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Problem Definition: The growing trend in online shopping has sparked the development of increasingly

more sophisticated product recommendation systems. We construct a model that recommends a personalized

discounted product bundle to an online shopper that considers the trade-off between profit maximization and

inventory management, while selecting products that are relevant to the consumer’s preferences. Method-

ology: We focus on simultaneously balancing personalization through individualized functions of consumer

propensity-to-buy, inventory management for long-run profitability, and tractability for practical business

implementation. We develop two classes of approximation algorithms, multiplicative and additive, in order

to produce a real-time output for use in an online setting.

Academic and Practical Relevance: We provide analytical performance guarantees that illustrate the

complexity of the underlying problem, which combines assortment optimization with pricing. We implement

our algorithms in two separate case studies on actual data from a large U.S. e-tailer and a premier global

airline. Results: Our computational results demonstrate significant lifts in expected revenues over current

industry pricing strategies on the order of 2-7% depending on the setting. We find that on average our best

algorithm obtains 92% of the expected revenue of a full-knowledge clairvoyant strategy across all inventory

settings, and in the best cases this improves to 98%. Managerial Implications: We compare the algorithms

and find that the multiplicative approach is relatively easier to implement and on average empirically obtains

expected revenues within 1-6% of the additive methods when both are compared to a full-knowledge strategy.

Furthermore, we find that the greatest expected gains in revenue come from high-end consumers with lower

price sensitivities and that predicted improvements in sales volume are dependent on product category and

they are a result of providing relevant recommendations.

Key words : pricing and revenue management, retailing, OM Practice, inventory theory and control,

dynamic programming

1. Introduction

The online market as a whole has grown enormously over the past decade. According to a forecast

released by Forrester Research in 2016, U.S. e-commerce retail sales are expected to grow from

$373 billion in 2016 to more than $500 billion in 2020, an increase of over 34%; furthermore, the

online sector alone impacts over $1.5 trillion of total retail sales in the United States. This surge in

online shopping has led to an increased availability of data regarding consumer preferences, which
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can be leveraged by businesses across all industries in order to improve operations, revenue and

consumer satisfaction. As a direct example of this, strategic recommendation services that utilize

such data effectively are currently undergoing massive and rapid expansion. StitchFix, which offers

personalized clothing styling for its customers and only became cash-flow positive in 2014, achieved

$250M in revenue in 2015 that nearly tripled to $730M by the end of 2016. The travel industry has

also undergone dramatic growth over the past decade due to the increasing availability of online

services. As a result, travel products are becoming increasingly commoditized. Consumers are not

willing to pay exorbitant fees for these generic services, resulting in a great deal of competition

across industries such as airlines. However, travelers are both interested in and willing to pay for

customized experiences. Therefore, businesses in the travel and hospitality industries have begun

providing recommendations at the time of reservation by offering ancillary services that are un-

bundled from ticket cost or room rate. In the case of airlines, supplementary products to improve

the travelers’ experience before, during and after their ticketed trip such as VIP lounge access,

priority boarding, seat upgrades, in-flight wi-fi, and destination-relevant deals are now provided

at their own prices and offered throughout the online purchase process, which was previously not

the case. As a result of these industry trends in the online sector, the development of a more

sophisticated product recommendation system can provide the necessary competitive edge for any

online seller, making the difference on the order of millions in profits.

As demonstrated by these industry examples, the majority of businesses with an online compo-

nent now utilize recommendation systems. However, these methods are often primarily based on

historical purchase trends across segments of the online population when there is also a wealth of

individualized consumer information. Motivated by this increasingly prevalent cross-selling prob-

lem and current industry practices, the goal of our work is the development of a personalized

model that selects, prices, and recommends a bundle of related products to a consumer during

their online session. Having dynamically received this offer while browsing a particular item or

ticket itinerary, the consumer can then choose to accept this discounted offer, or purchase any

combination of items at their full prices, or simply exit the online marketplace without making any

purchase at all. This dynamic bundle offer is constructed using a new model that combines diverse

recommendations with personalized discounts by leveraging consumer profiles and in-session con-

text, while considering the trade-off between myopic current profit with long-term profitability

under inventory constraints. Note that because we consider the possibility that consumers may

choose to purchase products at their full prices, we must additionally incorporate the upper-level

problem of determining the time-dependent trajectories of full prices over the course of the selling

horizon. Thus, the novelty of this work consists of simultaneously incorporating personalization,
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bundle assortment selection, bi-level pricing, and inventory-balancing within this particular online

bundle offer setting. These challenges have not yet been explored jointly in the existing literature.

In order to construct our bundle pricing and recommendation model we focus on incorporating all

of the above components simultaneously. We aim to make relevant offers by solving a personalized

bundle assortment selection and pricing problem that uses individualized propensity-to-buy models

based on consumer profiles and online context. We integrate this personalized online offer setting

within the goal of long-run profitability by additionally considering future demand through an

inventory balancing function in our model, which improves expected profits by mitigating costs

associated with overstocking and lost sales. Balancing all of these factors is novel to the analytical

problem and practically crucial to sellers from an operational perspective, but also gives rise to

several challenges with respect to both the analytical problem structure and its implementation.

The combination of all of these components results in a complex dynamic programming problem

that is highly intractable in an online setting. Furthermore, focusing on inventory-constrained

products leads to the additional difficulty of incorporating upper-level dynamic pricing schemes

that affect the full prices of products as the selling horizon progresses. Thus, our resulting model

simultaneously addresses personalization, multiple levels of pricing, bundle assortment selection,

demand forecasting, and inventory management. We develop approximation algorithms and provide

analytical guarantees that improve in tightness as the problem becomes less inventory constrained.

Furthermore, we analyze the performance of our algorithms through two case studies: (i) using

point-of-sale transaction data from a major U.S. e-tailer that includes personalized features such as

customer IDs and loyalty information, and, (ii) using ticket transaction data from a premier global

airline that includes consumer-specific information such as tier level, miles balance and previous

flight history at the time of ticket purchase. These case studies demonstrate that our approaches

result in significant improvement in expected revenue over existing industry practices. In industries

that operate on razor-thin margins, these gains can scale up to several millions of dollars in revenue.

1.1. Contributions

We analyze the problem of personalized online bundle recommendation, which lies at the intersec-

tion of several branches of revenue management literature. Our main contributions consist of,

1. Two classes of approximation algorithms that provide real-time bundle recom-

mendations and simultaneously incorporate personalization, inventory balancing and

tractability. We develop multiplicative and additive methods to implement our model in real-

time in an online setting. These heuristics capture personalization as well as the trade-off between

myopic profit maximization and long-run profitability under inventory constraints. We also coordi-

nate the dynamic lower-level personalized bundle prices with an upper-level global pricing strategy

that periodically determines the time-dependent trajectories of the full prices of all items.
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2. Analytical guarantee on the performance of the multiplicative algorithm and

empirical comparisons of both classes. We provide a bound on the ratio of the expected

revenue of the multiplicative approach relative to a full-knowledge strategy that knows the entire

consumer arrival sequence in advance. This becomes even tighter as the problem becomes less

constrained by inventory and falls on average within 15% of the algorithm’s actual empirical per-

formance ratio on data. We further compare the empirical performance of both algorithm classes

and show that on average, the overall best heuristic is an additive benchmark that obtains 90-98%

of the expected revenue of the full-information benchmark across various initial inventory settings.

Furthermore, we show that the multiplicative approach is easier to implement compared to

the additive methods and on average obtains an expected revenue that is within 1-6% of that

achieved by additive methods, relative to the full-knowledge strategy.

3. Two detailed case studies on actual data from the retail and airline travel indus-

tries that demonstrate significant improvement in expected revenue on the order of

2-7% on average over existing practices depending on the setting. In the retail case,

we observed that our algorithms provide output in real-time with predicted gains of up to 14%

in revenue over current pricing schemes in the most unconstrained discounting settings. In the

airline case, our model predicted improvements in sales volume and revenue as high as 7-8% over

current strategies in settings when a fraction of the online population is unaware of the existence

of ancillary services. The greatest gains in expected revenue were a result of personalized pricing

targeted at consumers with lower price sensitivities, who are easily incentivized to make additional

purchases through smaller personalized discounts. Conversely, the largest growth in predicted sales

volume was dependent on product category and primarily a result of relevant recommendations,

resulting in lifts on the order of up to 10% over current practices.

1.2. Literature Review

We consider two bodies of literature most closely related to our work: constrained assortment

optimization and dynamic pricing. The first line of literature pertains to the assortment planning

problem under capacity constraints. Initial works such as Mahajan and van Ryzin (1999) consider

a single-period stochastic model under which the retailer selects a profit-maximizing assortment

of substitutable products and determines their initial stock prior to the selling period, under the

assumption that consumers choose products according to a multinomial logit model, which was

extended in Mahajan and van Ryzin (2001) to incorporate dynamic substitution effects when a

consumer’s product of choice may be stocked out. Kök et al. (2009) presents a summary of the ini-

tial works on the single-period assortment planning setting under inventory or budget constraints,

which captures extensions to other consumer choice models and various dynamic substitution
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effects. Later works such as Aouad et al. (2015) provide provably efficient algorithms under stochas-

tic demand and dynamic substitution and show that these approximations are order optimal, or

near-optimal as in Goyal et al. (2016), under general random-utility choice models. Gallego and

Topaloglu (2014) consider both assortment cardinality and display space constraints, showing that

the assortment problem is efficiently solvable while the space problem is NP hard. Another body

of works has built on the one-period problem by considering dynamic assortment optimization

that is solved distinctly for each consumer arrival. Rusmevichientong and Topaloglu (2012) and

Rusmevichientong et al. (2014) study this problem when the parameters of the consumer demand

functions are unknown. In Bernstein et al. (2015) they formulate this as a dynamic program to iden-

tify which optimal assortment of substitutable goods to offer each consumer and develop inventory

threshold policies for determining this. By contrast, Golrezaei et al. (2014) propose an index-based

inventory balancing approach for determining the optimal personalized assortments, which moti-

vates our multiplicative algorithm that extends this setting by also incorporating pricing. Topaloglu

(2009) and Jaillet and Lu (2012) present more generalized approaches to inventory balancing and

demonstrate the value of duality-based approximations of DP formulations in the context of the

network revenue management problem and dynamic resource allocation problems, respectively.

In Gallego et al. (2015) they develop an asymptotically optimal policy for this dynamic setting,

and in Li et al. (2015) and Chen and Jiang (2017) they consider further extensions under the

d-nested logit choice model and the MNLD choice model, respectively. In this work, we consider

an inventory-constrained assortment planning problem to dynamically determine the composition

of personalized product bundles. However, the bundle recommendation system we propose sets

this work apart from the existing literature in constrained assortment planning primarily because

we extend the problem to incorporate dynamic pricing. Furthermore, we do not limit our analysis

to any specific consumer choice model, nor do we assume that the assortment consists of only

substitutable goods.

The second body of work is related to dynamic pricing and cross-selling. Dynamic pricing lit-

erature, which initially focused primarily on single products, is very well summarized in Bitran

and Caldentey (2003). However, there is a vast body of more recent literature on this topic across

a wide variety of consumer utility models and considering multiple products. In Agrawal et al.

(2014) and Shamsi et al. (2014) the authors consider the online resource allocation problem under

different settings and develop efficient algorithms for maximizing long-term system revenue based

on dual price updates. By contrast, Kesselheim et al. (2014) develop an algorithm based on a scaled

version of the partially known primal problem (as opposed to dual prices) to obtain and round

fractional solutions and develop integral allocations for all requests. Tying online pricing to learn-

ing with a multi-armed bandit framework, Ferreira et al. (2016) develop an algorithm based on
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Thompson sampling for dynamically pricing multiple products under inventory constraint in order

to maximize long-run profitability. By contrast to all of these works, dynamic cross-selling grew

as its own field from economics and initially did not incorporate pricing. Cavusgil and Zou (1994)

provides an overview of the growth and expansion of this early literature. Netessine et al. (2006) is

a key pivotal work that combined these fields by analyzing models with stochastic arrivals for the

joint problem of cross-selling and pricing in which a consumer has one primary product of interest

and is offered one additional complementary product at a discounted price for both; in Rapti et al.

(2014) the authors extend this dynamic programming setting by proposing a rule-based approach

to the joint bundle selection and pricing problem. New directions such as Xue et al. (2015) consider

request for quote (RFQ) models where consumers interactively participate in the pricing process.

Recent work in Gallego et al. (2016) presents a dynamic approach to product pricing and fram-

ing to determine optimal product displays on webpages for consumers. We consider a setting in

which the bundle offer is presented as an additional option that the consumer can choose not to

purchase in favor of any other combination of non-discounted products. Thus, since all products

are also available for purchase at their full prices, we must consider the upper-level problem of

determining the time-dependent full product prices over the course of the selling horizon. Thus,

our work addresses a two-level pricing problem and aligns: (i) the lower-level personalized bundle

prices offered dynamically to each consumer, with, (ii) the upper-level full price trajectories for each

product. To the best of our knowledge, this simultaneous bi-level pricing problem is not addressed

in the cross-selling literature.

2. Problem Setting and Model Formulation

We consider a monopolist online seller that makes a dynamic bundle offer to each arriving consumer

who may choose to accept the offer, purchase individual items separately at full price, or choose

to purchase nothing at all, as shown in Figure 1 below.

Figure 1 This is an example of a personalized bundle
recommendation when a consumer is offered
the set A, B and C at a 20% discount, other-
wise they can choose from any combination
of A, B, C and D at full price.

