-best contract can be cast in
a performance-based 4ltFB > 05 or a fee-for-service
(ltFB = 0) format. The optimal value of the objec-
tive function for the first-best problem, T t

FB4r
t
FB1 l

t
FB1

At
FB1Z

t
FB5, does not depend on the choice of 4r tFB1 l

t
FB5,

but is rather determined by the capacity allocation
policy 4At

FB1Z
t
FB5. In general, no closed-form expres-

sions exist for Zt
FB and At

FB, so the first-best capac-
ity allocation policy has to be established numerically.
However, sharper characterizations of the first-best
controls are available for several special cases.

Corollary 1. (a) For ot = 01 t ∈ 811 0 0 0 1 k9, the
first-best solution is given by At

FB =C1Zt
FB = �.

(b) For b = 0, the first-best solution is given by At
FB =

4��5/2+
√

4�2�25/4 + 4��5/42M51Zt
FB = 01 t ∈ 811 0 0 0 1 k90

(c) For � = 1, the first-best solution is given by At
FB =

A∗ = �/2 +
√

�2/4 +�/425M1Zt
FB ∈N1 t ∈ 811 0 0 0 1 k90

Corollary 1 outlines the intuitive nature of the
first-best capacity allocation policy: as the rela-
tive importance of the patient-diverting penalty cost
over the overtime cost increases, the policy shifts
from allocating the minimum feasible capacity to
advance appointments while completely blocking
flexible patients (A = ��/2 +

√

4�2�25/4 + 4��5/42M5
and Z = 0) to allocating the entire available capacity
to advance appointments and serving the entire pools
of dedicated and flexible patients (A=C and Z = �).
Note that for the provider serving only dedicated
patients, the optimal capacity allocated to advance
appointments, At

FB, does not depend on the provider’s
type. Thus, the expected cost to the purchaser of
enforcing the waiting-time target can be expressed as
TFB =

∑k
t=1 p

tT t
FB = 4

∑k
t=1 p

tot5ED0
64D0 −C +A∗5+70

4.2. Private Actions: Implementing the
First-Best Outcome

In our analysis above, we have assumed that the
provider’s capacity allocation decisions A and Z are
both observable and contractible by the purchaser.
In practice, however, observing and verifying the
provider’s decisions may be too difficult and/or too
costly for the purchaser. In such “private-action” set-
tings, to implement the first-best solution, the con-
tract terms must be designed to induce the provider
of type t to choose At and Zt as his optimal decisions.
Below, we consider three types of contracts that have
been used in the past or are being used at present by
the UK’s National Health Service: the fixed lump-sum
payment (block contract), the fee-for-service payment,
and PbR (Mannion et al. 2008).

Under the block contract, let T t be the fixed lump-
sum payment paid by the purchaser to the provider
irrespective of the actual volume of provided ser-
vices or the achieved service access level. Under the
FFS contract, the purchaser controls only the payment
amount r t for each patient served by the provider,
producing a standard linear price contract (Bolton
and Dewatripont 2005). It is easy to show that nei-
ther block nor FFS contracts can achieve the first-best
outcome.

Now, let us consider a linear performance-based
contract under which the fee-for-service payment
is adjusted by the performance penalty based on
the achieved expected patient waiting time, so that
the transfer payment is given by (7). The fol-
lowing proposition identifies linear performance-
based contract parameters that achieve the first-best
outcome for the setting in which all patients are
dedicated.

