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Optimal Time Allocation for Process Improvement
for Growth-Focused Entrepreneurs

For many entrepreneurs, time is a key constraint. They need to invest time to achieve growth, but also lose

time due to recurring crises. We develop a simple stochastic dynamic program to model how an entrepreneur

should prioritize between improving processes to reduce crises vs. harvesting revenue or ensuring future

growth. We show that it is initially optimal to prioritize process improvement: an entrepreneur should strive

for high process quality early in the venture’s growth process. We numerically analyze a simple heuristic

derived from this optimal policy and identify the conditions under which it is (or is not) effective. It performs

near-optimally except when process quality or revenue rate may deteriorate too fast, or when the cost of

process improvement or revenue enhancement is too high. Our work provides a theoretical foundation for

the advice found in the popular entrepreneurship and time management literature to invest time now to

save time later.

Key words : entrepreneurship; process improvement; time allocation; dynamic programming

1. Introduction

Consider an entrepreneur who wishes to expand her small business. Her time is severely constrained,

yet some of it is spent dealing with minor but recurring crises. Most of this entrepreneur’s time is

devoted to the routine tasks required for running her business—but when a few hours of discre-

tionary time become available, how should they be used? Should she harvest existing opportunities

and generate cash, use that time to cultivate future growth, or use it to improve internal processes

and thereby reduce the number of recurring crises? This is the question that we study here.

Our interest in studying entrepreneurs’ time management was motivated by two main observa-

tions. First, many of the entrepreneurs with whom we have interacted are indeed severely time-

constrained. Second, even though the popular entrepreneurship literature does sometimes argue for

initially prioritizing process over revenue, it provides no theoretical underpinning for that advice.

The large number of such books testifies to the importance of time management for executives

and entrepreneurs. The core premise of popular time management literature is that one must invest

time today in order to save time in the future; yet absent is an explanatory theory. Drucker (1967,

p. 41) emphasizes the need to prevent the “recurrent crisis” by reducing it to a routine that an

unskilled worker can manage. Griessman (1994, p. 150) reminds us to “sharpen the axe”, or take

time to improve the process even when one is busy. Mackenzie (1997) argues that we should prevent
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new fires rather than spend so much time putting out old ones. Focusing on entrepreneurs, Gerber

(2001) emphasizes the need for building systems (e.g., checklists, operating manuals) that can

prevent entrepreneurs from dropping the ball. Hess (2012) remarks on how much time entrepreneurs

spend putting out fires and argues that they should spend half a day each week thinking about big

opportunities or problems. To prevent recurring crises, Ries (2011) recommends investing as much

time in the process itself as the time lost when a crisis occurs. Although the call to “invest time now

to save time later” has become almost a mantra, we are not aware of any theoretical foundation

that supports specific recommendations concerning exactly when the entrepreneur should invest

time in process improvement.

To develop such a foundation, we propose a simple model of an entrepreneur’s time allocation

decisions. We distinguish between four types of activity: fire-fighting (FF), which is unavoidable

when a crisis occurs; and three other activities—process improvement (PI), revenue harvesting

(RH), and revenue enhancement (RE)—to which the entrepreneur can devote available time if there

is no crisis. We formulate a stochastic dynamic program to characterize the entrepreneur’s optimal

time allocation policy and then characterize when process improvement should take precedence

over other activities. We show that entrepreneurs should invest more in process improvement early

on, when their opportunity cost of doing so is relatively low. Because the optimal time allocation

policy turns out to be too complex to fully characterize in general, we use some of its structural

properties to derive a simple heuristic to better understand the structure of the optimal policy.

From a numerical comparative analysis, we find that the heuristic often performs (near-)optimally,

suggesting that in those cases the structure of the optimal policy is the same as that of the heuristic.

The heuristic does not do well, however, when the process quality or revenue rate may drop too

fast or when process improvements or revenue enhancements are too costly.

This paper’s key contributions are to answer the question we posed at the start and, in so doing,

to establish a theoretical foundation for the advice from the previously cited popular literature

on entrepreneurship. The value of such a foundation is to make the underlying mechanisms more

explicit and also to predict when those popular prescriptions might not hold, as Lévesque (2004)

points out in her call for more analytical modeling in entrepreneurship research. The novelty of the

current paper is to add a process improvement perspective, which is currently missing in existing

work on (entrepreneurial) time allocation.

Our focus is on entrepreneurs who have an operating business that they seek to expand by

investing their own time. We do not consider, for instance, entrepreneurs who have received grant

or venture funding to conduct research and development into new drugs or materials—and thus

whose main challenge is to develop commercially valuable intellectual property before their funding

runs out.
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Below, we first review relevant literature from entrepreneurship and operations management in

Section 2. In Section 3 we introduce our time allocation model, and in Section 4 we discuss the

optimal policy and a related heuristic. Section 5 contains numerical illustrations and experiments,

and Section 6 contains concluding comments.

2. Literature Review

Our work builds on several streams of literature. The entrepreneurial time allocation literature

argues that having more time available is beneficial for the venture’s success, but research in this

vein usually treats the cost of that time simply as lost wages or reduced leisure time. Much of

the work goes back to Becker (1965), who models how individuals allocate time between work and

leisure. Hakansson (1971) describes how entrepreneurs should allocate money to various investment

opportunities or consumption over their lifetime, but he does not view time as a scarce resource that

needs to be allocated. Lévesque and MacCrimmon (1997) examine how an entrepreneur can choose

to allocate time between a wage job and a new venture, where the latter’s success depends on how

much time she invests in it. Several other studies explore how entrepreneurs allocate time between

work and leisure via approaches that are analytical (Lévesque et al. 2002), empirical (McCarthy et

al. 1990, Cooper et al. 1997), or experimental (Lévesque and Schade 2005, Burmeister-Lamp et al.

2012). Our work differs from these studies in two ways. First, rather than determining how much

time overall the entrepreneur should spend on her venture, we analyze how a given amount of time

should be allocated among competing priorities. Second, we allow the entrepreneur to “create”

future time by investing in process improvement.

A rare empirical study on entrepreneurs’ use of time is Mueller et al. (2012); their Table 1

summarizes earlier work that describes how entrepreneurs shift the focus of their attention between

the venture’s start-up and growth stages. These authors observe six entrepreneurs in each stage

over a period of four days; they then categorize the observed activities into several types but do

not (as we do) differentiate between fire-fighting and development-oriented activities.

A related body of work is the literature on managerial time allocation; this research goes back

to Radner (1975) and Radner and Rothschild (1975), who model how managers should allocate

time between various projects. Gifford (1992) provides a wide-ranging critique of this literature. In

Seshadri and Shapira (2001), managers balance short-term maintenance activities (spending time

on processes that deteriorate if left untended) and longer-term developmental activities (which aim

to improve performance). These authors stipulate the proportion of time that managers should

spend on both types of activity to maintain system stability; they also make numerical comparisons

among various strategies for allocating attention. Our work shares some of these elements, but we

allow the entrepreneur to invest in process improvement.
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There is some research in entrepreneurial operations that focuses on time, but it typically

addresses timing decisions and not time allocation decisions. Babich and Sobel (2004) analyze the

optimal timing of an initial public offering, and others examine variations on the theme of when a

venture should switch its mode from exploration to exploitation. Armstrong and Lévesque (2002)

characterize the optimal time to cease product development and release the product to market,

and Choi et al. (2008) describe how the optimal time for switching from exploration to exploitation

depends on the nature of the opportunity. Joglekar and Lévesque (2009) examine how allocation of

funding to research and development (exploration) versus marketing (exploitation) should change

over time. Lichtenstein et al. (2007) find that the timing of start-up activities affects the new firm’s

likelihood of emerging successfully.

This paper describes a gradual investment of time in process improvement so as to reduce the

time spent fighting fires; hence it is related to the vast literature on process improvement. Two

seminal works are Fine (1988) and Fine and Porteus (1989), who study gradual reductions in

setup cost and gradual improvements in process quality. The key differences are that we focus

on the investment of time, not money, and that we study process improvement in the context of

entrepreneurship rather than production.