If the consumer chooses to purchase either the bundle or some other collection of items at

their full prices, we assume that they only purchase one unit of each item. Let us consider a set

of items i = 1, ..., n denoted by Ŝ. These items’ prices may affect one another and they can be

complementary, substitutable, or even independent as is often the case in the travel industry. Given

a captive online consumer considering products within Ŝ, or a specific ticket itinerary for which

Ŝ is the set of ancillary goods, our model offers a relevant bundle of products from Ŝ. We are
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interested in cases where Ŝ contains inventory-constrained products that we leverage to maximize

expected long-run profitability by accounting for future demand. Therefore, we consider a finite

selling horizon with a fixed number of periods T with no replenishments. Each arriving consumer is

uniquely described by a combination of categorical and continuous features related to preferences,

demographics, purchase history, loyalty, and online shopping context. Thus, we do not consider a

discrete set of consumer types as is traditionally done in segmentation and instead assume that

there is an infinite set of continuous consumer types. Furthermore, since we address a bi-level

pricing problem, we index consumers within a given period t by (k, t), where k= 1, ...,Kt and the

total number of arrivals Kt in each period can differ. We define the full price of item i in period t

as p̄ti; thus, the full price p̄Sk,t of a bundle Sk,t offered to consumer (k, t) is defined by,

p̄Sk,t =
∑

i∈Sk,t

p̄ti (1)

The full prices p̄ti are not necessarily fixed throughout the horizon and may follow some dynamic

trajectory, summarized in each period by vector p̄t = [p̄t1, p̄
t
2, ... , p̄

t
n]. We thus define price vector,

pSk,t
= [p̄t, pSk,t ] = [p̄t1, p̄

t
2, ... , p̄

t
n, pSk,t ], (2)

in which we append the discounted price of the personalized bundle for consumer (k, t) to the vector

of full price settings for period t. It is common in business practice for sellers to consider discrete

price ladders. Therefore, we make the assumption that we have a fixed set of price levels for every

product i from which we can choose to construct bundle offers. We define the individual consumer

propensity-to-buy ξk,tS (pSk,t) as the probability that consumer (k, t) will purchase the combination

of products S when their personalized bundle Sk,t is offered at price pSk,t and all products i /∈ Sk,t
are offered at their full prices, where it is possible that Sk,t ⊂ S. We will refer to eSk,t as the bundle

unit vector that takes the value 1 for all i ∈ Sk,t and 0 otherwise. Finally, we define Ik,t as the

vector of inventory levels of all i ∈ Ŝ at the time when consumer (k, t) arrives, written explicitly

as Ik,t = [Ik,t1 , Ik,t2 , ... , Ik,tn ]. This leads to the following decision variables for any given consumer

(k, t): the optimal bundle to recommend Sk,t ∈ Ŝ, and, its personalized price pSk,t ≤ p̄Sk,t .

2.1. Dynamic Programming Formulation

We formulate this personalized bundle offer problem ideally as a dynamic program, as is traditional

in the revenue management literature. This results in a complex model that is difficult to solve,

as we discuss below in Section 2.2. This DP approach leads us to the following formulation (3),

defined by {Dynamic}∀(k,t):

maximize
Sk,t⊂Ŝ, pSk,t

, p̄ti

Vk,t(I
k,t)

subject to Vk,t(I
k,t) =

∑
S⊂Ŝ

ξk,tS (pSk,t
) ·

((∑
i∈S

p̄ti

)
+
(
pSk,t − p̄Sk,t

)
·1{Sk,t⊂S}+Vk+1,t(I

k,t− eS)

)
VKt+1,t(I) = V1,t+1(I) ∀Kt, t= 1, ..., T

(1− ε)p̄Sk,t ≤ pSk,t ≤ p̄Sk,t ∀(k, t), Sk,t ⊂ Ŝ

(3)
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We solve this problem for every consumer k = 1, ...,Kt who arrives within each period t= 1, ..., T

and connect the periods t through the forward-looking inventory cost-to-go functions V (·). Note

that in addition to the offer for each consumer, the full price trajectories p̄ti over all products

in all periods are also decision variables in this model. However we note here that unlike the

consumer-level bundle offer decisions, these prices are calculated periodically in an upper-level

pricing problem at the conclusion of each period t, then held fixed for that period and updated

with the most currently inventory for period t+ 1.

The objective function consists of several terms: the first term captures the probability ξk,tS (pSk,t)

with which a consumer (k, t) purchases some set of products S ⊂ Ŝ, , summed over all possible sets

S (note that this captures the cases in which S is a superset that encompasses the personalized

offer Sk,t); the second set of terms account for the expected revenue from consumers purchasing

individual items at full price, as well as from accepting the bundle offer (at which point the

discounted bundle at full price p̄Sk,t is removed from the summation of p̄ti). Note that we do not

include the probability of a “no-buy” because this is innately captured in the set of collections of

products S ⊂ Ŝ that also includes the null set ∅, corresponding to the consumer’s decision to make

no purchase. This is a complex dynamic programming problem because it relies on knowledge of

future demand and inventory levels to utilize Vk+1,t(·) in making bundle offers. The first constraint

accounts for the recursive transition of the inventory revenue-to-go function V (·) between periods

and the second constraint limits the depth of the bundle discount p̄Sk,t and ensures that the

bundle offers remain attractive. This DP formulation is intractable for the online setting due to

the forward-looking nature of the functions V (·) and the need to calculate the full prices p̄ti for all

products in all periods.

If we were given the full price trajectories p̄ti for every i, along with the values for the functions

V (·) at all possible inventory levels and bundle combinations, then solving formulation (3) would

be an enumeration over all the discrete prices and bundle combinations. We remark that even if

provided with all of these values, this enumeration problem could potentially suffer from the curse

of dimensionality. However, appropriate limitations to ensure a small size of Ŝ would reasonably

bound the number of bundle combinations and thus make this problem tractable. Therefore, if we

were provided with the full price trajectories p̄ti and all the precise values of V (·) (which become

a constant independent of the current period’s decisions in the absence of inventory constraints),

we could use the above model to make optimal individually tailored offers of bundles Sk,t at prices

pSk,t for each consumer in a tractable manner.
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2.2. Challenges

While we are interested in optimally solving {Dynamic}∀(k,t) for every consumer in real-time,

realistically the consumer arrival sequence, full price trajectories, and values of V (·) are unknown.

This results in three fairly sizable challenges: (i) how to estimate a personalized propensity-to-buy,

(ii) how to determine the upper-level prices p̄ti and align them with offers (Sk,t, pSk,t), and, (iii) how

to estimate the values of V (·) while maintaining tractability in an online setting.

Developing a personalized bundle recommendation at an individually tailored price requires

the most granular possible estimate of a consumer’s propensity-to-buy. Traditional methods lack

distinctive information that distinguishes a customer from others in their segment. Therefore, to

address (i), we use machine learning methods to fit high-dimensional models that capture all of

these features through covariates as described in detail in Section 4. Considering an inventory-

constrained problem with a finite horizon, results in challenge (ii) of determining and incorporating

an upper-level pricing strategy into our model that alters the full prices of individual products over

time. Thus, we propose a method (described in Section 3.1) for determining these price trajectories

within our problem framework as follows: at the beginning of each t we calculate the full prices p̄ti

across all products i and fix them for the duration of that period, after which we update them at the

beginning of the next period t+1 using current inventory levels after consumer demand is realized.

This rolling approach coordinates the upper-level full price trajectories with the lower-level bundle

offers (which are based on the values of p̄ti) made to individual consumers within a given period.

Finally, we address (iii) by developing various approximation approaches to the forward-looking

inventory balancing functions V (·). A common linear programming approximation, in which we

solved a series of LPs to estimate the values of V (·) at various inventory levels (as is commonly

done in the revenue management literature, see Talluri and van Ryzin (2006)), runs far too slowly.

Thus, we propose two classes of approximation algorithms in Section 3, multiplicative and additive

methods, that are practically tractable and therefore applicable in an online setting.

2.3. Clairvoyant Formulation

Before presenting any approximation algorithms, we first generalize the dynamic programming

problem to a “full-knowledge” model to establish a benchmark against which we can compare any

algorithm’s performance. We assume that the entire consumer arrival sequence {k, t}t=1,...,T

∀k=1,...,Kt
is

known in advance, as well as the full price trajectories p̄ti for all products i in all periods t, which
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we assume are provided to us by an oracle. In order to model this perfect information setting we

propose the following formulation that we refer to as the {Clairvoyant} problem:

maximize
y
k,t
Sk,t

∑T

t=1

∑Kt

k=1

∑
Sk,t⊂Ŝ

([∑n

i=1
φk,ti (pSk,t

) · p̄ti
]

+φk,tSk,t
(pSk,t

) ·
(
pSk,t − p̄Sk,t

))
· yk,tSk,t

subject to
∑T

t=1

∑Kt

k=1

∑
Sk,t⊂Ŝ

[
φk,ti (pSk,t

)
]
· yk,tSk,t

≤ I0
i ∀i∑

Sk,t⊂Ŝ
yk,tSk,t

= 1 ∀(k, t)

yk,tSk,t
≥ 0 ∀(k, t), Sk,t ⊂ Ŝ

(4)

The decision variables yk,tSk,t,pSk,t
1 correspond to the probability with which bundle Sk,t is offered

at price pSk,t to consumer (k, t) when the full product prices are set at p̄ti. The discrete price

setting allows us to relax these initially binary decisions to continuous variables, resulting in the

above linear programming formulation. For this formulation we define the individual consumer

propensity-to-buy φk,ti (pSk,t) as the probability that consumer (k, t) will purchase item i if their

personalized bundle Sk,t is offered at price pSk,t . Unlike the prior exclusive definitions of ξ(·) for

formulation (3), these propensities-to-buy are defined as follows: φk,ti (pSk,t) captures all of the

combinations in which product i can be purchased when only the bundle offer is discounted and

all other products remain at full price p̄ti. For example, if consumer (k, t) is offered bundle Sk,t at

price pSk,t , we can define the probability they purchase product i in some combination of other

products S at full price as φk,tS (p̄tS, pSk,t). Thus, the complete probability of (k, t) purchasing i is

given by,
φk,ti (pSk,t

) =
∑

S⊂Ŝ:S3i
φk,tS (p̄tS , pSk,t) (5)

We similarly define the probability φk,tSk,t(pSk,t) with which a personalized bundle Sk,t is purchased

as,
φk,tSk,t

(pSk,t
) =
∑

S⊂Ŝ:S⊃Sk,t

φk,tS (pSk,t
) (6)

Note that the above probability includes the scenarios in which the consumer purchases full-

priced items in addition to the bundle Sk,t, meaning that their purchase set S contains Sk,t. Thus,

formulation (4) is the offline version of formulation (3) in which the entire sample path of consumer

arrivals and full price trajectories are both known before the start of the horizon. Therefore, the

objective function is an expectation of the total revenue taken over the consumer purchase decisions

for a specific known sample path {k, t}t=1,...,T

∀k=1,...,Kt
, and is thus an upper bound on the expected

revenue of any online algorithm. Notice that this problem is also subject to inventory constraints

defined through initial stock levels I0i for all products i= 1, ..., n, because it allocates bundle offers

according to expected consumer behavior over the entire horizon. By definition of the Clairvoyant,

1 We define yk,t
Sk,t,pSk,t

as being dependent on both the bundle composition and price. However, under discrete pricing,

we can enumerate the collection Ŝ of all bundles at all prices so each Sk,t is inherently defined by its corresponding

price. Thus, for ease of notation we neglect the additional subscript of pSk,t and write the summations over ∀Sk,t ⊂ Ŝ.
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this problem eliminates the need for forward-looking inventory functions because it identifies the

optimal bundle Sk,t for every consumer (k, t) utilizing its full knowledge of all future arrivals. This

benchmark is not actually attainable because it relies on precise future knowledge that is never

available to any practical online model. However, since this formulation provides an upper bound

on the expected profit for our setting, we will use its objective value {Clairvoyant} as an “optimal”

best-case benchmark against which we measure the performance of all proposed algorithms.

3. Approximation Algorithms

The primary source of complexity in our model stems from the calculation of the expected future

revenue as a function of the inventory levels. Therefore, our main goal in this section is to develop

methods that approximate the V (·) terms in formulation (3). We also aim to address the second

challenge that arises from the consideration of products with limited stock, which is the incorpo-

ration of inventory-based dynamic pricing strategies that optimize the full product prices p̄ti over

the course of the selling horizon. Thus, we also aim to develop approximation algorithms within a

framework that aligns: (i) the bundle offer pricing in our lower-level recommendation system for

individual consumers within each period t, with, (ii) the global upper-level full price trajectories.

3.1. Multiplicative Approximation Algorithm

We first consider the following approach to our lower-level bundle recommendation problem, which

incorporates the value of inventory through a multiplicative penalty on the bundle terms from the

objective function of {Dynamic}∀(k,t). This multiplicative penalty can be viewed as an approxima-

tion to the negative counterpart of the dual variables corresponding to the inventory constraints

in formulation (4) of the Clairvoyant problem. Using this multiplicative approach allows us to

maintain the previous trade-offs captured in the objective function of the DP problem in formu-

lation (3), but include inventory balancing through a tractable calculation that does not require

demand forecasting. In formulation (7) we present the general formulation for this multiplicative

approximation algorithm, denoted by {MultAlg}∀(k,t), which requires the full price trajectories p̄ti

as inputs (the procedure for computing the values of p̄ti is below).

{MultAlg}∀(k,t) = maximize
Sk,t⊂Ŝ, pSk,t

[
n∑
i=1

φk,ti (pSk,t
) · p̄ti ·ψ

(
Ik,ti
I0
i

)]
+φk,tSk,t

(pSk,t
) · (pSk,t − p̄Sk,t) ·min

i∈Sk,t

ψ

(
Ik,ti
I0
i

)
subject to (1− ε)p̄Sk,t ≤ pSk,t ≤ p̄Sk,t ∀(k, t), Sk,t ∈ Ŝ

(7)

The above formulation has a similar structure to the objective function of {Clairvoyant}. However,

the key difference between this algorithm and formulation (4) lies in the use of the multiplicative

inventory penalty ψ(·) to determine bundle composition and pricing using an approach that requires

no estimation of future consumer behavior, as was previously the case in the use of the V (·) func-

tions in formulation (3). This penalty ψ(·) is a twice-differentiable, monotone increasing, concave
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function on the interval [0,1] and takes as input the fraction of remaining inventory Ik,ti /I0i at the

time of arrival of consumer (k, t). We consider several different forms for this function including lin-

ear, ψ(x) = x; polynomial, ψ(x) =
√
x; and exponential, ψ(x) = (1− e−x). In this work we consider

the joint problem of bundle composition and pricing, and therefore introduce the minimization of

ψ(·) over all i in bundle Sk,t, which penalizes bundles composed of items with low stock and instead

promotes products with excess inventory. We also introduce a corresponding set of ψ(·) functions

to the individual product purchases to approximately account for the corresponding V (·) functions

that would influence those terms in the original dynamic programming formulation.2 By avoiding

any demand forecasting, this approach reduces the recommendation problem to an enumeration

over all possible bundles and prices, which is typically small in scale given limitations on the size

of Ŝ. However, note that the choice of functional form for the multiplicative penalty is important

to the implementation of this algorithm. We show in Section 4.3 that a choice of polynomial ψ(·),

which is often a good approach when approximating a function whose true form is unknown, may

result in lower empirical performance on the order of up to 6% when compared to the performance

of a more sophisticated exponential ψ(·), relative to the full-knowledge Clairvoyant strategy. Nev-

ertheless, we also find that our results are fairly robust to the choice of ψ(·) and still capture 81% of

the expected profit of the full-knowledge approach, even in the most inventory-constrained cases.

