IA meeting 14/12/2020

The price of robustness

Bertsimas, Dimitris, and Melvyn Sim. "The price of robustness." Operations research 52.1 (2004): 35-53.

Context

Quote from the case study by Ben-Tal and Nemirovski (2000):

« In real-world applications of Linear Programming, one cannot ignore the possibility that **a small uncertainty** in the data can make the usual optimal solution completely **meaningless** from a **practical** viewpoint. »

This observation raises the natural question of designing solution approaches that are **immune to data uncertainty**; that is, they are « **robust** ».

This paper designs a **new robust approach** that adresses the issue of **over-conservatism**.

Data uncertainty in linear optimization

Linear optimization problem:

maximize
$$\mathbf{c}'\mathbf{x}$$

subject to $\mathbf{A}\mathbf{x} \leqslant \mathbf{b}$
 $\mathbf{l} \leqslant \mathbf{x} \leqslant \mathbf{u}$.

Data uncertainty is in the matrix A.

The coefficients **a_ij** that are subjected to parameter uncertainty takes values according to a **symmetric distribution** with a mean equal to the nominal value a_ij in the interval [a_ij- â_ij, a_ij + â_ij].

Row i -> **J_i** coefficients subject to uncertainty

Gamma_i = parameter to adjust the robustness of the proposed method against the level of conservatism of the solution.

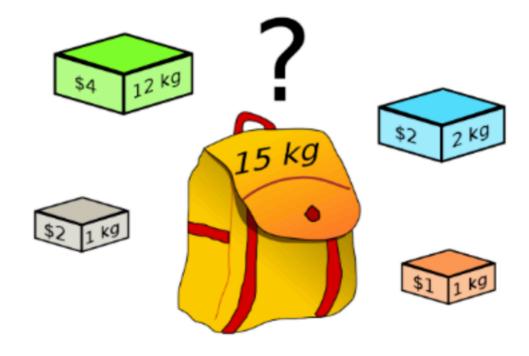
0 <= **Gamma_i** <= **J_i** -> **only a subset** of the coefficients will change in order to adversely affect the solution.

The higher Gamma_i, the more robust the solution is. With Gamma_i = J_i -> maximum protection.

Zero-one knap sack problem (MILP)

MILP:

$$\begin{aligned} & \underset{i \in N}{\text{maximize}} & & \sum_{i \in N} c_i x_i \\ & \text{subject to} & & \sum_{i \in N} w_i x_i \leqslant b \\ & & x_i \in \{0, 1\}. \end{aligned}$$



An application of this problem is to **maximize** the total **value of goods** to be loaded on a cargo that has strict weight restrictions. The **weight** of the individual item is assumed to be **uncertain**, independent of other weights, and follows a symmetric distribution.

Knapsack Problem

Zero-one knap sack problem (MILP)

The zero-one knapsack problem is the following discrete optimization problem:

$$\max_{x_i} \sum_{1 \le i \le N} c_i x_i$$
s.t.
$$\sum_{1 \le j \le N} \omega_j x_j \le b$$

$$x_j \in \{0, 1\}.$$

Let **J** the set of uncertain parameters ωj , with $0 \le |J| \le N$. The weights ωj with $j \in J$ are subjected to parameter uncertainty takes values according to a symmetric distribution with a mean equal to the nominal value ωj in the interval $[\omega j - \omega \hat{j}, \omega j + \omega \hat{j}]$. The parameter to adjust the robustness of the approach is Γ , with $0 \le \Gamma \le |J| \le N$.

Zero-one knap sack problem (MILP)

We assume **\Gamma** takes only integer values for the sake of simplicity. Then, the **robust** zero-one knapsack problem is (**NON LINEAR**)

$$\max_{x_i} \sum_{1 \le i \le N} c_i x_i$$
s.t.
$$\sum_{1 \le j \le N} \omega_j x_j + \max_{S \subseteq J, |S| = |J|} \left\{ \sum_{j \in S} \hat{\omega}_j x_j \right\} \le b$$

$$x_j \in \{0, 1\}.$$

Given a vector x* the **protection function** is (worst case path)

$$\beta(\boldsymbol{x}^{\star}, \Gamma) = \max_{S \subseteq J, |S| = |J|} \left\{ \sum_{j \in S} \hat{\omega}_j x_j \right\},\,$$

Zero-one knap sack problem (MILP)

$$\beta(\boldsymbol{x}^{\star}, \Gamma) = \max_{S \subseteq J, |S| = |J|} \left\{ \sum_{j \in S} \hat{\omega}_j x_j \right\},\,$$

and is equal to the following linear optimization problem that provides the **worst case scenario** given J and Γ

Primal Dual
$$\max_{z_{j}} \sum_{j \in J} \hat{\omega}_{j} x_{j}^{\star} z_{j} \qquad \min_{p_{j}, z} \sum_{j \in J} p_{j} + z \Gamma$$
s.t.
$$\sum_{j \in J} z_{j} \leq \Gamma \quad [z] \qquad \text{s.t.} \quad p_{j} + z \geq \hat{\omega}_{j} x_{j}^{\star} \quad j \in J$$

$$p_{j} \geq 0 \quad j \in J$$

$$0 \leq z_{j} \leq 1 \quad j \in J \quad [p_{j}]. \qquad z \geq 0.$$

By **strong duality** since the primal problem is feasible and bounded for $0 \le |J|$, then the dual problem is also feasible and bounded and their objective values coincide.

Zero-one knap sack problem (MILP)

Finally, by substitution the robust zero-one knap sack problem is (MILP)

$$\max_{x_i} \sum_{1 \le i \le N} c_i x_i$$
s.t.
$$\sum_{1 \le j \le N} \omega_j x_j + \sum_{j \in J} p_j + z\Gamma \le b$$

$$p_j + z \ge \hat{\omega}_j x_j \quad j \in J$$

$$p_j \ge 0 \quad j \in J$$

$$x_j \in \{0, 1\}.$$

Zero-one knap sack problem: use case

Goal = maximize the total value of the goods but allow a maximum of **1% chance** of constraint violation.

Size N = **200**

Capacity limit b = 4000

Nominal weight randomly chosen from the set {20, ..., 29} with uncertainty equals to 10% of the nominal weights.

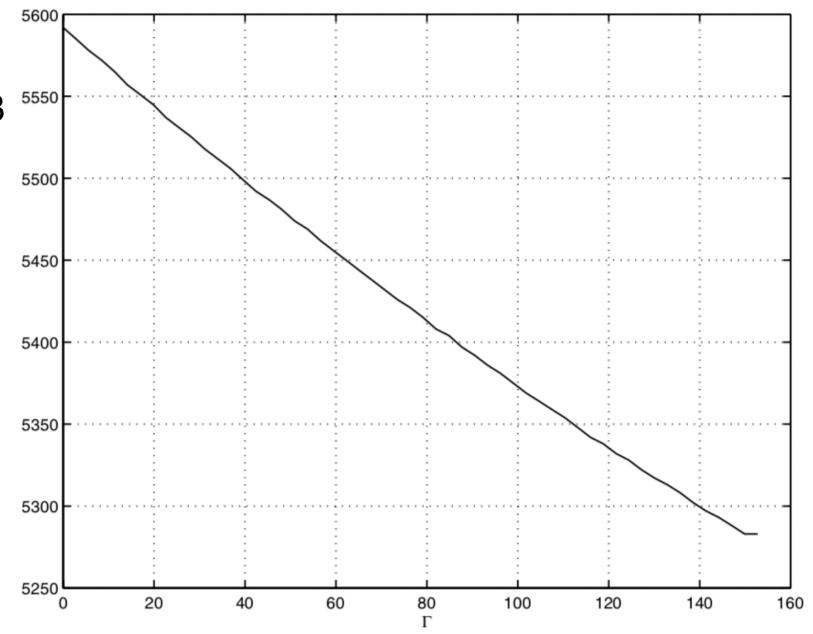
Cost randomly chosen from the set {16, ..., 77}

Zero-one knap sack problem: use case

Optimal value of the robust knapsack formulation as a function of Γ .

No protection -> 5 992

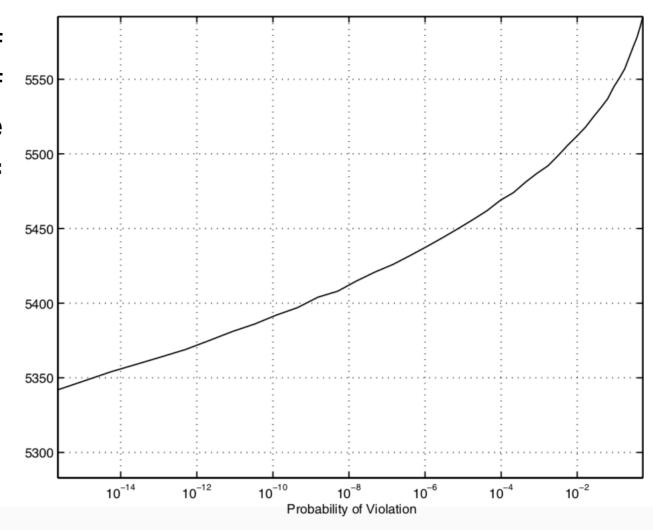
Full protection -> 5 283 (5.5% of reduction)



Zero-one knap sack problem: use case

Optimal value of the robust knapsack formulation as a function of the probability bound of constraint violation given in Equation (18).

To have a probability guarantee of at most 0.57% chance of constraint violation, the objective is reduced by 1.54% for Gamma = 37.



Zero-one knap sack problem: use case

Table 2. Results of robust knapsack solutions.

Γ	Probability Bound	Optimal Value	Reduction (%)
2.8	4.49×10^{-1}	5,585	0.13
14.1	1.76×10^{-1}	5,557	0.63
25.5	4.19×10^{-2}	5,531	1.09
36.8	5.71×10^{-3}	5,506	1.54
48.1	4.35×10^{-4}	5,481	1.98
59.4	1.82×10^{-5}	5,456	2.43
70.7	4.13×10^{-7}	5,432	2.86
82.0	5.04×10^{-9}	5,408	3.29
93.3	3.30×10^{-11}	5,386	3.68
104.7	1.16×10^{-13}	5,364	4.08
116.0	2.22×10^{-16}	5,342	4.47

This approach succeeds in **reducing the price of robustness:** it does not heavily penalize the objective function value in order to protect ourselves against constraint violation.