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The price of robustness

Context

Quote from the case study by Ben-Tal and Nemirovski (2000):

« In real-world applications of Linear Programming, one cannot
ignore the possibility that a small uncertainty in the data can
make the usual optimal solution completely meaningless from a
practical viewpoint. »

This observation raises the natural question of designing solution
approaches that are immune to data uncertainty; that is, they
are « robust ».

This paper designs a new robust approach that adresses the
iIssue of over-conservatism.
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Data uncertainty in linear optimization

Linear optimization problem:

/

maximize ¢'X
subject to Ax<b
I<x<u.
Data uncertainty is in the matrix A.

The coefficients a_ij that are subjected to parameter uncertainty takes
values according to a symmetric distribution with a mean equal to the
nominal value a_ij in the interval [a_ij- a_ij, a_ij + a_ij].

Row i -> J_1 coefficients subject to uncertainty

Gamma_i = parameter to adjust the robustness of the proposed method
against the level of conservatism of the solution.

0 <= Gamma_i <= J_i -> only a subset of the coefficients will change in
order to adversely affect the solution.

The higher Gamma_i, the more robust the solution is. With Gamma_i
= J_I -> maximum protection.
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Zero-one knap sack problem (MILP)

MILP:

=
maximize ) ¢;x,

ieN
subject to w.x: < b

x; €1{0, 1}.

An application of this problem is to maximize the
total value of goods to be loaded on a cargo that
has strict weight restrictions. The weight of the
iIndividual item is assumed to be uncertain, KnapsackProblem
independent of other weights, and follows a

symmetric distribution.
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Zero-one knap sack problem (MILP)

The zero-one knapsack problem is the following discrete
optimization problem:

max g CiXi
Xi

1<i<N

S.t. Z wixj < b

<j<N

x; €{0, 1.

Let J the set of uncertain parameters wj, with 0 < [J| = N. The weights wj
with | € J are subjected to parameter uncertainty takes values according to
a symmetric distribution with a mean equal to the nominal value wj in the
interval [wj — W'}, wj + wj]. The parameter to adjust the robustness of the
approachis I, with0<T < |J| = N.



The price of robustness

Zero-one knap sack problem (MILP)

We assume I' takes only integer values for the sake of simplicity.
Then, the robust zero-one knapsack problem is (NON LINEAR)

s.t. wa,+ max {Zd) }
T s cisi=l) —

Given a vector x+ the protection function is (worst case path)

D) = o { 3
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Zero-one knap sack problem (MILP)

* A
x7,I) = max { E w-x-},
ﬁ( ) LS' g‘]’|st |:|J| je S' .I .I

and is equal to the following linear optimization problem that
provides the worst case scenario given J and

Primal Dual
max Z WX}z min Z pj+d
Y JeJ | e jeJ
st. » zj<T [ st opi+zzopt jeld
/<! pi=0 jelJ
0<z;<1 jelJ |[pjl 7> 0.

By strong duality since the primal problem is feasible and bounded for 0 < I
< |J|, then the dual problem is also feasible and bounded and their objective
values coincide.
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Zero-one knap sack problem (MILP)

Finally, by substitution the robust zero-one knap sack problem is
(MILP)

max E CiX;
Xi

|<i<N
S.t. Z wW;ixX;j+ Z pj+ad'<b
1<j<N jeJ

pitzzwjx; jeJ
pi=20 jelJ
xj €10, 1}.
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Zero-one knap sack problem: use case

Goal = maximize the total value of the goods but allow a
maximum of 1% chance of constraint violation.

Size N = 200
Capacity limit b = 4 000

Nominal weight randomly chosen from the set {20, ..., 29} with
uncertainty equals to 10% of the nominal weights.

Cost randomly chosen from the set {16, ..., 77}
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Zero-one knap sack problem: use case

Optimal value of the robust knapsack formulation as a function of I'.

No protection -> 5 992 Be0D ! g ! g g 1 f

Full protection -> 5 283 ™[
(5.5% of reduction)
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Zero-one knap sack problem: use case

Optimal value of the robust knapsack formulation as a function of the probability bound of constraint violation
given in Equation (18).

To have a probability guarantee of | | | | |
at most 0.57% chance of = e S S g
constraint violation, the objective ' ' ' ' ' ' '
is reduced by 1.54% for Gamma =
37.
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Zero-one knap sack problem: use case

Table 2. Results of robust knapsack solutions.

I' Probability Bound  Optimal Value  Reduction (%)
2.8 4.49 x 107! 5,585 0.13
14.1 1.76 x 107! 5,557 0.63
25.5 4.19 x 1072 5,531 1.09

[36.8 571 x 10 5,506 1.54 |
48.1 4.35x 107" 5,481 1.98
59.4 1.82 x 1072 5,456 2.43
70.7 4.13 x 1077 5,432 2.86
82.0 5.04 x 107 5,408 3.29
93.3 3.30x 107" 5,386 3.68
104.7 1.16 x 1071 5,364 4.08
116.0 2.22x 1071 5,342 4.47

This approach succeeds in reducing the price of robustness: it does
not heavily penalize the objective function value in order to protect
ourselves against constraint violation.