3. Dynamic Time Allocation Model

In this section we develop a model of how entrepreneurs should use their time. We use a discrete-

time model, where each period t (e.g., a week) contains one block (e.g., half a day) of discretionary

time available to the entrepreneur. The time horizon is assumed to be long enough (one or two

years) relative to the frequency of time allocation decisions that we can assume an infinite horizon.

During each period t, the entrepreneur undertakes one of four stylized types of activity: fire-

fighting (FF), process improvement (PI), revenue harvesting (RH), or revenue enhancement (RE).

Examples of fire-fighting include dealing with suppliers about miscommunication in shipments or

spending time pacifying a customer who has been kept waiting because an assistant double-booked

the entrepreneur’s time. Process improvement could amount to clarifying the written specifications

for suppliers or upgrading the appointment scheduling process to prevent double-booking. Revenue

harvesting can be selling goods delivered by a supplier or making a sale subsequent to meeting a

customer. Finally, revenue enhancement might involve devising new products to sell or identifying

new segments of customers to target. We assume that there is no multi-tasking during these

discretionary time periods. (There is substantial evidence from psychology that multi-tasking is

counterproductive; see e.g. Levitin 2014.)

The firm’s state is characterized by a triplet (x,R, q), in which x ∈ R denotes the current cash

position, R denotes the revenue that the entrepreneur would earn if the firm engaged in RH, and q
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denotes the current process quality (i.e., the probability that no crisis will occur). Revenue rate R

and process quality q transition through ordered sets {Rm}Mm=0 and {qn}Nn=0 respectively, where R0

and q0 and RM and qN are the lowest and highest achievable states for each. If the cash position

falls below zero, then the firm goes bankrupt, the cost of which is K.

The sequence of events is illustrated in Figure 1. First, the firm goes bankrupt if it does not have

enough cash. Second, the entrepreneur chooses how to allocate her discretionary time in that period:

PI, RE, or RH. Third, a crisis erupts with a probability that depends both on the process quality

and the chosen activity (PI, RE, or RH). During process improvement or revenue enhancement,

a crisis erupts with probability 1− qn. Actively harvesting revenue may induce more crises that

the entrepreneur must resolve immediately—in this case with a higher probability 1−χqn, where

0<χ≤ 1. We assume that χ is independent of the revenue rate Rm, but this assumption can easily

be generalized.

Figure 1 Sequence of events.
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The immediate reward depends on the chosen action (PI, RE, or RH) and on whether or not

there is a crisis (FF). If there is no crisis, then either PI, RE, or RH will generate a base revenue b.

Revenue harvesting generates an additional one-time (net) revenue Rm. Process improvement and

revenue enhancement each involve an additional cost c, which we assume, for tractability, to be

equal. In the event of a crisis, the entrepreneur loses the base revenue b. Furthermore, we allow the

consequences of a crisis during RH to be more severe by including an additional loss of cFF(Rm)≥ 0

which may depend on the firm’s revenue rate. We assume that all earnings are re-invested in the

firm, and we let δ denote the intertemporal per-period discount factor that the entrepreneur applies

to money; in this way we capture the opportunity cost of money as well as various risks (e.g.,

regulatory, technology) beyond the entrepreneur’s control.

After each action, the state (Rm, qn) can deteriorate stochastically with a probability that

depends on the action taken. Suppose there is no crisis. Following PI (or RE or RH): the

entrepreneur’s revenue potential Rm deteriorates by one level, if m> 0, with probability αPI (or

αRE or αRH); process quality qn deteriorates by one level, if n> 0, with probability βPI (or βRE or

βRH); and no deterioration occurs with probability 1−αPI−βPI (or 1−αRE−βRE or 1−αRH−βRH).

However, if there is a crisis then the entrepreneur must engage in fire-fighting; we assume no further
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deterioration in such a period. (Allowing deterioration in process quality or revenue potential dur-

ing fire-fighting would further strengthen the case for process improvement, so this is a conservative

assumption.) The state transitions and immediate rewards are summarized in Table 1.

Table 1 Transitions and immediate net rewards from state (x,Rm, qn).

Decision Crisis? Probability
Immediate Transition
net reward to State Probability

RH
No χqn b+Rm

(x+ b+Rm,Rm−1, qn) αRH

(x+ b+Rm,Rm, qn−1) βRH

(x+ b+Rm,Rm, qn) 1−αRH−βRH

Yes 1−χqn −cFF(Rm) (x− cFF(Rm),Rm, qn) 1

PI
No qn b− c

(x+ b− c,Rm−1, qn+1) αPI

(x+ b− c,Rm, qn) βPI

(x+ b− c,Rm, qn+1) 1−αPI−βPI

Yes 1− qn 0 (x,Rm, qn) 1

RE
No qn b− c

(x+ b− c,Rm, qn) αRE

(x+ b− c,Rm+1, qn−1) βRE

(x+ b− c,Rm+1, qn) 1−αRE−βRE

Yes 1− qn 0 (x,Rm, qn) 1

The only assumption on the sequences {b+Rm} and {qn} is that they are log-concave increas-

ing in m and n, respectively. (The assumption is automatically satisfied if these sequences are

concave increasing.) This is consistent with decreasing marginal returns in revenue growth or pro-

cess improvement, but it also allows for convex–concave patterns similar to the S-curve commonly

observed in new product diffusion (Bass 1969).

Following convention in the entrepreneurial operations management literature, we assume that

the entrepreneur is risk-neutral (cf. Archibald et al. 2002, Buzacott and Zhang 2004, Tanrisever et

al. 2012). As in Fine (1988) and Fine and Porteus (1989), we look for a time allocation policy π

that maximizes the net present value (NPV) of expected future profit over an infinite horizon:

lim
T→∞

T∑
t=0

δtEπ
[
Π(xt,Rm(t), qn(t) | at) | (x0,Rm(0), qn(0))

]
.

Here Eπ denotes the conditional expectation given policy π is employed, and Π(xt,Rm(t), qn(t) |

a) is the expected one-period profit (or loss) associated with action a ∈ {RH, PI, RE} given the

current state (xt,Rm(t), qn(t)). Here, m(t) and n(t) are stochastic variables defined on {0, . . . ,M}

and {0, . . . ,N} respectively, indicating the revenue rate and process quality state that applies in

period t. Specifically, Π(xt,Rm, qn | RH) = χqn(b+Rm) + (1− χqn)(−cFF(Rm)) and Π(xt,Rm, qn |

PI) = Π(xt,Rm, qn |RE) = qn(b− c). The optimal policy π∗ is found by solving a dynamic program

with the following value-to-go functions. Since the costs and rewards are bounded, there exists
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a stationary optimal policy as T →∞ (Bertsekas 2000) and so we drop the time index t. For

n= 0, . . . ,N and m= 0, . . . ,M , we have

V (x,Rm, qn) =

{
max{V (x,Rm, qn |RH), V (x,Rm, qn |PI), V (x,Rm, qn |RE)} if x≥ 0,

x−K if x< 0.
(1)

In these expressions,

V (x,Rm, qn |RH) = χqn
(
b+Rm + δ(1−αRH−βRH)V (x+ b+Rm,Rm, qn)

+ δαRHV (x+ b+Rm,R[m−1]+ , qn) + δβRHV (x+ b+Rm,Rm, q[n−1]+)
)

+ (1−χqn)(−cFF(Rm) + δV (x− cFF(Rm),Rm, qn)),

V (x,Rm, qn |PI) = qn
(
b− c+ δ(1−αPI−βPI)V (x+ b− c,Rm, qn+1)

+ δαPIV (x+ b− c,R[m−1]+ , qn+1) + δβPIV (x+ b− c,Rm, qn)
)

+ (1− qn)(0 + δV (x,Rm, qn)),

V (x,Rm, qn |RE) = qn
(
b− c+ δ(1−αRE−βRE)V (x+ b− c,Rm+1, qn)

+ δαREV (x+ b− c,Rm, qn) + δβREV (x+ b− c,Rm+1, q[n−1]+)
)

+ (1− qn)(0 + δV (x,Rm, qn)),

where [z]+ = max{0, z}. A stationary optimal policy tells the entrepreneur which activity to invest

time in depending on the state of the firm (x,Rm, qn). We next describe this policy in detail.