We further improve on this algorithm by introducing a rolling extension that augments formula-

tion (7) to use ψ
(
Ik,ti /max{Iti − 1,1}

)
instead of ψ

(
Ik,ti /I0i

)
for all consumers k= 1, ...,Kt arriving

during period t. This periodic approach increasingly emphasizes the difference between products

with highly depleted stock and those with great excess as the horizon progresses. Note that we

use Iti − 1 as opposed to Iti . Intuitively, if we set the denominator of ψ(·) to Iti at the start of each

period t, the inventory levels of all available products initialize to 100% and become equivalent in

terms of ψ(·) for first-arriving consumers (k= 1, t). Therefore, subtracting one unit consistently dif-

ferentiates the fractions Ik,ti /max{Iti − 1,1}. This extension is equally tractable and has improved

empirical performance over the approach in formulation (7), as shown in Section 4.3.

Calculating Upper-Level Full Price Trajectories

To address our second challenge of aligning upper and lower level pricing strategies, note that

the multiplicative algorithm only requires individual full product prices p̄ti to make bundle offers.

Due to lack of demand forecasting, formulation (7) cannot adequately calculate these full price

2 If we directly replaced each V (·) term from the DP in formulation (3) with a minimization over ψ(·) we would get:∑
S⊂Ŝ ξ

k,t
S (pSk,t

) ·
(∑

i∈S p̄
t
i

)
·min
i∈S

ψ(Ik,ti /I0
i ) instead of the first term in formulation (7). However, we instead consider

a good upper bound on this term without the minimization, which provides us with this approximation algorithm.
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trajectories. Thus, we propose an upper-level method for calculating the time-dependent full price

trajectories, denoted by p̂ti as they are now estimated quantities, using the following formulation:

max
p̂t, ∀t

T∑
t=1

n∑
i=1

Dt
i(p̂

t) · p̂ti

subject to

T∑
t=1

Dt
i(p̂

t)≤ I0
i ∀i

(8)

We define Dt
i(p̂

t) as the expected demand for product i during period t based on all current product

prices p̂t, which can be calculated using expected future consumer arrival rates based on historical

transactions. Based on the prior definition of φk,ti (pSk,t) from Eq. (5), Dt
i(p̂

t
i) is the expected

aggregate demand for product i and incorporates all combinations S in which i is purchased along

with other products at full price. Thus, formulation (8) is a tractable linear programming problem,

as shown in Talluri and van Ryzin (2006). As is commonly done in practice, we implement this

using a rolling approach by periodically re-solving the above LP at the beginning of each period

t using updated inventory levels. The output of this upper-level problem provides us with a set of

full price trajectories p̂ti for all products i in all periods t. By holding these fixed for the duration

of a given period t, we can now easily solve the lower-level bundle recommendation problem using

the multiplicative algorithm.

3.1.1. Performance Ratios of the Multiplicative Approximation Algorithm The

strength of the multiplicative approximation algorithm lies in the fact that it only assumes broad

conditions on the structure of ψ(·) and φ(·). This eliminates the need for demand forecasting and

is thus applicable to the majority of possible demand groups Ŝ and models φ(·). However, note

that the full price trajectories utilized by our algorithm from the upper-level problem may differ

significantly from those selected by the full-knowledge Clairvoyant strategy. Therefore, we define:

αti =
p̂ti
p̄0
i

∀i, t, where p̂ti are full price trajectories chosen by formulation (8), and,

βti =
p̄ti
p̄0
i

∀i, t, where p̄ti are optimal price trajectories provided by an oracle to the Clairvoyant in formulation (4).

(9)
In this multi-period setting, for a given sample path {k, t}t=1,...,T

∀k=1,...,Kt
, we show the following result.

Theorem 1. Given a fixed adversarial sequence of consumer arrivals (k, t) and time-dependent

trajectories of full product prices p̂ti from formulation (8) defined through αti for all products i and

periods t, the worst-case competitive ratio of our multiplicative algorithm {MultAlg}∀(k,t) relative

to the full-knowledge strategy of {Clairvoyant} when choosing personalized bundle composition and

prices as well as the global full prices p̄ti is bounded by,

1 ≥
{MultAlg}∀(k,t)
{Clairvoyant} ≥ min

(I0min,x):x≤1− 1
I0
min

l
I0max

∑T
t=1

∑Kt

k=1R
k,t
min− l

I0min
· 1∑n

i=1 p̄
0
i

∑T
t=1M

t

βmax · l
I0min
·
∫ 1

x=1+ 1
I0
min

ψ(y)dy+ 1−ψ (x)− l
I0max
· 1∑n

i=1 p̄
0
i

∑T
t=1M

t

The parameters are explicitly defined as follows: I0min is the minimum initial inventory level across

all products i ∈ Ŝ, defined by I0min = min
i=1,...,n

I0i , I0max is similarly the maximum across all initial
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inventory levels, Rk,t
min is the minimum of the product of propensity-to-buy φk,ti (pSk,t) with the nomi-

nal price discount level αti across all i∈ Ŝ for consumer (k, t), defined by Rk,t
min = min

i
φk,ti (pSk,t) ·α

t
i,

M t is defined as the maximum revenue loss from bundle discounting in period t that is defined explic-

itly in Proposition 1 of Appendix A as M t = max
Sk,t⊂Ŝ,dSk,t

∑Kt

k=1

∑
i∈Sk,t

φk,tSk,t(p̄Sk,t) · p̄
t
i · (1− dSk,t),

where dSk,t is the bundle discount price ratio pSk,t/p̄Sk,t.

The proof of this theorem is provided in detail in Appendix A. Notice that if we were to remove

pricing from formulation (7) the resulting problem would identify the most relevant bundle of

products to offer, while still allowing consumers to purchase any other combination S 6= Sk,t of

products where all products (including the bundle Sk,t) are at full price. Similarly, if we were to

remove bundling but continue pricing, the problem would reduce to identifying the best single-

item discount offer from among products i∈ Ŝ, while allowing the consumer to purchase any other

products at their full price. Thus, in the combined setting in which both bundling and pricing are

removed from the problem, the above bound reduces to the result in Golrezaei et al. (2014). We

empirically evaluate the performance of this ratio in realistic scenarios by using actual data from

our case studies to generate the results in Figure 2 below.

Figure 2 This plot shows the empirical
value of the bound as a function
of the ratio between lowest ini-
tial inventory I0min and the high-
est level setting I0max across all
products, when all else is held
constant.

Notice that this bound depends on the choice of the inventory penalty ψ(·) and will vary depend-

ing on its functional form. Furthermore, the initial stock levels I0i dictate the extent to which the

problem is constrained by inventory, and thus the extremity of the lower bound. Remark that the

larger the gap between I0min and I0max, the more conservative the lower bound, as shown in Figure

2. Intuitively, a less inventory-constrained problem with higher initial inventory settings will result

in a significantly tighter bound as there is inherently less error in the multiplicative approach

relative to the full-knowledge strategy due to the fact that the consideration of future consumer

behavior becomes less critical. Overall, we find that more inventory-constrained instances with

limited discounting opportunity due to initially low full price settings generate the most extremely

conservative values of the above bound. However, as we demonstrate in Table 7 in Section 4.3, the

empirical performance of the bound on the multiplicative algorithm on actual data falls within 7%

of its actual performance relative to a full-knowledge strategy across all possible inventory cases.

We conduct an in-depth computational analysis with various functional forms for this multiplica-

tive penalty algorithm, the results of which are summarized in Table 4 in Section 3.2 and Table
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5 in Section 4.3 using real industry data from our case studies. We find that the empirically best

multiplicative algorithm utilizes an exponential form for the penalty function and obtains 70% of

the expected revenue achieved by the full-knowledge strategy in highly constrained inventory cases,

which improves to 97% in the less constrained cases. We will refer to this approach as the expo-

nential multiplicative penalty algorithm (EMPA) for the remainder of the work. By implementing

the rolling version of the EMPA, we can improve these results to 72% and 97.4%, respectively.

3.2. Additive Approximation Methods

The multiplicative algorithm provides a tractable approach with analytical guarantees that does

not need to account for demand forecasting. Therefore, in this section we develop a second class

of approximation algorithms to use as benchmarks in order to evaluate the empirical value of con-

sidering future consumer behavior. Based on well-known methods from the DP literature such as

problem decomposition and Lagrangian relaxation, for example as presented in Hawkins (2003),

we construct two additive approaches to approximating the inventory functions V (·) in the lower-

level bundle pricing and selection problem. While these approaches incorporate demand forecasting

and are therefore more accurate, they suffer from the curse of dimensionality and rely on peri-

odically re-optimized solutions of the upper-level LP problem given by formulation (8). Thus,

additive methods are not as efficient to implement in real-time as the multiplicative approach,

which is only marginally less efficacious in performance. In Section 4.3 we show that on average the

multiplicative algorithm empirically performs within 1-6% of these additive approximations when

compared to the full-information benchmark. Thus, the multiplicative approach provides a much

easier implementation method at a very marginal cost in terms of expected revenue.

3.2.1. Separable Item Additive Algorithm (SIAA) We aim to estimate the functions

V (·) efficiently by decomposing the expected future revenue function V (I) of a given inventory

state I into the sum of the expected future revenues fi(Ii) for each of the items in demand group

Ŝ. Thus, we propose the following separable-by-item approximation:

Vk+1,t(I)≈
∑
i∈Ŝ

fk+1,t
i (Ii), where,

fk+1,t
i (Ii) =

T∑
τ=t

p̄τi ·min{δτDτ
i (p̄τi ),Cτi }, and Cτi = {Cτ−1

i − δτDτ
i (p̄τi )}+, initialized at Cti = Ii.

(10)

The values of Dt
i(p̂

t
i) and p̂ti in this expression are provided by output of the periodically re-solved

upper-level LP problem defined by formulation (8) in Section 3.1. We define δt as the fraction of

time remaining in the period t during which consumer (k, t) arrives, implying that δτ = 1 for all

periods τ after the current one. Each of the terms in fk+1,t
i (Ii) from the second line of Eq. (10)

considers the minimum between the expected demand for product i in that period and its expected

available inventory. We capture this by defining inventory levels Cτ
i recursively for all periods τ
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after the current one and initializing the inventory level at Ii. Thus, Eq. (10) provides us with

an estimate of expected revenue fk+1,t
i (Ii) from product i over the remainder of the horizon given

current inventory Ii. Leveraging this estimation for every product i in the approximation approach

from the first line of Eq. (10), we develop a tractable algorithm that depends only on current

inventory levels and fixed quantities that are known entirely in advance. We define this method as

the SIAA, Separable-Item Additive Algorithm, which allows us to provide each individual customer

with a personalized bundle offer in real-time at significantly less computational cost than the

original dynamic programming formulation.

3.2.2. Additive Lagrangian Algorithm (ALA) Based on the above framework we now

propose a more sophisticated approach, which we refer to as the Additive Lagrangian Heuristic

(ALA). If we consider the SIAA more closely, we observe that the separable-by-item decomposition

omits any terms related to the expected revenue from bundle purchases at possible bundle discounts.

Therefore, we construct a second additive algorithm that incorporates these additional terms.

Recalling the approximation framework from Eq. (10), we propose the following extension to include

bundle purchases:

Vk+1,t(I)≈
∑
S⊂Ŝ

fk+1,t
S (I), where,

fk+1,t
S (I) =

T∑
τ=t

p̄τS ·min

{
δτDτ

S(p̄τS), min
i∈S
{Cτi }

}
, where Cτi =

Cτ−1
i − δτ

 ∑
S⊂Ŝ:S3i

Dτ
S(p̄τS)


+ (11)

The extension here is the additional consideration of bundle terms at bundle prices, as captured

by fk+1,t
S (I). Instead of solving the LP problem from formulation (8), which only outputs single-

item trajectories and demand, we formulate an extension in which p̄tS are also decision variables.

To improve tractability, we further relax this problem by introducing the inventory constraints

into the objective function using Lagrange multipliers and ultimately obtain an LP formulation

extension of (8) that provides the distinct sets of trajectories p̄ti, for individual products i, and

p̄tS, for combinations S. (In this extended setting DS(p̄tS) is the bundle demand exclusively for

bundle S.) Thus, for any consumer we can estimate the cost-to-go Vk+1,t(I) using Eq. (11), which

includes the expected revenue from both individual items and bundle purchases, accounting for

the additional revenue not captured by the SIAA due to bundle discounts. This approximation

is similarly tractable and in Section 4.3 we show that the ALA achieves empirical results on

the order of up to 5% higher than the SIAA in average expected revenue relative to the full-

knowledge strategy. Ultimately, we empirically demonstrate in Section 4 that on average these

additive approximations capture 92-98% of the optimal Clairvoyant strategy across a range of

inventory constrained instances. Therefore, these approaches serve as strong benchmarks against

which we can measure the performance of the multiplicative algorithm as opposed to comparing

only to the Clairvoyant strategy, which is unattainable in realistic business practice.
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4. Industry Driven Case Studies and Computational Results

To test the performance of our proposed algorithms we conducted two extensive case studies using

data sets from industry partners. In Section 4.1 we analyze online ticket transactions from a premier

airline with a set of ancillary goods offered in addition to the ticket itself. Our models generated

an expected increase in revenue and sales volume to be on the order of 2-7% over existing practices

depending on the setting. Section 4.2 presents the analysis of data from a two year selling horizon of

a large online e-tailer. We benchmark against their actual pricing strategies and observe expected

revenue gains up to 14% in the most unconstrained discounting scenarios. Given that both indus-

tries operate on tight margins, these results are promising for practical business implementation.

We conclude with an in-depth comparison of the two classes of approximation algorithms in Section

4.3 to demonstrate the trade-off between approximation accuracy and tractability.

4.1. Airline Case Study

According to the International Air Transport Association (IATA), the airline industry doubled in

revenue from $369B in 2004 to approximately $746B in 2014. As a result, travel products such

as airline tickets are becoming commoditized and therefore airlines must price competitively and

operate on razor-thin margins. Despite this, consumers are increasingly willing to pay for unique

experiences, which airlines have begun offering in the form of ancillary services that will customize

and improve the journey for the traveler. These ancillary goods are offered to consumers at ticket

purchase and customize their journey before, during and after the flight through services such as:

seat selection and upgrades, VIP lounge access, in-flight wi-fi access, priority baggage handling

and various destination-related deals. Offering these services as personalized recommendations for

potential passengers can greatly increase traveler intimacy during their journey and improve sat-

isfaction with the airline. Thus, in the context of this industry, our goal is to make personalized

bundle offers consisting of ancillary goods that complement the ticket itinerary under consider-

ation. Since airlines employ various revenue management methods for setting their ticket prices,

we consider the ticket price to be externally fixed and aim to target a captive customer with a

customized and discounted bundle of ancillary products.