Proposition 3. Let �0 = ED0
6D07. For � = 1, the first-

best outcome is obtained by

r̃ t =
ot

�+�0

(

�41 − FD0
4C −�/2 −

√

�2/4 +�/42M555

4M
√

�2/4 +�/42M5

+ED0

[(

D0 −C +
�

2
+

√

�2

4
+

�

2M

)+])

1 (15)

l̃t = ot
(

1 − FD0

(

C −
�

2
−

√

�2

4
+

�

2M

))

/(

4M2

√

�2

4
+

�

2M

)

0 (16)

Proposition 3 states that in the private-action set-
ting, the performance-based contract parameters, r t

and lt , are no longer arbitrarily selected from a set
described after Proposition 2, but are uniquely deter-
mined by (15) and (16). Note that shorter waiting-
time target values lead to higher activity-based price
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levels, higher performance-based penalties, and
higher transfer payments:

Corollary 2. For � = 1, the optimal contract terms,
r̃ t and l̃t , as well as the resulting transfer payment, T̃ t ,
are monotone decreasing functions of M for any provider
type t.

In summary, our analysis of the private-action set-
ting indicates that even when the purchaser pos-
sesses complete information about provider’s cost
structure, the fee-for-service contract alone cannot
support the waiting-time target, and the performance-
based incentive is required to ensure that the provider
will allocate adequate capacity to serve advance
appointments.

5. Asymmetric Information
The informational advantage of service providers
over purchasers is expected to infuse inefficiency into
service capacity allocation outcomes. In the analysis
below, we explore the influence of information asym-
metry regarding the value of the provider’s overtime
cost on the structure of the optimal service contracts.
As in the case of information symmetry, we start
by considering the case in which the provider’s
capacity allocation actions are both observable and
contractible.

5.1. Observable and Contractible Actions:
Second-Best Solution

The information asymmetry in assessing the
provider’s overtime costs leads to the adverse selec-
tion problem (Bolton and Dewatripont 2005), and the
purchaser must design a contract menu applying the
revelation principle. More specifically, let çts

a denote
the expected payoff for the provider of type t who
reports to be of type s (in other words, who chooses
a contract designed for type s providers):

çts
a 4T

s1As1Zs5 = T s4As1Zs5−otED0
64D0 −C+As5+7

−b�41−�5Pr4X4As1Zs5≥Zs50 (17)

Note that çt
a4T

t1At1Zt5 defined in (6) is equivalent to
çtt

a 4T
t1At1Zt5. The purchaser’s problem can be for-

mulated as follows:

min
T t1At1Zt

k
∑

t=1

ptT t4At1Zt5 (18)

s.t. 4At1Zt5 ∈R4M1C1�1�51 t = 11 0 0 0 1 k1 (19)

çtt
a 4T

t1At1Zt5≥ 01 t = 11 0 0 0 1 k1 (20)

çtt
a 4T

t1At1Zt5≥çts
a 4T

s1As1Zs51

t1 s = 11 0 0 0 1 k1 s 6= t1 (21)

T t
≥ 01 t = 11 0 0 0 1 k0 (22)

The waiting-time target and stability constraints (19)
and the individual rationality constraints (20) are the
analogues of the constraints (9) and (10) in the sym-
metric information setting. Constraints (21) are the
incentive compatibility constraints. The contract opti-
mizing the purchaser’s objective is usually labeled as
the second-best solution. Note that in the case of a lin-
ear performance-based contract, T t4At1Zt5 takes the
special form of (7). The following proposition charac-
terizes the structure of the second-best solution.

Proposition 4. (a) The family of optimal second-
best contracts is characterized by

At
SB = arg min

4��5/2+

√
4�2�25/4+4��5/42M5≤At≤C

{

ôtED0
64D0 −C +At5+7

+ b�41 − �5Pr4X4At1ZM 4At55≥ZM 4At55
}

1 (23)