4. Time Allocation Policy and Heuristic

In Section 4.1 we examine the structure of the optimal time allocation policy, starting with the

most general formulation and then successively introducing assumptions under which we attain

more precise results. In Section 4.2 we introduce a simple heuristic, which will help us understand

the structure of the optimal policy in those settings where their performances are similar.

4.1. Structure of the Optimal Policy

We first present a structural property of the optimal policy that holds for the most general model.

(All proofs are given in the Appendix.)

Proposition 1. Suppose process improvement is optimal in states (x+b−c,Rm+1, qn), (x+b−

c,Rm+1, qn−1), and (x+ b− c,Rm, qn). Then process improvement dominates revenue enhancement

in state (x,Rm, qn).

According to this proposition, any process improvement (if done at all) has priority over rev-

enue enhancement. More specifically, if process improvement were optimal in all states that might

be reached while undertaking revenue enhancement (namely, states (x + b − c,Rm+1, qn), (x +

b− c,Rm+1, qn−1), and (x+ b− c,Rm, qn)), then process improvement would be preferable to rev-

enue enhancement. In short, process improvement should normally precede revenue enhancement.
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Recursive application of this logic yields this structural property of the optimal policy. Process

improvement has priority over revenue enhancement because it creates more time in the future

by reducing the frequency of crises, which in turn creates more opportunities to improve pro-

cesses, harvest revenue, or enhance revenue. Although revenue enhancement makes future revenue

harvesting more profitable, it does not create additional time for other activities.

The complexity of the dynamic program in its most general form precludes further analytical

characterization of the optimal policy. We shall therefore introduce a set of assumptions that can

be used (successively) to characterize the optimal policy more precisely.

Assumption 1. αRE = 0 and βRE = 0; that is, there is no state deterioration during revenue

enhancement.

Assumption 2. Either x� b− c, or c= b and cFF(Rm) = 0 for all m; that is, there is no threat

of bankruptcy.

Assumption 3. αRH = βRH = 0, αPI = βPI = 0, and δ > δ̄ for some δ̄ < 1; that is, there is no

state deterioration during revenue harvesting or process improvement and the discount factor is

sufficiently large.

Corollary 1. Under Assumption 1, the optimal time allocation policy will involve multiple

cycles of revenue harvesting followed by process improvement followed by revenue enhancement.

Corollary 1 states that when there is no state deterioration during RE, the optimal policy consists

of multiple intervals of revenue harvesting—in between which process improvement never immedi-

ately follows revenue enhancement. Harvesting revenue may however be periodically necessary in

order to replenish cash and avoid bankruptcy.

If costs are insignificant or if all costs for process improvement or revenue enhancement can be

financed by the base revenue b (i.e., if there is no threat of bankruptcy per Assumption 2), then

the optimal policy has the following structure.

Proposition 2. Under Assumption 2, for any Rm there exists a process quality threshold

q∗(Rm) such that process improvement is optimal for all states (Rm, qj) with qj ≤ q∗(Rm). Moreover,

q∗(Rm)≥ q∗(RM), q̄.

This proposition introduces a minimum process quality, q̄, below which process improvement is

optimal at all revenue rates Rm. Maintaining process quality at or above this threshold has first

priority over engaging in either revenue harvesting or revenue enhancement, but this is only a

necessary condition for optimality. According to Proposition 2, there is a threshold q∗(Rm) ≥ q̄

up to which the entrepreneur should improve the process. So if there are future revenue enhance-

ment opportunities, i.e., if Rm <RM , the entrepreneur may want to invest more time in process
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improvement than when there are no such opportunities, i.e., when Rm =RM . This “overinvesting”

in process improvement relative to the long-term target is analogous to building a safety stock of

process quality that can be used later when revenue rates are higher.

Finally, if Assumptions 1 and 2 hold and if also there are no state deteriorations and the per-

period discount factor is sufficiently large (Assumption 3), then the optimal policy can be fully

characterized.

Proposition 3. Under Assumptions 1–3, the optimal allocation of available time in state

(Rm, qn) is determined by the following decision procedure:

1. if qn < q
∗(Rm) then do process improvement ;

2. else if Rm <R
∗(qn) then do revenue enhancement ;

3. else do revenue harvesting.

In the absence of stochastic deterioration or cash constraints, there is at most one improvement

cycle. This cycle is characterized by specific thresholds: first invest time in process improvement

until an improve-up-to level q∗(Rm) has been reached; then invest time in revenue enhancement

until the enhance-up-to level R∗(qn); then focus on harvesting revenue.

Our next proposition summarizes the comparative statics of these thresholds.

Proposition 4. Under Assumptions 1–3, the following statements hold :

(i) the optimal improve-up-to level q∗(Rm) is decreasing to q̄ in Rm;

(ii) the optimal enhance-up-to level R∗(qn) is increasing in qn.

Higher revenue rates Rm mean a higher opportunity cost of undertaking process improvements,

so the entrepreneur should cease doing them sooner. In contrast, higher process quality qn increases

the value of revenue enhancement, so the entrepreneur should continue revenue enhancement for

longer. The optimal improve-up-to level q∗(Rm) is independent of the starting process quality qn,

and the optimal enhance-up-to level R∗(qn) is independent of the initial revenue rate Rm. Hence

the (R,q) state space can be divided into three contiguous regions, as illustrated in Figure 2.

The following corollary is a direct consequence of Proposition 4.

Corollary 2. Under Assumptions 1–3, the entrepreneur reaches a higher revenue rate starting

from (Ra, qa) than from (Rb, qb), where Ra <Rb for all qa, qb.

An entrepreneur with higher initial revenue rate will end up with a revenue rate lower than that

of an entrepreneur who started with a lower rate. That pattern reflects an important feature of the

evolution of the value of time: as harvesting revenue becomes more lucrative, time becomes more

valuable—which makes it less in the interest of entrepreneurs with higher revenue streams to invest

in long-term process improvement activities. This dynamic is plotted by the process improvement

paths (arrows) in the right panel of Figure 2.
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Figure 2 Optimal policy under Assumptions 1–3.
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Note. Left panel: The optimal actions correspond to three contiguous regions. Right panel: An entrepreneur starting

from a lower revenue rate spends more time on process quality, resulting in a higher final revenue rate.

4.2. A Heuristic Perspective: Return on Time Invested

Because the optimal time allocation policy is typically complex, we propose a simple heuristic—

based on the notion of “return on time invested” (ROTI)—whose results closely mimic those of

the optimal policy in many but not all circumstances. Whenever the heuristic does well relative to

the optimal policy, we presume that the two have a similar structure.

The ROTI heuristic is based on applying standard Net Present Value (NPV) analysis to value

the flow of future time. Recall that δ is the intertemporal per-period discount factor applied to

money by the entrepreneur and that δ captures the opportunity cost of money in addition to

various risks beyond the entrepreneur’s control. The net present value of $1 per period forever is

thus
∑∞

t=1 δ
t = δ

1−δ . We can similarly view the NPV of an infinite series of one-unit periods as δ
1−δ

periods, where we use the same discount factor as, in theory, each unit of time can be used to

generate a unit of revenue. However, some future periods become unavailable due to crises, which

occur with probability 1 − qn. Therefore, the NPV of available future time is qn
∑∞

t=1 δ
t = δqn

1−δ

periods.

To define the crisis-adjusted discount factor ζ(qn) for future time, which takes into account the

likelihood of time being available, ζ(qn) must satisfy ζ(qn)

1−ζ(qn) = δqn
1−δ ; hence

ζ(qn),
δqn

1− δ(1− qn)
. (2)

Our interpretation of ζ(qn) is illustrated in Figure 3. A higher process quality qn has the effect of

increasing the present value of the supply of future available time. Hence ζ(qn) can be viewed as a

discount factor that incorporates an additional operational risk (of crises) relative to the monetary

discount factor δ. The discount rate applied to time is different than that for money (but is derived

from it). For brevity we will write ζn ≡ ζ(qn).
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Figure 3 Discounting of available time.
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Note. Left-hand side: The circles represent time periods (e.g., days), some of which are not available because of

fire-fighting. With higher process quality (q2 > q1), there is less fire-fighting and the average interval between two

available time periods is shorter. Right-hand side: The time stream can be equivalently expressed using ζ(q1) and

ζ(q2) to denote constant time intervals corresponding to the expected delay between two available time periods.

To assess whether it would be advantageous to undertake process improvement (or revenue

enhancement) in a particular period, we assume—in the spirit of Fine and Porteus’s (1989) last

chance policy—that the current period is the last chance to do so and that process quality (or

revenue rate) will remain unchanged in the future. Suppose the current process quality is qn and

that process improvement can increase it to qn+1 > qn for all future periods. Then the expected

amount of time saved each period is qn+1 − qn, so the total discounted time saved is
δ(qn+1−qn)

1−δ .

Therefore, one period of process improvement is worthwhile if and only if

δ(qn+1− qn)

1− δ
> 1 ⇐⇒ ζn

1− ζn

(
qn+1

qn
− 1

)
> 1 ⇐⇒ ζn

qn+1

qn
> 1.

We define the return on time invested in process improvement as follows:

ROTIPI
n , ζn

qn+1

qn
=

0 + ζn+1 + ζ2n+1 + ζ3n+1 + · · ·
1 + ζn + ζ2n + ζ3n + · · ·

. (3)

We likewise define the return on time invested in revenue enhancement as

ROTIRE
m,n , ζn

b+Rm+1

b+Rm
=
b+Rm+1

b+Rm
· 0 + ζn + ζ2n + · · ·
1 + ζn + ζ2n + · · ·

. (4)

Note that ROTIPI
n is independent of revenue rate Rm whereas ROTIRE

m,n depends on process

quality qn. As a result, investing time in PI followed by RE leads to a return on time invested

(ROTIPI
n ×ROTIRE

m,n+1), which is greater than the return from devoting time to RE followed by

PI (ROTIPI
n ×ROTIRE

m,n); this statement is in line with Proposition 1. Under Assumptions 1–3, the

optimal time allocation policy finds the maximum return on time invested by multiplying all ROTI

in process improvements and in revenue enhancements:(
ROTIPI

n × · · ·×ROTIPI
n∗
)
×
(
ROTIRE

m,n∗+1× · · ·×ROTIRE
m∗,n∗+1

)
for some n∗ and m∗. The thresholds q∗(Rm) and R∗(qn) in Proposition 3 correspond to m∗ and n∗,

respectively, and can be constructed using the ROTI notions just described:

q∗(Rm) = min
n

{
qn

∣∣∣ROTIPI
n ·
(

maxj
∏M

j=mROTIRE
j,n+1

maxj
∏M

j=mROTIRE
j,n

)
< 1

}
, R∗(qn) = min

m

{
Rm |ROTIRE

m,n < 1
}
.
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The foregoing considerations lead to our simple heuristic, as follows.

ROTI heuristic:

1. if x+ b− c < 0 then do RH ;

2. else if ROTIPI
n

(
maxj

∏M
j=mROTIRE

j,n+1

maxj
∏M
j=mROTIRE

j,n

)
> 1 then do PI ;

3. else if ROTIRE
m,n > 1 then do RE ;

4. else do RH.

The ROTI heuristic prescribes revenue harvesting when the alternative is imminent bankruptcy.

Otherwise, the heuristic prescribes process improvement followed by revenue enhancement and

then revenue harvesting—all based on the thresholds stipulated in Proposition 3. Having defined

the optimal policy and a related heuristic, we can now analyze both numerically.

5. Numerical Study

Using the numerical setup described below in Section 5.1, we present (in Section 5.2) a numerical

illustration of a representative sample path, after which we examine (in Section 5.3) the settings

in which the ROTI heuristic does and does not perform well.

5.1. Setup of Numerical Study

We assume the following parameters. The sequence of process quality {qn} is defined by (1−qn+1) =

[0.75 ·(1−qn)] for n= {0, . . . ,9} with q0 = 0.2. That is, the likelihood of fire-fighting declines to 75%

of its previous value after every period of process improvement: from 0.8 to 0.6, then to 0.45, and

so forth. The sequence of revenue rates is defined by (b+Rm+1) =
[
1.2 · (b+Rm) · 100−(b+Rm)

100

]
for

m= {0, . . . ,15} with R0 =−3 and b= 5. This gives a convex–concave sequence of increasing revenue

rates that resembles the S-curve often observed with regard to new product diffusion (Bass 1969).

In each period, process quality and revenue rate can deteriorate with probability αi = βi = 0.1 for

i∈ {RE, RH, PI}. We consider continuous cash-level states x∈ [−5,80], where x= 0 represents the

bankruptcy threshold. In other words: if cash falls below zero then the firm goes bankrupt, but if

cash rises above 80 then it stays at 80. We assume a large bankruptcy cost, K = 999, to ensure

that avoiding bankruptcy is always desirable. For the discount factor we set δ= 0.95.

We use a standard value iteration algorithm (Bertsekas 2000) to solve for the optimal policy

and value, a mapping from {xl}×{Rm}×{qn} to (respectively) {RH, RE, PI} or R. We discretize

the continuous cash state and interpolate those values that do not fall on the grid during value

iteration. All code is written in Matlab and is available from the authors upon request.

5.2. Illustration of the Optimal Policy

The left panel in Figure 4 plots a representative sample path of the optimal policy in the (R,q) state

space, where the vertical and horizontal axes correspond to process quality and the revenue rate,
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Figure 4 Sample path of the optimal policy.
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Note. In the left panel, the size of each dot is proportional to the frequency with which the corresponding state

is visited. The right panel plots the cash level, process quality, and revenue rate against time. The parameters

are as described in the text: αi = βi = 0.1 for i ∈ {RE, RH, PI}, and c = cFF(Rm) = 1.25b. The initial state is

(x,Rm(0), qn(0)) = (5,2.76,0.38).

respectively. Upward (rightward) movement in the graph signifies process improvement (revenue

enhancement). The right panels illustrate the temporal dynamics of states x, R, and q.

Figure 4 illustrates several of our analytical results. The entrepreneur engages in a phase of

process improvement until the improve-up-to level is reached in period 45; then engages in rev-

enue enhancement until the enhance-up-to level is reached in period 58; and thereafter finally

harvests revenue. The entrepreneur may deviate from this pattern either to harvest revenue (to

avoid bankruptcy) or to do process improvement during the revenue enhancement phase (after a

deterioration in process quality). This pattern is a noisy version of the one predicted by Proposi-

tion 3, which considers neither cash constraints nor stochastic deterioration. We nonetheless find

that, in line with Proposition 1 and Corollary 1, revenue enhancement never immediately precedes

process improvement; rightward motion (in the graph) is never followed by upward motion.

The right panel of Figure 4 illustrates “overinvesting” in process improvement (q∗(Rm) > q̄),

consistent with Proposition 2. Early on (t= 30), when revenue rate is lower, the entrepreneur aims

for higher process quality (q∗(Rm)> q̄) than later on (t= 120), when revenue rate is higher.

Although Corollary 2 assumed no stochastic deterioration, its main insights continue to hold even

when process quality can deteriorate. The left panel of Figure 5 illustrates how the entrepreneur

who starts at a higher revenue rate ends up harvesting revenue at a lower rate. The right panel plots

the cumulative (undiscounted) revenue of the two entrepreneurs following their respective optimal

policies. Note that the value function V (Rm, qn) is increasing in Rm and qn. Hence in period t= 0,

the entrepreneur who starts with both a higher revenue rate and a higher process quality will have

a higher expected future (discounted) profits than the other entrepreneur; but in period t= 120,
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that other entrepreneur ends up at a higher revenue rate and a higher process quality and will

therefore have a higher expected future (discounted) profit than the former entrepreneur. This is

because the entrepreneur who starts with a higher revenue rate and a higher process quality starts

harvesting revenue earlier instead of doing process improvement because his/her high opportunity

cost of time, given his/her current revenue rate, inhibits process improvement. This eventually

results in slower accumulation of revenue, as indicated by a less steep slope in the figure.