4.1.1. Overview of Data, Modeling and Simulation Design We analyzed a one-month

period of approximately 640,000 ticket transactions from a premier international airline. There

are no repeat consumers in this short time frame and thus no details from previously purchased

flight itineraries. Every transaction is described by a set of features categorized into two types: (i)

personal consumer information including tier level, mileage balance, time since joining rewards,

and number of previous business and economy flights taken; and, (ii) contextual itinerary booking

data that includes transaction date, fare paid (USD), connection time, time to departure, day of
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travel, and number of passengers. We used the purchase history information for the following ancil-

lary products: in-flight wi-fi access, premium on-board entertainment, priority security, priority

boarding, priority baggage handling, seat upgrades, checked excess baggage, VIP lounge access,

gourmet in-flight meals, and 2,000 or 4,000 bonus miles. We were provided with the corresponding

historical prices for these products that varied across flight itineraries and from which were able

to estimate elasiticities. These ancillary product prices are summarized in Table 8 in Appendix

B.1. Note that in this data set the products are independent by definition since they correspond to

distinct unrelated products that are neither substitutable nor complementary and are priced sepa-

rately. Given all of this personalized information, our goal is to use the approximation algorithms

to make personalized bundle offers consisting of relevant ancillary products for every consumer in

the historical arrival sequence.

Developing Consumer Profiles and Demand Estimation

We used k-means clustering to analyze the personalized features in the data and develop distinct

consumer profiles that we used to map the historical transactions for demand model estimations.

We constructed 7 unique consumer personas ranging from premium business travelers to leisure

individuals, the distribution of which is shown in Figure 9 in Appendix B.1. The clusters were

developed using a combination of personalized consumer features and itinerary context features.

For example, a premium business traveler is a single passenger with short time until departure

on a week day, higher tier level, higher fare, and previous premium flights. By contrast, a leisure

individual traveler is a single passenger with a lower tier level and longer time before departure on a

Thursday, Friday or Saturday. We fit a model for every (persona profile, product) pair, as described

in detail in Appendix B.1. The independence property between products resulted in defining the

purchase probability of any bundle φS(·) as the product of the purchase probabilities φi(·) of all

the products i in that bundle S. We estimated these models using logistic regressions on (persona

profile, product) pairs and ultimately produced an exhaustive set of logistic MNL models, which

had an out of sample weighted mean absolute percent error (WMAPE) of 0.12 on average across

personas. We found that the coefficients for personalized features such as tier level, previous flights

and miles balance were both significant and strongly positive across all (persona, product) pairs,

indicating that personalization plays an important role in individualized propensities-to-buy. Note

that in traditional segment-level models every consumer profile has the same fixed propensity-to-

buy for any given product. By contrast, we automatically map each consumer to a persona profile

for which we built a complete set of personalized (persona, product) models that are populated with

this consumer’s unique features to produce an individualized propensity-to-buy for any product.

Simulation Design

We designed a simulation to test our model and observe the effects of personalized pricing, product
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recommendation and inventory management on expected revenues. We analyzed two settings for

making bundle offers: (1) under unconstrained inventory as in the data set, and, (2) injecting

inventory constraints through reasonable choices of ancillary products that could have restricted

quantities. We considered each consumer in the sequence and used our offline clustering approach

to automatically map this traveler to one of the persona profiles. Then, the recommendation model

solves the lower-level bundle offer problem using the corresponding set of individualized demand

models for all available ancillary products to decide which optimal bundle to offer.3 The model

then recommends this bundle to the traveler who chooses to accept the offer, or purchase any

combination of the ancillary products at their full prices, or make no purchase at all. We repeat

this over the 640,000 historical consumer arrivals for 5,000 iterations and analyze the average

performance ratios of our model relative to benchmark methods. In both settings we benchmarked

our model against the baseline approach of current practice in which no personalized pricing is

offered and all of the ancillary products are available at their full prices. Under the most current

state of the art practice, the full prices of all ancillary products are now held constant throughout

the selling horizon. Therefore, we do not solve the upper-level pricing problem in this case study

and instead consider the full prices of all products to be fixed at the values provided in Table 8. Note

that these prices are inputs to the online bundle pricing problem; therefore, treating them as fixed

over the selling horizon does not impact our ability to solve the bundle pricing and recommendation

problem.

4.1.2. Results The results are organized according to the two settings described above. Under

(1) we analyze the effects of personalized bundle offers, then introduce the concept of lost sales to

further enhance the impact of relevant product recommendations when consumers are unaware of

the existence of ancillary products. We explain the design of (2) but discuss results in Section 4.3.

Value of Personalized Bundle Offers and Business Insights

In the first setting our initial goal was to analyze the effects of personalized pricing and the

recommendation system. We considered a baseline method that offers all of the ancillary products at

their fixed full prices from Table 8 in Appendix B.1. We implemented our model and observed the

average expected gain in revenue over the baseline for all (persona, product) pairs, as summarized

in Table 1 below. Furthermore, in this simulation scenario our model produced bundle offer outputs

in 2.5ms on average. Note that under unconstrained inventory there is no need for the V (·) functions

so our model reduces to the unconstrained Clairvoyant problem and selects a personalized myopic

profit-maximizing bundle for each customer. Thus, the predicted improvements over the baseline

3 We note here that having analyzed the propensities-to-buy for all possible bundles S ∈ Ŝ we ultimately present
results in which, for tractability, we chose to limit our bundles to at most three items due to the fact that all bundles
over this size were practically negligible with respect to average contribution to expected revenue.
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are a direct result of personalized bundle offers. From Table 1 we observe that on average the

predicted gains in revenue over the baseline varied from 2% to 7% depending on the persona or

ancillary product. The overall largest predicted relative improvements in revenues are generated by

consumers with low price elasticities such as premium business and high end leisure travelers. Small

discounts targeted at these frequent high loyalty consumers result in significantly more conversions

and therefore the most expected revenue.

Average Expected Lift in Revenue Over No-Pricing Baseline

Access
Wi-fi

tain.
Enter-
Prem.

Secur.
Prior.

Board.
Prior.

Handl.
Bag

Prior.

grade
Up-
Seat

Baggage
Checked
Excess

Access
Lounge

VIP

Meals
Flight

In-

Miles
Bonus
2,000

Miles
Bonus
4,000

Avg
Total

BusTravPREM 10.1% 3.2% — — — — — — — 8.6% 3.5% 2.3%

BusTravECON 5.3% 2.3% 1.4% 2.6% 4.4% 8.7% 2.1% 9.7% 3.6% 4.3% 2.5% 4.3%

FamilyGroup 4.2% 2.5% 3.7% 4.0% 1.9% 3.7% 1.9% 5.2% 6.4% 3.9% 2.7% 3.6%

LastMinGroup 2.2% 5.0% 3.9% 2.5% 2.1% 3.1% 2.4% 4.3% 5.4% 4.5% 2.5% 3.4%

CoupleNormal 7.1% 4.2% 3.3% 2.1% 3.4% 2.5% 2.6% 3.3% 3.6% 4.5% 3.0% 3.6%

CoupleHighEnd 8.8% 7.3% 3.8% 2.1% 4.0% 5.3% 3.4% 2.9% 3.8% 7.4% 4.1% 4.8%

LeisNormal 6.5% 2.6% 2.4% 1.8% 2.6% 4.6% 3.6% 3.2% 3.8% 4.4% 2.8% 3.5%

LeisHighEnd 9.8% 8.0% 2.8% 1.9% 3.8% 9.1% 4.3% 6.5% 3.7% 8.8% 5.3% 5.8%

TotalAvg 6.7% 4.4% 2.7% 2.1% 2.8% 4.6% 2.5% 4.4% 3.8% 5.8% 3.3% 3.9%

Table 1 This table shows the lift in revenue from implementing our personalized pricing and recommendation model over
the baseline benchmark in which all products are offered to all arriving consumers at full prices. (Note: some products are not

offered to premium business travelers because they are included in their tier level benefits.)

By analyzing the corresponding counterpart table of gains in sales volume across all (persona,

product) pairs relative to the baseline, we find product-dependent effects. High elasticity personas

such as families and lower end leisure travelers see the greatest expected gains in sales volumes

across cheaper travel convenience products such as priority security, boarding, and baggage han-

dling, as well as in-flight meals. Conversely, higher-end personas have the highest predicted sales

volume gains for more luxe products relevant to frequent travelers, such as VIP lounge access and

bonus miles. Intuitively, cheaper products such as in-flight wi-fi have a relatively low elasticity and

grow unanimously in predicted revenue across all persona types, particularly among personas with

less price sensitivity that are easily converted with slightly discounted offers. These insights provide

potential marketing and pricing strategies that could improve revenues and sales volume if used in

the right combinations for (persona, product) pairs.

Impact of Context on Personalization

We also assess our model’s ability to distinguish between changes in personalized consumer features

and itinerary contexts by analyzing the differences in the average offers made in the following two

scenarios: (i) considering the same customer booking two different itineraries, and, (ii) considering

two different customers interested in the same itinerary.

In scenario (i), due to lack of purchase history, we generate repeat consumers with similar

personal features but different ticket itinerary contexts. The resulting pair of vectors has relatively
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constant personal features such as tier level and miles balance, but itinerary features such as ticket

fare, day of departure and time to departure vary. We find that our model recommends bundles

with different compositions but similar discounts. For example in one such simulation, it categorizes

the first context as a business trip and offers in-flight wi-fi and lounge access at a 5.2% discount,

while it recognizes the second trip as leisure and offers in-flight entertainment and seat upgrades

at a 6.1% discount. Since the personalized consumer features were held constant, the consumer’s

price elasticities stayed relatively constant over time and therefore the discount remained similar

across this scenario. Thus, the primary benefit in this setting comes from the model’s ability to

identify the significance of itinerary context in the absence of major changes in personal features.

Under scenario (ii) we discover the converse effect. For example, we can compare one customer of

high tier level with historical premium flights to another passenger with lower tier level traveling in a

group. The first customer is offered in-flight wi-fi and 2,000 bonus miles at a 1.8% discount, whereas

the second customer is offered in-flight meals and priority boarding at a 6.7% discount. The first

customer has low price elasticities across all products (on average below -1) and is recommended

business-related products, whereas the family traveler has much higher price elasticities (on average

between -2 and -3) and receives a greater discount on products convenient for travel with a group.

This demonstrates that the model not only identifies context-relevant items but also maximizes

expected profit through personalized pricing.

Value of Relevant Product Recommendations

We also objectively analyze the enhanced effect of product recommendation by introducing a

parameter α, which is defined as the proportion of consumers who are unaware of the existence

of ancillary products and hence do not consider them at all. This is quite common in the travel

industry, such as in cruise lines, where there is often an abundance of products that are not

explicitly offered to consumers during their online browsing process resulting in loss of potentially

interested consumers. Notice that α = 0 corresponds to the setting in which all consumers are

aware of all ancillary products and there are no lost sales, which is precisely the previous setting

from Table 1. Thus, the results for any fixed setting across varying levels of α explicitly quantify

the expected improvement from relevant product recommendations. We consider the same baseline

method as before and implement our myopic profit maximizing recommendation model without

inventory constraints. We summarize our predicted lifts in revenue over the baseline in Table 2 and

note that in this expanded setting with the lost sales included, our model still produced output in

under 3ms.

Each of the columns in Table 2 corresponds to a simulation setting in which we have imposed

limitations on our recommendation model. For example, the column “20% Max” corresponds to

comparing our recommendation model to the baseline in the case where no product in the bundle
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offer is discounted by more than 20%; this definition similarly extends to the columns “No Con-

straints”, “15% Max”, and “10% Max”. In these scenarios we reasonably limit discounts for all

products and observe that the predicted improvement in revenue over the baseline is on the order of

3-8% across all possible cases of lost sales, captured by the varying values of α. We found a similar

trend in the corresponding results for expected lifts in sales volume on the order of 2-3%. The

column “Discount by Item” imposes limitations depending on the full prices of the products; for

example, cheaper products are only discounted up to 10%, but more expensive ones are discounted

up to 15-20%. The “Bundle-Only” column is the case where the consumer is offered an optimal

bundle by our model, but they can only purchase any other subset of the bundle at full price. This

corresponds to the realistic setting where there is a vast number of ancillary products and the con-

sumer only considers those displayed to them at checkout. Interestingly, the expected improvement

in this case is comparable to the “15% Max” scenario because a consumer’s propensity-to-buy is

typically highest for the set of products selected by our model; therefore, disregarding the products

outside this relevant bundle does not heavily impact overall expected sales volume or revenue.

Thus, we conclude that in reasonable discount-limiting scenarios the expected gain in revenue from

our personalized pricing strategy is on the order of 5-6%. By definition, higher α values indicate

that a greater proportion of the population is unaware of ancillary products.

Average Expected Lift in Revenue Over No-Pricing Baseline Method

α-level No Constraints 20% Max 15% Max 10% Max Discount by Item “Bundle-Only”

α= 0 8.04% 6.11% 4.21% 3.51% 4.83% 4.15%

α= 0.05 9.48% 6.09% 5.27% 3.49% 6.18% 5.74%

α= 0.10 13.23% 6.23% 5.30% 3.80% 5.66% 6.05%

α= 0.15 14.92% 7.74% 5.89% 3.66% 6.89% 6.24%

α= 0.20 18.83% 7.24% 6.64% 5.49% 7.94% 7.61%

Table 2 This table summarizes the lifts in revenue over the no-pricing benchmark in various scenarios of lost sales (α)
ranging from 0 to 20%. When we compare across varying α levels we see the benefit of product recommendation, and as we

compare across a fixed α we see the expected improvement from personalized pricing.

The results in Table 2 are robust to changes in α and by analyzing the symmetric results for sales

volume we observe that these trends are consistent across both metrics. Therefore, the predicted

improvements on the order of 2-3% over the baseline from the lowest α = 0 level to the highest

α = 0.2 level are a direct result of exposing consumers to products of which they are otherwise

unaware through personalized and relevant product recommendations.

Value of Inventory

We lastly consider setting (2) to assess the validity of the approximation algorithms presented

in Section 3. While inventory is not inherent to this data set, we consider a subset of ancillary

products that would reasonably be limited such as VIP lounge access, on-board wi-fi, gourmet

meals, excess checked baggage and seat upgrades. We introduce initial inventory levels at quantities

that are proportional to the length of the consumer arrival sequence. The simulation is identical

 Electronic copy available at: https://ssrn.com/abstract=3241517 



 Electronic copy available at: https://ssrn.com/abstract=3241517 

Ettl, Harsha, Papush, and Perakis: Data-Driven Personalized Bundle Pricing and Recommendation
23

to setting (1), except that we consider an inventory-constrained problem across this smaller set of

ancillary products. Instead of solving a myopic personalized profit-maximizing problem, we now

solve our original DP problem using both classes of algorithms and observe the average percentage

of Clairvoyant revenue they obtain. However, we still do not solve the upper-level problem of time-

dependent full price trajectories due to the nature of the data and current industry practice. We

present our results and a detailed discussion comparing the algorithms in Table 5 in Section 4.3.

4.2. Retail Case Study

In this second case study we analyzed data from a major U.S. e-tailer over the two year sales

period from July 2011 to September 2013. We were provided with point-of-sale transaction data

for electronic fulfillment orders across 312 departments, totaling approximately 13M customers

and over 34M transactions. The data consisted of order information defined by customer IDs,

transaction IDs, SKU numbers, prices and costs at time of purchase, dates and times of purchases,

in addition to corresponding inventory data for the same period across the electronic fulfillment

centers (EFCs) responsible for these online orders. In the context of this case study our goal was to

use our algorithms to make personalized bundle offers to all of the consumers in the arrival sequence

and evaluate the average performance of our methods against reasonable industry benchmarks.

Note that in this case study the products are not independent and actual inventory levels are

known. We believe that the resulting computational study additionally demonstrates the robust

performance of our various algorithms.

4.2.1. Overview of Data, Modeling and Simulation Design While this data set con-

tained information regarding inventory levels and time-dependent full price trajectories it lacked

personalized features, such as those available in the airline case, outside of customer and trans-

action IDs. Thus, we had no individualized consumer information outside of historical purchases.

To analyze the performance of our methods, we developed personalization metrics with which we

could estimate individualized models of propensity-to-buy that provided the necessary basis for

the implementation of our proposed algorithms.

Developing Personalization Metrics, Choosing Demand Groups & Demand Estimation

Using the only available personalized consumer features of customer and transaction IDs, we ana-

lyzed the data set and recorded each consumer’s cumulative number of visits at the time of a

given transaction, along with their corresponding total cumulative expenditure up until that time.

By studying these metrics across all consumers, we developed a time-dependent loyalty mapping

consisting of three distinct categories. Each consumer’s transaction in the arrival sequence was

automatically mapped into one of the following: (i) the low frequency group with no previous

purchase history that accounted for 77% of all transactions; (ii) the medium frequency group with
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at least one prior purchase but current cumulative expenditure below the population mean, which

accounted for 17.5% of all transactions; or, (iii) the high frequency group with at least one historical

purchase, but current cumulative spending over the mean population amount, which accounted for

5.4% of all transactions. The spending behavior of the medium and high frequency loyalty groups

over time is visualized in Figures 3 and 4 in Appendix B.2. As an example, any consumer’s second

transaction would be mapped to at least the medium frequency group because their cumulative

number of prior visits is greater than 0. Note that we develop time-dependent metrics instead of

simply assigning every consumer statically to one loyalty category, so that our personalized demand

estimation learns only from past purchases and cumulative history as it would in practice.

In addition to developing personalization metrics, we also had to narrow our focus and select

specific demand groups to analyze. We chose the seasonal home decor department because these

products had historical price trajectories with steep clearance periods for excess inventory at the

end of their selling seasons. We further restricted our consideration set to the top 500 SKUs by

historical purchase frequencies over the two year period. We utilized association rule learning,

which is a branch of machine learning stemming from collaborative filtering, to extract meaningful

combinations of related products. Association rule learning is primarily used for finding groups of

items that are frequently purchased together and constructing probabilistic implications, known as

association rules, based on historical transactions. By leveraging well-known algorithms in this field

such as Apriori from Agrawal et al. (1994), and FP-Growth from Verhein (2008), we constructed

a set of approximately 25 demand groups, each of which was united by a common holiday or

seasonal theme such as Valentine’s Day, St. Patrick’s Day, Halloween, Patriotic, or Autumnal.

However, as demonstrated by Figures 5 and 6 in Appendix B.2, these demand groups were highly

interconnected through historical purchases. Therefore, we used association rule learning again

to assess the strength of the connections between products; the resulting outputs of this analysis

ultimately led to five distinct demand groups, which we used for algorithm testing. Finally, having

established consumer and product groups of interest, we proceed with the demand estimation,

which follows the approach in Harsha and Subramanian (2016) and is detailed in Appendix B.2.

Simulation Design

For every demand group, we simulated personalized bundle offers to each historical consumer based

on our estimated demand models and the true inventory levels and full product prices at the time

of their arrival. When presented with this discounted offer the consumer chose to accept it, or to

purchase any combination of available products in the demand group at full price, or to purchase

nothing at all. Unlike the airline case study, we did not consider any limitations on bundle sizes

but partitioned consumers arrival sequences based on demand groups (the largest of which was

|Ŝ| = 8 products). By aggregating the averages over the historical arrival sequences for 10,000
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iterations within each demand group, which ranged from 2,800 to 13,000 consumers, we ultimately

measured the percentage of expected Clairvoyant revenue achieved by each algorithm, and their

respective conversion rates (percentage of offers that resulted in a purchase). Due to the inventory-

constrained products, we solve both the upper-level full pricing problem and the lower-level dynamic

bundle recommendation problem in all the simulations presented in Section 4.2.2. Note that the

Clairvoyant formulation presented in (4) used inputs p̄ti as provided externally by an oracle. In the

implementation for this case study we consider a Clairvoyant in expectation, which periodically

re-solves formulation (4) at the conclusion of each period t using the known arrival sequence (within

each demand group) for the remainder of the selling horizon. By comparison, the multiplicative

algorithm and the SIAA use p̂ti from the upper-level formulation (8) that is solved periodically in

expectation over future consumer arrivals. While both upper-level methods using a rolling approach

in implementation, the full price trajectory inputs p̄ti and p̂ti vary, therefore resulting in inherent

gaps between the performance of our algorithms and the full-knowledge strategy.

4.2.2. Results Our empirical results are divided into two discussions: (1) the effects of per-

sonalization and dynamic pricing, and, (2) the value of inventory balancing.

Value of Personalization and Dynamic Pricing & Business Insights

We initially considered the bundle recommendation problem in the unconstrained inventory setting

in order to objectively measure and emphasize the impact of personalization and dynamic pricing

on expected revenue, while implementing the upper-level problem framework for determining the

full prices of all products in all periods. To develop these results we introduce three relevant

benchmarks: (i) the “actual” pricing strategy that parallels the airline case and offers every product

in the demand group at its historical full price at the time of each consumer’s arrival; (ii) a rolling

LP method that periodically re-optimizes the full prices for all products based on segment-level

expected future demand, then offers all products at these optimized fixed prices in a given period

t to all arriving consumers; and, (iii) an un-personalized version of our myopic recommendation

model that uses segment-level consumer features to make bundle offers to each arrival. The results

are presented as the average expected percentage of Clairvoyant revenue attained by each pricing

strategy and are summarized in Table 3.

Effect of Personalization on Empirical Performance

Model Personalization Percent of Clairvoyant Revenue

Actual Historical Prices X 88.2%

Rolling LP Model X 95.5%

Segment-Level Dynamic Model X 96.8%

Personalized Dynamic Model X 98.5%

Table 3 This table summarizes
the empirical performance of all the
benchmarks for the unconstrained

setting in the retail case as a
percentage of the expected

Clairvoyant revenue, averaged across
all demand and loyalty groups.

The output of personalized bundle offers was produced on average in approximately 3ms. Note

that our model does not achieve 100% of the Clairvoyant profit due to discrepancies in the pricing of
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the upper-level problem. We find that on average employing a dynamic pricing strategy over a static

approach (rolling LP) improves expected revenue by 1.3%. Furthermore, leveraging personalized

models of propensity-to-buy to make bundle offers increases the expected revenue by an additional

1.7% over a generic segment-level strategy. The overall improvement over the current pricing

strategy is on average on the order of 10%, which is very substantial in such a thin-margin setting.

Our loyalty analysis shows that majority of online consumers in a product category are one-

stop shoppers (≈40% within our selected demand groups). Therefore, the real focus of online

e-tailers should be on improving conversions of higher frequency customers. The results from Table

3 present the objective benefit in expected revenue from personalized dynamic pricing strategies.

We found that higher loyalty consumers provided the greatest expected lifts in revenue over the

“actual” pricing benchmark within each demand group. Furthermore, as shown in Figures 3 and 4

in Appendix B.2, these consumers spend substantially more than other customers and have a larger

source of historical data from which our model can develop more tailored bundle offers. Thus, we

conclude a similar result to the airline case: on average, higher frequency consumers respond the

most effectively to personalized discounted prices, and thus should be the primary target audience

for recommendation systems aiming to raise expected revenues and conversions.

Value of Inventory

We now expand our results to the inventory-constrained setting inherent in the data set in order to

analyze the practicality and performance of our approximation algorithms from Section 3 relative

to benchmark methods and the Clairvoyant strategy. The “actual” and rolling LP benchmarks

remain the same in this setting. We additionally introduce the myopic heuristic benchmark, which

offers the personalized myopically profit-maximizing bundle to each consumer as in the uncon-

strained case. We consider two metrics of performance for each method: (i) the average expected

percentage of Clairvoyant revenue achieved across all loyalty and demand groups, and, (ii) the

average conversion rate. The resulting empirical performance ratios are summarized in Table 4

below. In this setting where we implemented our approximation algorithms that depended on

inventory levels, the output of personalized bundle recommendations was produced on average in

15ms, which is still very efficient, as is necessary for implementation in an online environment.

These results show that on average all of the methods perform relatively well: the ALA obtains

97% of the expected revenue achieved by the full-knowledge strategy, the SIAA reaches 93% and

the multiplicative algorithm reaches 91%. The 4% performance gap between the additive methods

is precisely the estimation difference accounted for by the additional bundle terms included in the

ALA at discounted prices. We also observe an average expected gain of 5.5% in revenue over the

myopic approach by accounting for inventory balancing and future demand in the SIAA. Further-

more, the overall average improvement in expected revenue from our best algorithm compared
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to the “actual” historical pricing strategy from the data set is 14% across these demand groups.

Note that the while the best multiplicative algorithm (EMPA) is slightly outperformed by the

additive methods in this highly inventory-constrained setting with steep markdown periods, it still

performs within 9% of the full-knowledge strategy and within 6% of the best additive approach.

Furthermore, the EMPA is significantly easier to implement and maintains a very close empirical

performance relative to the ALA even in this challenging setting.

Table 4 This table
summarizes the empirical
performance in expected

revenue of all the
algorithms for the retail

case study as a percentage
of the full-information
Clairvoyant revenue,

averaged across all demand
and loyalty groups.

Constrained Inventory Results Across All Algorithms

Model Percent of Clairvoyant Profit Conversion Rate

Actual Historical Prices 83.2% 1.5%

Rolling LP Model 84.6% 3.1%

Myopic Heuristic 87.9% 4.2%

Exponential Multiplicative Algorithm 91.5% 6.0%

Separable-Item Algorithm (SIAA) 93.4% 6.6%

Lagrangian Algorithm (ALA) 97.5% 7.8%

Clairvoyant Model 100% 8.6%

Note that Table 4 illustrates the fact that the SIAA and ALA are empirically effective bench-

marks that perform well relative to the full-knowledge strategy, but are much more reasonable

for comparison to the EMPA because the Clairvoyant is not actually attainable in any practical

setting. Furthermore, as shown by the range of inventory constrained cases above, these results

demonstrate the significant benefit of inventory management through personalized recommenda-

tions by bundling items at a lesser discount ahead of the markdown period in order to preserve

already narrow margins.

4.3. Comparisons

We conclude by presenting comparisons between the relative performances of our algorithms, as

well as the empirical behavior of their analytical guarantees under various inventory settings.

Comparison of Approximation Algorithms

The first set of comparisons, summarized using airline case data in Table 5 below, show the expected

percentage of Clairvoyant revenue achieved on average by each algorithm. As described in Section

4.1.2, we introduce inventory constraints in the airline data on ancillary products for which this

is realistic: VIP lounge access, in-flight wi-fi, gourmet meals, excess checked baggage and seat

upgrades. Furthermore, we implement the bi-level framework and also determine the full price

trajectories of all ancillary products, which are initialized at the values in Table 8. Each column in

Table 5 corresponds to the initial inventory level of the ancillary products as a function of the total

number of consumer arrivals in the data set as described in Section 4.1; furthermore, we define

the column “unlimited” as having a higher initial stock of each product than there are consumer

arrivals, meaning that none of the products can ever be consumed entirely. The “actual” prices

benchmark corresponds to the prior baseline that offers all the available inventory-constrained
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ancillary products at their full prices. We include two additional sets of hybrid benchmarks based

on (i) a threshold policy, and, (ii) an automated procedure. In approach (i) the hybrid algorithm

makes all recommendations based on the EMPA until one of the products’ inventories is depleted

by 20%, after which all recommendations are made using the SIAA. In hybrid approach (ii), which

we consider with two parameter settings, we employ a variant of the hybrid method in Golrezaei

et al. (2014) where γ is a multiplicative weighting factor applied to the objective function of the

offer chosen by the SIAA when compared to the offer selected by the EMPA. At greater values of

γ, the SIAA recommendation is made more frequently. We discuss the implications of these hybrid

resuls in more detail below in conjunction with Table 6. For robustness, we conducted this set of

simulations on the retail data and observed symmetrical results.

Algorithm Comparison on Airline Data as Percentage of Clairvoyant Revenue

Initial Inventory Level

Algorithm Unlimited 100% 90% 80% 75% 50%

“Actual” Prices 85.1% 82.6% 78.4% 76.4% 73.1% 60.7%

Re-Optimized Rolling LP 90.4% 88.4% 85.7% 83.8% 81.5% 65.2%

Linear Multiplicative Penalty 94.2% 92.3% 87.6% 84.1% 78.7% 63.8%

SIAA (Separable-Item Additive Algorithm) 96.9% 96.1% 95.3% 92.2% 88.6% 76.6%

Polynomial Multiplicative Penalty 95.1% 92.3% 89.3% 84.8% 79.9% 64.7%

Exponential Multiplicative Penalty (EMPA) 97.0% 94.8% 92.4% 88.2% 84.2% 69.2%

Rolling Exponential Multiplicative Penalty 97.4% 95.6% 94.2% 91.1% 87.3% 72.8%

ALA (Additive Lagrangian Algorithm) 97.9% 97.4% 96.1% 93.5% 89.8% 79.5%

Threshold Hybrid (SIAA after 20% depletion) 97.3% 95.7% 94.4% 91.3% 88.9% 74.1%

Automated Hybrid: γ = 1.5 97.3% 95.7% 94.5% 91.7% 88.1% 73.7%

Automated Hybrid: γ = 2 97.4% 95.8% 94.6% 91.9% 88.4% 75.3%

Table 5 This table summarizes the performance gaps of the proposed algorithms, as well as some hybrid algorithms, in the
airline case study in percent of expected revenue attained relative to the full-knowledge Clairvoyant strategy.

From Table 5 we can conclude that the rolling implementation of the EMPA performs within

3-6% of the full knowledge strategy and within 1-2% of the ALA in less constrained inventory

settings; furthermore, it outperforms the EMPA that uses initial inventory levels I0i by 1-3% across

all inventory cases. We observe that the SIAA begins to slightly outperform the rolling EMPA

in increasingly more inventory-constrained settings, which is fairly intuitive: as it becomes more

important to avoid inventory-related costs, the difference in approximation accuracy between the

additive approaches and the multiplicative penalty becomes increasingly greater. However, the

multiplicative method requires no re-optimization and is easy to implement compared to the ALA,

while only under-performing by a margin of up to 5.6% in worst cases in while still achieving on

average at least 87% of the expected Clairvoyant revenue in reasonable inventory settings, and at

least 73% in the most constrained case. This marginal trade-off in empirical performance is largely

offset by the practicality of the multiplicative approach, as well as the fact that in less constrained

settings it performs within 1% of the best additive method. Finally, Table 5 also demonstrates the

value of choosing the correct functional form of the inventory penalty function ψ(·) depending on
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the data. For example in this case, the polynomial form of the multiplicative penalty under performs

on average by approximately 3% compared to the multiplicative algorithm using the exponential

penalty function across all inventory scenarios. Furthermore, these gaps in performance grow from

1.9% to up to 4.6% as the problem becomes more inventory constrained; thus, using an increasingly

sophisticated form of ψ(·) results in a multiplicative algorithm with stronger performance.

The results in Table 5 provide an empirical foundation for understanding the performance dif-

ferences between the algorithms relative to the Clairvoyant “optimal”, but it is also important to

gain an insight into which settings each algorithm is best suited for. Therefore, we introduced the

hybrid methods in these results, which alternate between recommendations from both the EMPA

and the SIAA. It is clear from Table 5 that under mildly constrained inventory settings, all of the

hybrids behave essentially as the EMPA. It is in the more constrained inventory cases that we

begin to see a greater gap between the performance of the hybrid methods and the EMPA, due

to the incorporation of demand forecasting captured in the additive approach. To understand the

magnitude of this effect, we provide a second set of hybrid results in Table 6.
Percentage of Offers Driven by Additive Algorithm (SIAA)

Initial Inventory Level

Algorithm 50% 20% 15% 10% 5% 2%

Threshold Hybrid 16.8% 52.6% 75.7% 87.1% 95.4% 98.3%

Automated Hybrid: γ = 1.5 31.6% 63.7% 81.9% 90.2% 94.8% 97.5%

Automated Hybrid: γ = 2 38.5% 68.8% 84.2% 92.8% 96.4% 98.6%

Table 6 This table
summarizes the percentage of

personalized bundle offers made
by each of the hybrid algorithms
that are selected by the SIAA
(as opposed to the EMPA) in

the airline case study.

The focus of Table 6 is to observe the percentage of personalized bundle offers that are made by

the SIAA (as opposed to the EMPA) in the hybrid algorithms under increasingly more constrained

inventory settings. Notice that in the 50% that column Tables 5 and 6 share in common, the SIAA

outperforms the EMPA by 4% and accounts for up to 40% of the recommendations in the hybrid

method with parameter γ = 2. Furthermore, the results of Table 5 demonstrate that the EMPA

becomes less accurate than the SIAA by a growing margin as the problem becomes increasingly

more inventory constrained. Supplementing this effect with the computations from Table 6, we

find that in the most tightly constrained scenarios, the SIAA recommendations represent 75-99%

of the offers made in the hybrid approaches. The joint results of these two table indicates that the

solution quality of the EMPA deteriorates at a greater rate than the offers selected by the SIAA,

and that in the most tightly constrained inventory scenarios, all hybrid methods ultimately resolve

to implementing the SIAA. We can conclude that this indicates that the SIAA provide significantly

better quality results under highly constrained inventory settings, whereas the multiplicative meth-

ods are more efficient and virtually indistinguishable in performance relative to additive methods

when initial inventory levels are high.

In addition to algorithm performance and suitability, we also assess the difference between the

actual composition and pricing of bundle offers made by the ALA and EMPA. We found that the
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multiplicative approach typically recommends more expensive products at a 1-2% steeper discount

than the ALA. Consider the following case of a business traveler flying in economy: the ALA

recommends seat upgrades ($50) and VIP lounge access ($50) at an average of a 2.4% discount.

By contrast, the EMPA recommends VIP lounge access ($50) and 2,000 bonus miles ($100) at

an average discount of 4.8%. This indicates that rougher inventory estimates in EMPA generate

bundles with a greater emphasis on myopic profit maximization that offset more expensive product

offers with higher discounts to increase consumer propensity-to-buy. However in expectation, these

two methods generate similar expected revenues that are on average within 10-13% of the full-

knowledge approach in less inventory constrained cases. We also conduct a series of computational

studies of the effects of marginal costs and competition on the algorithms relative to both one

another as well as the Clairvoyant model, all of which are detailed in Appendix B.3.

Empirical Comparison of Analytical Guarantees

Finally, we discuss the difference between the empirical analytical guarantees and the practical

algorithm performance in the multiplicative approach. Consider the following airline case results

for the EMPA in Table 7 in which we now also implement the upper-level full pricing problem

(similar tables for polynomial and linear multiplicative penalties echo the trends observed here).

Empirical Performance of the EMPA

Initial Inventory Level

Exp. Penalty Function Unlimited 100% 90% 80% 75%

Performance Ratio from Data 91.6% 88.0% 84.3% 82.0% 76.6%

Posterior Bound on Ratio 84.8% 79.4% 75.8% 71.3% 65.6%

Prior Bound on Ratio 80.4% 74.7% 70.9% 65.6% 58.7%

Table 7 This table presents
the average expected percentage

of Clairvoyant revenue attained by
the EMPA and the empirical

values of its analytical guarantees
that are path-dependent

(posterior bound) and
path-independent (prior bound).

The first row shows the average expected percentage of Clairvoyant revenue achieved by the

EMPA from empirical data simulations. Note that these ratios slightly decrease from the results

in Table 5 due to discrepancies between the upper-level solutions of formulation (8) and the Clair-

voyant. The second row represents the corresponding data-driven values of a path-dependent lower

bound on the performance ratio between {MultAlg}∀k,t and {Clairvoyant}, which is derived in the

proof of Theorem 1 in Appendix A and depends on the trajectory of inventory levels Iti for a fixed

consumer arrival sequence {k, t}t=1,...,T

k=1,...,Kt
. This intermediate bound is less conservative than the

worst-case result of Theorem 1, which we refer to as the prior bound in the third row. The results

in Table 7 demonstrate that the relative gaps between the algorithm’s empirical performance ratios

(first row) and the posterior bound (second row) grow increasingly as the problem becomes more

inventory-constrained; we observe the same effect between the posterior bounds (second row) and

the prior bounds (third row). Note that the empirical performance ratios relative to the Clairvoy-

ant also decrease as a function of initial inventory levels, which confirms the insight that more

limited inventory results in greater performance lag across all of the online algorithms relative to
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the full-knowledge offline strategy. We found that this result was consistent across all scenarios

in both case studies and all forms of penalty functions. However, the empirical performance of

the algorithm on the actual data is significantly better than the worst-case analytical guarantees

provided by the prior bound from Theorem 1. In the most inventory-constrained scenarios, the

gap between the empirical ratio and the prior bound reaches up to 18%, while the actual perfor-

mance of the algorithm is within at least 14% of the expected Clairvoyant revenue in reasonably

inventory-constrained scenarios, improving to within 9% on average in the least constrained cases.
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Appendix A: Proof of Analytical Result

Proof of Theorem 1 We are interested in providing an analytical guarantee on the competitive ratio between the

multiplicative algorithm and the optimal clairvoyant strategy. Specifically, we want to attain a lower bound on the

performance of the following model, whose objective we will now refer to as {MultAlg}∀(k,t):

{MultAlg}∀(k,t) = maximize
Sk,t⊂Ŝ, pSk,t

[
n∑
i=1

φk,ti (pSk,t
) · p̄ti ·ψ

(
Ik,ti
I0
i

)]
+φk,tSk,t

(pSk,t
) · (pSk,t − p̄Sk,t) ·min

i∈Sk,t

ψ

(
Ik,ti
I0
i

)
subject to (1− ε)p̄Sk,t ≤ pSk,t ≤ p̄Sk,t ∀(k, t), Sk,t ⊂ Ŝ

For any given sequence of customers {k, t}T∀(k,t),t=1, we have the following primal {Clairvoyant} problem that has full

knowledge of all arrival types in advance, as presented in Section 2:

maximize
y
k,t
Sk,t

∑T

t=1

∑Kt

k=1

∑
Sk,t⊂Ŝ

([∑n

i=1
φk,ti (pSk,t

) · p̄ti
]

+φk,tSk,t
(pSk,t

) ·
(
pSk,t − p̄Sk,t

))
· yk,tSk,t

subject to
∑T

t=1

∑Kt

k=1

∑
Sk,t⊂Ŝ

[
φk,ti (pSk,t

)
]
· yk,tSk,t

≤ I0
i ∀i∑

Sk,t⊂Ŝ
yk,tSk,t

= 1 ∀(k, t)

yk,tSk,t
≥ 0 ∀(k, t), Sk,t ⊂ Ŝ

(12)

By weak duality we aim to find the following lower bound on the competitive ratio between our algorithm and the

clairvoyant primal problem: {MultAlg}∀(k,t)
{Clairvoyant} ≥

{MultAlg}∀(k,t)
{Dual}

We let the price of the bundle Sk,t offered to consumer (k, t) be pSk,t , defined explicitly by the bundle discount price

ratio dSk,t as follows, dSk,t =
pSk,t

p̄Sk,t

.

Thus, in order to derive the desired bound on the ratio of the primal problem using weak duality, we consider its

dual given by {Dual}∀(k,t) below,

min
θti ,λ

k,t

n∑
i=1

I0
i · θi +

T∑
t=1

∑
k∈Kt

λk,t

subject to λk,t ≥
n∑
i=1

[
φk,ti (pSk,t

)(p̄ti − θi)

]
+
∑
i∈Sk,t

[
φk,tSk,t

(pSk,t
) · p̄ti · (dSk,t − 1)

]
∀(k, t), Sk,t ⊂ Ŝ

θi ≥ 0 ∀i

(13)

For the dual problem in Eq. (13), based on the choices of consumers in the sequence {k, t}T∀(k,t),t=1, we utilize the

result from Proposition 1 to consider the following dual feasible solution, where I0
i is the initial inventory of product

i and p̄0
i is the corresponding initial nominal price setting:

θ̂i = p̄0
i

(
1−ψ

(
ITi
I0
i

))
, ∀i

λ̂k,t =

n∑
i=1

[
φk,ti (pSk,t

) · p̄ti ·ψ

(
Ik,ti
I0
i

)]
+
∑
i∈Sk,t

[
φk,tSk,t

(pSk,t
) · p̄ti · (dSk,t − 1)

]
, ∀(k, t)

We now want to find the expected value of this dual feasible solution as it will give us an upper bound on the expected

objective of the primal problem by weak duality. Since we have a fixed sequence {k, t}T∀(k,t),t=1 the expectation is taken

relative to each consumer’s purchase decision, given the current state of inventory {Ik,t1 , Ik,t2 , ..., Ik,tn }. By Lemma 1,

we obtain the following expression for the expectation over the dual feasible variables λ̂k,t:

E

 T∑
t=1

Kt∑
k=1

λ̂k,t

=

n∑
i=1

 T∑
t=1

It−1
i∑

l=Iti+1

p̄ti ·ψ
(
l

I0
i

)− T∑
t=1

M t,
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We define the time-dependent constant M t with the following expression:

M t = max
Sk,t⊂Ŝ,dSk,t

Kt∑
k=1

∑
i∈Sk,t

φk,tSk,t
(pSk,t

) · p̄ti · (1− dSk,t)

We thus get the following form for our expected dual objective denoted {Dual}:

E

 T∑
t=1

Kt∑
k=1

λ̂k,t +

n∑
i=1

I0
i · θ̂i

=

n∑
i=1

[ T∑
t=1

p̄ti

It−1
i∑

l=Iti+1

ψ

(
l

I0
i

)
+ I0

i · p̄0
i

(
1−ψ

(
ITi
I0
i

))]
−

T∑
t=1

M t

We want to now compare the expected objective values of the dual problem calculated above to the expected value

of the proposed heuristic approach, which we defined as {MultAlg}∀(k,t). The expected revenue can be written as

follows from Proposition 2, denoted {MultAlg}∀(k,t):
T∑
t=1

Kt∑
k=1

n∑
i=1

φk,ti (pSk,t
) · p̄ti −

T∑
t=1

M t

We can now revisit the original goal to use weak duality and finally derive the following desired ratio:

{MultAlg}∀(k,t)
{Clairvoyant} ≥

∑T
t=1

∑Kt

k=1

∑n
i=1 φ

k,t
i (pSk,t

) · p̄ti −
∑T
t=1M

t

∑n
i=1

[∑T
t=1 p̄

t
i

∑It−1
i

l=Iti+1
ψ
(
l
I0i

)
+ I0

i · p̄0
i

(
1−ψ

(
ITi
I0i

))]
−
∑T
t=1M

t

However, this bound is path-dependent and relies on knowledge of the final inventory levels in order to calculate a

value. We want to now develop a bound that depends solely on the initial conditions to compare our algorithm to

the clairvoyant approach. We therefore work to bound it further to develop a worst-case analytical guarantee that is

dependent only on initial inventory levels and expected demand (by using arrival rate estimates for consumer types

to calculate
∑T
t=1

∑Kt

k=1 φ
k,t
i (pSk,t

)). We recall the time-dependent price trajectory definitions:

αti =
p̂ti
p̄0
i

∀i, t, as determined by formulation (8) of the upper-level problem in Section 3.1,

βti =
p̄ti
p̄0
i

∀i, t, as determined by formulation (12) of the Clairvoyant problem in Appendix A.

(14)

Based on the above expression, αti and βti are the extent of the discount on the full price of item i in period t from

its initial setting at p̄0
i , which is common to both the Clairvoyant and our upper-level method from formulation (8).

Note that both algorithms are provided with these nominal price discounts in advance. Thus, we get the result below:

{MultAlg}∀(k,t)
{Clairvoyant} ≥

∑T
t=1

∑Kt

k=1

∑n
i=1 φ

k,t
i (pSk,t

) · p̂ti −
∑T
t=1M

t

∑n
i=1

[∑T
t=1 p̄

t
i ·
∑It−1

i

l=Iti+1
ψ
(
l
I0i

)
+ I0

i · p̄0
i

(
1−ψ

(
ITi
I0i

))]
−
∑T
t=1M

t

=

∑n
i=1 p̄

0
i ·
∑T
t=1

∑Kt

k=1 φ
k,t
i (pSk,t

) ·αti − 1∑n
i=1 p̄

0
i

∑T
t=1M

t

∑n
i=1 p̄

0
i ·
[∑T

t=1 β
t
i ·
∑It−1

i

l=Iti+1
ψ
(
l
I0i

)
+ I0

i

(
1−ψ

(
ITi
I0i

))]
− 1∑n

i=1 p̄
0
i

∑T
t=1M

t

, by Eq. (14),

min
(I0i ,I

T
i ):ITi ≤I

0
i−1

≥

∑T
t=1

∑Kt

k=1 φ
k,t
i (pSk,t

) ·αti − 1∑n
i=1 p̄

0
i

∑T
t=1M

t

∑T
t=1 β

t
i ·
∑It−1

i

l=Iti+1
ψ
(
l
I0i

)
+ I0

i

(
1−ψ

(
ITi
I0i

))
− 1∑n

i=1 p̄
0
i

∑T
t=1M

t

, Lem. 2.

By considering the discount factors αti and βti for each product i in period t, we are able to isolate the constant p̄0
i and

reduce the outer summation using a minimization, as a result of Lemma 2. We now introduce a change of variable

by considering x=
ITi
I0i

and get the following equivalent expressions.

min
(I0i ,x):x≤1− 1

I0
i

∑T
t=1

∑Kt

k=1 φ
k,t
i (pSk,t

) ·αti − 1∑n
i=1 p̄

0
i

∑T
t=1M

t

∑T
t=1 β

t
i ·
∑It−1

i

l=Iti+1
ψ
(
l
I0i

)
+ I0

i (1−ψ (x))− 1∑n
i=1 p̄

0
i

∑T
t=1M

t

= min
(I0i ,x):x≤1− 1

I0
i

l
I0i

∑T
t=1

∑Kt

k=1 φ
k,t
i (pSk,t

) ·αti − l
I0i
· 1∑n

i=1 p̄
0
i

∑T
t=1M

t

l
I0i

∑T
t=1 β

t
i ·
∑It−1

i

l=Iti+1
ψ
(
l
I0i

)
+ 1−ψ (x)− l

I0i
· 1∑n

i=1 p̄
0
i

∑T
t=1M

t
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In the second expression we scale all of the terms by 1
I0i

, so that we can apply the property below, which is the result

of Lemma 3. 1

I0
i

I0i∑
l=ITi +1

ψ

(
l

I0
i

)
≤ 1

I0
i

+

∫ 1

IT
i

+1

I0
i

ψ(y)dy

By applying this to the previous expression we get the following result,

min
(I0i ,x):x≤1− 1

I0
i

l
I0i

∑T
t=1

∑Kt

k=1 φ
k,t
i (pSk,t

) ·αti − l
I0i
· 1∑n

i=1 p̄
0
i

∑T
t=1M

t

l
I0i

+
∑T
t=2 β

t
i ·
∫ It−1

i

l=Iti+1
ψ(y)dy+ 1−ψ (x)− l

I0i
· 1∑n

i=1 p̄
0
i

∑T
t=1M

t

Finally we introduce I0
min = min

i
I0
i (and symmetrically also I0

max, and βmax). We also define Rk,tmin = min
i

φk,ti (pSk,t
) ·αti

and by definition conclude the following result,

min
(I0i ,x):x≤1− 1

I0
i

l
I0max

∑T
t=1

∑Kt

k=1R
k,t
min−

l
I0min
· 1∑n

i=1 p̄
0
i

∑T
t=1M

t

βmax · l
I0min
·
∫ 1

x=1+ 1
I0
min

ψ(y)dy+ 1−ψ (x)− l
I0max

· 1∑n
i=1 p̄

0
i

∑T
t=1M

t

This completes the proof of Theorem 1.

Proposition 1 For the dual problem presented in formulation (13), the following is a dual feasible solution, where

I0
i is the initial inventory of product i and p̄0

i is the initial nominal price setting for product i:

θ̂i = p̄0
i

(
1−ψ

(
ITi
I0
i

))
λ̂k,t =

n∑
i=1

[
φk,ti (pSk,t

) · p̄ti ·ψ

(
Ik,ti
I0
i

)]
+
∑
i∈Sk,t

[
φk,tSk,t

(pSk,t
) · p̄ti · (dSk,t − 1)

]
∀(k, t)

Proof of Proposition 1 Given the formulation of {Dual}∀(k,t) presented in Eq. (13), we want to show the following

two conditions:

(1) λk,t ≥
n∑
i=1

[
φk,ti (pSk,t

)(p̄ti − θi)

]
+
∑
i∈Sk,t

[
φk,tSk,t

(pSk,t
) · p̄ti · (dSk,t − 1)

]
∀k, t,Sk,t ⊂ Ŝ

(2) θi ≥ 0 ∀i

Let us first focus on the more challenging condition (1). We define a new term as follows:

θti = p̄ti

(
1−ψ

(
ITi
I0
i

))
= p̄ti − p̄ti ·ψ

(
ITi
I0
i

)
∀i, t (15)

Note that this new term θti is based on the nominal price p̄ti for product i in period t. Thus, p̄ti ≤ p̄0
i , because all

nominal prices follow a markdown trajectory over time. Therefore, θti ≤ θ0
i = θ̂i.

We can now show feasibility using this new terminology as follows:

λ̂k,t =

n∑
i=1

[
φk,ti (pSk,t

) · p̄ti ·ψ

(
Ik,ti
I0
i

)]
+
∑
i∈Sk,t

[
φk,tSk,t

(pSk,t
) · p̄ti · (dSk,t − 1)

]

≥
n∑
i=1

[
φk,ti (pSk,t

) · p̄ti ·ψ
(
ITi
I0
i

)]
+
∑
i∈Sk,t

[
φk,tSk,t

(pSk,t
) · p̄ti · (dSk,t − 1)

]

=

n∑
i=1

[
φk,ti (pSk,t

) · (p̄ti − θti)
]

+
∑
i∈Sk,t

[
φk,tSk,t

(pSk,t
) · p̄ti · (dSk,t − 1)

]

≥
n∑
i=1

[
φk,ti (pSk,t

) · (p̄ti − θ̂i)
]

+
∑
i∈Sk,t

[
φk,tSk,t

(pSk,t
) · p̄ti · (dSk,t − 1)

]
We get the first inequality from the fact that ψ(·) is concave and increasing and ITi ≤ Iti ∀t = 1, ..., T . The second

equality comes directly from the definition of θti in Eq. (15); finally this leads to the last inequality by applying

θti ≤ θ̂i. For condition (2) concerning θ̂i, showing feasibility is trivial. As stated, ψ(·) is a concave monotone increasing

function defined on [0,1], so p̄0
i ·ψ(·)≤ p̄0

i . Thus, θ̂i = θ0
i ≥ 0 ∀i by definition.
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Lemma 1. For a fixed arrival sequence {k, t}T∀(k,t),t=1, the expected value of the expectation of the duals variables

λ̂k,t is defined by the expression:

E

 T∑
t=1

Kt∑
k=1

λ̂k,t

=

n∑
i=1

 T∑
t=1

It−1
i∑

l=Iti+1

p̄ti ·ψ
(
l

I0
i

)− T∑
t=1

M t, (16)

where M t = max
Sk,t⊂Ŝ,dSk,t

∑Kt

k=1

∑
i∈Sk,t

φk,tSk,t
(pSk,t

) · p̄ti · (1− dSk,t).

Proof of Lemma 1 For a fixed arrival sequence {k, t}T∀(k,t),t=1, we want to find the expected value of the objective

function of the dual of the Clairvoyant problem. We define a binary variable Qk,ti = 1 if item i is purchased at time

t, and is 0 otherwise. We first use this to consider the expectation E
[∑T

t=1

∑Kt

k=1 λ̂
k,t
]

over consumer choices below:

E

 T∑
t=1

Kt∑
k=1

λ̂k,t

= E

 T∑
t=1

Kt∑
k=1

(
n∑
i=1

[
φk,ti (pSk,t

) · p̄ti ·ψ

(
Ik,ti
I0
i

)])
+
∑
i∈Sk,t

φk,tSk,t
(pSk,t

) · p̄ti · (dSk,t − 1)


=E

 T∑
t=1

Kt∑
k=1

(
n∑
i=1

[
Qk,ti · p̄

t
i ·ψ

(
Ik,ti
I0
i

)])
+
∑
i∈Sk,t

φk,tSk,t
(pSk,t

) · p̄ti
(
dSk,t − 1

)
=E

 T∑
t=1

Kt∑
k=1

(
n∑
i=1

[
(Ik,ti − I

k+1,t
i ) · p̄ti ·ψ

(
Ik,ti
I0
i

)])
+
∑
i∈Sk,t

φk,tSk,t
(pSk,t

) · p̄ti
(
dSk,t − 1

)
=

n∑
i=1

 T∑
t=1

It−1
i∑

l=Iti+1

p̄ti ·ψ
(
l

I0
i

)−E

 T∑
t=1

Kt∑
k=1

∑
i∈Sk,t

φk,tSk,t
(pSk,t

) · p̄ti
(

1− dSk,t

)
≤

n∑
i=1

 T∑
t=1

It−1
i∑

l=Iti+1

p̄ti ·ψ
(
l

I0
i

)− T∑
t=1

M t, where M t = max
Sk,t⊂Ŝ,dSk,t

Kt∑
k=1

∑
i∈Sk,t

φk,tSk,t
(pSk,t

) · p̄ti · (1− dSk,t)

(17)

Note that the first equality comes from the definition of Qti as a Bernoulli variable that takes the value 1 if item i is

purchased at time t by consumer k, and 0 otherwise. Thus, the conditional expectation on the binary variable Qk,ti

given the current inventory state It−1 is precisely φk,ti (pSk,t
),

φk,ti (pSk,t
) = E

[
Qk,ti

∣∣∣∣ It−1
1 , It−1

2 , ..., It−1
n

]
,

because conditional on the current state of inventory It−1 (which drives the selection of Sk,t), the expected value

of Qk,ti is the probability that consumer k, t will purchase product i when offered Sk,t at price pSk,t
, defined as:

φk,ti (pSk,t
). The second equality comes from the fact that Qk,ti is a binary variable exactly defined by Iti − It−1

i .

Proposition 2 Given a fixed consumer arrival sequence {k, t}t=1,...,T
∀(k,t),k=1,...,Kt , the expected value of the objective

function of {MultAlg}∀(k,t) is given by the expression:

{MultAlg}∀(k,t) = E

 T∑
t=1

Kt∑
k=1

n∑
i=1

φk,ti (pSk,t
) · p̄ti

− T∑
t=1

M t

Proof of Proposition 2 Given a fixed consumer arrival sequence {k, t}T∀(k,t),t=1, we can derive the objective value

of the multiplicative approximation algorithm as follows:

{MultAlg}∀(k,t) =

T∑
t=1

Kt∑
k=1

((
n∑
i=1

φk,ti (pSk,t
) · p̄ti

)
+
(
φk,tSk,t

(pSk,t
) · p̄Sk,t

(
1− dSk,t

)))

=
T∑
t=1

Kt∑
k=1

n∑
i=1

φk,ti (pSk,t
) · p̄ti −

T∑
t=1

M t

The second equality comes directly from the definition of M t from Lemma 1.
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Lemma 2. Given a fixed set of constants ai ∀i= 1, ..., n and corresponding variables xi and yi, the following property

holds:
∑n
i=1 ai ·xi∑n
i=1 ai · yi

≥ min
i

xi
yi

Proof of Lemma 2 We want to show that we can lower bound the ratio of two sums with the same weights ai and

different variable values xi and yi using a minimum over the ratios of all the variable pairs xi, yi. Let us first define

the following term, α̂ = min
i

xi
yi

By the definition of α we know that xi ≥ α̂ · yi ∀i. Therefore, we get the following result as desired,∑n
i=1 ai ·xi∑n
i=1 ai · yi

≥
∑n
i=1 ai · (α̂ · yi)∑n
i=1 ai · yi

= α̂ = min
i

xi
yi
.

Lemma 3. Given a monotone increasing function ψ(·) and an increasing set of constants x= x0, ..., xN , the follow-

ing condition holds, xN−1∑
x=x0

ψ (x)≤
∫ xN

x=x0

ψ(y)dy

Proof of Lemma 3 By definition of the values of x, we know that x0 ≤ x1 ≤ ... ≤ xN . Since ψ(·) is a monotone

increasing function we have that ψ(x)≥ ψ(xi) ∀x ∈ [xi, xi + 1]. If we integrate this expression over [xi, xi + 1] for a

fixed value of xi we get, ∫ xi+1

xi

ψ (xi)dx=ψ(xi)≤
∫ xi+1

xi

ψ(x)dx

Rewriting the left hand expression through a summation we precisely get the desired result,
xN−1∑
x=x0

ψ (x)≤
∫ xN

x=x0

ψ(y)dy.

Appendix B: Supplemental Figures and Tables from Case Studies

B.1. Airline Case Study

Prices of Ancillary Services & Distribution of Consumers Across Tier Levels

These are the ancillary products offered to consumers “un-bundled” from the ticket itself, currently offered at their

full prices from Table 8. Figure 9 shows the distribution of consumers across the 7 cluster types.

Ancillary Good Full Price

In-Flight Wi-Fi Access $25

Premium Entertainment $20

Priority Security $20

Priority Boarding $10

Priority Baggage Handling $25

Comfort Seating Upgrade $50

Excess Checked Baggage $45

VIP Lounge Access $50

In-Flight Gourmet Meals $15

2,000 Bonus Miles $100

4,000 Bonus Miles $200

Table 8 This table summarizes the full prices at which
each of the ancillary products are typically offered.

Table 9 This chart shows the distribution of consumers
in the airline data set across various persona profile clusters.

Demand Estimation

We treated the products in the airline data set as independent because they did not have a direct effect on one another’s

prices. Therefore, we fit a MNL logit single choice model for each (consumer type, product) pair. We considered 7

consumer types as explained on page 18: business travelers in premium class, business travelers in economy class,

family travelers, last minute groups, couples traveling in economy, high end couples traveling in premium, single
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leisure travelers, and single high end travelers. The ancillary products of interest were: wi-fi access, premium on-

board entertainment, priority security, priority boarding, priority baggage handling, seat upgrades, checked/excess

baggage, VIP lounge access, gourmet on-board meals, 2,000 bonus miles and 4,000 bonus miles (their nominal prices

are displayed on page 41 of the paper). For a given pair, for example (family traveler, priority boarding), we would

fit a MNL logit model to obtain the probability with which a traveler with feature vector x of the type family would

purchase priority boarding (product i), given by the equation:

φk,ti (pSk,t
) =

eβ
i
t
′x

1 + eβ
i
t
′x
, where,

βit
′x = βi0 +βi1 · priceti +βi2 ·milesk,t +βi3 · tierk,t +βi4 ·mtonk,t +βi5 · necok,t +βi6 ·nprek,t +βi7 · ttodk,t

+βi8 · fusdk,t +βi9 ·dwekk,t +βi10 · tjink,t +βi11 ·mredk,t +βi12 ·npsgk,t +βi13 · ctimk,t

(18)

Note that across all products i we consider the same structure of feature vector x for each consumer {k, t} and

since φ(·) is fit uniquely to each (consumer type, product) pair, we are able to generate a personalized estimate of

willingness to buy φk,ti (pSk,t
) for each consumer {k, t} considering each product i. The independent variables in Eq.

(18) used to estimate the coefficients are defined as follows: miles = miles balance, tier = tier level, mton = miles to

next tier level, neco = number of previous flights in economy in past 2 years, npre = number of flights in premium in

past 2 years, ttod = time to departure (in weeks), fusd = fare in USD, dwek = day of week of departure (categorical),

tjin = time since joining mileage program (in weeks), mred = miles redeemed for rewards in past two years, npsg =

number of passengers in booking, and ctim = connection time for itinerary booked. In this case due to independence,

bundle buy probabilities were constructed by multiplying the above willingness-to-buy functions for the products in

a particular bundle under consideration.

B.2. Retail Case Study

Cumulative Expenditure of Medium and High Frequency Loyalty Groups over Selling Horizon

Figures 3 and 4 show the time-series behavior of the middle and high frequency consumer loyalty groups with respect

to their cumulative expenditure over the two year selling horizon. The y-axis is the average cumulative expenditure

of each loyalty group depending on the week, given by the x-axis.

Figure 3 This plot shows the mean expenditure of
medium loyalty repeat customers.

Figure 4 This plot shows the mean expenditure of high
loyalty repeat customers.

Interdependence of Seasonal Home Decor Demand Groups

A detailed analysis of the demand groups across the top 500 SKUs in the seasonal home decor department demon-

strated that many products were interconnected through historical purchases, as shown in Figures 5 and 6 below. The

thickness of the lines between pairs of SKUs indicate how often these products were historicall purchased together.
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Figure 5 This is a visualization of the joint his-
torical transactions between multiple
demand groups.

Figure 6 This visualization focuses on
the most frequent interactions
between products in demand
group 1.

Demand Estimation

The longer selling horizon in the retail case required consideration of time-dependent information not present in the

airline data. We used the demand estimation approach from Harsha and Subramanian (2016) in order to capture

correlation among products, lost sales and variability in market size and share. For each (demand group, loyalty

group) pair, we aggregated the transaction data to the weekly level and considered as input mean values for net

charged amount, sold quantities and various seasonality, holiday and promotional period flags in order to also estimate

market size and share in addition to willingness-to-buy. We then fit a multi-choice MNL model for all customers in

a specific loyalty group, when considering bundles S in a demand group Ŝ, given by:

φtS(pSt
) =

eβ
S
t
′x∑

S∈Ŝ e
βS
t
′x
, where,

βSt
′x = βS0 +βS1 ·pricetS +βS2 ·CumVist +βS3 ·CumExpt +βS4 ·1promot

+βS5 ·1cleart +βS6 ·1hldyt

(19)

Note that the feature vector x that we use is the same structure for all consumers and loyalty groups, but its

magnitude and values change. Specifically, the willingness to pay function for consumer {k, t} is φk,tS (pSk,t
), which is

Eq. (19) populated with the specific characteristics of that consumer; for example, the cumulative number of visits

and expenditure of consumer {k, t} are used in conjunction with the estimated coefficients βS2 and βS3 . Furthermore,

each bundle S is defined uniquely based on its composition (which is reflected in its price and various associated

flags) and therefore has a different interaction with a given consumer {k, t} than other bundles in Ŝ. The variables

corresponding to the estimated coefficients above are defined as follows: CumVis = number of cumulative consumer

visits at time t, CumExp = amount of cumulative consumer expenditure at time t, promo = promotion period flag,

clear = clearance period flag, and hldy = holiday flag. As each bundle is uniquely defined through its composition,

bundle size is not explicitly a covariate. Our demand modeling approach accounts for lost sales as well as market

size estimation within the demand fitting process. We do not assume a fixed market size and instead capture its

variability at any given time period t through the following two expressions in Eq. (20):

Weekly SalesS,t ≈Market Sizet ·
(
φtS(pS)

)
, where,

ln(Market Sizet) = γ0 + γ1 · t+ γ2 · (T − t) + γ3 ·1hldyt

(20)

We found that the coefficients for personalized loyalty features such as cumulative expenditure and cumulative visits

were all positive and significant, indicating that these metrics were effective in capturing individualized information

indicative of purchase preferences. The out of sample WMAPE was approximately 0.40 when averaged across all

loyalty and demand groups. Furthermore, the estimated coefficients across all of the models intuitively corresponded

to realistic consumer choice behaviors. For example, the coefficients related to seasonality were all strongly positive,

reinforcing the idea that peak periods and popularity drive consumers to have a higher propensity-to-buy. Conversely,

steep clearance periods resulted in negative coefficients as this corresponds to scenarios in which the prime life span of

the seasonal good has expired. This estimation approach provided us with a model for every (loyalty group, product

bundle) pair across all demand groups, which we leveraged dynamically to make personalized bundle offers.
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B.3. Analyzing the Effects of Marginal Costs and Competition

Marginal Costs

The original retail data set contained marginal cost information for each product offered at each point in time, which

was incorporated into our analysis. To gain a greater understanding of how marginal costs impact profitability, we

studied the largest demand group of seasonal holiday decor from the retail data consisting of a mix of individual kitchen

products (kitchen towels) and associated complementary ones (potholders, etc). Within this group we considered

three settings where marginal costs were: (1) left at their actual historical values, (2) increased by 50%, and (3)

decreased by 50%. The results of this study are summarized in Table 10 below, in which the percentage values reflect

the average discount amount offered to each loyalty group under marginal cost scenarios (1)-(3).

Consumer Loyalty Group Costs Down 50% Actual Costs Costs Up 50%

SIAA

Loyalty 1 (One-Time Shoppers) 4.1% 2.9% 1.2%

Loyalty 2 (Repeat, < Mean Expenditure) 3.2% 2.4% 1.0%

Loyalty 3 (Repeat, > Mean Expenditure) 2.0% 1.7% 0.8%

EMPA

Loyalty 1 (One-Time Shoppers) 6.2% 4.6% 2.5%

Loyalty 2 (Repeat, < Mean Expenditure) 4.7% 3.5% 1.9%

Loyalty 3 (Repeat, > Mean Expenditure) 3.3% 2.7% 1.5%

Table 10 This table summarizes the personalized discounts by loyalty group for a bundle containing a kitchen towel and a
complementary product such as a potholder (bundle T&Misc).

These results mirror our original retail study in which the consumers in Loyalty Group 3 have the least price

elasticity and therefore receive the least amount of relative change in discount (only 0.5-1.5% compared to the range of

1-2.5% in the lower loyalty groups) regardless of marginal costs. SIAA is overall less affected as EMPA is a more profit-

driven algorithm that makes larger discount adjustments when marginal costs change. Finally, the differences across

the columns demonstrate that increasing costs has a larger effect on discount levels when compared to decreasing

costs.
Consumer Loyalty Group Costs Down 50% Costs Up 50%

Loyalty 1 (One-Time Shoppers) 93.7% 91.5%

Loyalty 2 (Repeat, < Mean Expenditure) 95.1% 90.9%

Loyalty 3 (Repeat, > Mean Expenditure) 96.5% 89.7%

Total (Across All Loyalty Groups) 94.0% 91.2%

Table 11 This table summarizes the percentage of profitability achieved by the SIAA compared to the Clairvoyant model
when marginal costs are increased or decreased 50% for all products. The performance of SIAA in the retail study was 93.4%.

We also analyzed the aggregate changes in profitability overall by loyalty group, as shown in Table 11. The

percentages reflect the fraction of optimal Clairvoyant profit attained by SIAA when the marginal costs of all products

were uniformly increased (or decreased) by 50% from their actual historical values. The effect of increasing marginal

costs (second column) is larger within each loyalty group than the benefit of decreasing them (first column), which

is also true in aggregate across all groups (last row) Higher costs result in profit loss of 1-4% whereas lowering costs

causes profit gains of 0.5-3%. Ultimately, increasing marginal costs have a larger negative effect on profitability when

compared to the gain of similarly decreasing costs.

Competition

The retail case study was not particularly subject to competition as the products were offered solely by the retailer.

However, certain products from the airline case study could be subject to competition: (i) VIP lounge access, which is

a space often shared by multiple airlines, and (ii) on-board gourmet meals, which are often cannibalized by consumers

choosing to eat in the airport prior to the flight. We investigated the effect of competition through a numerical

experiment consisting of a sensitivity analysis in which we changed the additive constant in the denominator of

the MNL buy probability functions across the range of values in the set {1,5,10,50,100,250}. The product-specific

 Electronic copy available at: https://ssrn.com/abstract=3241517 



 Electronic copy available at: https://ssrn.com/abstract=3241517 

Ettl, Harsha, Papush, and Perakis: Data-Driven Personalized Bundle Pricing and Recommendation
41

results are shown in Table 12 below, where only one product was subject to this competition setting at a time.

The percentages in this table represent the proportion of prior profit achieved by EMPA before competition was

introduced. If we consider the row-wise and column-wise differences in both directions, the decrease in profitability

as a result of competition has a more pronounced marginal effect in more inventory-constrained cases. This average

loss in profitability relative to prior performance (without competition) can reach up to 20-25% depending on the

nominal price of the product facing competition.
Initial Inventory Level

Denominator Unlimited 100% 90% 80% 75% 50%

VIP Lounge Access ($50)

1 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

5 98.3% 97.7% 96.9% 96.0% 94.9% 93.4%

10 95.6% 94.8% 93.6% 92.5% 91.3% 90.0%

50 92.9% 91.6% 89.8% 89.2% 88.1% 85.8%

100 89.2% 88.5% 86.0% 85.2% 83.2% 81.2%

250 85.4% 83.8% 82.6% 79.7% 77.6% 75.5%

On-Board Gourmet Meals ($15)

1 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

5 99.2% 99.0% 98.8% 98.5% 97.7% 96.6%

10 96.8% 96.6% 95.9% 95.3% 94.4% 93.7%

50 94.8% 94.0% 93.1% 92.6% 91.9% 91.2%

100 92.3% 91.7% 89.8% 89.2% 88.7% 88.2%

250 88.9% 88.3% 87.7% 85.6% 84.2% 82.9%

Table 12 This table presents the average expected percentage of prior revenue attained by the EMPA with the introduction
of competition into the products VIP lounge access and on-board gourmet meals in the airline case study.

We also observe a marked difference between the two products due to their prices: the differences in proportion

of prior non-competitive profitability captured ranges from 3.5% to up to 7.5% (with lounge access recovering less

profit than gourmet meals). As initial inventory levels become more constrained, the margins of under-performance

increasingly grow, mirroring our initial non-competition results. In addition, the additive approach outperforms the

multiplicative method and is overall less affected by the introduction of competition, as shown in Table 13 below. The

percentages in this table are the expected average profit of each algorithm relative to the Clairvoyant model when

it also faces competition in the same product (as opposed to the proportion of prior profit captured by the same

algorithm without competition as in Table 12). In these results the MNL constants are changed in both algorithms

as well as in the Clairvoyant for a specific fixed product. Table 13 analyzes only two inventory levels and records the

difference in performance between SIAA and EMPA. The outperformance of SIAA over EMPA grows increasingly as

the level of competition increases. We observe up to a 3% gap in performance between the two algorithms when we

compare them to an optimal Clairvoyant strategy facing the same level of competition.

Denominator

Initial Inventory Method Product 1 5 10 50 100 250

Unlimited

SIAA
Lounge 96.9% 95.8% 95.1% 94.2% 93.3% 92.6%

Meals 96.9% 96.2% 95.8% 95.2% 94.7% 94.5%

EMPA
Lounge 97.4% 96.2% 95.4% 93.6% 91.5% 90.7%

Meals 97.4% 96.6% 96.1% 95.2% 94.2% 93.6%

75%

SIAA
Lounge 88.6% 87.8% 86.7% 85.9% 84.8% 84.1%

Meals 88.6% 88.2% 87.8% 87.2% 86.3% 86.0%

EMPA
Lounge 87.3% 86.4% 85.2% 84.1% 82.7% 80.7%

Meals 87.3% 86.9% 86.3% 85.5% 84.4% 83.1%

Table 13 This table shows the average expected percentage of Clairvoyant revenue attained by the both SIAA and EMPA
with the introduction of competition into the setting for VIP lounge access and on-board gourmet meals in the airline case study.
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