Zt
SB =ZM 4At

SB51

where ô1 = o11 ôt = ot +
∑t

s=1 p
s/pt4ot − ot−151 t=21 0 0 0 1 k1

and ZM 4A5= maxZ∈N8Z �Wq4A1Z5/A≤M9.
(b) The optimal values of the expected payments to

providers are given by

T k
SB = okED0

64D0 −C +Ak
SB5

+7

+ b�41 − �5Pr4X4Ak
SB1Z

k
SB5≥Zk

SB5

and

T t
SB = otED0

64D0 −C +At
SB5

+7

+ b�41 − �5Pr4X4At
SB1Z

t
SB5≥Zt

SB5

+

k−1
∑

s=t

4os+1
− os5ED0

64D0 −C +As+1
SB 5+71

t = 11 0 0 0 1 k− 10

(c) Let At
FB and Zt

FB be the first-best capacity alloca-
tion controls defined in (13). Then, A1

SB ≥ · · · ≥Ak
SB1A

t
SB ≤

At
FB1 t = 11 0 0 0 1 k, and Z1

SB ≥ · · · ≥ Zk
SB1Z

t
SB ≤ Zt

FB1 t =

11 0 0 0 1 k.

Proposition 4(a) shows that the second-best capac-
ity allocation policy is obtained by solving k separate
optimization problems, one for each provider type,
with a structure identical to that of the first-best prob-
lem (13). The optimization problem for the lowest-
cost provider is identical to (13), whereas those for
higher-cost providers use the value of the overtime
cost for the corresponding provider type adjusted
upward due to the presence of information asymme-
try. Part (b) shows that the payout to the highest-cost
provider is still equal to its operational cost (equal to
the sum of the overtime cost and the patient divert-
ing cost), and the payouts to lower-cost providers
are higher than their operational costs: an additional
information rent,

∑k−1
s=t 4o

s+1 − os5ED0
64D0 −C +As+1

SB 5+7,
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is paid to each lower-cost provider as a result of the
existing information asymmetry. Part (c) shows that
whereas the second-best capacity allocation policy
intended for the lowest-cost provider replicates the
first-best policy for this provider type, the second-best
capacity allocation policy intended for the higher-cost
providers differs from the corresponding first-best
solution. In particular, the daily capacity allocated to
advance appointments under the second-best solution
(At

SB) is, in general, lower than that under the cor-
responding first-best solution (At

FB)—inefficiency cre-
ated by information asymmetry.

Closed-form expressions for the second-best con-
tract parameters can be obtained in the same special
cases described in Corollary 1. In particular, in all of
these special cases (ot = 01 t = 11 0 0 0 1 k, or b = 0, or
� = 1), the second-best and the first-best capacity allo-
cation parameters intended for the high-cost provider
coincide, and so do the second-best and the first-best
solutions.

5.2. Performance-Based Contracts with
Private Actions

We next show that, in general, the second-best solu-
tion cannot be implemented under information asym-
metry using linear PBC in the presence of private
actions. To this end, it suffices to address the spe-
cial case of a hospital serving only dedicated patients
(� = 1). Note that in this case the value of Zt does
not influence appointment dynamics or cost structure,
and therefore, the capacity allocation policy reduces
to choosing the daily appointment threshold level At .
Given a menu of linear performance-based contracts,
84r t1 lt51 t = 11 0 0 0 1 k9, the type-t provider who reports
to be of type s solves the following optimization
problem:

max
��≤Ats≤C

{

çts
a 4r

s1 ls1Ats5≡ T s4r s1 ls1Ats5

− otED0
64D0 −C +Ats5+7

}

1

s ∈ 811 0 0 0 1 k91 (24)

where T s4r s1 ls1Ats5= r s4�+�05− ls4�/42Ats4Ats −�555
is the transfer payment to the provider of type t who
reports to be of type s. Denote the solution of the
above optimization problem by Ats

PA. The following
proposition provides a partial characterization of the
provider’s optimal capacity allocation decision.

Proposition 5. Let � = 1. Then, for any menu of con-
tracts 84r t1 lt51 t = 11 0 0 0 1 k9, the following hold:

(a) For any t < s, Ats
PA ≥ Ass

PA. In particular, if � <
Ass

PA <C, then Ats
PA >Ass

PA.
(b) For any t < s, Att

PA ≥Ast
st . In particular, if �<Ast

PA <
C, then Att

PA >Ast
PA.

(c) For any t 6= s, Ats
PA is increasing in ls . In particular,

Ats
PA ≥A∗

=
�

2
+

√

�2

4
+

�

2M

if and only if ls ≥ l̃t , where

l̃t = ot
(

(

1 − FD0

(

C −�/2 −
√

�2/4 +�/42M5
))

4M2
√

�2/4 +�/42M5

)

0

Proposition 5 shows that given any menu of con-
tracts, a higher-cost provider does not choose a higher
capacity level than a lower-cost provider. In addi-
tion, it states that a provider’s capacity allocated to
advance appointments, as expected, is increasing in
the waiting-time penalty cost. Considering providers’
optimal responses, the purchaser solves the following
problem:

min
r t1 lt

k
∑

t=1

ptT t4r t1 lt1Att
PA5 (25)

s.t. Att
PA ≥A∗1 t = 11 0 0 0 1 k1 (26)

çtt
a 4r

t1 lt1Att
PA5≥ 01 t = 11 0 0 0 1 k1 (27)

çts
a 4r

t1 lt1Att
PA5≥çts

a 4r
s1 ls1Ats

PA51

t1 s = 11 0 0 0 1 k1 t 6= s1 (28)

r t ≥ 01 lt ≥ 01 t = 11 0 0 0 1 k0 (29)

A partial characterization of the optimal contract
parameters in (25)–(29) is provided below.

Proposition 6. When � = 1, under the optimal con-
tract, 4r tPA1 l

t
PA51 t = 11 0 0 0 1 k, we have

(a) ltPA ≥ l̃t , t = 11 0 0 0 1 k, Att
PA >A∗, t = 11 0 0 0 1 k− 1;

(b) çkk
a 4rk1 lk1Akk

PA5 = 01çtt
a 4r

t1 lt1Att
PA5 > 4ok − ot5 ·

ED0
64D0 −C +A∗5+7, t = 11 0 0 0 1 k− 1;

(c)
∑k

t=1 p
tT t4r t1 lt1Att

PA5 > okED0
64D0 −C +A∗5+7.

Proposition 6 shows that compared to the first-
best (and the second-best) capacity allocation, A∗,
providers of all types tend to allocate higher capaci-
ties to serving advance appointments. Parts (b) and (c)
of Proposition 6 provide further evidence of linear
PBC’s inability to achieve the second-best outcome:
the purchaser provides a higher rent to the low-cost
providers and, overall, pays more for the same level
of service than she does in the second-best solution.

6. Threshold-Penalty
Performance-Based Contracts

Proposition 3 shows that the linear performance-
based contract can achieve the first-best performance
when � = 1 (though not necessarily for an arbi-
trary � < 1). Proposition 6 shows that even when
� = 1, the linear performance-based contract can-
not achieve the second-best performance and can-
not coordinate the service supply chain. Below we
show that these shortcomings can be remedied if one
extends the analysis to include contracts with non-
linear penalties for patient wait times. In particular,
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we focus on a simple threshold-penalty contract struc-
ture, under which (a) the provider receives a fixed
payment F , and (b) a fixed penalty K is imposed on a
provider if and only if the waiting-time target is not
achieved. In our analysis we use the notation 4F 1K5
to designate such a contract. The following result
describes a family of 4F 1K5 contracts that achieve the
first-best performance for any composition of patient
population.

Proposition 7. Consider the symmetric information
setting with private actions, let

F t
= otED0

64D0 −C +At
FB5

+7+ b�41 − �5

· Pr4X4At
FB1Z

t
FB5≥Zt

FB51 t = 11 0 0 0 1 k1 (30)

and let K be the positive constant such that K > F t −

otED0
64D0 −C + ��5+70 Consider a threshold-penalty con-

tract under which a provider of type t receives a payment of
F t if the waiting-time constraint is satisfied and a payment
of F t −K if it is not:

T t
=

{

F t if Wq4A
t1Zt5/At ≤M1

F t −K if Wq4A
t1Zt5/At >M0

(31)

Any threshold-penalty performance-based contract specified
by (30) and (31) achieves the first-best outcome.

In the asymmetric information setting, such a
threshold-penalty contract structure can achieve the
second-best performance in the case of dedicated-only
patients.

Proposition 8. Consider the asymmetric information
setting with private actions and a threshold-penalty
performance-based contract 4 F 1K5 defined by F = F k and
K = F k − o1ED0

64D0 − C + ��5+71 where F k is given
by (30).

(a) Contract 4 F 1K5 minimizes the expected provider’s
cost among all threshold-penalty performance-based
contracts.

(b) Under the contract 4 F 1K5, the optimal capac-
ity allocation policy for each provider type is described
by At

TP4 F 1K5 = At
FB1Z

t
TP4 F 1K5 = Zt

FB, and the result-
ing expected transfer payments are T t4 F 1K5 = F 1 t =

11 0 0 0 1 k.
(c) The threshold-penalty performance-based contract

4 F 1K5 achieves the second-best solution for � = 1:
At

TP4 F 1K5 = A∗1T t4 F 1K5 = okED0
64D0 −C +A∗5+7, t =

11 0 0 0 1 k0

One important advantage of the 4 F 1K5 contract is
its relative simplicity as, instead of a menu of con-
tracts, it offers the same terms to all k provider types.
Note that in the case of � = 1, the second-best solu-
tion coincides with the first-best one, and therefore
the threshold-penalty contract coordinates the system.

7. Case Study: NHS Shetland
This section provides a case study of a small NHS
trust in Scotland, NHS Shetland, to illustrate the
nature of the first- and and second-best solutions.

7.1. Data and Model Calibration
We use the actual outpatient appointment data col-
lected by the National Health Service of Scotland4 to
estimate some of the parameters of our model. Table 1
summarizes the collected quarterly data on the out-
patient appointments, aggregated across all clinical
specialties, for the period of January 2008–December
2009. In particular, for each quarter, Table 1 reports
the total number of patients served, the total num-
ber of patients waiting for their appointments at
the end of the quarter, and various characteristics
of the waiting-time distribution for patients served
during the quarter.5 The period 2008–2009 was a
transition period during which the 18-week wait-
ing target was introduced. As a result, the num-
ber of served patients has increased between 2008
and 2009, and the patient appointment waits were
reduced. Because we are interested in calibrating the
model based on stationary M/D/1 dynamics, our esti-
mates reflect time-averaged system behavior over this
period. The number of new appointments (total num-
ber of patients who requested service during a quar-
ter) was calculated, for each quarter, by adding the
number of patients waiting at the end of the cur-
rent quarter and the number of patients seen during
the current quarter, and subtracting the number of
patients waiting at the end of the previous quarter.

In our parameter estimation approach, we used
the average (over all quarters) values to estimate the
parameters A, �, �, and Z. In particular, we have
assumed that the average values of the wait charac-
teristics in Table 1 represent a stationary distribution
of patient appointment wait generated by a modified
M/D/1/Z queue, and focused on estimating the val-
ues of A, �, Z, and � for such a queue. First, we have
estimated the daily number of appointment slots A
as the average number of patients served on each
workday, rounded to the nearest integer. For exam-
ple, the estimate for the daily number of appointment
slots is AS = �950/65036� = �14053� = 15, where 65036 =

5 × 9105/7 is the average number of workdays in a
quarter. (We rounded up the estimator 950/65036 to
maintain the integer value of capacity measured
in terms of the number of appointment slots.)
Parameters �, �, and Z were estimated by minimizing

4 Data are available at http://www.isdscotland.org/Health-Topics/
Waiting-Times/Publications/data-tables.asp? (last accessed Septem-
ber 27, 2011).
5 The “wait” here refers to the interval between the time patient got
an appointment and the time patient was seen by a physician. Note
that the wait distribution reflects the data for all patients served
during a particular quarter.



Jiang, Pang, and Savin: Performance-Based Contracts for Outpatient Medical Services
666 Manufacturing & Service Operations Management 14(4), pp. 654–669, © 2012 INFORMS

Table 1 Quarterly Outpatient Appointment Data from January 1, 2008, to December 31, 2009, for NHS Shetland

1st quarter, 2nd quarter, 3rd quarter, 4th quarter, 1st quarter, 2nd quarter, 3rd quarter, 4th quarter,
2008 2008 2008 2008 2009 2009 2009 2009 Average

Patients served 784 834 746 913 954 11113 11112 11147 950
Patients waiting 707 682 601 457 518 620 610 480 584
New appointments 809 665 769 11015 11215 11102 11017 942
Median wait (days) 49 50 58 45 37 31 32 35 42
90th percentile wait (days) 91 93 104 98 81 61 70 77 84
% wait up to 3 weeks 23 24 28 29 28 35 35 34 30
% wait up to 6 weeks 44 43 41 47 57 70 62 58 53
% wait up to 9 weeks 69 67 55 70 78 93 83 76 74
% wait up to 12 weeks 86 85 77 82 93 100 100 96 90
% wait up to 15 weeks 98 95 91 94 99 100 100 96 97
% wait up to 18 weeks 100 100 100 100 100 100 100 97 100

the sum of the squared deviations between the val-
ues of the expected arrival rate of new appointments
on each workday, å4A1�1�1Z5 = �41 − Pr4X4A1Z5 ≥

Z55+��Pr4X4A1Z5≥Z5, the median stationary back-
log B504A1�1�1Z5, and the 90th percentile of the
stationary backlog distribution B904A1�1�1Z5 for a
modified M/D/1/Z queue, respectively, and the aver-
age values observed at this trust. In other words, our
estimation is equivalent to the following minimization
problem: 4�S1 �S1ZS5 = arg min�1�1Z4�å4AS1�1�1Z5 −

14086�2 + �B504AS1�1�1Z5 − 30�2 + �B904AS1�1�1Z5 −

60�25, where 14086 = 15 × 942/950 is the appropriately
scaled-up value of the observed average rate of arrival
of new appointment requests on a workday, and
30 = 5 × 42/7 (60 = 5 × 84/7) is the median (90th
percentile) appointment backlog expressed in terms
of the number of workdays. To control the compu-
tational time, in our search for minimizing values
of � and Z we initially limited our choice to � =

010011 0 0 0 100911 and Z = mA1m ∈ N, and then con-
ducted a more refined local search.

Our estimation procedure results in �S = 15,
�S = 0094, and ZS = 968 appointment slots for this
hospital. We use these estimates in our numerical
examples in the remainder of this section. As our esti-
mated parameters indicate, the outpatient appoint-
ment dynamics in NHS Shetland appear to be best
represented as those of a completely loaded queue
with the appointment capacity fully utilized by the
demand for appointments, serving a nearly per-
fectly dedicated patient population. Both of these fea-
tures are not surprising given the extensive observed
appointment waits and the relatively isolated geo-
graphical location of this region.

To get an indication of the applicability of a
modified M/D/1/Z queue model for describing the
observed appointment dynamics, it is interesting to
compare the CDF values for the stationary appoint-
ment backlog distribution (percentiles of patients
waiting up to a certain number of weeks) in such
a queue generated using the estimated parameters
and the average values reported in Table 1. Figure 1

reports such a comparison, indicating that a modi-
fied M/D/1/Z queue provides, overall, an adequate
approximation to the actual wait dynamics, deviating
from the observed values in a nonsystematic fashion:
somewhat underestimating the probability of wait for
low and moderate wait durations, and overestimating
it for high durations.

7.2. First-Best and Second-Best Solutions
Proposition 2 shows that in the first-best solution, the
capacity allocation decisions At

FB and Zt
FB are mono-

tone in the overtime cost ot and diversion penalty b.
Our numerical results indicate that these monotone
properties may also extend to diversion parameter �
and waiting-time target M . As follows from the mono-
tonicity properties of Wq4A1Z5/A described in Propo-
sition 1, appointment horizon ZM 4A5 matching daily
capacity for advance appointments, A, is an increasing
function of A and M , and a decreasing function of �.
Figure 2 illustrates the first-best capacity allocation
decisions as functions of the waiting-time target M
in nine settings characterized by different composi-
tions of patient population (� = 001, corresponding
to mostly flexible patients; � = 005, corresponding to
an equal mix of dedicated and flexible patients; and

Figure 1 CDF Values of the Stationary Appointment Wait Distribution:
A Modified M/D/1/Z Queue Generated by the Estimated
Parameters vs. Average Values from Table 1
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Figure 2 Optimal First-Best Capacity Allocation Decisions At
FB and Z t

FB as Functions of the Waiting-Time Target M for �= 15 (as Estimated for
NHS Shetland), �0 = 4, and C = 18
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� = 0094, corresponding to mostly dedicated patients,
as estimated for NHS Shetland) and different val-
ues of the ratio of overtime and patient diverting
costs ot/b = 1, 5, and 10. We observe that in the
setting where the cost of patient diversions is com-
parable to that of overtime service, At

FB remains rel-
atively insensitive to the composition of the patient
population or the service access requirements, and
the first-best policy adjusts the allocation of service
capacity almost entirely through changes in Zt

FB that
conform to the monotonicity properties. On the other
hand, as financial penalties associated with patient
diversions diminish, the composition of the patient
population plays an increasingly important role in
shaping the first-best capacity allocation policy: while
being largely insensitive to service level M , both At

FB
and Zt

FB change in a nonmonotone fashion as func-
tions of �. We now demonstrate the properties of the
second-best solution using the NHS Shetland data.
For ease of exposition, we assume the provider can
be of one of two types: high or low cost, indicated
by superscripts H and L, respectively. In settings
with mixed patient populations, the threshold-penalty
performance-based contract may no longer be able to
achieve the second-best performance. Figure 3 depicts
the second-best solution 4AH

SB, ZH
SB, AL

SB, ZL
SB5 and the

threshold-penalty PBC solution 4AH
TP, ZH

TP, AL
TP, ZL

TP5 in
the same patient-mix settings as in Figure 2: � = 001,

� = 005, and � = 0094. The capacity allocation poli-
cies shown in Figure 3 prompt several observations.
First, high-cost providers never allocate more capac-
ity for advance appointments, either in terms of the
number of daily appointments or in terms of the
appointment horizon, than do low-cost providers. Sec-
ond, the optimal allocation policies for the low-cost
providers under the 4 F 1K5 performance-based con-
tract and in the second-best solution coincide. Third,
under the 4 F 1K5 performance-based contract, both
the daily appointment capacity and the appointment
horizon selected by high-cost providers are always
between the corresponding allocations in the second-
best solution for the high-cost providers and the cor-
responding allocations in the second-best solution for
the low-cost providers. Thus, the threshold-penalty
performance-based contract does not always achieve
the second-best solution, and the corresponding loss of
efficiency occurs through the capacity allocation poli-
cies of the high-cost providers. Finally, consistent with
the result of part (c) of Proposition 8, the efficiency gap
reduces as the patient population mix shifts toward
mostly dedicated patients.

8. Conclusions
As ever increasing numbers of healthcare organi-
zations recognize service access as an important
component of the quality of healthcare services,
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Figure 3 Optimal Second-Best Solution 4AH
SB, ZH

SB, AL
SB, ZL

SB5 and Optimal Solution 4AH
TP, ZH

TP, AL
TP, ZL

TP5 for the Threshold-Penalty Performance-Based
Contract as Functions of the Waiting-Time Target M, �= 15 (as Estimated for NHS Shetland), Poisson Same-Day Demand with Rate
�0 = 4, oH/b = 5, oL/b = 1, p = 005, and C = 18

1.0 1.5 2.0 2.5 3.0
11

12

13

14

15

M, days

A

� = 0.1

1.0 1.5 2.0 2.5 3.0
0

50

100

M, days

Z

1.0 1.5 2.0 2.5 3.0
11

12

13

14

15

M, days

A � = 0.5

1.0 1.5 2.0 2.5 3.0
0

50

100

M, days

Z � = 0.5

1.0 1.5 2.0 2.5 3.0
11

12

13

14

15

M, days

A � = 0.94

1.0 1.5 2.0 2.5 3.0
0

50

100

M, days

Z � = 0.94

� = 0.1

SB L
SB H
PBC L
PBC H

performance-based contracts that include access per-
formance measures gain increasing popularity in
United States and abroad. Motivated by recent reforms
in health service payment mechanisms in the United
Kingdom, we study a performance-based approach to
contracting for outpatient services used in the United
Kingdom under the aegis of the National Health Ser-
vice. Two features of this approach are of particular
importance for our analysis: an online system (Choose
and Book) for managing advance appointments and
explicit penalties imposed by purchasers on providers
for delaying patient services. Faced with contracts
that include compensation for provided services as
well as penalties for denying or delaying service,
hospitals and individual physicians respond with a
policy for allocating their limited service capacity
between urgent, advance dedicated, and advance flex-
ible patients.

An important feature of real-life capacity allocation
decisions made by care providers is their multidi-
mensional and dynamic nature. In the present work,
we adopted a simplifying approach to modeling these
decisions by assuming a two-dimensional, open-loop
provider’s response, which allowed us to focus
on key contractual issues while capturing impor-
tant capacity allocation trade-offs. We believe future

research can build on our findings by incorporating
more realistic features of day-to-day appointment
accumulation and service dynamics.

Our analysis of first- and second-best contracting
problems shows that performance-based contracts are
superior to both “block” contracts and FFS contracts.
However, we also established that a simple linear
performance-based contract is only guaranteed to
achieve coordination in the case of dedicated-only
patients, while failing to achieve the second-best out-
comes. As a remedy, we propose a simple threshold-
penalty contract that always achieves the first-best
performance and that also produces the second-best
outcome in the case of dedicated-only patients. The
value of the appointment waiting target as a measure
of the patient access to care is a subject of intense
political debate in the United Kingdom and is likely to
become a part of a similar debate in the United States
once tens of millions of new patients receive medical
coverage in the near future. Our analysis enables pol-
icy makers to quantify the cost of shortening patient
appointment backlogs and identifies the waiting-time
target as a critical factor driving system performance
and contract design. One indication of the relevance
of our analysis for U.S. healthcare settings is a grow-
ing number of performance-based contracts applied
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to purchases of healthcare services in this country. For
example, similar to the United Kingdom, the State of
California has recently implemented a series of wait-
ing time targets for medical services, with the target
to see a specialist set at 15 business days (California
Healthline 2011). Our conclusion about the preferred
nature of nonlinear waiting-time penalty contracts
from the purchaser’s standpoint is particularly impor-
tant in view of the increasing complexity of emerging
performance-based contract structures (UK Depart-
ment of Health 2012). At present, standard NHS
contracts explicitly penalize hospitals for violating
the 18-week waiting-time target, though they do
it through a detailed penalty-assessing mechanism,
nonlinear in terms of the achieved waiting-time per-
formance. Although our results on the performance
of threshold contracts provide a promising starting
point, more investigation is needed into the nature
of nonlinear penalty contracts that can close the
information-asymmetry-generated efficiency gap for
an arbitrary patient mix.

Electronic Companion
An electronic companion to this paper is available as
part of the online version at http://dx.doi.org/10.1287/
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