Figure 5 Optimal sample paths given different initial revenue rates.
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Note. Parameters are as described in the text: αi = 0.001 and βi = 0.1 for i∈ {RE, RH, PI} and with c= cFF(Rm) = b;

the initial states (Rm(0), qn(0)) are (1,0.25) and (4.2,0.58). The black arrows indicate whether the state transitions

occur only in one direction or both.

5.3. Performance of the ROTI Heuristic

To better understand the structure of the optimal policy, we performed an extensive simulation

comparing the performance of the ROTI heuristic to the optimal policy. We used combinations

of αi = βi for i ∈ {RH, PI, RE} within the set {0,0.05,0.1,0.15} and used c= cFF(Rm) = λ · b with

λ ∈ {0,1,1.25,1.5,2}. To assess the effect of cash constraints and of initial process quality and

revenue rate, we used four starting points—(lo, lo, lo), (lo, lo, md), (lo, md, lo), and (hi, lo, lo)—

for {(x0,R0, q0)} ∈ {5,75} × {−2.6,0.7,5.5} × {0.4,0.75,0.9} , {lo, hi} × {lo, md, hi} × {lo, md, hi}

(where lo, md, and hi stand for low, medium, and high levels of the variables). For each case,

we ran 5,000 simulations for T = 330 periods, which approximates an infinite horizon because∑∞
t=T+1 δ

t < 10−6. The simulation average of the sum of discounted profits (V sim) and the optimal

value (V opt) were used to compute the suboptimality gap
(
V opt−V sim

V opt

)
shown in Table 2.

For moderate probabilities of deterioration or cost of improvement activities (top rows or left

columns), the ROTI heuristic performs near optimally for many initial states: most of the sub-

optimality gaps are less than 5% (boldface values). In particular, the ROTI heuristic is optimal

when c = b, x = hi, and α = β = 0 (Proposition 3). The first column shows that when c < b, the

ROTI heuristic performs near optimally under all deterioration rates. In that case, fire-fighting
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Table 2 Suboptimality gaps of the ROTI heuristic.

Initial Cost of PI and RE (c)
α= β (x,R, q) c= 0 c= b c= 1.25b c= 1.5b c= 2b

0

(lo, lo, lo) 2.2% 0.1% 0.0% 1.6% 3.5%
(lo, lo, md) 2.1% 0.2% 0.2% 2.6% 2.6%
(lo, md, lo) 2.8% 0.4% 0.3% 2.0% 2.9%
(hi, lo, lo) 2.2% 0.0% 0.1% 0.7% 2.7%

0.05

(lo, lo, lo) 2.7% 1.1% 1.0% 0.3% 10.7%
(lo, lo, md) 3.2% 0.7% 1.6% 3.8% 7.6%
(lo, md, lo) 3.1% 0.4% 2.1% 4.7% 6.0%
(hi, lo, lo) 2.7% 0.9% 0.8% 0.3% 13.3%

0.1

(lo, lo, lo) 3.5% 2.6% 6.4% 0.8% 17.7%
(lo, lo, md) 4.0% 2.9% 4.5% 4.8% 16.1%
(lo, md, lo) 3.4% 2.3% 4.4% 2.6% 12.8%
(hi, lo, lo) 3.5% 3.2% 6.9% 0.5% 4.7%

0.15

(lo, lo, lo) 4.0% 6.6% 18.9% 6.2% 24.9%
(lo, lo, md) 4.5% 5.8% 13.0% 8.3% 17.9%
(lo, md, lo) 3.6% 3.4% 12.2% 29.7% 35.1%
(hi, lo, lo) 3.9% 7.2% 21.0% 6.8% 26.1%

Note. b = 5; boldface type indicates values under which the ROTI heuristic has a

suboptimality gap of less than 5%.

(and losing b) is more costly than improvement activities and so the optimal policy prescribes pro-

cess improvements—even when a higher rate of deterioration makes their effect more temporary.

In such settings with small suboptimality gaps, the ROTI heuristic appears to mimic the optimal

policy; see the representative sample paths in Figure 6.

Figure 6 Representative sample paths: ROTI heuristic and optimal policy.
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Note. The parameters used to generate this graph are αi = βi = 0.1 for i ∈ {RE, RH, PI}, c= cFF(Rm) = 1.25b, and

an initial state of (25,−2.7,0.4).

Comparing the pairs of (lo, lo, lo) and (hi, lo, lo) cases reveals that the ROTI heuristic’s per-

formance is relatively insensitive to the initial cash position, even though it largely ignores cash,

as initial cash affects the optimal policy and the ROTI heuristic in a similar fashion. However,

the heuristic appears to suffer more from the neglect of cash constraints when the cost of process

improvement is high.
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As expected, the heuristic does not perform well when the process quality or revenue rate has

a high (i.e., 10% or more) chance of deteriorating each period or when process improvements or

revenue enhancements incur high monetary costs. In those cases, a simple time allocation heuristic

may not be available. In other cases, though, the fact that the heuristic performs well indicates

that the simple time allocation policy it represents provides a good guideline for entrepreneurs.

6. Concluding Discussion

The popular time management literature emphasizes adages about investing time now to save time

later, but without a theoretical framework. Using a stochastic dynamic program to characterize

the time allocation policy of entrepreneurs, we show that they should invest more time in process

improvement early on—that is, when the opportunity cost of doing so is relatively low. We derive

a simple heuristic from the optimal policy and then assess its effectiveness under a wide range of

parameters.

Having established the importance of process improvement, one might ask what kind of pro-

cess improvements an entrepreneur could make in practice. Gerber (2001, p. 97) proclaims that

entrepreneurs must “work on the business and not in it” and discusses the importance of devel-

oping the right processes as the firm grows. According to Hess (2012, p. 79), process improvement

activities include designing “rules for mitigating financial and quality risks”, writing “directions,

recipes, instructing an employee how to do specific tasks or what not to do”, and implementing

systems that can produce “reliable, timely data, or feedback that will reveal variances or mistakes.”

Drucker (1967) argues that executives must systematically monitor their use of time in order to

diagnose and eliminate any sources of waste. He provides practical pointers for process improve-

ment by identifying the lack of systems or foresight, disorganization, and malfunctioning delivery

of information as the main time wasters. None of these recommended actions are especially novel,

yet our model helps explain why they are useful. Moreover, our analysis encourages entrepreneurs

to think in terms of “return on time invested”, to help decide which process improvement activities

to prioritize, and when to shift their focus from process improvement to revenue enhancement and

harvesting.

Our results have several implications for future research at the intersection of entrepreneurship

and operations management. One could study how entrepreneurs invest time in activities that

save future time and how their decisions relate to the NPV framework. Although some psychology

studies compare the investment of time versus money (LeClerc et al. 1995, Soman 2001, Okada

and Hoch 2004, Zauberman and Lynch 2005), we are not aware of any research that examines

the present value of time streams. It is well known that process improvement efforts are difficult

(Repenning and Sterman 2002) and can even result in negative feedback (Sterman et al. 1997).
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Future research could profitably investigate the conditions under which entrepreneurs decide to

invest time in process improvement and how that depends on perceived revenue opportunities.

Detailed analysis of how entrepreneurs actually use their time, perhaps building on Mueller et

al. (2012), but using categories of activities as we distinguish here, would also provide important

pointers for which future research would be most valuable for entrepreneurs.
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Joglekar, N.R., M. Lévesque. 2009. Marketing, R&D, and startup valuation. IEEE T. Eng. Manage. 56(2)

229–242.

LeClerc, R., B.H. Schmitt, L. Dube. 1995. Waiting time and decision making: Is time like money?. J. Consum.

Res. 22(1) 110–119.
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Appendix

Lemma A-1. ζ(q) is concave increasing in q ∈ [0,1] with ζ(0) = 0 and ζ(1) = δ.

Proof. It is clear that ζ(0) = 0 and ζ(1) = δ. Taking the first and second derivatives then yields ζ ′(q) =
δ(1−δ)

(1−δ(1−q))2 > 0 and ζ ′′(q) =− 2δ2(1−δ)(1−δ(1−q))
(1−δ(1−q))4 < 0 for all δ, q ∈ (0,1). �

Proof of Proposition 1. By Proposition 7.3.1 in Bertsekas (2000), the optimal stationary policy can be

obtained by solving the Bellman equation corresponding to (1). In particular, if the optimal action is PI in

state (x,Rm, qn), then V (x,Rm, qn) = V (x,Rm, qn |PI), where

V (x,Rm, qn |PI) = qn
(
b− c+ δ(1−αPI−βPI)V (x+ b− c,Rm, qn+1)

+ δαPIV (x+ b− c,R[m−1]+ , qn+1) + δβPIV (x+ b− c,Rm, qn)
)

+ (1− qn)(0 + δV (x,Rm, qn))

=
qn(b− c)

1− δ(1− qn)
+ ζn

(
(1−αPI−βPI)V (x+ b− c,Rm, qn+1)

+αPIV (x+ b− c,R[m−1]+ , qn+1) +βPIV (x+ b− c,Rm, qn)
)
.

Similarly, if the optimal action is RE in state (x,Rm, qn), then V (x,Rm, qn) = V (x,Rm, qn |RE), where

V (x,Rm, qn|RE) = qn

(
b− c+ δ(1−αRE −βRE)V (x+ b− c,Rm+1, qn)

+δαREV (x+ b− c,Rm, qn) + δβREV (x+ b− c,Rm+1, q[n−1]+)
)

+ (1− qn)
(

0 +Vt+1(x,Rm, qn)
)

=
qn(b− c)

1− δ(1− qn)
+ ζn

(
(1−αRE −βRE)V (x+ b− c,Rm+1, qn)

+αREV (x+ b− c,Rm, qn) +βREV (x+ b− c,Rm+1, q[n−1]+)
)
.

By assumption, undertaking PI is optimal in states (x+ b− c,Rm, qn), (x+ b− c,Rm+1, qn), and (x+ b−
c,Rm+1, q[n−1]+). Then the value function in state (x,Rm, qn) when engaging in RE is

V (x,Rm, qn |RE) =
qn(b− c)

1− δ(1− qn)
+ ζn

(
(1−αRE−βRE)V (x+ b− c,Rm+1, qn |PI)

+ αREV (x+ b− c,Rm, qn |PI) +βREV (x+ b− c,Rm+1, q[n−1]+ |PI)
)

=
qn(b− c)

1− δ(1− qn)
+ ζn

(
(1−βRE)

qn(b− c)
1− δ(1− qn)

+βRE q[n−1]+(b− c)
1− δ(1− q[n−1]+)

)
+ ζ2n(1−αRE−βRE)(1−αPI−βPI)V (x+ 2b− 2c,Rm+1, qn+1)

+ ζ2n(1−αRE−βRE)αPIV (x+ 2b− 2c,Rm, qn+1) + ζ2n(1−αRE−βRE)βPIV (x+ 2b− 2c,Rm+1, qn)

+ ζ2nα
RE(1−αPI−βPI)V (x+ 2b− 2c,Rm, qn+1) + ζ2nα

REαPIV (x+ 2b− 2c,R[m−1]+ , qn+1)

+ ζ2nα
REβPIV (x+ 2b− 2c,Rm, qn) + ζnζn−1β

RE(1−αPI−βPI)V (x+ 2b− 2c,Rm+1, qn)

+ ζnζn−1β
REαPIV (x+ 2b− 2c,Rm, qn) + ζnζn−1β

REβPIV (x+ 2b− 2c,Rm+1, q[n−1]+).
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Since RE is feasible in states (x+ b− c,Rm−1, qn+1), (x+ b− c,Rm, qn), and (x+ b− c,Rm, qn+1), we have

V (x,Rm, qn |PI)≥ qn(b− c)
1− δ(1− qn)

+ ζn
(
(1−αPI−βPI)V (x+ b− c,Rm, qn+1 |RE)

+ αPIV (x+ b− c,R[m−1]+ , qn+1 |RE) +βPIV (x+ b− c,Rm, qn |RE)
)

=
qn(b− c)

1− δ(1− qn)
+ ζn

(
(1−βPI)

qn+1(b− c)
1− δ(1− qn+1)

+βPI qn(b− c)
1− δ(1− qn)

)
+ ζnζn+1(1−αPI−βPI)(1−αRE−βRE)V (x+ 2b− 2c,Rm+1, qn+1)

+ ζnζn+1(1−αPI−βPI)αREV (x+ 2b− 2c,Rm, qn+1)

+ ζnζn+1(1−αPI−βPI)βREV (x+ 2b− 2c,Rm+1, qn)

+ ζnζn+1α
PI(1−αRE−βRE)V (x+ 2b− 2c,Rm, qn+1) + ζnζn+1α

PIαREV (x+ 2b− 2c,R[m−1]+ , qn+1)

+ ζnζn+1α
PIβREV (x+ 2b− 2c,Rm, qn) + ζ2nβ

PI(1−αRE−βRE)V (x+ 2b− 2c,Rm+1, qn)

+ ζ2nβ
PIαREV (x+ 2b− 2c,Rm, qn) + ζ2nβ

PIβREV (x+ 2b− 2c,Rm+1, q[n−1]+)

≥ V (x,Rm, qn |RE).

The last inequality follows because ζn is increasing by Lemma A-1 and because

(1−βPI)
qn+1

1− δ(1− qn+1)
+βPI qn

1− δ(1− qn)
> (1−βRE)

qn
1− δ(1− qn)

+βRE qn−1
1− δ(1− qn−1)

. �

Proof of Corollary 1. The proof is identical to the proof of Proposition 1. When αRE = βRE = 0, it is not

necessary to assume that PI is optimal in states (x+ b− c,Rm, qn) and (x+ b− c,Rm+1, qn−1). �

Lemma A-2. Under Assumption 2, suppose that

ξn+1ζnγ̃
PI
n − ξn + ξn+1ζnξnβ

RHγ̃PI
n (1− ζn−1γ̃PI

n−1) + ξn+1ξn(1−αRH−βRH)(1− ζnγ̃PI
n )≥ 0, (A1)

where ξn , δχqn/(1− δ(1−χqn)) and γ̃PI
n = (1−αPI−βPI)/(1− ζnβPI). Then, if either PI is optimal in state

(Rm, qn−1) or βRH = 0, then PI is preferred to RH in state (Rm, qn).

Proof. Under Assumption 2, the cash state x remains constant during PI or RE or a crisis. Hence the

cash state has no effect on the optimal decision. Ignoring the cash state, we have the following Bellman’s

equation:

V (Rm, qn) = max
{
V (Rm, qn |RH), V (Rm, qn |PI), V (Rm, qn |RE)

}
; here

V (Rm, qn |RH) =
ξn
δ

(Rm + b) + ξn
(
αRHV (R[m−1]+ , qn) +βRHV (Rm, q[n−1]+) + γRHV (Rm, qn)

)
,

V (Rm, qn |PI) = ζn
(
αPIV (R[m−1]+ , qn+1) +βPIV (Rm, qn) + γPIV (Rm, qn+1)

)
,

V (Rm, qn |RE) = ζn
(
αREV (Rm, qn) +βREV (Rm+1, q[n−1]+) + γREV (Rm+1, qn)

)
,

and γa , 1−αa−βa for a∈ {RE, PI, RE}.
Suppose that m> 0 and n> 0. If either m= 0 or n= 0, then the proof is identical once we set (respectively)

αPI = αRH = 0 or βRH = βRE = 0. The proof proceeds by contradiction. We start by assuming that it is

optimal to do RH in state (Rm, qn). On the one hand, since PI is optimal in state (Rm, qn−1), we have

V (Rm, qn |RH) =
ξn
δ

(Rm + b) + ξn
(
αRHV (Rm−1, qn) +βRHV (Rm, qn−1 |PI) + γRHV (Rm, qn |RH)

)
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=
ξn
δ

(Rm + b) + ξn
(
αRHV (Rm−1, qn) + γRHV (Rm, qn |RH)

)
+ ξnβ

RH ζn−1
1−βPIζn−1

(
αPIV (Rm−1, qn) + γPIV (Rm, qn |RH)

)
=

(ξn/δ)(1−βPIζn−1)

(1− γRHξn)(1−βPIζn−1)− ζn−1ξnβRHγPI
(Rm + b)

+
ξn(αRH(1−βPIζn−1) +βRHζn−1α

PI)

(1− γRHξn)(1−βPIζn−1)− ζn−1ξnβRHγPI
V (Rm−1, qn).

On the other hand, since RH is feasible in state (Rm, qn+1) and PI in (Rm, qn), it follows that

V (Rm, qn |PI)≥ ζn
(
αPIV (Rm−1, qn+1) +βPIV (Rm, qn |PI) + γPIV (Rm, qn+1 |RH)

)
≥ ζn

1−βPIζn

(
αPIV (Rm−1, qn+1) + γPIV (Rm, qn+1 |RH)

)
≥ αPIζn

1−βPIζn
V (Rm−1, qn+1)

+
γPIζn

1−βPIζn

ξn+1

1− γRHξn+1

(
1

δ
(Rm + b) +αRHV (Rm−1, qn+1) +βRHV (Rm, qn |PI)

)
≥ ξn+1γ

PIζn/δ

(1− γRHξn+1)(1−βPIζn)− ζnξn+1βRHγPI
(Rm + b)

+
ζn(αPI(1− γRHξn+1) + γPIαRHξn+1)

(1− γRHξn+1)(1−βPIζn)− ζnξn+1βRHγPI
V (Rm−1, qn+1).

Finally, the expression

(ξn+1/δ)γ
PIζn

(1− γRHξn+1)(1−βPIζn)− ζnξn+1βRHγPI
=

(ξn+1/δ)γ̃
PI
n ζn

1− γRHξn+1− ζnξn+1βRHγ̃PI
n

≥ (ξn/δ)

1− γRHξn− ζn−1ξnβRHγ̃PI
n−1

=
(ξn/δ)(1−βPIζn−1)

(1− γRHξn)(1−βPIζn−1)− ζn−1ξnβRHγPI

holds if and only if (A1) holds. Moreover,

ζn(αPI(1− γRHξn+1) + γPIαRHξn+1)

(1− γRHξn+1)(1−βPIζn)− ζnξn+1βRHγPI

=

(
αPI

1−βPIζn
(1− γRHξn+1) + γ̃PI

n α
RHξn+1

)
γ̃PI
n ξn+1

ζnγ̃
PI
n ξn+1

(1− γRHξn+1)− ζnξn+1βRHγ̃PI
n

≥
(

αPI

1−βPIζn
(1− γRHξn+1) + γ̃PI

n α
RHξn+1

)
γ̃PI
n ξn+1

ξn
1− γRHξn− ζn−1ξnβRHγ̃PI

n−1

=

(
(αPI(1− γRHξn+1))

γPIξn+1

+αRH

)
ξn

1− γRHξn− ζn−1ξnβRHγ̃PI
n−1

>

(
αPI βRHζn−1

1−βPIζn−1
+αRH

)
ξn

1− γRHξn− ζn−1ξnβRHγ̃PI
n−1

,

where the first inequality follows from (A1) and the second inequality holds because

(1− γRHξn+1)(1−βPIζn−1)− γPIξn+1β
RHζn−1

= (1− ξn+1(1−αRH))(1−βPIζn−1) +βRHξn+1(1−βPIζn−1− γPIζn−1)

= (1− ξn+1(1−αRH))(1−βPIζn−1) +βRHξn+1(1− (1−αPI)ζn−1)> 0.

Therefore, V (Rm, qn |PI)>V (Rm, qn |RH), a contradiction. Hence PI dominates RE in state (Rm, qn). �
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Proof of Proposition 2. The proof proceeds by induction. Let

θ= min
{
n |ξn+1ζnγ̃

PI
n − ξn + ξn+1ζnξnβ

RHγ̃PI
n (1− ζn−1γ̃PI

n−1) + ξn+1ξn(1−αRH−βRH)(1− ζnγ̃PI
n )< 0

}
,

(A2)

where ξn , δχqn/(1 − δ(1 − χqn)) and γ̃PI
n , (1 − αPI − βPI)/(1 − ζnβPI). Define q̄ = qθ. Then, applying

Lemma A-2 yields that V (RM , qn | PI) ≥ V (RM , qn | RH) for all qn < q̄. Consider revenue rate Rm, and

suppose that V (Rm+1, qn) = V (Rm+1, qn |PI) for all qn < q̄. Then, by Proposition 1, we have V (Rm, qn |PI)≥

V (Rm, qn |RE) for all qn < q̄. Furthermore, Lemma A-2 shows that V (Rm, qn | PI)≥ V (Rm, qn |RH) for all

qn < q̄. As a result, V (Rm, qn) = V (Rm, qn |PI) for all qn < q̄. �

Lemma A-3. For any r ∈ Z+ there exists a δ̄ < 1 such that, for all δ ∈ (δ̄,1], the function ζnζ
r
n+1

qn+1

qn
is

decreasing in n for any Rm.

Proof. Requiring the function ζnζ
r
n+1

qn+1

qn
to be decreasing in n is equivalent to requiring that

ζnζ
r
n+1

qn+1

qn
≥ ζn+1ζ

r
n+2

qn+2

qn+1
or, equivalently, that

q2n+1

qnqn+2
≥
( ζn+2

ζn+1

)r( ζn+1

ζn

)
; that is,

q2n+1

qnqn+2

≥
(
qn+2(1− δ(1− qn+1))

qn+1(1− δ(1− qn+2))

)r(
qn+1(1− δ(1− qn))

qn(1− δ(1− qn+1))

)
.

Here the left-hand side (LHS) is independent of δ whereas the right-hand side (RHS) is decreasing in δ (since

{qn} is increasing). Hence the inequality is tight for at most one δ ∈ (0,1). When δ = 1, the inequality is

satisfied because the LHS is greater than the RHS—which is equal to 1 given that {qn} is log-concave in qn.

As a result, there exists a δ̄ ∈ [0,1) such that the inequality is satisfied for all δ ∈ (δ̄,1]. �

Lemma A-4. There exists a δ̄≥ 0 such that, for all δ ∈ (δ̄,1], the function

ζn(ζn+1)i
∗(m,n+1)qn+1(Rm+i∗(m,n+1) + b)

(ζn)i∗(m,n)qn(Rm+i∗(m,n) + b)

is decreasing in n, where

i∗(m,n)≡max

{
i≥ 0 : ζn

Rm+i + b

Rm+i−1 + b
≥ 1

}
.

Proof. The proof is based on Lemmas A-1 and A-3. By definition of i∗(m,n+ 1), we have

(ζn+1)i
∗(m,n+1)−i∗(m,n)Rm+i∗(m,n+1) + b

Rm+i∗(m,n) + b
=

i∗(m,n+1)∏
j=i∗(m,n)+1

ζn+1

Rm+j + b

Rm+j−1 + b
≥ 1;

(ζn+1)i
∗(m,n+2)−i∗(m,n+1)Rm+i∗(m,n+2) + b

Rm+i∗(m,n+1) + b
=

i∗(m,n+2)∏
j=i∗(m,n+1)+1

ζn+1

Rm+j + b

Rm+j−1 + b
< 1.

Applying these equalities sequentially and then using (a) Lemma A-3 (while assuming that δ ≥ δ̄) and

(b) the fact that {ζn+1/ζn} is decreasing (by Lemma A-1), we obtain

(ζn+1)i
∗(m,n+1)ζn

(ζn)i∗(m,n)
qn+1

qn

Rm+i∗(m,n+1) + b

Rm+i∗(m,n) + b
≥
(
ζn+1

ζn

)i∗(m,n)
ζn
qn+1

qn

≥
(
ζn+1

ζn

)i∗(m,n)
qn+1

qn
(ζn+1)i

∗(m,n+2)−i∗(m,n+1)ζn
Rm+i∗(m,n+2) + b

Rm+i∗(m,n+1) + b
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=

(
ζn+1

ζn

)i∗(m,n)
qn+1

qn
(ζn+1)i

∗(m,n+2)−i∗(m,n)(ζn+1)i
∗(m,n)−i∗(m,n+1)ζn

Rm+i∗(m,n+2) + b

Rm+i∗(m,n+1) + b

≥
(
ζn+1

ζn

)i∗(m,n)
qn+2

qn+1

(ζn+2)i
∗(m,n+2)−i∗(m,n)(ζn+1)i

∗(m,n)−i∗(m,n+1)ζn+1

Rm+i∗(m,n+2) + b

Rm+i∗(m,n+1) + b

≥
(
ζn+2

ζn+1

)i∗(m,n)
qn+2

qn+1

(ζn+2)i
∗(m,n+2)−i∗(m,n)ζn+1(ζn+1)i

∗(m,n)−i∗(m,n+1)Rm+i∗(m,n+2) + b

Rm+i∗(m,n+1) + b

= ζn+1

(ζn+2)i
∗(m,n+2)

(ζn+1)i∗(m,n+1)

qn+2

qn+1

Rm+i∗(m,n+2) + b

Rm+i∗(m,n+1) + b
. �

Proof of Proposition 3. Under Assumptions 1–3, the cash state can be dropped from (1), and therefore

the Bellman’s equation simplifies to:

V (Rm, qn) = max

{
χ(b+Rm)

1− ζn︸ ︷︷ ︸
RH

, ζnV (Rm, qn+1)︸ ︷︷ ︸
PI

, ζnV (Rm+1, qn)︸ ︷︷ ︸
RE

}
. (A3)

Under Assumptions 1–3, the states for which RH is optimal are absorbing. Also, RE→ PI is suboptimal

by Proposition 1. Hence the only possible optimal path consists of one improvement cycle beginning with

sequences of PI (if any) and followed by sequences of RE (if any) and then of RH. The optimal policy can be

characterized by two thresholds: the improve-up-to level (stop PI and do RE) and the enhance-up-to level

(stop RE and do RH). Starting from state (Rm, qn), a policy that consists of j periods of PI followed by i

periods of RE, with RH occurring thereafter, generates value equal to

(ζnζn+1 · · · ζn+j−1) · ζin+j
χ(b+Rm+i)

1− ζn+j
.

Thus the maximum value starting from state (Rm, qn) can be written as

V (Rm, qn) = max
j=0,...,N−n

( j∏
j′=1

ζn+j′−1 · max
i=0,...,M−m

{
ζin+j

χ(b+Rm+i)

1− ζn+j

})
. (A4)

Note that, for all j,

arg max
i≥0

{
ζin+j

χ(b+Rm+i)

1− ζn+j

}
= arg max

i≥0

{ i∏
i′=0

ζn+j
b+Rm+i′

b+Rm+i′−1

χ(b+Rm−1)

1− ζn+j

}
= max

{
i≥ 0 : ζn+j

b+Rm+i

b+Rm+i−1
≥ 1

}
;

where the first equality follows from the telescoping product and the second equality is by the log-concavity

of {b+Rm}Mm=0. Thus we have derived an expression for the threshold R∗(qn).

We now derive an expression for the threshold q∗(Rm). Let i∗(m,n + j) denote the optimal num-

ber of RE periods in state (m,n + j). Then (A4) can be equivalently expressed as V (Rm, qn) =

maxj=0,...,N−n
∏j

j′=1 ζn+j′ζ
i∗(m,n+j)
n+j

χ(b+Rm+i∗(m,n+j))

1−ζn+j
. Note that

arg max
j≥0

{ j∏
j′=1

ζn+j′−1ζ
i∗(m,n+j)
n+j

χ(b+Rm+i∗(m,n+j))

1− ζn+j

}

= arg max
j≥0

{ j∏
k=1

(
ζn+k−1

ζ
i∗(m,n+k)
n+k

ζ
i∗(m,n+k−1)
n+k−1

·
b+Rm+i∗(m,n+k)

b+Rm+i∗(m,n+k−1)
· 1− ζn+k−1

1− ζn+k

)(
ζi
∗(m,n)
n

χ(b+Rm+i∗(m,n))

1− ζn

)}

= arg max
j≥0

{ j∏
k=1

(
ζn+k−1

1− ζn+k−1
1− ζn+k

ζ
i∗(m,n+k)
n+k

ζ
i∗(m,n+k−1)
n+k−1

b+Rm+i∗(m,n+k)

b+Rm+i∗(m,n+k−1)

)}

= max

{
k≥ 0 : ζn+k−1

1− ζn+k−1
1− ζn+k

ζ
i∗(m,n+k)
n+k

ζ
i∗(m,n+k−1)
n+k−1

b+Rm+i∗(m,n+k)

b+Rm+i∗(m,n+k−1)
≥ 1

}
;
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where the first equality is due to the telescoping product, the second equality results from simplification,

and the third equality follows because the preceding line’s expression (inside large parentheses) is decreasing

in n when δ is large enough by Lemma A-4 and the log-concavity of {qn}. �

Proof of Proposition 4. We first prove part (ii). According to (A3), the decision to switch from RE to

RH is a stopping action because the entrepreneur will remain in state (Rm, qn) and continue engaging in RH

forever. I.e., while undertaking RE, the entrepreneur faces an optimal stopping problem (Bertsekas 2000).

Doing RE one more step and then doing RH is preferable to doing RH now if and only if

ζnV (Rm+1, qn |RH) = ζn
δ

1− δ
χqn(Rm+1 + b)≥ δ

1− δ
χqn(Rm + b) ⇐⇒ ζn

Rm+1 + b

Rm + b
≥ 1. (A5)

When {Rm+b} is log-concave, the stopping set is absorbing and so the one-step–look-ahead policy is optimal

(Bertsekas 2000, p. 176). Since the stopping set defined by (A5) is decreasing in qn, it follows that R∗(q) is

nondecreasing.

We now prove part (i) of the proposition. Suppose that V (Rm+1, qn) = V (Rm+1, qn |PI). Then, by Propo-

sition 1, V (Rm, qn | PI)≥ V (Rm, qn | RE). The rest of the proof amounts to showing that V (Rm, qn | PI)≥

V (Rm, qn |RH). Define θ≥ 1 such that qn+θ ≡ q∗(Rm+1, qn). Then, by (A3),

V (Rm+1, qn) = V (Rm+1, qn |PI) = ζn · · · ζn+θ−1V (Rm+1, qn+θ).

It follows from our definition of θ that V (Rm+1, qn+θ)>V (Rm+1, qn+θ |PI). We must therefore consider two

cases: either when RH or when RE is optimal in state (Rm+1, qn+θ). Assume first that V (Rm+1, qn+θ) =

V (Rm+1, qn+θ |RH). Since V (Rm+1, qn |PI)>V (Rm+1, qn |RH), we have

ζn · · · ζn+θ−1
δ

1− δ
χqn+θ(Rm+1 + b)>

δ

1− δ
χqn(Rm+1 + b), and therefore

V (Rm, qn |PI) = ζnV (Rm, qn+1)≥ ζn · · · ζn+θ−1V (Rm, qn+θ)≥ ζn · · · ζn+θ−1
δ

1− δ
χqn+θ(Rm + b)

>
δ

1− δ
χqn(Rm + b) = V (Rm, qn |RH).

Now if V (Rm+1, qn+θ) = V (Rm+1, qn+θ |RE), then by (A5) we have ζn+θ
Rm+2+b

Rm+1+b
> 1. Thus,

V (Rm, qn |PI) = ζnV (Rm, qn+1)≥ ζn · · · ζn+θ−1ζn+θV (Rm+1, qn+θ)

= ζn+θV (Rm+1, qn)≥ ζn+θV (Rm+1, qn |RH) = ζn+θ
δ

1− δ
χqn(Rm+1 + b).

Because {Rm + b} is log-concave,
Rm+1+b

Rm+b
≥ Rm+2+b

Rm+1+b
. Hence ζn+θ

Rm+1+b

Rm+b
> 1; therefore, V (Rm, qn | PI) >

ζn+θ
δ

1−δχqn(Rm + b) = V (Rm, qn |RH).

In sum, we have found that V (Rm, qn | PI)>max{V (Rm, qn |RH), V (Rm, qn |RE)}; that is, V (Rm, qn) =

V (Rm, qn |PI) when V (Rm+1, qn) = V (Rm+1, qn |PI). So if q∗(Rm+1, qn)> qn, then q∗(Rm, qn)> qn. �

Proof of Corollary 2. This result follows directly from Proposition 4. �




