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Problem definition: The theoretical investigation of the effectiveness of limited flexibility has mainly focused

on the performance metric that is based on the maximum sales in units. However, this could lead to substan-

tial profit losses when the maximum sales metric is used to guide flexibility designs whereas the products

have considerably large profit margin differences. Academic/practical relevance: We address this issue by

introducing margin differentials into the analysis of process flexibility designs, and our results can provide

useful guidelines for the evaluation and design of flexibility configurations when the products have hetero-

geneous margins. Methodology: We adopt a robust optimization framework and study process flexibility

designs from the worst-case perspective by introducing the Dual Margin Group Index (DMGI). Results and

Managerial Implications: We show that a general class of worst-case performance measures can be expressed

as functions of a design’s DMGIs and the given uncertainty set. Moreover, the DMGIs lead to a partial

ordering that enables us to compare the worst-case performance of different designs. Applying these results,

we prove that under the so-called part-wise independently symmetric uncertainty sets and a broad class of

worst-case performance measures, the alternate long chain design is optimal among all long chain designs

with equal number of high profit products and low profit products. Finally, we develop a heuristic based on

the DMGIs to generate effective flexibility designs when products exhibit margin differentials.

Key words : Process flexibility; Flexible Production; Profit maximization; Robust Optimization.

1. Introduction

In today’s competitive business environment where consumers’ demand have become increasingly

uncertain and volatile, the ability to match supply and demand is arguably key to a firm’s success

in many industries. Unfortunately, the capacity investment decisions are typically made far in
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advance before the uncertain demand is realized, which usually leads to inevitable misalignments

between supply and demand with potential severe economic consequences. In a well-known example

(Greenberg 2001), in year 2000, Chrysler faced higher than expected demand for their newly

launched PT Cruiser, but experienced dampened demand for their hitherto well-selling Town and

Country minivan. However, since both products were manufactured on their respective dedicated

production lines, Chrysler could not use the plant with spare capacity to produce the PT Cruiser,

and this misalignment between supply and demand cost the company approximately $2 billion.

Intuitively, this supply-demand mismatch could have been significantly reduced if Chrysler had

adopted a flexible production system that is able to produce both models, which would enable the

firm to shift production from one plant to another plant in accordance with the realized demand.

Fortunately, most of the automobile giants have recognized the competitive advantage of equipping

their manufacturing plants with a flexible production system (e.g., Phelan 2002, Boudette 2006).

For example, General Motors, which has built in more flexibility across its production facilities,

was able to successfully meet soaring customer demand for the Equinox and GMC Terrain by

increasing the production volume of these two models by more than 60,000 to 80,000 more vehicles

using the underutilized capacity of their Ingersoll and Oshawa plants in 2010 (Chevrolet 2010).

Process flexibility, defined as a firm’s ability to “build different types of products in the same

manufacturing plant or on the same production line at the same time” (Jordan and Graves 1995,

p. 577), has been proven to be a successful operational strategy in manufacturing industries to

hedge against demand uncertainty and volatility. A seminal work by Jordan and Graves (1995)

demonstrates that even just a little flexibility, if configured in the right way, can be extremely

effective in mitigating supply-demand mismatch. Among all the designs with limited flexibility, the

chaining strategy, and in particular the long chain design proposed by Jordan and Graves (1995),

is perhaps one of the most influential strategies both studied in the literature and used in practice.

They show that there exist sparse networks with limited flexibility that perform almost as well as

full flexibility, and this limited flexibility accrues the greatest benefits when configured to chain
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products and plants together to the greatest extent possible. Motivated by the findings in Jordan

and Graves (1995), the effectiveness of the long chain and designs with limited flexibility has been

investigated theoretically in many recent works, such as Chou et al. (2010b), Bassamboo et al.

(2010), Chou et al. (2011), Simchi-Levi and Wei (2012, 2015), Wang and Zhang (2015), Chen et al.

(2015) and Désir et al. (2016). We refer the readers to Wang et al. (2019) for a recent survey.

The existing literature on process flexibility designs has largely focused on performance metrics

based on the maximum sales in units. More specifically, for any realized demand instance, one

solves a max-flow problem to determine the optimal allocation of the available capacities to satisfy

the demand as much as possible. However, many production systems in practice exhibit profit

margin differentials which may come from the demand side and/or the supply side. For example,

products may differ in their selling prices and securing a unit capacity at different plants may incur

different costs. In case there exist margin differentials, the various design principles and heuristics

developed in the existing literature under the maximum sales metric may not be effective any

more and could potentially result in substantial profit loss. It has been shown in a seminal work

by Van Mieghem (1998) that margin differentials are an essential element that affects the value

of flexibility. The author considers a two-product firm with the choice of investing in product-

dedicated resources and/or a fully flexible resource, and demonstrates that margin differentials

can significantly affect on the value of flexibility. In particular, Van Mieghem (1998) shows that

contrary to the intuitive belief that flexible capacity provides no additional value when product

demands are perfectly positively correlated, it can be optimal to invest in flexible capacity even with

perfectly positively correlated product demands when there exists a positive margin differential.

The underlying logic here is that, besides its ability to appropriately adjust capacity allocation

to the demand realizations, flexibility provides an additional opportunity to improve revenues by

producing more of highly profitable products at the expense of less profitable products.

Our objective in this paper is to study effective flexibility designs when there exist margin dif-

ferentials among the products, and the evaluation metric that aims to maximize the total profit is
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of interest. Different from the works by Fine and Freund (1990) and Van Mieghem (1998) which

examine the optimal capacity investment strategy in dedicated resources and/or a fully flexible

resource, our focus is on the flexibility configuration design where the plant capacities are exoge-

nously given. Without assuming full distributional information of the random product demands, we

adopt a robust optimization approach to examine the worst-case performance of flexibility designs.

In the remainder of this section, we first summarize our main results and contributions, and present

a brief literature review in Section 1.2.

1.1. Main Results and Contributions

In Section 3, we introduce the Dual Margin Group Index (DMGI) to study the worst-case perfor-

mance of flexibility designs when there exist margin differentials among the products. The name

of this index comes from the fact that it uses the dual variable information of an optimization

problem which maximizes the total profit. Intuitively speaking, this dual variable represents the

shadow price associated with a product, which measures the “marginal profitability level” of a

product’s demand. For a fully flexible network, it has the best capability to route plant capacities

to the appropriate products with the best profit potential and achieve the maximum total profit.

However, for a design with limited flexibility, a group of products and a subset of plants may

form a “bottleneck” that blocks the network from the best usage of the available plant capacities

to achieve the maximum profit potential. The DMGI associated with a sparse flexibility design

captures such a bottleneck in the worst-case under a given set of dual price vectors. We show

that the DMGIs can be used to characterize a broad class of worst-case performance measures for

general unbalanced and asymmetric production systems, which in turn leads to a partial ordering1

that enables us to compare the performance of different flexibility designs.

Applying the above results, we show in Section 4 that a class of long chain designs, the alternate

long chain, is optimal among all long chain designs where there are two product categories and the

1 A relation “≤” is a partial order on a set S if it has: (1) Reflexivity: a≤ a for all a ∈ S; (2) Antisymmetry: a≤ b

and b≤ a implies a= b; (3) Transitivity: a≤ b and b≤ c implies a≤ c.
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number of high margin products is equal to that of low margin products. Intuitively, among all

the long chain designs with equal number of high profit and low profit products, the alternate long

chain has the best potential to fulfill the demand from high profit products compared with designs

where multiple high profit products share a common plant. One implication of the above optimality

result is that, within the class of long chain production systems (which has been a well-known class

of designs for its effective performance), it is most beneficial to evenly “spread out” the products

from the two product groups in an alternate manner and to equip each plant to be able to produce

both high profit and low profit products. As a result, the high profit products never have to directly

compete for shared resources. Our comprehensive numerical results confirm that this intuition is

also valid when the products have more than two profit margins in a connected design. Intuitively,

when the demands of all the products cannot be fully satisfied due to capacity constraints and/or

limited production flexibility, one would prefer to prioritize the demand fulfilment for higher margin

products. To achieve this, it is more favorable to configure flexibility in such a way that enables

each plant to produce both high margin and low margin products.

However, the direct competition between high margin products would become a less important

issue if their demands are negatively correlated. In this case, it may be more beneficial to pool the

negatively correlated products and serve them by the same resources. In fact, we show that the

alternate long chain is not necessarily optimal among the class of 2-flexibility designs with equal

number of high profit and low profit products, which is in contrast with the result by Simchi-Levi

and Wei (2015) that establishes the optimality of the long chain design among 2-flexibility designs

under symmetric uncertainty sets in the absence of margin differentials. A particular example of a 2-

flexibility design, the so-called disjoint long chain, is composed of disconnected shorter chains where

products in one component all have high margin and the other component consists of products with

low margin, can achieve a better worst-case performance than the alternate long chain when the

demands of products within each group are negatively correlated. The disconnectivity of the disjoint

long chain makes half of the total capacity exclusive for the high margin products, and the negative
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correlation among the high margin product demands can make the half total capacity that are

exclusive to them (which are not shared by any low margin products either directly or indirectly)

well utilized since the “competition” for shared resources among the high margin products would

not be an issue due to the negative correlation. Therefore, our results suggest that when there

exist margin differentials and in the case of negatively correlated demands within each product

group, it may be more beneficial to construct disconnected shorter chains for each group to reduce

competition across groups. Here we would like to point out that, although the alternate long chain

is no longer optimal among the class of 2-flexibility designs, our numerical results suggest that the

performance of designs guided by the above “spread out” insight compare extremely well with the

performance of the optimal configuration even if the demands of products within each group are

negatively correlated. This suggests the robustness of the “spread out” insight and may provide

useful design guidelines for generating effective flexibility designs in the presence of profit margin

differentials. In particular, when the demands of the higher margin products do not exhibit strong

negative correlation and/or the correlation information is not known, it would be favorable to

follow the “spread out” insight for effective flexibility designs. In case there exists strong negative

correlation among products within the same group, one may consider partitioning the products

into clusters such that products with the same profit margin share the same set of resources when

constructing flexibility designs (we refer to Appendix B in Wang et al. (2020) for a more detailed

discussion2), or one may resort to other approaches (such as SAA) to solve for the optimal design.

The above “spread out” insight stems from the optimality of the alternate long chain among all

long chain designs with equal number of high profit and low profit products, which was proved by

using Theorem 2 that one flexibility design has a better worst-case performance than another if the

DMGI values of the former are larger than the latter. However, the level of “spread-out” of a flexi-

bility design can sometimes be difficult to quantify. These motivate us to develop an implementable

2 To meet the journal’s page limit requirements, we have relegated some numerical studies and appendices in a

peer-reviewed, unabridged version of the manuscript Wang et al. (2020).
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heuristic for generating effective sparse flexibility designs in the presence of margin differentials

based on a quantifiable index, where in each iteration the heuristic aims to help increase the value

of DMGIs. Our computational study in Section 5 suggests that the sparse design generated by our

DMGI-Heuristic can capture most of the benefit of full flexibility from the expected profit point

of view, and achieves satisfactory performance in the worst case as well for small to moderate

level of demand uncertainty. To better understand the effectiveness of our DMGI-Heuristic, we

have also compared its performance with other algorithms proposed in the literature which do not

consider margin differentials among the products. Our benchmarking algorithms include the Plant

Cover Index (PCI) Heuristic by Simchi-Levi and Wei (2015), the Expander heuristic developed in

Chou et al. (2011), the chaining structures, the Sample Average Approximation (SAA) method,

the stochastic optimization based heuristic proposed by Feng et al. (2017) (denoted as MDEP-

Heuristic), the Thresholded Probabilistic Construction (TPC) heuristic by Chen et al. (2019) and

the Generalized Chaining Gap (GCG) based heuristic developed by Shi et al. (2019). Compared

with the MDEP-Heuristic and SAA, our DMGI-Heuristic offers comparable performance when the

actual demand follows the original distribution. In case that there exists demand distribution mis-

specification where the demands across products are assumed to be independent but the actual

demands are positively correlated within each product group, our DMGI-Heuristic offers simi-

lar performance in terms of the average performance and achieves better worst-case performance

than the MDEP-Heuristic and the SAA approach. For the comparison with the PCI-Heuristic, the

Expander heuristic, the chaining structures, the TPC heuristic and the GCG heuristic, we have

conducted numerical experiments with identical profit margins, as these benchmark heuristics are

developed with the objective of maximizing total sales in units. We compare our DMGI-Heuristic

with the PCI-Heuristic, the Expander heuristic and the chaining structures under a balanced and

symmetric system. The numerical results suggest that our DMGI-Heuristic is comparable to PCI-

Heuristic in terms of average performance, and achieves a slightly better worst-case performance

than that by PCI-Heuristic. For the Expander algorithm and the chaining structures, our DMGI-

Heuristic consistently achieves a better performance from both the average and the worst-case
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perspective, and the improvement in the worst-case ratio becomes more significant as the demand

becomes more volatile. We have further compared our DMGI-Heuristic with the TPC, GCG and

Expander heuristics under unbalanced and asymmetric systems. Numerical results show that our

DMGI-Heuristic offers comparable performance to the Expander heuristic. As for the GCG heuris-

tic, our DMGI-Heuristic compares well with GCG when the actual demand follows the original

distribution, and achieves considerable improvement over GCG in terms of worst-case performance

when the actual demands are positively correlated within groups but assumed to be independent.

For the TPC heuristic, our DMGI-Heuristic achieves a better performance consistently. Finally, we

summarize and conclude the paper in Section 6 with directions for future research.

1.2. Literature Review

In this section, we briefly review literature that is most relevant to our work. Following the work

by Jordan and Graves (1995), the effectiveness of the long chain and designs with limited flexibility

has been justified theoretically in many recent works. Chou et al. (2010b) is among the first to

provide theoretical justification of the effectiveness of the long chain and sparse structures. In

particular, Chou et al. (2010b) develop a method to compute the expected demand satisfied by the

long chain design in an asymptotically large system, and show that the expected sales achieved by

the long chain is very close to that of full flexibility under some common demand distributions.

Wang and Zhang (2015) adopt a distributionally robust approach to study the performance of

flexibility designs and obtain an asymptotic, distribution-free lower bound on the ratio between

the expected sales of the long chain relative to that of full flexibility. For finite size systems,

Simchi-Levi and Wei (2012) develop a decomposition technique to analyze the expected sales

achieved by the long chain and prove that the long chain design is optimal among 2-chains, i.e.,

all designs in which each product node and each plant node are incident to exactly two arcs.

However, if we relax the class of 2-chains to all designs with 2n arcs, a recent result by Désir et al.

(2016) shows that the long chain is no longer optimal among all designs with 2n arcs. Chou et al.

(2011) prove that there exists a sparse graph which achieves (1− ε)-optimality of the fully flexible
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structure in the worst-case demand scenario. More specifically, they show that when the demand

and capacity levels are identical and balanced and demands are bounded by a constant λ, then

there exists an (α,λ,∆)-expander which performs within (1− αλ)-optimality of the fully flexible

system for every demand scenario. More recently, Chen et al. (2015) introduce probabilistic graph

expanders and prove that in a balanced and symmetric system with n plants and n products,

there exists a probabilistic expander with O(n ln(1/ε)) arcs that guarantees (1− ε)-optimality with

high probability. A follow-up work by Chen et al. (2019) generalizes the results in Chen et al.

(2015) to unbalanced and asymmetric systems. Most of the above works consider offline allocation

decisions, in which case how to allocate available capacities to fulfill demand is decided after

demand realization. A recent work by Asadpour et al. (2020) investigates the effectiveness of the

long chain design in the case where the allocation decisions must be made in an online fashion,

and show that the long chain is still extremely effective in reducing supply-demand mismatch in

the online decision-making setting. Simchi-Levi et al. (2018) incorporate inventory decisions with

process flexibility for supply chain risk mitigation. They propose a robust optimization formulation

where the first-stage decision variables are inventory levels and the second-stage decision variables

are production quantities. They complement the existing literature on 2-chain by showing that

increasing the degree of flexibility beyond 2-chain can still achieve significant benefit.

The most closely related to our work is the paper by Simchi-Levi and Wei (2015), which intro-

duces an index that only depends on the design structure, the plant cover index, to study the

worst-case performances of flexibility designs. They prove that if all of the plant cover indices of

one flexibility design, A1, are greater than or equal to the plant cover indices of another design,

A2, then A1 is more robust than A2 under any symmetric uncertainty set and a broad class of

performance functions. Other indices have also been developed in the literature to compare the

effectiveness of different flexibility designs, such as the original index developed in Jordan and

Graves (1995), the structural flexibility index in Iravani et al. (2005), WS-APL index in Iravani

et al. (2007), and the expansion index in Chou et al. (2008).
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Research on flexibility configuration designs that explicitly takes margin differentials into account

has received much less attention in the operations literature. Chou et al. (2010a) explicitly distin-

guish between primary and secondary links, where primary links connect plants with the products

they are originally designed to manufacture and are associated with a lower cost than those of

the secondary links. The authors obtain asymptotic lower bounds on the chaining efficiency, which

captures the relative improvement a sparse design can achieve over a dedicated design compared

with full flexibility. Their results show that chaining can be less beneficial when the efficiency loss

associated with secondary arcs is taken into consideration. Mak and Shen (2009) adopted a stochas-

tic optimization based approach to study the problem of flexibility design problems with price and

cost differentials incorporated into the model. The authors use a Lagrangian-based approach with

state-independent multipliers to directly search for an optimal flexibility configuration that maxi-

mizes the system’s expected total profits. Their computational results suggest that their solution

can be significantly better than the chaining strategy when the cost parameters are heterogeneous.

More recently, Feng et al. (2017) extended the model of Mak and Shen (2009) by introducing an

additional set of parameters on the unit capacity consumption rate of each plant-product pair to

capture heterogeneous production efficiency, and the authors have developed an efficient solution

algorithm based on sample average approximation to solve the extended model.

Process flexibility has also been studied in various application settings. Iravani et al. (2007)

and Wallace and Whitt (2005) study process flexibility in a call-center limited labor cross-training

setting. Graves and Tomlin (2003) analyze the benefits of flexibility in multi-stage supply chains.

Bassamboo et al. (2010) study the optimal flexibility configurations in the application of resource

portfolio investment. Tsitsiklis and Xu (2017) analyze the benefits of limited flexibility and resource

pooling in multi-server queueing networks. We refer readers to the survey by Chou et al. (2008)

and Buzacott and Mandelbaum (2008) for a more detailed review on process flexibility design.

2. Model

We consider a system with m plants and n products for some arbitrarily fixed positive integers m

and n. Let A := {a1, ..., am} denote the set of plant nodes, where plant j has a fixed capacity Cj for
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each 1≤ j ≤m. Denote B := {b1, ..., bn} as the set of product nodes, where for each 1≤ i≤ n, the

profit margin of product i is equal to pi. In our model, we assume that there is a total of T different

margins P1 < P2 < · · ·< PT , and pi ∈ {P1, P2, ..., PT} for each 1≤ i≤ n. Let St denote the subset

of products with profit margin Pt, i.e., St = {bi ∈B : pi = Pt}. A system is said to be balanced if

the numbers of plants and products are equal. A system is called symmetric if all plants have the

same capacity and all products have independent and identically distributed (i.i.d.) demands.

A flexibility design A is represented by the arc set of a bipartite graph defined on sets A and B,

where an arc from plant node aj to product node bi means that plant j is capable of producing

product i, and we denote |A| as the number of edges in flexibility design A. For example, the full

flexibility design in which each plant has the capability to produce all the products is represented

as F = {(aj, bi)|1 ≤ i ≤ m,1 ≤ j ≤ n}. In a balanced system, we define the long chain design,

where each product can be produced by exactly two adjacent plants, as L= {(ai, bi), (ai, bi+1)|i=

1, ..., n− 1}∪{(an, bn), (an, b1)}; and the dedicated design, where each product can be produced by

exactly one plant, as D = {(ai, bi)|1 ≤ i ≤ n}. See Figure 1 for an illustration of the long chain,

together with dedicated and fully flexible systems when n= 5.

Figure 1 Flexibility designs.

Full FlexibilityDedicated System Long Chain

plant productplant product plant product

k-Chain (k = 3)

plant product

Given a demand instance d= [d1, ..., dn], the maximum profit that can be achieved by a flexibility

design A, denoted by g(A,d), can be obtained by solving the following linear program (LP), where
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the decision variables xij represent the amount of demand for product i fulfilled by plant j:

g(A,d) = max
∑

(aj ,bi)∈A

pixij (1)

s.t.
m∑
j=1

xij ≤ di, ∀1≤ i≤ n,

n∑
i=1

xij ≤Cj, ∀1≤ j ≤m

xij ≥ 0, ∀1≤ i≤ n,1≤ j ≤m.

It is appropriate to point out that in our model, the contribution margin is product dependent. It

would be ideal to allow the contribution margins to be plant-product pair specific, but this would

make the analysis much more challenging under our current solution approach and we shall leave

it to future research. We would also like to remark that our model has implicitly assumed that the

firm is a price taker since the profit margins are not affected by the production quantities chosen.

In the process flexibility literature, a very popular metric for evaluating the performance of

flexibility designs has been based on the maximum sales in units. More specifically, one solves a

max flow problem that is similar to (1) with the objective function replaced by max
∑

(aj ,bi)∈A
xij

to compute the maximum sales achieved by flexibility design A under a given demand instance d.

However, the maximum sales metric does not take into account any potential margin differentials

that may appear among the products, which could lead to substantial profit losses when the

maximum sales metric is used to guide flexibility designs whereas the products have considerably

large margin differences. Our objective in this paper is to examine the performance of flexibility

designs under the maximum profit metric. To the best of our knowledge, we are among the first to

explicitly consider product margin differentials in flexibility designs.

2.1. Notation

Let R+ be the set of non-negative reals. Let Rn+ denote the n-dimensional vector space of non-

negative reals. Let Z+ be the set of non-negative integers. Denote 1{·} as the indicator function.

For a vector x∈Rn, denote mini(x) as the i-th smallest element in the set {x1, ..., xn}. Denote [n]
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as the set of integers from 1 to n, and let Ω([n]) denote the set of all permutations of [n]. For any

demand instance d∈Rn+, define dσ := [dσ(1), ..., dσ(n)]
T for any index permutation σ ∈Ω([n]).

For flexibility design A with bipartition sets A and B, define N(u,A) = {v |(u, v)∈A or (v,u)∈

A} for any u∈A∪B. That is, N(u,A) is the set of neighboring nodes of u in the bipartite graph

defined by (A,B,A). Moreover, for any subset S ⊆A or S ⊆B, let N(S,A) =
⋃
u∈SN(u,A).

2.2. Robust (Worst-Case) Measures

For a given demand instance d, a deterministic measure is a function that maps d and a flexibility

design A to a real number. For example, the maximum profit achieved by a flexibility design, g(·),

is one such deterministic measure. Given a deterministic measure function f , we denote Rf (·) as

the robust measure of f , which is defined as the worst-case performance among all possible demand

instances in a given uncertainty set U :

Rf (A,U) := min
d∈U

f(d,A).

In other words,Rf (·) is a robust counterpart of f that maps a flexibility designA and an uncertainty

set U to a real number, which considers the worst-case performance and measures the “robustness”

of A under U . Since the product demand can never be negative, we assume that any uncertainty

set U considered in this paper lies in Rn+. We also assume that any deterministic measure function

f is continuous in d, which ensures that its robust counterpart Rf (·) is always well defined.

Let s1, ..., sT be the index sets associated respectively with the T product categories such that s1∪

· · ·∪sT = [n] and i∈ st if and only if bi ∈ St, and denote −st := [n]\st. For a given demand instance

d, let dst := {di | bi ∈ St} be the demand vector with appropriate dimension that is associated

with products in subset St, where all the products in the same category St have identical margin

Pt. Similarly, define d−st := {di | bi /∈ St}. For each product category St, we use
∑
dst :=

∑
i∈st di

to represent the total demand in product category St under demand instance d. A deterministic

measure function f(·) is said to be monotonic in profit under fixed total demand in each product

category
∑
dst and separable in

∑
dst for each 1≤ t≤ T , if there exists some function h such that

f(A,d) = h
(
g(A,d),

∑
ds1 , ...,

∑
dsT

)
, (2)
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and h(x, y1, ..., yT ) is strictly increasing in x for any fixed real numbers y1, ..., yT . Let Γ denote the set

of all robust measures associated with deterministic measure functions that are monotonic in profit

under fixed total demand in each product category
∑
dst and separable in

∑
dst for each 1≤ t≤ T .

It is easy to check that most of the commonly used deterministic measure functions satisfy the

above condition and their robust counterparts belong to Γ. Examples include f(A,d) = g(A,d)

(the maximum profit), f(A,d) = g(A,d) −
∑n

i=1 pidi (the potential profit loss due to capacity

constraint), f(A,d) = g(A,d)− g(F ,d) (the profit gap between full flexibility and A).

2.3. Demand Uncertainty Sets

One of the major modelling decisions that we have deferred until this point is the choice of uncer-

tainty sets to describe possible demand scenarios. In the worst-case analysis, symmetric uncertainty

sets are frequently used to model symmetric demand variations, where a set U is said to be sym-

metric if for any d∈U , dσ ∈U for any permutation σ ∈Ω([n]) (see Simchi-Levi and Wei 2015 for

examples of symmetric uncertainty sets). Symmetric uncertainty sets imply that the worst-case

performance will not change if we relabel the products. A generalization of symmetric uncertainty

sets is the class of symmetric perturbation uncertainty sets, where a set U is called a symmetric

perturbation uncertainty set if E := {x−µ |x∈U} is symmetric for some fixed µ. Intuitively, one

can interpret symmetric perturbation uncertainty sets as having product demands estimated to be

µ, and the estimation error (perturbation) has the same fluctuation across products around µ.

In our model, products are grouped into T categories S1, ..., ST , where products in the same

category have identical margin. In view of the (margin) heterogeneity across different product

categories, we consider a class of uncertainty sets that do not require the estimation error around

µ to have the same fluctuation across all products, but instead only assume that the perturbation

set is symmetric within each product category. Moreover, we assume independent demand across

different product groups in the sense that the possible demand scenarios of products in St are

independent of the values of d−st and hence uncertainty set U can be written as the Cartesian

product U = U1 × · · · × UT , where Ut := {dst |d ∈ U}. Formally, let Ω(st) denote the set of all

permutations of index set st of the products in St. We have the following definitions:
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Definition 2.1 (Part-wise Independently Symmetric Uncertainty Set) An uncertainty

set U ⊂ Rn+ is part-wise independently symmetric if (1) U = U1 × · · · × UT , and (2) for any

dst,−st ∈U , we have dσt(st),−st ∈U for any permutation σt ∈Ω(st) for each 1≤ t≤ T .

Definition 2.2 (Part-wise Independently Symmetric Perturbation Uncertainty Set)

An uncertainty set U ⊂ Rn+ is a part-wise independently symmetric perturbation uncertainty set

if E := {d−µ |d∈U} is part-wise independently symmetric for some fixed µ.

It is worth pointing out that the uncertainty sets considered in Definition 2.2 are more general

than that in Definition 2.1, since U is independently symmetric if and only if U is independently

symmetric around some µ with µi = µj for all 1 ≤ i, j ≤ n. Here we would like to remark that

the goal of the current paper is to develop tools that can identify flexibility designs that perform

well for a general class of uncertainty sets, rather than constructing an uncertainty set to model

demand uncertainty. To the best of our understanding, in the robust optimization literature, the

uncertainty sets are chosen to balance the computational and/or analytical tractability of the

resultant problem formulation with the quality of the solution. Different uncertainty sets may

work well for different models, and we refer the readers to Bertsimas et al. (2011) for a list of

most commonly used uncertainty sets. As we shall show later, the particular choice of the part-

wise independently symmetric perturbation uncertainty sets allows us to derive an index that can

identify flexibility designs that perform well.3 Unfortunately however, we have not been able to

derive a similar index for more general uncertainty sets.

3. Robust Measures and the Dual Margin Group Index

In this section, we formulate the robust measure to evaluate the worst-case performance of general

unbalanced and asymmetric flexibility designs when there exist margin differentials among the

products. We first define an index, the so-called Dual Margin Group Index (DMGI), which can be

used to characterize the worst-case performance of a flexibility design as we show in later sections.

3 In Wang et al. (2020) Appendix C, we provide several examples that illustrate the applicability of our chosen

uncertainty sets.
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3.1. Definition of the Dual Margin Group Index

In this subsection, we formally define our Dual Margin Group Index (DMGI) that will become

useful for evaluating and comparing the worst-case performance of flexibility designs. Our DMGI is

partly inspired by the Plant Cover Index (PCI) introduced by Simchi-Levi and Wei (2015), which

considers a system where all the n products have identical profit. For any integer k ∈ {0,1, ..., n},

the PCI at k is defined as the minimum plant capacity required to create a vertex cover on a

flexibility design, given that the vertex cover contains exactly k product nodes. We next introduce

our DMGI to account for margin differentials among the products.

Recall that for any demand instance d ∈Rn+, the maximum profit achieved by flexibility design

A, g(A,d), can be computed by solving (1). By strong duality theorem, we have

g(A,d) = min
y,z

n∑
i=1

diyi +
m∑
j=1

Cjzj (3)

s.t. yi + zj ≥ pi, ∀ (aj, bi)∈A,

yi ≥ 0, ∀1≤ i≤ n,

zj ≥ 0, ∀1≤ j ≤m

We first present the following lemma that provides a characterization of the optimal solutions to

the dual problem (3), which will become useful in defining the dual margin group index later. All

the proofs in this paper are relegated to Appendix A.

Lemma 1. Suppose (y∗, z∗) is a basic feasible solution to the dual problem (3). For any product

i ∈ {1, ..., n}, one of the following three cases must be true: (i) y∗i = pi, (ii) y∗i = 0, or (iii) y∗i =

pi− pi′ for some pi′ < pi.

In view of Lemma 1, there must exist an optimal solution (y∗, z∗) to the dual problem (3) where

y∗i can only take one of the values from the set {pi} ∪ {0} ∪ {pi− pi′ |1≤ i′ ≤ n such that pi′ < pi}

for each product i. Intuitively, the dual variable y∗i represents the shadow price associated with

the product i demand di. In the case of constrained capacity, the “marginal value” brought by an

additional unit of product i demand can be either zero (i.e., this additional unit of product i demand
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cannot be fulfilled due to insufficient capacity), or the difference between its own margin and that of

a less profitable product (in which case an extra unit of product i demand is satisfied at the expense

of giving up the sale of some lower profitable product). When the capacity is unconstrained, this

extra unit of product i demand is fulfilled and brings an additional profit margin pi.

Next, we shall use the above observation to define the DMGI to facilitate the evaluation and

comparison of flexibility designs. For each 1≤ t≤ T , define βtr := Pt−Pr for each 0≤ r≤ t, where

P0 ≡ 0. For a fixed µ, we define the Dual Margin Group Index (DMGI) at parameter set K = {ktr ∈

Z+ : t= 1, ..., T, r= 0, ..., t−1} for flexibility design A, denoted by δKµ (A), as the objective value of

the following integer program:

δKµ (A) := min
w,y,z

{
n∑
i=1

µiyi +
m∑
j=1

Cjzj

}
(4)

s.t. yi + zj ≥ pi, ∀(aj, bi)∈A

yi =
t∑

r=0

βtrwitr, ∀ bi ∈ St, ∀t= 1, ..., T

∑
bi∈St

witr = ktr, ∀ t= 1, ..., T, ∀ r= 0, ..., t− 1

t∑
r=0

witr = 1, ∀ bi ∈ St, ∀t= 1, ..., T

t∑
r=0

witr = 0, ∀ bi /∈ St, ∀t= 1, ..., T

witr ∈ {0,1} ∀ bi ∈ St, ∀ r= 0, ..., t, ∀t= 1, ..., T

A few remarks are in order. By Lemma 1, we have yi ∈ {βtr |0 ≤ r ≤ t} for any product i

with margin Pt if yi comes from a basic feasible solution to the dual problem (3). In the above

definition, the binary variable witr = 1 if yi takes value βtr for product bi ∈ St. The parameter

ktr prescribes that there are exactly ktr products with margin Pt whose yi is equal to βtr, i.e.,

|{bi ∈ St : yi = βtr}|= ktr. Notice that βtt = 0 for all t= 1, ..., T . It then follows that the cardinality

of the set {bi ∈ St : yi = βtt} does not affect objective value (4), and therefore the parameters ktr

are only defined for r = 0, ..., t− 1. Intuitively, δKµ (A) represents the minimum requirement of the
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mean demand and plant capacities to ensure dual feasibility, given that the values of yi for each

product group satisfy the cardinality constraint specified by parameter set K. It is appropriate to

remark that although computing δKµ (A) is NP-hard (cf. Lemma 2 in Simchi-Levi and Wei (2015)

for a special case of our model), the integer program formulation (4) in general has a small size

and can be solved efficiently using commercial optimization solvers such as Gurobi. With (4), we

show in the next subsection that the DMGI is a useful tool for the evaluation and comparison of

the worst-case performance of different flexibility designs.

3.2. Worst-Case Measures with Part-wise Independently Symmetric Perturbation
Uncertainty Sets

For any given flexibility design A, we study its robust measures under part-wise independently

symmetric perturbation uncertainty sets in this subsection. Consider a part-wise independently

symmetric perturbation uncertainty set U for some fixed µ. For each index set st ⊂ [n], let dst =

{di | bi ∈ St} and µst = {µi | bi ∈ St}. For a given parameter set K = {ktr ∈ Z+ : t = 1, ..., T, r =

0, ..., t− 1} where 0≤
t−1∑
r=0

ktr ≤ |St|, let Htr :=
r∑
j=0

ktj for all 1≤ t≤ T , 0≤ r ≤ t− 1. Let Q denote

the set of feasible non-negative integer parameter sets K = {ktr ∈ Z+ : t= 1, ..., T, r = 0, ..., t− 1}

such that 0≤
t−1∑
r=0

ktr ≤ |St|. For any robust measure Rf ∈ Γ, we show in the following result that

there exists an explicit representation of the worst-case performance Rf (A,U) for any design A

and part-wise independently symmetric perturbation uncertainty set U .

Theorem 1. Let f be a deterministic measure function that is monotonic in profit under fixed

total demand in each product category
∑
dst and separable in

∑
dst for each 1≤ t≤ T . Let h(·)

be the function such that h(x, y1, ..., yT ) is strictly increasing in x for fixed y1, ..., yT , and f(A,d) =

h(g(A,d),
∑
ds1 , ...,

∑
dsT ). Then for any uncertainty set U that is part-wise independently sym-

metric around µ, we have

Rf (A,U) = min
K∈Q,ε∈E

h

(
δKµ (A) +

T∑
t=1

(
t−1∑
r=0

βtr

(
Htr∑

i=Htr−ktr+1

εst,i

))
,
∑
i∈s1

(µi + εi), ...,
∑
i∈sT

(µi + εi)

)
.

Theorem 1 shows that for any robust measure R ∈ Γ and part-wise independently symmetric

perturbation uncertainty set U , the worst-case performance of design A under robust measure R
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can be completely determined by the values of δKµ (A) without any additional information of A.

Moreover, Theorem 1 implies a partial order of flexibility designs under any robust measure in Γ.

Theorem 2. Fix a robust measure R ∈ Γ. Then the following statements hold:

(a) If δK(A1,U)≥ δK(A2,U) for all K ∈Q, then R(A1,U)≥R(A2,U) for any part-wise indepen-

dently symmetric perturbation uncertainty set U .

(b) If R(A1,U)≥R(A2,U) for any part-wise independently symmetric perturbation uncertainty set

U , then δK(A1,U)≥ δK(A2,U) for all K ∈Q such that ktr = 0 for all r > 0.

Theorem 2(a) provides a sufficient condition for one flexibility design to be more robust (i.e.,

with a better worst-case performance) than another. As we shall show later, this sufficient condi-

tion allows us to compare the worst-case performance of different designs, and is used to establish

the optimality of a special class of long chain, the so-called alternate long chain design, among

all the long chain designs with equal number of high margin and low margin products. However,

we have been unable to show the necessity of this condition, and Theorem 2(b) presents a neces-

sary condition when R(A1,U)≥R(A2,U) for any part-wise independently symmetric perturbation

uncertainty set U . By Theorem 2(b), if one design is more robust than another, then the DMGI

value of the former must be no less than that of the latter under certain parameter sets. Later in

Section 4, we will use this necessary condition to show the suboptimality of the alternate long chain

among the class of 2-flexibility designs with equal number of high profit and low profit products.

4. Worst-Case Performance of the Alternate Long Chain Design

One class of flexibility designs that has been extensively studied in the operations literature is

the long chain L, which has been shown to be extremely effective in mitigating supply-demand

mismatch where the evaluation metric is based on the total sales in units. In this section, we aim to

study the worst-case effectiveness of the long chain design when there are two product categories

with respective profit margins PH and PL. Let SH = {bi ∈B |pi = PH} and SL = {bi ∈B |pi = PL}

denote the set of high profit products and the set of low profit products, respectively.
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Throughout this section, we consider a balanced system where the numbers of the plants and

products are both equal to n. As is typical in the analysis of the long chain (e.g., Simchi-Levi and

Wei (2012, 2015), Wang and Zhang 2015), we assume that all the plants have identical capacities

and all the products have the same expected demand, i.e., Ci =Cj and µi = µj for all 1≤ i, j ≤ n.

Without loss of generality, we assume unit capacities Cj = 1 for all 1≤ j ≤ n.

Let K = {k10, k20, k21} be a given parameter set, where k10 = {bi ∈ SL |yi = PL}, k20 = {bi ∈

SH |yi = PH}, k21 = {bi ∈ SH |yi = PH −PL}, and yi is the variable corresponding to each product

in the DMGI definition (4). When µi = µj for all 1 ≤ i, j ≤ n, the term
n∑
i=1

µiyi in the objective

function (4) is a constant for any fixed parameter set K. Therefore, we may omit this term without

loss of optimality and the DMGI for a homogeneous design A, denoted by δK(A), is equivalent to

the optimal objective function of the following problem:

δK(A) := min
w,y,z

m∑
j=1

zj (5)

s.t. yi + zj ≥ pi, ∀(aj, bi)∈A

yi =
t∑

r=0

βtrwitr, ∀ bi ∈ St, ∀t= 1, ..., T

∑
bi∈St

witr = ktr, ∀ t= 1, ..., T, ∀ r= 0, ..., t− 1

t∑
r=0

witr = 1, ∀ bi ∈ St, ∀t= 1, ..., T

t∑
r=0

witr = 0, ∀ bi /∈ St, ∀t= 1, ..., T

witr ∈ {0,1} ∀ bi ∈ St, ∀ r= 0, ..., t, ∀t= 1, ..., T

Consider the class of long chain designs with equal number of high profit products and low

profit products. Among this class of long chain designs with |SH |= |SL|= n/2, we are particularly

interested in a special design where the high profit products and low profit products are assigned

to the plants in an alternate manner, which we call the alternate long chain design and is denoted

as AL. Figure 2(a) illustrates an alternate long chain with n = 4, where each circle represents a
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product node and the high profit products (H) and low profit products (L) are spread out evenly

in an alternate manner. In the remainder of this section, we apply the results from the previous

sections to analyze the worst-case effectiveness of the alternate long chain design.

Figure 2 Alternate Long Chain and Sequential Long Chain with n= 4

(a) Alternate Long Chain (b) Sequential Long Chain

4.1. Optimality of the Alternate Long Chain Design

In this subsection, we first examine the performance of the alternate long chain among all the long

chain designs with equal number of high profit products and low profit products LHL. Our next

result demonstrates that the alternative long chain design has the best worst-case performance

among LHL under any robust measure R that lies in Γ.

Theorem 3. Let LHL be a long chain design with equal number of high profit products and low

profit products. Then, for any part-wise independently symmetric uncertainty set U and any robust

measure R ∈ Γ, we have R(AL,U)≥R(LHL,U).

In view of Theorem 3, the alternate long chain is optimal among all the long chain designs with

equal number of high profit products and low profit products. Intuitively, among all the long chain

designs with equal number of high profit and low profit products, the alternate long chain has

the best potential to fulfill the demand from high profit products compared with designs where

multiple high profit products share a common plant. One implication of the above optimality result

is that, within the class of long chain production systems, it is most beneficial to evenly “spread

out” the products from the two product groups in an alternate manner and to equip each plant

to be capable of producing both high profit and low profit products. As a result, the high profit

products never have to directly compete for shared resources. A natural generalization of Theorem
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3 is to investigate the optimality of the alternate long chain design among the class of 2-flexibility

designs where each product is connected to two plants. However, as we show in Section 4.2, the

optimality result in Theorem 3 does not extend to the more general class of 2-flexibility designs in

the presence of margin differentials among the products.

We next give a sketch of the proof of Theorem 3 with the complete proof relegated to Appendix

A. In Lemma 2, we provide the exact characterization of the DMGI value for the alternate long

chain design δK(AL) for any given parameter set K. We then show in Proposition 1 that the

alternate long chain design has the largest DMGI for any K ∈Q among all long chain designs with

equal number of high profit and low profit products, which immediately implies Theorem 3 by the

sufficient condition in Theorem 2(a).

Lemma 2. For a given parameter set K = {k10, k20, k21}, the dual margin group index of the

alternate long chain design AL with n/2 high profit products and n/2 low profit products is given

by

δK(AL) =



2k22PH + 2k21PL, if k20 = 0

2k22PH + (n− 2k22−min(k10, k20 + 1)−min(k10, k20− 1))PL, if k20 = 1, ..., n
2
− 1,

2k11PL, if k20 = n
2
,

(6)

where k22 = n/2− k20− k21 and k11 = n/2− k10.

Proposition 1. Let LHL be a long chain design with equal number of high profit products and

low profit products. Then, δK(AL)≥ δK(LHL) for any parameter set K ∈Q.

Theorem 3 establishes the optimality of the alternate long chain among all the long chain designs

with equal number of high profit and low profit products in a balanced production system where

all the plants have identical capacities and all the products have the same expected demand.

Intuitively, compared with other long chain designs in which multiple high profit products may

share the same plant, the alternate long chain can achieve superior robust performance since high

profit products will never directly “compete” with each other for the limited capacities.
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We have conducted numerical analysis to further illustrate the intuition for the superiority of the

alternate long chain. We briefly summarize the numerical studies below, and we refer the readers

to Section 4.2 in the unabridged version Wang et al. (2020) for the details. Our numerical studies

compare the performance of the alternate long chain and the sequential long chain, where in a

sequential long chain, all the high profit products are adjacent to each other and all the low profit

products are grouped together in a sequence (see Figure 2(b) for an illustration of a sequential long

chain with n= 4). We evaluate the profits achieved by the two long chain designs under randomly

generated demand instances and compute the average ratio and worst-case ratio of their profits

relative to full flexibility under various parameter settings. Our simulation results suggest that

the alternate long chain considerably outperforms the sequential long chain under both average

and worst-case performance measures. We have extended our numerical analysis to compare the

performance of different long chain designs with three and four different profit levels, and further

generalized to unbalanced systems in which the numbers of the products and plants are not equal.

Our numerical results demonstrate that the insights obtained from the optimality of the alternate

long chain that products with different margins should be “spread out” are quite robust, which

also apply to systems with more than two profit levels and unbalanced production systems.

4.2. Alternate Long Chain vs. Disjoint Long Chain

As shown in Theorem 3, the alternate long chain is optimal among all the long chain designs with

equal number of high profit and low profit products. A natural generalization to Theorem 3 is to

investigate the optimality of the alternate long chain among the class of 2-flexibility designs with

equal number of high profit and low profit products, where in a 2-flexibility design, each product

is connected to exactly two plants. However, as we shall show below, this generalization does not

hold in general. In particular, we compare the performance of the alternate long chain with a

specific class of 2-flexibility designs, the disjoint long chain, and demonstrate that the alternate

long chain could be either superior or inferior to the disjoint long chain. A disjoint long chain DL

with n products is composed of two separate long chain components with n/2 products, where the
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products that belong to the same component have the same profit (a DL with n= 8 is illustrated

in Wang et al. (2020) Appendix F). Our next result shows that there is no dominance relationship

between the disjoint long chain and the alternate long chain under any robust measure in Γ.

Proposition 2. Fix a robust measure R ∈ Γ. Then there exist some part-wise independently

symmetric uncertainty sets U and U ′ such that R(AL,U)≥R(DL,U) and R(AL,U ′)≤R(DL,U ′).

In view of Proposition 2, the disjoint long chain may achieve a better worst-case performance

than the alternate long chain, and therefore the alternate long chain design is no longer optimal

among the class of 2-flexibility designs. It is worth noticing that the disjoint long chain differs from

the sequential long chain in that the high profit products and low profit products are completely

disconnected in the disjoint long chain. Therefore, the high profit products have full access to half

of the total plant capacities that will not be shared by any low profit product either directly or

indirectly. In contrast, the alternate long chain is a connected design and hence high profit products

may need to indirectly compete for capacities with low profit products and result in an inferior

worst-case performance than the disjoint long chain. An example that shows the suboptimality of

the alternate long chain is presented in Wang et al. (2020) Appendix D.

5. Generating Effective Flexibility Design under Profit Maximization

In this section, we aim to develop a heuristic by deploying the notion of DMGI for constructing

effective flexibility designs when there exist margin differentials among the products. The heuristic

we propose start with an initial base flexibility design A (which could be an empty system without

any arc), and iteratively add arcs to improve A. In what follows, we first describe the high level

idea of a single iteration and then present the formal description of our proposed DMGI-Heuristic

in Algorithm 1, followed by numerical analysis to evaluate the effectiveness of our heuristic.

Recall that Q denotes the set of feasible non-negative integer parameter sets K = {ktr ∈ Z+ :

t = 1, ..., T, r = 0, ..., t − 1} such that 0 ≤
t−1∑
r=0

ktr ≤ |St|, where for each 0 ≤ r ≤ t, the integer ktr

prescribes that there are exactly ktr products with profit margin Pt whose yi value in the definition

of δKµ (A) is equal to Pt − Pr. In view of Theorem 2(a), it is desired to find designs with large
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DMGI values δKµ (A) for all K ∈ Q in order to construct flexibility designs with effective robust

performance. Therefore, the main idea of our algorithm is to add an arc (aj, bi) /∈A to A in order

to increase the values of DMGI at each iteration as much as possible.

We next introduce some necessary notations to formally present our heuristic. Recall that DMGI

is defined under a given parameter set K = {ktr ∈ Z+ : t = 1, ..., T, r = 0, ..., t− 1}, where ktr rep-

resents the number of products with margin Pt whose yi value is equal to Pt − Pr. For notation

convenience, let ktt denote the number of products with margin Pt whose yi value is equal to 0, i.e.,

ktt = |{bi ∈ St : yi = 0}|. Notice that the value of ktt is uniquely determined for each t under a fixed

parameter set K. Instead of considering all possible K ∈Q, we focus on the K that has the worst

DMGI value within the same group Q(q1,...,qT ) ⊂Q parameterized by integers {q1, ..., qT}, where

Q(q1,...,qT ) :=

{
K ∈Q

∣∣ T∑
t=r

ktr = qr,∀1≤ r≤ T

}
,

and parameter qr prescribes the number of products whose margin Pt is at least Pr and its yi value

in the definition of δKµ (A) is equal to Pt−Pr. For each q := (q1, ..., qT ) where 0≤ qr ≤
∑T

t=r |St| for

each 1≤ r≤ T , we solve for the worst DMGI value among all K ∈Qq:

Kq := arg min
K∈Qq

δKµ (A),

and obtain the corresponding optimal solution yK
q

and zK
q
. Notice that the objective function

(4) in the definition of δKµ (A) increases with the value of yi and zj. In view of this, we define

pair (i, j) as a bottleneck under Kq if both yK
q

i = 0 and zK
q

j = 0. Intuitively, as yi and zj are dual

variables associated with the demand and capacity constraints in the max-flow problem (1), in

view of the complementary slackness condition, a bottleneck prevents the system from using the

available plant capacities to satisfy the excess demand. In each iteration, our proposed heuristic

computes Kq for all q and then adds an arc that can reduce the largest number of bottlenecks,

which would be helpful in obtaining a larger value of the dual margin group index. Our numerical

studies demonstrate that the performance of the sparse designs generated by our DMGI-Heuristic

compares very well with that of full flexibility, and the value of limited flexibility becomes more
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Algorithm 1 DMGI-Heuristic

1: Input: An initial design A in an m plants n products system, and a budget of extra B arcs.

2: for b= 1, ...,B do

3: Compute Kq and its corresponding optimal solution (yK
q
,zK

q
) for each q := (q1, ..., qT )

such that 0≤ qr ≤
∑T

t=r |St| for each 1≤ r≤ T .

4: For each 1≤ i≤ n,1≤ j ≤m such that (aj, bi) /∈A, compute

W (i, j) =
∑
q

1{yK
q

i = 0}×1{zK
q

j = 0}.

5: Find arc (aj∗ , bi∗) such that W (i∗, j∗) = max
1≤i≤n,1≤j≤m

W (i, j). When there is a tie, we uni-

formly select an arc with the maximum W (i, j).

6: Add arc (aj∗ , bi∗) to A.

7: end for

8: Return A

significant when the demand has a lower volatility and the margin difference is smaller. We refer

the readers to Wang et al. (2020) Section 5 for details.

Our DMGI-Heuristic is developed based on a robust optimization based approach. Another

approach to designing flexibility structures in the case of known demand distribution is to solve

a two-stage integer stochastic programming problem, and we provide some discussions on our

choice of robust optimization approach over stochastic optimization approach in Wang et al. (2020)

Appendix G. We next present numerical studies that compare the performance achieved by the flex-

ibility designs generated by our DMGI-Heuristic and designs obtained by stochastic optimization

based approaches. In particular, we compared our algorithm with Sample Average Approximation

(SAA) method and Feng et al. (2017), and the numerical results suggest that our robust opti-

mization approach outperform the other two stochastic optimization based approaches, especially

when there exist demand distribution misspecification. More specifically, we consider a production

system with 14 products and 7 plants. Half of the products have profit margin equal to $2, and

their demands are independent and follow Normal(1,0.42) truncated at zero. The other half of the

products have margin equal to $1, and their demands are independent and follow Normal(2,0.82)
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truncated at zero. All the plants have the same capacity of 3 units. In Table 1, we report the

numerical results that compare the performance of our DMGI-Heuristic, the stochastic optimiza-

tion based heuristic proposed by Feng et al. (2017) (the MDEP-Heuristic), and the SAA method,

where we start with an empty system and add a total number of 25 arcs to the system.

In our numerical experiments, we randomly drew 2000 demand samples to generate a design using

the MDEP-Heuristic by Feng et al. (2017), and used 200 demand samples to generate a flexibility

structure using the SAA method. Then we compare the above two designs with the one generated

by DMGI-Heuristic under three scenarios. In Scenario 1, the actual demand distribution is the same

as the original distribution (i.e., the demands of half of the products are independent and follow

Normal(1,0.42) truncated at zero, and the demands of the other half are independent and follow

Normal(2,0.82) truncated at zero). In Scenario 2, there exist demand distribution misspecification.

For the actual demand, each product still follows their original distribution as aforementioned,

but the demands within each class are positively correlated with correlation coefficient equal to

0.4. Scenario 3 is similar to Scenario 2, but the correlation coefficient is equal to 0.8. For all three

scenarios, we have conducted 100 simulation runs, each with 10000 demand instances. The mean (in

bold font) and standard deviation (in parenthesis) of the average ratios and the worst-case ratios

of the profits achieved by the three heuristics relative to full flexibility are presented in Table 1. We

observe that our DMGI-Heuristic slightly outperform MDEP-Heuristic and SAA when the actual

demand follows the original distribution. Moreover, the advantage of our algorithm compared with

the other two benchmarks becomes larger as the correlation coefficient increases.
Since the majority of the heuristics for generating effective sparse flexibility designs proposed in

the literature aim to achieve the maximum sales in units without taking margin differentials into

account, we have also conducted another set of numerical studies in the setting where PH = PL = 1.

Our benchmarking algorithms include the Plant Cover Index (PCI) Heuristic by Simchi-Levi and

Wei (2015) and the Expander heuristic developed in Chou et al. (2011), which have been shown to

outperform many existing algorithms in the literature such as the algorithm proposed by Hopp et al.

(2004) as well as the design with the highest expected sales among 50 randomly generated designs
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Table 1 Average Ratio and Worst-case Ratio between the Profits of the Sparse Designs with 25
arcs by Various Heuristics relative to Full Flexibility under Independent (Scenario 1), Positively

Correlated with Correlation Coefficient 0.4 (Scenario 2) and Positively Correlated with Correlation
Coefficient 0.8 (Scenario 3) Demand

Average Ratio Worst-case Ratio

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

DMGI-Heuristic
0.9995 1.0000 1.0000 0.9304 0.9629 0.9981
(0.0000) (0.0000) (0.0000) (0.0093) (0.0075) (0.0036)

MDEP-Heuristic
0.9993 0.9999 1.0000 0.9251 0.9573 0.9594
(0.0000) (0.0000) (0.0000) (0.0109) (0.0086) (0.0115)

SAA
0.9993 0.9999 1.0000 0.9209 0.9562 0.9576
(0.0000) (0.0000) (0.0000) (0.0118) (0.0096) (0.0129)

(e.g. Simchi-Levi and Wei 2015). Here we would like to point out that our DMGI-Heuristic is closely

related to the PCI-Heuristic, and we provide a detailed discussion on how the DMGI-Heuristic

differs from the PCI-Heuristic in the case where all the products have identical profit margins in

Wang et al. (2020) Appendix E. We have also considered the well-known k-chain structures, which

are known to be effective in balanced and symmetric systems (e.g. Chou et al. 2014).

Table 2 summarizes the average ratio and the worst-case ratio of the profits achieved by various

sparse designs in a 10 by 10 production system with 25 arcs and 30 arcs (generated starting from

an empty graph) relative to that of full flexibility when all the products have identical profit mar-

gins. The corresponding flexibility designs generated by the DMGI-Heuristic, the PCI-Heuristic,

and the Expander heuristic are presented in Wang et al. (2020) Appendix F. In addition to the

PCI-Heuristic and the Expander heuristic, we have also compared our algorithm with the chaining

structures. In the case of a budget with 25 arcs, we consider a so-called 2.5-chain, which is a long

chain (or, 2-chain) with 5 additional arcs {(a6, b1), (a7, b2), (a8, b3), (a9, b4), (a10, b5)} that are evenly

distributed among the product-plant pairs (see Figure 7 in Appendix F for an illustration). From

Table 2, we observe that our DMGI-Heuristic has comparable performance with PCI-Heuristic in

terms of average ratios, and achieves a slightly better worst-case ratio than that by PCI-Heuristic.

For the Expander algorithm and the chaining structures, our DMGI-Heuristic consistently achieves

a better performance from both the average and the worst-case perspective, and the improvement

in the worst-case ratio becomes more significant as the demand becomes more volatile. These
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observations suggest that our proposed DMGI-Heuristic can be a favorable algorithm for gener-

ating effective sparse designs even when the products have identical profit margins. We have also

conducted another numerical study for a larger system with 40 plants and 40 products, and the

results (summarized in Appendix F) suggest similar insights as that observed from Table 2.

Table 2 Average Ratio and Worst-case Ratio of the Profits achieved by Various
Heuristics with the same number of arcs relative to Full Flexibility in a 10 by 10 Production

System: PH = PL = 1 and D∼N(1, σ2) truncated at zero

25 arcs DMGI-Heuristic PCI-Heuristic Expander 2.5-Chain

σ= 0.4

Average Ratio
0.9984 0.9983 0.9560 0.9973
(0.0001) (0.0001) (0.0004) (0.0001)

Worst-case Ratio
0.8714 0.8833 0.7572 0.8592
(0.0196) (0.0150) (0.0204) (0.0165)

σ= 0.8

Average Ratio
0.9754 0.9730 0.9164 0.9701
(0.0004) (0.0004) (0.0006) (0.0005)

Worst-case Ratio
0.6800 0.6973 0.5663 0.6681
(0.0291) (0.0297) (0.0305) (0.0269)

30 arcs DMGI-Heuristic PCI-Heuristic Expander 3-Chain

σ= 0.4

Average Ratio
1.0000 0.9998 0.9708 0.9999
(0.0000) (0.0000) (0.0003) (0.0000)

Worst-case Ratio
0.9506 0.9313 0.7716 0.9369
(0.0127) (0.0129) (0.0163) (0.0182)

σ= 0.8

Average Ratio
0.9936 0.9923 0.9459 0.9913
(0.0002) (0.0002) (0.0006) (0.0002)

Worst-case Ratio
0.7778 0.7727 0.5926 0.7416
(0.0241) (0.0291) (0.0281) (0.0237)

Up to this point, our numerical studies have focused on balanced systems. We have conducted an

additional set of numerical studies on systems with asymmetric capacities and non-i.i.d. demand

distributions. In particular, we compare our DMGI-Heuristic with three known algorithms, the

Thresholded Probabilistic Construction (TPC) heuristic by Chen et al. (2019), the Generalized

Chaining Gap (GCG) based heuristic developed by Shi et al. (2019) and the Expander heutistic

by Chou et al. (2011) with details given in Wang et al. (2020) Section 5. Our results suggest that

our DMGI-Heuristic and the Expander heuristic can achieve a better performance than the other

two approaches in an unbalanced and asymmetric system, especially when there exists demand

distribution misspecification, which can provide a higher level of robustness of the performance.
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6. Concluding Remarks

In this paper, we have studied the worst-case performance of flexibility designs when there exist

margin differentials among the products and the evaluation metric is based on maximizing total

profits rather than sales in units. Inspired by the structural property of the solutions to the dual for-

mulation of the profit maximization problem, we introduce the Dual Margin Group Index (DMGI)

and prove that a general class of worst-case performance measures can be expressed as functions

of the DMGIs under part-wise independently symmetric uncertainty sets. One implication of this

result is that the set of all DMGIs provides a sufficient statistic to compute the worst-case per-

formance of any flexibility design without any additional information of the design, which, in

turn, leads to a partial ordering that enables us to compare the performance of different flexibility

designs. By applying the above results, we establish the optimality of the alternate long chain

among all long chain designs where there are two product categories and the number of high profit

products is equal to that of low profit products. Motivated by our theoretical results, we propose

a heuristic based on DMGI for generating effective flexibility designs when the products exhibit

margin differentials. Our computational study suggests that the sparse design generated by DMGI-

Heuristic captures most of the benefit of full flexibility from the expected profit point of view, and

has satisfactory performance in the worst case for small to moderate level of demand uncertainty.

There are several ways to extend our research. First, in Theorem 2(a) we identify a sufficient

condition δK(A1,U)≥ δK(A2,U) for all K ∈Q for a design A1 to outperform another design A2 for

any part-wise independently symmetric perturbation uncertainty set U under any robust measure

R ∈ Γ. This sufficient condition is stronger than the necessary condition in Theorem 2(b), and an

interesting open question is whether we can close the gap to get a condition that is both sufficient

and necessary. Second, the comparison of different flexibility designs’ worst-case performance and

the DMGI-heuristic require computing δKµ (A) for all K ∈Q. For small to medium sized systems,

our numerical experiments suggest that the optimization problem for computing δKµ (A) can be

solved efficiently. However, for large size systems, it is important to develop efficient methods
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for the computation of δKµ (A) to make DMGIs applicable in more practical settings. Finally, our

current model only allows product-dependent profit margins. It would be nice to develop models

and solution approaches that allow the profit margins to be plant-product pair specific.
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Appendix A: Proofs

Proof of Lemma 1. Since the dual problem (3) is a linear program, basic solutions are achieved at the

corners of the polyhedron defined by {yi + zj = pi | (aj , bi) ∈A}, {yi = 0 |1≤ i≤ n} and {zj = 0 |1≤ j ≤m}.

From the above |A|+m+n equations, we arbitrarily choose m+n linearly independent binding constraints

that identify a unique basic solution. In the chosen m+n equations, denote C1 as the set of equations that

belong to {yi = 0 |1 ≤ i ≤ n} or {zj = 0 |1 ≤ j ≤ m}, and denote C2 as the set of equations that belong

to {yi + zj = pi | (aj , bi) ∈ A}. Note that {yi = 0 |1≤ i≤ n} ∪ {zj = 0 |1≤ j ≤m} is not a feasible solution,

and therefore we assume that |C2|> 0. Let G= (A,B,G) be the graph corresponding to the chosen m+ n

equations, where the set of edges G is defined by C2. In other words, (aj , bi) ∈ G if equation yi + zj = pi

belongs to C2. Suppose G consists of g components, each of which is a connected subgraph. For each subgraph

Gr = (Ar,Br,Gr) where 1≤ r≤ g, there are three cases to consider: (1) there exists some j such that zj = 0;

(2) there exists some i such that yi = 0; and (3) zj 6= 0 and yi 6= 0 for all aj ∈Ar, bi ∈Br.

Case 1: Suppose zj∗ = 0 for some aj∗ ∈ Ar. For any aĵ ∈ Ar, since Gr is connected, there exists a path

(aj∗ , bi1 , aj1 , bi2 , . . . , bik , aĵ) connecting aj∗ and aĵ . Since yi + zj = pi for any pair (i, j) on this path, yi1 =

pi1 , zj1 = 0, . . . , yik−1
= pik−1

, zjk−1
= 0, yik = pik and zĵ = 0. Therefore, zj = 0 for all aj ∈Ar. For any b̂i ∈Br,

since Gr is connected, there exists a path (aj∗ , bi1 , aj1 , . . . , ajk , b̂i) connecting aj∗ and b̂i. Since yi+ zj = pi for

any pair (i, j) on this path, yi1 = pi1 , zj1 = 0, . . . , zjk = 0, and yî = pî. Therefore, yi = pi for any bi ∈Br.

Case 2: Suppose yi∗ = 0 for some bi∗ ∈ Br. For any aĵ ∈ Ar, since Gr is connected, there exists a path

(bi∗ , aj1 , bi1 , . . . , bik , aĵ) connecting aĵ and bi∗ . Since yi+zj = pi for any pair (i, j) on this path, zj1 = pi∗ , yi1 =

pi1 −pi∗ , . . . , zjk = pi∗ , yik = pik −pi∗ , and zĵ = pi∗ . Therefore, zj = pi∗ for each aj ∈Ar. Similarly, there exists

a path (bi∗ , aj1 , bi1 , . . . , ajk , b̂i) connecting b̂i and bi∗ for any b̂i ∈Br. Since yi + zj = pi for each pair (i, j) on

this path, zj1 = pi∗ , yi1 = pi1 − pi∗ , . . . , zjk = pi∗ and yî = pî − pi∗ . Therefore, yi = pi− pi∗ for each aj ∈ Ar.

Notice yi + zj = pi for all (aj , bi)∈Gr, and hence bi∗ has the lowest margin and pi ≥ pi∗ for all bi ∈Br.

Case 3: Suppose zj 6= 0 and yi 6= 0 for all aj ∈Ar, bi ∈Br. In this case, the chosen equations in Gr all come

from subset C2. Since there are |Ar|+ |Br| variables, the number of arcs in Gr is also |Ar|+ |Br|. Notice

that a connected graph with n vertices is a tree if it has n− 1 edges. It immediately follows that there must
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exist an even cycle in Gr since the number of the nodes is the same as that of the edges. But the arcs in

an even cycle are linearly dependent, contradicting the fact that we have chosen m+n linearly independent

equations to identify a basic solution. �

Proof of Theorem 1. To prove Theorem 1, we first show a result that focuses on the worst-case profit,

and then we generalize to the broader class of robust measures in Γ.

Proposition 3. For any uncertainty set U that is part-wise independently symmetric around µ, the

worst-case profit Rg(A,U) is given by

Rg(A,U) = min
K∈Q,ε∈E

{
δKµ (A) +

T∑
t=1

(
t−1∑
r=0

βtr

(
Htr∑

i=Htr−ktr+1

εst,i

))}
, (EC.1)

where εst := dst −µst denotes the vector of demand residuals for each product category St.

Proof of Proposition 3. We first show that for any fixed d∈U and any given parameter set K = {ktr ∈

Z+ : t= 1, ..., T, r= 0, ..., t− 1}, the worst-case profit Rg(A,U) is bounded from above by the following:

Rg(A,U)≤ δKµ (A) +

T∑
t=1

t−1∑
r=0

βtr

(
Htr∑

i=Htr−ktr+1

miniεst

)
, (EC.2)

where εst := dst −µst denotes the vector of demand residuals for each product category St. Then we shall

show that there always exist some demand vector d∗ and parameter set K∗ such that the inequality in (EC.2)

is tight, which in turn implies the representation (EC.1) of the worst-case profit.

To see (EC.2), notice that by the definition of δKµ (A), there exist y,z that are feasible to problem (3)

such that
n∑
i=1

µiyi +
m∑
j=1

Cjzj = δKµ (A), and
∑

bi∈St
1{yi = βtr} = ktr for all 1 ≤ t ≤ T,0 ≤ r ≤ t− 1. By the

assumption on U , the uncertainty set for εst , denoted by Et := {εst |ε ∈ E}, is symmetric. Let σt be a

permutation of the index set st such that yi = βtr if and only if εσt(i) ∈ {mini εst |Htr − ktr < i≤Htr}. All

such permutations σt for each st combined together form a permutation σ of [n], and let dσ =µ+εσ. It then

follows that

n∑
i=1

dσ(i)yi +

m∑
j=1

Cjzj = δKµ (A) +

n∑
i=1

εσ(i)yi = δKµ (A) +

T∑
t=1

t−1∑
r=0

βtr

(
Htr∑

i=Htr−ktr+1

miniεst

)
. (EC.3)

By definition, we have g(A,dσ)≤
∑n

i=1 dσ(i)yi +
∑m

j=1Cjzj . Since U is a part-wise independently symmet-

ric perturbation uncertainty set, we have εσ ∈ E, which then implies that Rg(A,U) ≤ g(A, dσ) ≤ δKµ (A) +∑T

t=1

∑t−1
r=0 βtr

(
Htr∑

i=Htr−ktr+1

mini εst

)
.
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Next, we prove there always exist some demand vector d∗ and parameter set K∗ such that the inequality

in (EC.2) is tight. Let d∗ = arg mind∈U g(A,d) and define τ = d∗−µ. By definition, we have

g(A,µ+ τ ) = min
y,z

n∑
i=1

(µi + τi)yi +

m∑
j=1

Cjzj (EC.4)

s.t. yi + zj ≥ pi, ∀(aj , bi)∈A,

yi ≥ 0, ∀1≤ i≤ n, and zj ≥ 0, ∀1≤ j ≤m.

By Lemma 1, there exists an optimal solution (y∗,z∗) to problem (EC.4) that satisfy y∗i ∈ {βtr |0≤ r ≤ t}

for all bi ∈ St and 1 ≤ t ≤ T . Let k∗tr =
∑

bi∈St
1{y∗i = βtr} for all 0 ≤ r ≤ t− 1 and 1 ≤ t ≤ T , and define

K∗ = {k∗tr : t= 1, ..., T, r= 0, ..., t−1}. Let H∗tr :=
r∑
j=0

k∗tj for all 0≤ r≤ t−1 and 1≤ t≤ T . Then we must have

∑n

i=1 y
∗
i τi ≥

∑T

t=1

∑t−1
r=0 βtr

(
H∗tr∑

i=H∗tr−k
∗
tr+1

mini τ st

)
and

∑m

j=1Cjz
∗
j +

∑n

i=1 µiy
∗
i ≥ δK

∗

µ (A). It then follows

that Rg(A,U) = g(A,µ+τ )≥ δK∗µ (A)+
∑T

t=1

∑t−1
r=0 βtr

(
H∗tr∑

i=H∗tr−k
∗
tr+1

miniτ st

)
. On the other hand, it follows

from (EC.2) that Rg(A,U) = g(A,µ+ τ )≤ δK∗µ (A) +
∑T

t=1

∑t−1
r=0 βtr

(
H∗tr∑

i=H∗tr−k
∗
tr+1

miniτ st

)
. Therefore, we

have

Rg(A,U) = δK
∗

µ (A) +

T∑
t=1

t−1∑
r=0

βtr

 H∗tr∑
i=H∗tr−k

∗
tr+1

miniτ st

 (EC.5)

Now we are ready to complete the proof of (EC.1). By (EC.2) and (EC.5), we get

Rg(A,U) = min
K∈Q

{
δKµ (A) +

T∑
t=1

min
εst∈Et

(
t−1∑
r=0

βtr

(
Htr∑

i=Htr−ktr+1

miniεst

))}

= min
K∈Q

{
δKµ (A) +

T∑
t=1

min
εst∈Et

(
t−1∑
r=0

βtr

(
Htr∑

i=Htr−ktr+1

εst,i

))}

= min
K∈Q,εst∈Et,∀1≤t≤T

{
δKµ (A) +

T∑
t=1

(
t−1∑
r=0

βtr

(
Htr∑

i=Htr−ktr+1

εst,i

))}

= min
K∈Q,ε∈E

{
δKµ (A) +

T∑
t=1

(
t−1∑
r=0

βtr

(
Htr∑

i=Htr−ktr+1

εst,i

))}
,

where the second equality holds because E is part-wise independently symmetric. �

We now complete the proof of Theorem 1. For each 1≤ t≤ T , let Ewt
t := {εst ∈ Et |

∑
εst = wt} for any

given wt ∈R+. Note that both Ewt
t and (Ew1

1 ×E
w2
2 × ...×E

wT
T )

⋂
E are part-wise independently symmetric.

For notation brevity, denote
T∏
t=1

Ewt
t =Ew1

1 ×E
w2
2 × ...×E

wT
T . Now we have

Rf (A,U) = min
d∈U

{
h

(
g(A,d),

∑
i∈s1

di, ...,
∑
i∈sT

di

)}
= min
ε∈E

{
h

(
g(A,µ+ ε),

∑
i∈s1

(µi + εi), ...,
∑
i∈sT

(µi + εi)

)}
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= min
wt,∀1≤t≤T

 min
ε∈

T∏
t=1

E
wt
t

⋂
E

{
h

(
g(A,µ+ ε),

∑
i∈s1

(µi + εi), ...,
∑
i∈sT

(µi + εi)

)}
= min

wt,∀1≤t≤T

 min
ε∈

T∏
t=1

E
wt
t

⋂
E

{
h

(
g(A,µ+ ε),

∑
i∈s1

µi +w1, ...,
∑
i∈sT

µi +wT

)} .

Since h is strictly increasing in g(A,d) for fixed wt,∀t = 1, ..., T , we have Rf (A,U) =

min
wt,∀1≤t≤T

h
 min
ε∈

T∏
t=1

E
wt
t

⋂
E

g(A,µ+ ε),
∑

i∈s1
µi +w1, ...,

∑
i∈sT

µi +wT


 . By Proposition 3,

Rf (A,U) = min
wt,∀1≤t≤T

h
 min

K∈Q,ε∈
T∏

t=1
E

wt
t

⋂
E

δKµ (A) +

T∑
t=1

(
t−1∑
r=0

βtr

(
Htr∑

i=Htr−ktr+1

εst,i

))
,
∑
i∈s1

µi +w1, ...,
∑
i∈sT

µi +wT




= min

wt,∀1≤t≤T,K∈Q,ε∈
T∏

t=1
E

wt
t

⋂
E

h
δKµ (A) +

T∑
t=1

(
t−1∑
r=0

βtr

(
Htr∑

i=Htr−ktr+1

εst,i

))
,
∑
i∈s1

µi +w1, ...,
∑
i∈sT

µi +wT


= min

K∈Q,ε∈E
h

δKµ (A) +

T∑
t=1

(
t−1∑
r=0

βtr

(
Htr∑

i=Htr−ktr+1

εst,i

))
,
∑
i∈s1

(µi + εi),
∑
i∈s2

(µi + εi), ...,
∑
i∈sT

(µi + εi)

 ,

which completes the proof of Theorem 1. �

Proof of Theorem 2. (a). Let f be the deterministic measure function of R and h(·) be the function

such that h(x, y1, ..., yT ) is strictly increasing in x for fixed {y1, ..., yT}. For each l = 1,2, let f(Al,d) =

h(g(Al,d),
∑
ds1 , ...,

∑
dsT ). Then by Theorem 1, we have

Rf (Al,U) = min
K∈Q,ε∈E

h

(
δKµ (Al) +

T∑
t=1

(
t−1∑
r=0

βtr

(
Htr∑

i=Htr−ktr+1

εst,i

))
,
∑
i∈s1

(µi + εi), ...,
∑
i∈sT

(µi + εi)

)
.

If δKµ (A1)≥ δKµ (A2) for all K ∈Q, it then follows from the above equation that R(A1,U)≥R(A2,U).

(b). Let W k1,...,kT ∈Q denote the parameter set whose only non-negative entries are at (t,0) with value

kt for each 1 ≤ t ≤ T . That is, W k1,...,kT
t0 = kt and W k1,...,kT

tr = 0 for all r > 0. Suppose there exist some

{k1, ..., kT} such that δW
k1,...,kT

µ (A1)< δW
k1,...,kT

µ (A2). We next construct a part-wise independently symmet-

ric perturbation uncertainty set U∗ such that R(A1,U
∗)<R(A2,U

∗), which contradicts with the assumption

that R(A1,U) ≥ R(A2,U) for any part-wise independently symmetric perturbation uncertainty set U and

hence would complete the proof. Let M =
max

K1,K2∈Q |δ
K1

µ (A2)−δK
2

µ (A2)|
min1≤t≤T,0≤r<t βtr

. Let ε∗st be a |St|-dimensional vector

such that there are exactly kt entries with value equal to −M , and the other |St| − kt entries are equal to

M . Define E∗ :=
∏T

t=1(Ω(ε∗st)), where Ω(ε∗st) is the set of all vectors that are permutations of ε∗st restricted

to product subset St. Let U∗ = {µ+ ε|ε∈E∗}. By our choice of U∗ and the definition of M , we have

R(A2,U
∗) = min

K∈Q,ε∈E∗
h

(
δKµ (A2) +

T∑
t=1

(
t−1∑
r=0

βtr

(
Htr∑

i=Htr−ktr+1

εst,i

))
,
∑
i∈s1

(µi + εi), ...,
∑
i∈sT

(µi + εi)

)
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= h

(
δW

k1,...,kT

µ (A2)−
T∑
t=1

PtktM,
∑
i∈s1

µi + (|S1| − 2k1)M, ...,
∑
i∈sT

µi + (|ST | − 2kT )M

)

> h

(
δW

k1,...,kT

µ (A1)−
T∑
t=1

PtktM,
∑
i∈s1

µi + (|S1| − 2k1)M, ...,
∑
i∈sT

µi + (|ST | − 2kT )M

)
≥ R(A1,U

∗),

which completes the proof of part (b). �

Proof of Lemma 2. We analyze problem (5) for the alternate long chain design in three cases. Recall that

k10 = {bi ∈ SL |yi = PL}, k20 = {bi ∈ SH |yi = PH}, and k21 = {bi ∈ SH |yi = PH −PL}.

Case 1: k20 = 0. In this case, the yi value associated with each high profit product bi ∈ SH is equal to

either 0 or PH −PL. Consider an optimal solution z∗ to problem (5). For each bi ∈ SH with yi = 0, we have

z∗j = PH for its two neighboring plant nodes j ∈N(bi,AL). By the specific structure of the alternate long

chain that each plant is connected to exactly one high profit product and one low profit product, we have

|{aj ∈A |z∗j = PH}|= 2k22. For the rest of high profit products with yi = PH−PL, the smallest value of zj for

their neighboring plant nodes that guarantees feasibility of problem (5) is z∗j = PL. Therefore, the optimal

objective value of (5) is equal to 2k22PH + 2k21PL.

Case 2: k20 = n/2. In this case, all the n/2 high profit products have their yi value equal to PH . Consider

an optimal solution z∗ to problem (5). The feasibility requirement for a strictly positive z∗j value solely comes

from the low profit products whose associated yi is equal to zero, in which case its neighboring plant nodes

have z∗j = PL. In the alternate long chain design, N(bi,AL) ∩N(bj ,AL) = ∅ for any bi, bj ∈ SL such that

i 6= j. Therefore, the optimal objective value of (5) is equal to 2k11PL.

Case 3: k20 = 1, ..., n/2− 1. In this case, we can spell out the expression in (6) as follows:

δK(AL) =



2k22PH + 2k21PL, if k10 ≥ k20 + 1

2k22PH + (2k21 + 1)PL, if k10 = k20,

2k22PH + (2k11− 2k22)PL, if k10 ≤ k20− 1,

(EC.6)

We next provide some high-level idea about the analysis of problem (5), and then break down the analysis

into three subcases and show that the optimal objective value of (5) is the same as (EC.6).

Notice that with parameter set K given, minimizing objective function (5) reduces to finding an assignment

of the yi values to product nodes such that the feasibility requirement on zj (specified by yi + zj ≥ pi for

each arc (aj , bi) ∈AL) can be achieved by the smallest value possible. It is easy to see that there exists an
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optimal solution to (5) such that z∗j ∈ {0, PL, PH} for any 1≤ j ≤ n. Second, for each one of the k22 high profit

products with yi = 0, all their distinct 2k22 neighboring plant nodes must have z∗j = PH . Finally, for each

plant j, the only case that z∗j can take value zero happens when yi = pi for each bi ∈N(aj ,AL). Therefore,

in order to minimize
∑

j
zj , it is optimal to assign the k10 low profit products with yi = PL and the k20 high

profit products with yi = PH in a consecutive manner to the greatest extent possible so as to maximize the

number of plant nodes with z∗j = 0. We consider three subcases as follows.

(a) If k10 ≥ k20 + 1, then the maximum number of consecutive products with yi = pi is 2k20 + 1, and the

maximum number of plant nodes with z∗j = 0 is 2k20. We next show there does exist a feasible solution

such that the number of plant nodes with z∗j = 0 is 2k20, which implies that the number of plant

nodes with z∗j = PL is n− 2k22 − 2k20 = 2k21 and therefore δK(AL) = 2k22PH + 2k21PL. Consider an

alternate long chain AL with p1 = p3 = · · · = pn−1 = PH and p2 = p4 = · · · = pn = PL. Let yi = 0 for

i ∈ {1,3, . . . ,2k22 − 1} ∪ {2,4, . . . ,2k11}; let yi = PL for i ∈ {2k11 + 2, . . . , n}; let yi = PH − PL for i ∈

{2k22 +1, . . . , n−2k20−1}; and let yi = PH for i∈ {n−2k20 +1, . . . , n}. Then we have zj = PH for all j ∈

{1, . . . ,2k22}, zj = PL for all j ∈ {2k22 +1, . . . ,2k22 +2k21} and zj = 0 for all j ∈ {2k22 +2k21 +1, . . . , n},

and the number of plant nodes with zj = 0 is n− 2k22− 2k21 = 2k20.

(b) If k10 = k20, then the maximum number of consecutive products with yi = pi is 2k10, and hence the

maximum number of plant nodes with z∗j = 0 is 2k20 − 1. Similar to the analysis in (a), we next

show there does exist a feasible solution such that the number of plant nodes with z∗j = 0 is 2k20 − 1,

which then implies that the number of plant nodes with z∗j = PL is n − 2k22 − 2k20 + 1 = 2k21 + 1

and hence δK(AL) = 2k22PH + (2k21 + 1)PL. Consider the same design AL as in (a). Let yi = 0 for

i ∈ {1,3, . . . ,2k22 − 1} ∪ {2,4, . . . ,2k11}; let yi = PL for i ∈ {n− 2k10 + 2, . . . , n}; let yi = PH − PL for

i ∈ {2k22 + 1, . . . , n− 2k20 − 1}; and let yi = PH for i ∈ {n− 2k20 + 1, . . . , n}. Then we have zj = PH

for all j ∈ {1, . . . ,2k22}, zj = PL for all j ∈ {2k22 + 1, . . . ,2k22 + 2k21 + 1} and zj = 0 for all j ∈ {2k22 +

2k21 + 2, . . . , n}, in which case the number of plant nodes with zj = 0 is n− 2k22− 2k21− 1 = 2k20− 1.

(c) If k10 ≤ k20−1, then the maximum number of consecutive products with yi = pi is 2k10 +1. Consider the

same design AL as in (a) and (b). Following a similar analysis, it is straightforward to show that there

exist a feasible solution with zj = PH for all j ∈ {1, . . . ,2k22}, zj = PL for all j ∈ {2k22 + 1, . . . ,2k11}

and zj = 0 for all j ∈ {2k11 + 2, . . . , n}, which has the maximum possible number 2k10 of plants with
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z∗j = 0. It then follows that the number of plants with z∗j = PL is n− 2k22− 2k10 = 2k11− 2k22, which

implies δK(AL) = 2k22PH + (2k11− 2k22)PL. �

Proof of Proposition 1. Consider a long chain with n/2 low profit products and n/2 high profit products,

where n is an even integer. We call a consecutive sequence of k product nodes a sequence of length k. We first

provide some structural properties of sequences with an odd (cf. Lemma 3(a)) and even (cf. Lemma 3(b))

number of product nodes. We refer the readers to Wang et al. (2020) Appendix A for the proof of Lemma 3.

Lemma 3. (a) For any 1≤ k≤ n/2−1, there exists a sequence of length 2k+1 with k high profit products

and k+ 1 low profit products. (b) For any 1≤ k≤ n/2, there exists a sequence of length 2k with k high profit

products and k low profit products.

We next prove Proposition 1, which together with Theorem 2(a) implies Theorem 3. Consider a long chain

LHL with n/2 high profit products and n/2 low profit products. Consider a fixed K = {k10, k20, k21}. Recall

that k11 = n/2− k10 is equal to |{bi ∈ SL |yi = 0}|, and k22 = n/2− k20− k21 is equal to |{bi ∈ SH |yi = 0}|.

Case 1: k20 = 0. In this case, since every product is connected to exactly 2 plants, for any optimal solution z∗

to (5) of design LHL, the number of z∗j such that z∗j = PH is at most 2k22. The value of the other z∗j ’s except the

above (at most) 2k22 nodes is either PL or 0 since these plants are not connected to high profit products with

yi = 0. By Lemma 2, it then follows that δK(LHL)≤ 2k22PH + (n− 2k22)PL = 2k22PH + 2k21PL = δK(AL).

Case 2: k20 = n/2. In this case, the yi values of all high profit products are equal to PH and therefore

the feasibility requirement for a strictly positive zj value solely comes from the low profit products whose

associated yi value is zero, in which case z∗j = PL. Since every product node is connected to exactly 2 plant

nodes and |{bi ∈ SL |yi = 0}|= k11, we have δK(LHL)≤ 2k11PL = δK(AL).

Case 3: k20 = 1, ..., n/2− 1. In this case, the analysis depends on the relationship between k10 and k20.

(a) If k10 ≥ k20 + 1: Since k20 ≤ n/2− 1, by Lemma 3(a), there exists a sequence Sa of length 2k20 + 1 with

k20 high profit products and k20 + 1 low profit products. Let yi = PH if product i belongs to Sa and

pi = PH . Similarly, let yi = PL if product i belongs to Sa and pi = PL. Therefore, for an optimal solution

z∗ to (5) of design LHL, the 2k20 plants that are solely connected to the above 2k20 + 1 products in Sa

all have z∗j = 0. This implies that among all the n plants, the number of plants whose z∗j value is equal

to zero is at least 2k20. Therefore, the number of plants whose z∗j value is equal to either PL or PH is at

most n−2k20. Since each product has exactly two neighboring plants, the number of plants with z∗j = PH

is at most 2k22. Therefore, δK(LHL)≤ 2k22PH + (n− 2k20− 2k22)PL = 2k22PH + 2k21PL = δK(AL).
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(b) If k10 = k20: Since k20 ≤ n/2, by Lemma 3(b), there exists a sequence Sb of length 2k20 with k20 high

profit products and k20 low profit products. Let yi = PH if product i belongs to Sb and pi = PH . Let

yi = PL if product i belongs to Sb and pi = PL. Therefore, for an optimal solution z∗ to (5) of design LHL,

the 2k20−1 plants that are solely connected to the above 2k20 products in Sb all have z∗j = 0. This implies

that among all the n plants, the number of plants whose z∗j value is equal to zero is at least 2k20− 1.

Therefore, the number of plants whose z∗j value is equal to either PL or PH is at most n−2k20 +1. Since

each product has exactly two neighboring plants, the number of plants with z∗j = PH is at most 2k22.

It then follows that δK(LHL)≤ 2k22PH + (n− 2k20− 2k22 + 1)PL = 2k22PH + (2k21 + 1)PL = δK(AL).

(c) If k10 ≤ k20−1: In this case, we have k10 ≤ n/2−1. By Lemma 3(a), there exists a sequence Sc of length

2k10 + 1 with k10 high profit products and k10 + 1 low profit products. Let yi = PH if product i belongs

to Sc and pi = PH . Let yi = PL if product i belongs to Sc and pi = PL. Therefore, for an optimal solution

z∗ to (5) of design LHL, the 2k10 plants that are solely connected to the above 2k10 + 1 products in Sc

all have z∗j = 0. This implies that among all the n plants, the number of plants whose z∗j value is equal to

zero is at least 2k10. Therefore, the number of plants whose z∗j value is equal to either PL or PH is at most

n−2k10. Since each product has exactly two neighboring plants, the number of plants with z∗j = PH is at

most 2k22. Therefore, δK(LHL)≤= 2k22PH +(n−2k10−2k22)PL = 2k22PH +(2k11−2k22)PL = δK(AL).

Combining all the above three cases together with Theorem 2(a) completes the proof. �

Proof of Proposition 2. We show there exist parameter sets K = {k10, k20, k21} and K ′ = {k′10, k′20, k′21}

with k21 = k′21 = 0 such that δK(AL) > δK(DL) and δK
′
(AL) < δK

′
(DL), which implies Proposition 2 by

Theorem 2(b). The disjoint long chain DL consists of two disconnected components, denoted by DLH and

DLL, where each component is a long chain with size n/2 and the products in component DLH (resp. DLL)

have identical margins PH (resp. PL). By the definition of DMGI, we have δK(DL) = δK(DLH) + δK(DLL),

where δK(DLH) and δK(DLL) are the optimal objective values to problem (5) for designs DLH and DLL.

Consider the following two parameter sets K and K ′:

• K = {k10, k20, k21} with k10 = n
2
, k20 = k21 = 0. In this case, we have k22 = n

2
and it follows from

Lemma 2 that δK(AL) = nPH . For the disjoint long chain, it is easy to see that δK(DLH) = n
2
PH and

δK(DLL) = 0, and hence δK(DL) = n
2
PH . Therefore, we have δK(AL)> δK(DL).

• K ′ = {k′10, k′20, k′21} with k′10 = n
2
−1, k′20 = n

2
−1, k′21 = 0. In this case, we have k′22 = 1 and by Lemma 2,

we have δK
′
(AL) = 2PH+

(
n− 2−min

(
n
2
− 1, n

2

)
−min

(
n
2
− 1, n

2
− 2
))
PL = 2PH+PL. Now we consider
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the disjoint long chain. For component DLL, we have k′11 = n
2
− k′10 = 1 and hence δK

′
(DLL) = (k′11 +

1)PL = 2PL. For component DLH , we have k′22 = n
2
−k′20−k′21 = 1 and δK

′
(DLH) = (k′22 +1)PH = 2PH .

It then follows that δK
′
(DL) = 2PH + 2PL, and therefore we have δK

′
(AL)< δK

′
(DL). �


