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We consider infinite horizon production scheduling under stochastic demand. All problem data are allowed to vary across
periods, including demand distributions, costs, and revenues. A forecast horizon, when it exists, is a finite problem horizon
with the property that the corresponding first-period optimal production decision remains optimal regardless of demand
and cost projections beyond this horizon. Thus, a forecast horizon allows us to reduce the amount of future data we need
to forecast to solve for an optimal first decision for the infinite horizon problem. In this paper, we establish the existence
of a forecast horizon under the assumptions that (1) costs and revenues are time-varying linear, and (2) demand is never
eventually zero. A key result for establishing the existence and computation of forecast horizons is the monotonicity, and
hence convergence, of optimal first-period policies as the horizon increases of finite horizon versions of the infinite horizon
problem. A closed-form formula is provided for computing a forecast horizon that depends only on the discount factor and
uniform upper and lower bounds on demand and unit production and inventory holding costs. In particular, its value is
independent of, and determined in advance of, forecasting the demand distribution. We show that the effect of uncertainty
in demand is to increase the forecast horizon associated with a deterministic problem by a constant plus a factor equal to
one plus the ratio of these upper to lower bounds on per-period demand. The associated forecast horizon can be surprisingly
short, even a few days, when the inventory costs are high.
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1. Introduction
Production scheduling problems with long but indefinite
horizons are often modeled as infinite horizon problems. In
the time-varying case, a possible way to solve these prob-
lems is through use of the forecast horizon approach. This
allows for the determination of a first optimal decision by
considering just a finite horizon of forecasted data. That is,
we attempt to find a finite horizon with the property that
data beyond this horizon do not affect the optimality of the
first-period policy. This can resolve the following dilemma.
On the one hand, we need a sufficient amount of data so
that our decision is not shortsighted. On the other hand,
we would like to minimize the amount of forecasting we
need to do because it is usually expensive and difficult to
justify. Smith and Zhang (1998) have recently established
the existence of a forecast horizon for the production plan-
ning problem in time-varying systems with convex costs
and deterministic demand. They also provide closed-form
formulas for the calculation of forecast horizons. Our goal
is to extend these results to the stochastic demand case.
There is a large literature focusing on the production

scheduling problem with time-varying stochastic demand
and stationary linear costs. Morton and Pentico (1995) pro-
vide near-myopic bounds and heuristics for finite horizon
problems. Lovejoy (1992) presents bounds and stopping
times for using myopic policies in the case where the

demand in each period can depend upon the previous
period’s demand. Morton (1978) provides optimal cost and
policy bounds that are monotone in horizon length, as well
as conditions under which policies for each period of a
finite horizon problem converge to a unique optimal policy
of the infinite horizon problem. Kleindorfer and Kunreuther
(1978) prove that optimal policies are monotone in demand,
and provide bounds on policies as well as an algorithm for
finding a forecast horizon when it exists. Karlin (1960a, b)
shows, in the case where the purchasing cost is stationary
convex, that optimal policies are monotone in demand, and
optimal policies are myopic if the demand is stochastically
increasing.
In the case where costs are nonstationary, Alden and

Smith (1992) provide value error bounds for solving
finite horizon solutions of the underlying Markov decision-
process problem (see also Hernandez-Lerma and Lasserre
1990 for an extension of this work to Markov control poli-
cies). Sethi and Cheng (1997) extend �S� s� policy opti-
mality to the Markovian demand infinite horizon case. For
nonstationary linear costs, Federgruen and Tzur (1996) pro-
vide an algorithm for detecting a minimal forecast horizon,
if it exists, in a problem with restricted ordering policies.
Veinott (1965) presents conditions under which myopic
policies are optimal. Sobel (1981) discusses conditions for
a Markov decision process to have a myopic optimal solu-
tion. Topkis (1998) proves that in a finite horizon prob-
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lem, optimal productions are monotone in demand as costs
remained fixed. Zhang (1998) establishes the existence of
a solution horizon by using monotonicity of the optimal
policy under the assumption that the demand is known in
each period before we make the decision for that period.
Garcia and Smith (2000b) establish existence and dis-

covery of forecast horizons for a general dynamic opti-
mization problem by assuming that there exists a forecast
index such that the first-period optimal actions are mono-
tonically increasing in that index. Garcia and Smith (2000a)
use a similar approach to that in Garcia and Smith (2000b)
to establish the existence and discovery of forecast hori-
zons in the stochastic demand production scheduling prob-
lem under the assumption that for any fixed finite planning
horizon, there exist first-period optimal solutions that are
monotone with respect to stochastic demand. Such policy
monotonicity has been established under many condi-
tions (see, for example, Karlin 1960a, Kleindorfer and
Kunreuther 1978, Morton 1978, and Topkis 1998). How-
ever, a key claim in Garcia and Smith (2000b), that the
optimal first production of the N -horizon problem is equal
to that of the �N +1�-horizon problem with zero demand in
the last period, is not true for stochastic demand problems.
This fact invalidates the opportunity to conclude policy
monotonicity by embedding an N -horizon problem within
an �N +1�-horizon problem, thus rendering their existence
proof invalid for the stochastic demand problem. Also, the
optimal first decision of the N -horizon problem is not nec-
essarily a lower bound to that of the infinite horizon prob-
lem, so that the algorithm proposed may prematurely stop
with a horizon that fails to be a forecast horizon.
In this paper, we generalize Smith and Zhang (1998)

to the case where demand is stochastic. We allow costs
to be time varying but linear. Also, we do not make the
assumption that demand is known prior to deciding on
production, as in Zhang (1998). We present a forward
algorithm that is guaranteed to find a forecast horizon. In
particular, we prove that it will finitely terminate under the
regularity condition that minimum demand in a period is
strictly positive infinitely often. We also provide a sim-
ple formula for the ratio of a forecast horizon length for
the stochastic demand problem to that of the deterministic
demand problem in terms of lower bounds on the minimum
per-period demands and upper bounds on the maximum
per-period demands. This result, together with the closed-
form upper bound for a forecast horizon for the determinis-
tic demand problem presented in Smith and Zhang (1998),
provides a closed-form forecast horizon for the stochastic
demand problem.
This paper is organized as follows. The infinite horizon

production scheduling problem is formulated in §2. Sec-
tion 3 introduces a finite horizon version of the original
infinite horizon problem that provides a lower bound on
the first period’s optimal production decision. The exis-
tence of a forecast horizon is established by showing that

the initial policies of the finite horizon problems mono-
tonically increase, and hence eventually agree with an
infinite horizon optimal policy as the horizon lengthens.
Section 4 introduces another finite horizon version (the
natural truncated version) of the infinite horizon problem
and establishes that policies monotonically decrease as the
horizon lengthens. An algorithm is provided for detecting
when these upper and lower bounds agree, thus resulting
in discovery of an infinite horizon optimal initial produc-
tion level. A computable bound on the value of a hori-
zon for which this stopping criterion is met is provided.
This forecast horizon is provided as a closed-form formula
for which illustrative numerical values are provided. The
resulting horizons can be surprisingly short, thus simulta-
neously resulting in minimal data one needs to forecast
to compute an optimal first-period production decision, as
well as resulting in an efficient forward algorithm for its
computation.

2. The Infinite Horizon Problem (L)
We extend the production scheduling problem formulation
in Chapter 6 in Denardo (1982) to the case where the
costs as well as the demand distributions are allowed to
vary across periods. We begin each period by observing
an integer-valued beginning inventory level for each period
n= 1�2�3� � � � � We then decide the integer-valued produc-
tion level to bring inventory up to its after-production level.
Production is assumed to be instantaneous. After that, we
pay the inventory holding cost to carry the after-production
inventory to the end of the period, at which time we meet
the stochastic demand. We satisfy as much demand as pos-
sible, but no backlogging is allowed, so that we are in the
sales-lost case. After satisfying demand, if there is inven-
tory left, then it becomes the beginning inventory of the
next period.
For each period n� 1,
in = the beginning inventory in for period n where in � 0

integer and the beginning inventory of period 1, i1, is given
and fixed.

jn = the after-production inventory jn for period n where
jn � in integer.

cn = the unit production cost cn for period n where
cn > 0.

hn = the unit inventory holding cost hn for period n
where hn > 0.

rn = the unit sale price rn for period n where rn > 0.
Dn = the random integer demand Dn for period n.
dn = a lower bound dn on demand for period n so that

Dn � dn for all n with probability one.
d̄n = an upper bound d̄n on demand for period n so that

Dn � d̄n for all n with probability one.
�= the discount factor, 0� �< 1.

Assumption 1. Production levels are uniformly bounded;
i.e., there exists p̄ <� such that 0� jn − in < p̄ for all n.
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Assumption 2. Demands are uniformly bounded; i.e.,
there exists d̄ <� such that d̄n < d̄ for all n.

Assumption 3. Marginal production and inventory hold-
ing costs and revenues are uniformly bounded; i.e., there
exist c̄ <�, h̄ <�, and r̄ <� such that cn < c̄� hn < h̄,
and rn < r̄ for all n.

Assumption 4. For each period n, it is profitable to pro-
duce and hold to satisfy the demand in the same period;
i.e., �rn > cn +hn. In addition, it is not profitable to lower
the next period production cost by not satisfying current
demand; i.e., rn > cn+1.

Let Zn�in� jn� denote the present value at the beginning
of period n of the expected net profit in period n, if we
begin period n observing a beginning inventory in and
decide to produce to bring the inventory level up to jn,
jn � in. We have

Zn�in� jn�=−cn�jn − in�−hnjn +�rnE�min�jn�Dn���

In addition, if Dn = dn, then in+1 = �jn − dn�
+, where

�x�+ =max�0� x�.
A strategy � = ��1��2��3� � � �� is a sequence of poli-

cies, one for each period where a policy �n for period n is a
column vector of after-production inventory decisions, one
for each feasible state, i.e., possible beginning-inventory
level. We denote by �n�in� the after-production inventory
level given by strategy � when we are in state in beginning
period n. � denotes the set of all feasible strategies. By
Assumption 1, the set of feasible policies is finite in each
period n, so that � is compact in the product topology of
componentwise convergence.
Given a strategy � ∈�, let Pm��� denote the probability

transition matrix for inventory levels beginning in period 1
and ending at the beginning of period m under �. Let
Zn��� denote the column vector whose ith component is
given by Zn�i��n�i��, i.e., the conditional expected present
value beginning period n of the net profit of producing to
inventory level �n�i�, given that the process enters inven-
tory level i at the beginning of period n. Letting Zm���
denote the expected total discounted net profit incurred in
periods 1 through m under strategy �, we have

Zm���=
m∑

n=1
�n−1Pn���Zn����

Finally, let Z��� be the present worth of expected net
profit over the infinite horizon under strategy �. Then,

Z���=
�∑

n=1
�n−1Pn���Zn����

We would like to find a feasible strategy that maximizes
the expected total discounted net profit over the infinite
horizon. Our infinite horizon problem �L� is then

max
�∈�

�Z�����

Because all per-period net profits are uniformly bounded,
the discount factor is less than one, and the set of feasible
strategies is compact, the maximum above is attained (Bean
and Smith 1984).

3. Existence of Forecast Horizons
3.1. The Finite Horizon Lower Bound Problem

�LN�

In this subsection, we construct an N -horizon lower bound
problem �LN � for �L�, and formulate it as a dynamic pro-
gramming problem. We call this problem a lower bound
problem because it can be shown in later subsections that
in each period, the smallest optimal decision for each state
in this N -horizon lower bound problem is a lower bound
for optimal decisions of an infinite horizon problem.
The N -horizon lower bound problem �LN � is an

N -horizon problem in which the problem data from peri-
ods 1 through N − 1 is the same as that of the infinite
horizon problem. However, the undiscounted net profit in
period N is replaced by a terminal value depending only
on the state iN that we enter period N , independent of the
infinite horizon problem. We will assume without loss of
generality that excess inventory over demand is to be sold
at the next-period production cost, which is then recovered
by production in the next period. This pair of cost and rev-
enue flows will exactly cancel each other out. In short, we
must pay the production cost for the beginning inventory
of each period.
A strategy �N = ��N

1 ��
N
2 � � � � ��

N
N−1� is a sequence of

policies, one for each period up to period N − 1. Because
the net profit for period N is independent of the decision
taken, we do not include a policy for period N . However,
it is sometimes convenient to view �N as its N − 1 poli-
cies followed by an arbitrary extending sequence of feasible
policies over the infinite horizon. We take these to be poli-
cies resulting in zero production. (The context within which
we invoke the symbol �N should make clear which inter-
pretation we are placing on it.) A policy �N

n for period n
is a column vector of decisions, one for each state. Thus,
�N

n �in� is the decision provided by strategy �N if we are in
state in in period n. �N is the set of all possible strategies,
which is finite by Assumption 1.
Given a strategy �N , let Pm��N � denote the probabil-

ity transition matrix starting in period 1 and ending at the
beginning of period m under �N , m= 1�2� � � � �N .
We now define the terminal value function for period N .

We set the undiscounted profit entering state i in period N
to be −�cN + h̄/�1−���i, independent of the decision taken
in period N . Note that this represents the buy-back cost cN
of inventory “sold” at the end of the previous period plus
the cost of carrying that inventory indefinitely over the infi-
nite horizon. This cost, together with no prospect of selling
this inventory, discourages inventory buildup for period N ,
thus lowering the optimal production level for period 1 as
intended.
Let ZN ��N � denote the expected discounted net profit

incurred in period 1 through N under �N . Then,

ZN ��N �=
N−1∑
n=1

�n−1Pn��N �Zn��
N �+�N−1PN ��N �Z̃�
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where Z̃ is the vector whose ith component is the terminal
value −�cN + h̄/�1−���i.
We would like to find a feasible strategy that maximizes

the expected discounted net profit for this problem over its
horizon N . The N -horizon lower bound problem �LN � is
then

max
�N∈�N

�ZN ��N ���

Because expected discounted net profit is finite and the
set of feasible strategies is finite, the maximum above is
again attained. Because �LN � is a finite horizon problem,
we can solve �LN � by employing the following dynamic
programming (DP) functional equations.
Let F N

n �y� denote the maximum expected discounted net
profit from period n through N if we choose to produce the
amount of product y in period n. In addition, let V N

n �x� be
the maximum expected discounted net profit from period n
through N if we begin period n at inventory level x, or
equivalently (because the previous periods “sold” ending
inventory is produced back), if we need to produce at least
x; i.e.,

V N
n �x�=max

y$ y�x
�F N

n �y��� n <N and (1)

V N
N �x�=−

(
cN + h̄

1−�

)
x� (2)

where for all n<N ,

F N
n �y�=Mn�y�+�E�V N

n+1�y−Dn�
+� and (3)

Mn�y�=−�cn +hn�y+�rnE�min�y�Dn��

+�cn+1E��y−Dn�
+� (4)

= ��rn − cn −hn�y−��rn − cn+1�E��y−Dn�
+� (5)

because min�y�Dn� = y − �y − Dn�
+. We can interpret

Mn�y� as the expected discounted net profit incurred dur-
ing period n if we decide to produce the amount y at the
beginning of period n.

3.2. The Optimal Policy Structure for the
N-Horizon Lower Bound Problem �LN�

In this subsection, we show that optimal policies are in
the form of a threshold produce-up-to level. We now recall
Lemma 5 in Supplement 2 in Denardo (1982).

Lemma 1. Let h be a convex function on the interval S, and
let g be a convex function on an interval T that contains
�h�x� $ x ∈ S�. If g is nondecreasing on T , then g�h�x�� is
convex on S.

Proof. See Denardo (1982). �

Lemma 2. If h�x� is convex and g�x� is nonincreasing con-
cave, then g�h�x�� is concave.

Proof. Note that −g�x� is nondecreasing convex and
invoke Lemma 1. �

Lemma 3. If X is a random variable and f �y� x� is con-
cave in y for each fixed value x, then E�f �y�X�� is
concave.

Proof. Follows from the fact that E�f �y�X�� is a convex
combination of concave functions f �y� x�. �

Lemma 4. For all n<N , Mn�y� is concave.

Proof. For all n < N , to show that Mn�y� is concave, it
suffices to show that each of its terms in (5) is concave.
Its first term ��rn − cn − hn�y is linear, and thus concave.
By Lemma 3, E��y − Dn�

+� is convex because �y − x�+

is convex in y for each x. By Assumption 4, rn � cn+1,
and we get −��rn − cn+1�� 0. Therefore, its second term
−��rn − cn+1�E��y − Dn�

+� is concave. Hence, Mn�y� is
concave in y. �

Theorem 1. In the N -horizon lower bound problem �LN �,
there exist integers SN

n and �SN
n for all n�N such that the

following equivalence holds:

F N
n �s�=max

y$ y�0
�F N

n �y�� and (6)

V N
n �x�=

{
F N
n �s�� x� s�

F N
n �x�� x > s�

(7)

if and only if SN
n � s � �SN

n .

Proof. We will prove this theorem by inductively showing
that for all n, V N

n �x� is nonincreasing concave. From (2),
V N
N �x� is nonincreasing concave.
Now suppose for some n < N , V N

n+1�x� is nonincreas-
ing concave. To show that F N

n �y�=Mn�y�+�E�V N
n+1 �y−

Dn�
+� is concave, it suffices to show that each compo-

nent is concave. Mn�y� is concave by Lemma 4. For each
fixed x, because �y − x�+ is convex and V N

n+1�x� is non-
increasing concave by assumption, Lemma 2 implies that
V N
n+1�y − x�+ is concave. Thus, E�V N

n+1�y −Dn�
+� is con-

cave by Lemma 3. Hence, F N
n �y� is concave.

Because F N
n �y� is concave in y and, by Assumption 1,

the maximum in (6) is over a finite set of integers, we
have that there exist integers SN

n and �SN
n such that s sat-

isfies SN
n � s � �SN

n if and only if s satisfies (6). Because
F N
n �y� is concave, it is nondecreasing when y � s and non-
increasing when y > s. Thus, (7) follows. To complete the
induction, from (7), we have that V N

n �x� is nonincreasing
concave. �

From Theorem 1, we conclude that SN
n and �SN

n are
threshold values representing, respectively, the smallest
and largest produce-up-to quantities optimal for entering
period n in the N -horizon lower bound problem �LN �.
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3.3. Policy Monotonicity �LN�

In this subsection, we prove that both the minimum and the
maximum optimal produce-up-to levels of the N -horizon
lower bound problem �LN � are monotone nondecreasing in
the horizon length N .
Let f N

n �x� denote the marginal optimal expected dis-
counted net profit of producing x units with no beginning
inventory at the beginning of period n; i.e.,

f N
n �x�= F N

n �x�− F N
n �x− 1�� x� 1�

Also, let vNn �x� denote the marginal optimal expected
discounted net profit of starting period n with beginning
inventory x; i.e.,

vNn �x�= V N
n �x�−V N

n �x− 1�� x� 1�

We will set +N
n �x�= V N

n �x�+ − V N
n �x− 1�+. We have, for

all n<N ,

f N
n �x�= F N

n �x�− F N
n �x− 1�

=Mn�x�+�E�V N
n+1�x−Dn�

+�−Mn�x− 1�
+�E�V N

n+1�x− 1−Dn�
+�

=mn�x�+�E�+N
n+1�x−Dn��� (8)

where

mn�x�=Mn�x�−Mn�x−1� (9)

=−�cn+hn�x+�rnE�min�x�Dn��

+�cn+1E��x−Dn�
+�−�cn+hn��x−1�

−�rnE�min�x−1�Dn��−�cn+1E��x−1−Dn�
+�

=−�cn+hn�+�rnwn�x�+�cn+1un�x� by (4) (10)

=�rn−cn−hn−��rn−cn+1�un�x� by (5), (11)

where

wn�x�=E�min�x�Dn�−min�x−1�Dn���0 and (12)

un�x�=E��x−Dn�
+−�x−1−Dn�

+��1� (13)

We can interpret wn�x� as the marginal expected demand
satisfied in period n if we decide to produce x. In addition,
we can interpret un�x� as the marginal expected beginning
inventory of period n + 1 if we decide to produce x in
period n.
Because F N

n �x� is concave from the proof of Theorem 1,
f N
n �x� is nonincreasing. Also, by Theorem 1, SN

n � s � �SN
n

just in case s attains the maximum in (6). Hence,

f N
n �x� > 0 ∀0< x� SN

n �

f N
n �x�= 0 ∀SN

n < x� �SN
n � (14)

f N
n �x� < 0 ∀�SN

n < x�

In addition, from (7), we have for SN
n � s � �SN

n ,

vNn �x�=
{
0� x� s�

f N
n �x�� x > s�

(15)

Lemma 5. For all x, vNn �x�� 0, v
N
n �x�� f N

n �x�, and vNn �x�
is nonincreasing in x. Furthermore,

vNn �x�=
{
0� when f N

n �x�� 0�

f N
n �x�� when f N

n �x� < 0�
(16)

Proof. From (14) and (15), we have (16). Thus, vNn �x�� 0
and vNn �x�� f N

n �x� for all x. Furthermore, we know from
the proof of Theorem 1 that F N

n �x� is concave in x. Hence,
f N
n �x� is nonincreasing in x. Thus, vNn �x� is also nonin-
creasing in x from (15). �

Lemma 6. vN+1
N �x�� vNN �x� for all N and x.

Proof. Case I: x� �SN+1
N . From (15) and (2),

vN+1
N �x�= 0�−

(
cN + h̄

1−�

)
= vNN �x��

Case II: x > �SN+1
N . We have

vN+1
N �x�= f N+1

N �x� from (15)

=−�cN +hN �+�rNwN �x�+�cN+1uN �x�

−�

(
cN+1+

h̄

1−�

)
uN �x�

from (8), (10), (13), and (2)

�−�cN +hN �−
�h̄uN �x�

1−�
by (12)

�−�cN +hN �−
�h̄

1−�
by (13)

�−�cN + h̄�− �h̄

1−�

=−
(
cN + h̄

1−�

)
= vNN �x�� �

Theorem 2. For all N and n < N , �SN
n and SN

n are mono-
tone nondecreasing in N .

Proof. Proof by induction. By Lemma 6, vN+1
N �x�� vNN �x�

for all x. Suppose for some n < N , vN+1
n+1 �x�� vNn+1�x� for

all x. From (8),

f N+1
n �y�−f N

n �y�

=mn�y�+�E
[
+N+1
n+1 �y−Dn�

]−mn�y�−�E
[
+N
n+1�y−Dn�

]
=�E

[
+N+1
n+1 �y−Dn�−+N

n+1�y−Dn�
]
� (17)

By the induction hypothesis, +N+1
n+1 �y−Dn�−+N

n+1�y−Dn�
�0 with probability one. Thus, for all y,

f N+1
n �y�� f N

n �y�� (18)

Then, from (14), f N+1
n �SN

n � � f N
n �SN

n � > 0. We have
then, by (14), SN+1

n � SN
n .

In addition, �SN+1
n � �SN

n because if �SN+1
n < �SN

n , then
by (14), f N+1

n � �SN
n � < 0. However, by (18), f N+1

n � �SN
n � �

f N
n � �SN

n �� 0 by (14) and we have reached a contradiction.
To complete the induction, it is left to show vN+1

n �x��
vNn �x� for all x.
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Case I: x� �SN
n � �SN+1

n . By (15),

vN+1
n �x�= 0= vNn �x��

Case II: �SN
n < x� �SN+1

n . By (14), (15), and the fact that
f N
n �x� is nonincreasing from concavity of F N

n �x�,

vN+1
n �x�= 0> f N

n � �SN
n + 1�� f N

n �x�= vNn �x��

Case III: x > �SN+1
n � �SN

n . By (15) and (18),

vN+1
n �x�= f N+1

n �x�� f N
n �x�= vNn �x�� �

3.4. Optimal Policy and Value Convergence for
the N-Horizon Lower Bound Problem �LN�

In this section, we show that optimal policies and values of
the N -horizon lower bound problem converge to those of
the infinite horizon problem. We begin with a lemma.

Lemma 7. If �N
n → �n as N → � for all n when �N ∈

�N , N = 1�2� � � � , then ZN ��N �→Z��� as N →�.
Proof. See the Appendix. �

Note that �N
n → �n as N → � for all n is equiva-

lent to writing �N → � as N →� in the product topol-
ogy of componentwise convergence. Because �N feasibly
extended is in � for all N and � is compact and in partic-
ular closed, we conclude that �N being feasible for all N
implies its limit � must be in �, i.e., feasible.
We turn to showing optimal policy convergence. Because

Theorem 2 states that SN
n and �Sn

n are monotone increasing in
N and bounded above by Assumption 1, �Sn ≡ limN→� �SN

n

and Sn ≡ limN→� SN
n must exist for all n. Because for

all n = 1�2� � � � � both �SN
n and SN

n , N = n+ 1� n+ 2� � � � �
is a converging sequence of integers, there exist Nn for each
n= 1�2� � � � such that
�SN
n = �Sn and SN

n = Sn ∀N �Nn�

Then, for all Sn with Sn � Sn � �Sn, we have Sn =
limN→� SN

n , where SN
n ≡ SN

n + Sn − Sn for all N � Nn.
Note that SN

n � SN
n � �SN

n for all N � Nn and, hence, is an
optimal produce-up-to threshold for the N -horizon lower
bound problem, N � Nn. We conclude that all thresh-
olds Sn between �Sn and Sn are limits of sequence of optimal
N -horizon lower bound problem thresholds. It remains to
show that these thresholds are infinite horizon optimal, i.e.,
that optimal policy convergence holds.

Theorem 3. Optimal policy convergence holds; i.e., if
SN
n � SN

n � �SN
n for all N and SN

n → Sn as N → �, then
Sn is an optimal produce-up-to threshold for the infinite
horizon problem (L).

Proof. Let ∗�N
n represent the policy of the N -horizon

lower bound problem corresponding to produce-up-to level
SN
n and let

∗�n correspond to the policy for the infinite hori-
zon problem of produce-up-to level Sn. Hence,

∗�N →∗�

as N →�. We have already noted that because �N
n →�n,

the limit policy ∗� must be infinite horizon feasible; i.e.,
∗� ∈ �. Let � ∈ � and note that � is feasible for the
N -horizon problem so that

ZN �∗�N��ZN ����

Hence,

lim
N→�

ZN �∗�N�� lim
N→�

ZN ���� (19)

But by Lemma 7, because ∗�N →∗�,

lim
N→�

ZN �∗�N�=Z�∗�� (20)

and also by Lemma 7, because �̂N → � where �̂N ≡ �,
we get

lim
N→�

ZN ���=Z���� (21)

Hence, from (19), (20), and (21) we conclude

Z�∗���Z���

for all � ∈�. Hence, ∗� is infinite horizon optimal. �

Note from (20) in the proof of the previous theorem
we get

lim
N→�∗ Z

N = ∗Z

where ∗ZN ≡ ZN �∗�N� is the optimal value for the
N -horizon lower bound problem and ∗Z ≡ Z�∗�� is the
optimal value for the infinite horizon problem. That is, we
have demonstrated optimal value convergence as well as
optimal policy convergence.
Also note that we have proven that the infinite horizon

problem �L� has an optimal produce-up-to threshold struc-
ture, inherited from the finite horizon problems.

3.5. Existence of Forecast Horizons for �L�

In this subsection, we constructively prove existence of a
forecast horizon by showing that a horizon sufficiently long
to generate a cumulative demand exceeding the largest opti-
mal initial production level must be a forecast horizon. In
particular, we show that �N is a forecast horizon where

�N =min
{
N $ �SN

1 <
N−1∑
k=1

dk�N = 2�3� � � �
}
� (22)

Roughly speaking, if we think of inventory being depleted
under a FIFO policy, no demand beyond horizon �N is opti-
mally satisfied by production in period 1. In this sense,
�N is similar to the deterministic case of Smith and Zhang
(1998), where a forecast horizon is the longest horizon over
which it is optimal to carry a unit of inventory. The follow-
ing assumption assures that �N defined above exists and is
finite.
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Assumption 5. Demand is strictly positive infinitely often;
i.e., dn > 0 infinitely often.

Lemma 8. In the N -horizon lower bound problem �LN �,
for all 1� n� N , if 0� x � dn, then f N

n �y� for all y � x
depends only on the problem data in period n.

Proof. For all x � dn, from (8), (11), (13), and the fact
that x� dn, we have f

N
n �x�= �rn−cn−hn, which depends

only on the problem data in period n. �

Note the importance of the assumption of lost sales in
concluding Lemma 8.

Lemma 9. In the N -horizon lower bound problem �LN �,
for all n, if x > dn, it is sufficient to know the problem
data in period n and to know f N

n+1�y� for all y � x−dn to
determine the value of f N

n �y� for all y � x.

Proof. For all x > dn and all y � x, from (8),

f N
n �y�=mn�y�+�E

[
+N
n+1�y−Dn�

]
=mn�y�+�E

[
V N
n+1�y−Dn�

+ −V N
n+1�y− 1−Dn�

+]
=mn�y�+�

d̄n∑
k=dn

[
V N
n+1�y− k�+ −V N

n+1�y− 1− k�+
]

·P�Dn = k��

Because k� y implies V N
n+1�y− k�+ = V N

n+1�y− 1− k�+ =
V N
n+1�0�, we have

f N
n �y�=mn�y�+�

y−1∑
k=dn

[
V N
n+1�y− k�+ −V N

n+1�y− 1− k�+
]

·P�Dn = k�

=mn�y�+�
y−1∑
k=dn

vNn+1�y− k�P�Dn = k��

Setting k′ = y− k, we have

f N
n �y�=mn�y�+�

y−dn∑
k′=1

vNn+1�k
′�P�Dn = y− k′�� (23)

Lemma 5 implies that vNn+1�k� depends on f N
n+1�k� and

k� y−dn � x−dn, and thus the result follows. �

Lemma 10. For all y � �S �N
1 +1 and N � �N , f N

1 �y� is inde-
pendent of the problem data beyond �N − 1.
Proof. For all N � �N , by applying Lemma 9 recursively,
starting with n = 1 and ending with n = �N − 1, we have
that, in general, it is sufficient to know the problem data
in period 1�2� � � � �N − 2 and to know f N

�N−1�y� for all
y � �S �N

1 + 1−∑ �N−2
k=1 dj to compute the value of f

N
1 �y� for

all y � �S �N
1 + 1.

However, by the definition of �N , �S �N1 <
∑ �N−1

k=1 dk, which
implies �S �N

1 + 1 − ∑ �N−2
k=1 dk � d �N−1 . Thus, by Lemma 8,

f N
�N−1�y� for all y � �S �N

1 + 1 − ∑ �N−2
k=1 dj depends only on

the problem data in period �N − 1. Hence, for all y �
�S �N
1 + 1, f N

1 �y� is independent of the problem data beyond
�N − 1. �

Theorem 4. We have SN
1 = S �N

1 and �S N
1 = �S �N

1 for all
N � �N ; i.e., �N is a forecast horizon.

Proof. From (14), f �N
1 � �S �N

1 + 1� < 0. For all N � �N , by
Lemma 10, f N

1 �y� for all y � �S �N
1 + 1 is independent of

the problem data beyond �N . Thus, f N
1 �y�= f �N

1 �y� for all
y � �S �N

1 +1. Because from (14) �SN
1 and S

N
1 can be computed

if f N
1 �y�, y � �SN

1 + 1 is known, �SN
1 = �S �N

1 and SN
1 = S �N

1

independently of the information beyond �N . �

4. Computing Forecast Horizons for �L�
4.1. The N-Horizon Upper Bound Problem

In this subsection, we define an N -horizon upper bound
problem �UN � and formulate it as a dynamic programming
problem. Analogous to the lower bound problem �LN �, we
call �UN � an upper bound problem because it will be shown
later that the largest optimal decision for each state in each
period of the N -horizon upper bound problem is an upper
bound to the corresponding optimal decisions of the infinite
horizon problem.
An N -horizon upper bound problem �UN � is an

N -horizon problem in which the problem data from peri-
ods 1 through N − 1 are the same as that of the infinite
horizon problem except that there is a terminal value func-
tion which gives the undiscounted net profit for period N
depending on the state of period N , iN .
We now define the terminal value function �Z for the

N -horizon upper bound problem �UN �. That is, let �Z rep-
resent the column vector in which the ith component of the
vector �Zi, is the net profit in period N given that we enter
state i at the beginning of period N . For all i, we set

�Zi = 0�
Note that without loss of optimality it will never prove
worthwhile for a problem with horizon exceeding N to gen-
erate an inventory level greater than that yielded by �UN �.
The reason is the cN received per unit inventory sold at
the end of period N − 1 in �UN � places a marginal value
on ending inventory of, at most, cN . It is thus no more
costly to produce additional inventory in period N at its
cost cN per unit. The problem �UN � thus results in a max-
imal beginning-inventory period N and in a corresponding
maximal production level beginning period 1, which upper
bounds production for the infinite horizon problem. In sum-
mary, as we shall show below, the ordinary N -horizon trun-
cation of the infinite horizon problem upper bounds optimal
first-period production.
Let �ZN ��N � denote the expected present value of the

net profit incurred in periods 1 through N under �N in the
N -horizon upper bound problem �UN �. Then,

�ZN ��N �=
N−1∑
n=1

�n−1Pn��N �Zn��
N �+�N−1PN ��N � �Z

=
N−1∑
n=1

�n−1Pn��N �Zn��
N ��
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We would like to find a feasible strategy that maximizes
the expected total discounted net profit over the horizon N .
The N -horizon upper bound problem �UN � is as follows:

max
�N∈�N

{ �ZN ��N �
}
�

Because the set of feasible strategies is finite, the maximum
above is attained.
By dynamic programming, we can solve �UN � by

solving the optimality equations, �V N
n = maxy$ y�x� �F N

n �y��,
n�N as in (1), with (2) replaced by

�V N
N �x�= 0� 0� x < d̄� (24)

which implies

v̂NN �x�= 0� 0< x < d̄� (25)

Note that hat ��� in functions indicates that the functions
are for the N -horizon upper bound problem �UN �.

Theorem 5. In the N -horizon upper bound problem �UN �,
there exist integers T N

n and �T N
n for all n�N such that the

following equivalence holds:

�F N
n �s�=max

y$ y�0
� �F N

n �y�� and (26)

�V N
n �x�=

{ �F N
n �s�� x� s�

�F N
n �x�� x > s�

(27)

if and only if T N
n � s � �T N

n .

Proof. Because �V N
N �x� is nonincreasing concave, the rest

of the proof is similar to that of Theorem 1. �

Lemma 11. v̂N+1
N �x� � v̂NN �x� for all x > 0 and N =

1�2� � � � �

Proof. For all N = 1�2� � � � and x > 0, we have by
Lemma 5 that

v̂N+1
N �x�� 0= v̂NN �x�� �

Theorem 6. For all N and n<N , �T N
n and T N

n are mono-
tone nonincreasing in N .

Proof. The result and proof for the lower bound problem
goes through for the upper bound problem if we replace N
by N +1 and N +1 by N throughout. For example, V N

n �x�
becomes �V N+1

n �x�, and V N+1
n �x� becomes �V N

n �x�. Then, by
Lemma 11,

vNN �x�= v̂N+1
N �x�� v̂NN �x�= vN+1

N �x��

The rest of the proof of Theorem 2, then, still holds. In
Theorem 2, we have proved that for all n�N ,

�SN
n � �SN+1

n and SN
n � SN+1

n �

which implies that

�T N+1
n � �T N

n and T T+1
n � T N

n

for all n � N , which in turn implies that �T N
n and T N

n are
monotone nonincreasing in N . �

We now introduce optimality equations for the infinite
horizon problem. Let Fn�y� denote the maximum expected
discounted net profit from period n on in the infinite hori-
zon problem if we choose to produce y in period n. In
addition, let Vn�x� be the maximum expected discounted
net profit from period n on in the infinite horizon problem
if we begin period n at inventory level x. Similarly, fn�y�≡
Fn�y�− Fn�y − 1�, y > 0 and vn�x� ≡ Vn�x�− Vn�x − 1�,
x > 0. Furthermore, let Sn and �Sn denote the minimum and
the maximum produce-up-to levels for the infinite horizon
problem, respectively. We have

Vn�x�=max
y$ y�x

�Fn�y��� (28)

Fn�y�=Mn�y�+�E�Vn+1�y−Dn�
+� (29)

for all n= 1�2�3� � � � �
Lemma 12. SN

n � Sn � T N
n and �SN

n � �Sn �
�T N
n , N � n, n=

1�2�3� � � � �

Proof. Omitted. �

4.2. Algorithm for Detecting Forecast Horizons

We begin with a forward algorithm that solves theN -horizon
problems �LN � and �UN � for ever greater horizons N until
and if we get agreement in the largest and smallest corre-
sponding initial production levels for the first period.

Solution Algorithm

Step 0. N = 1.
Step 1. Solve �LN � and �UN �. If �SN

1 = �T N
1 and SN

1 = T N
1 ,

stop.
Otherwise, let N =N + 1, then go to Step 1.

The following theorem assures us that if the algorithm
stops, then we have indeed solved for the infinite horizon
problem’s optimal first decision. Moreover, the optimality
of this initial production level is unaffected by data beyond
the horizon N ∗ for which the stopping condition was met.

Theorem 7. If the algorithm stops at N = N ∗, then N ∗ is
a forecast horizon.

Proof. If the algorithm stops at N = N ∗, by Theorem 2,
Theorem 6, and Lemma 12, we have �SN

1 = �T N
1 and

SN
1 = T N

1 for all N � N ∗ independently of the information
beyond N ∗. �

Theorem 8. The algorithm finitely terminates; i.e., the
stopping condition is eventually met.
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Proof. It is sufficient to show that �S �N
1 = �T �N

1 and S �N
1 =

T �N
1 where �N is defined by (22). By Theorem 10, for all

y � �S �N
1 + 1, f �N

1 �y� is independent of the problem data be-
yond �N − 1. However, the data from periods 1 through
�N − 1 of �L �N � and �U �N � are the same. Thus, f �N

1 �y� =
f̂ �N
1 �y� for all y � �S �N

1 +1, which implies that �S �N
1 = �T �N

1 and
S �N
1 = T �N

1 . �

Theorem 9. If T N ′
n � s � �SN ′

n for some N ′, then s is an
infinite horizon optimal produce-up-to level for period n.

Proof. Consider all N �N ′. By Theorem 6, T N
n is mono-

tonically decreasing in N . Therefore,

T N
n � s�

By Lemma 12, T N
n is bounded below by SN

n . Thus,

SN
n � s� (30)

By Theorem 2, �SN
n is monotonically increasing in N .

Therefore,

s � �SN
n � (31)

From (30) and (31), for all N �N ′,

SN
n � s � �SN

n �

Thus, s is an optimal produce-up-to level for period n for
all lower bound problems with horizon N � N ′. From the
discussion in §3.4, we can construct a converging sequence
of optimal strategies for N -horizon lower bound problems,
N = 2�3�4� � � � � such that s is an optimal produce-up-to
level for period n of all lower bound problems with hori-
zon N � N ′. Then, s must be an optimal produce-up-to
level of the limit of this converging sequence. If s were not
infinite horizon optimal, this would contradict Theorem 3.
Thus, s is an infinite horizon optimal produce-up-to level
for period n. �

Theorem 9 is useful because it may allow us to obtain in
advance an infinite horizon optimal policy not only for the
first period, but also for future periods, before the stopping
rule in the Solution Algorithm is met.

4.3. Forecast Horizon Bounds

In this section, we present a formula for the ratio of the
forecast horizon length of the stochastic demand problem to
the deterministic demand problem in terms of lower bounds
on the minimum and upper bounds on the maximum per-
period demands to be encountered. This ratio, together with
the closed-form formula for an upper bound on the minimal
forecast horizon for the deterministic demand problem pre-
sented in Smith and Zhang (1998), results in a closed-form
formula for a forecast horizon for our stochastic demand
problem. Let N ∗ be a forecast horizon when the demand

is deterministic, as given in Smith and Zhang (1998). We
present their formula here in our notation,

N ∗ =
⌈
log�

{
�1−��c1+h

�1−��c̄+h

}⌉
�

where h= infn�hn� > 0 and �x� denotes the smallest inte-
ger strictly greater than x. One may interpret N ∗ as a hori-
zon long enough so that the discounted cost of producing
one unit and holding it through period N ∗ is greater than the
discounted cost of producing this unit in period N ∗+1; i.e.,

c1+
N ∗∑
k=1

�k−1h>�N ∗
c̄�

Suppose now there exist d̄ <� and d <� such that d̄ =
supn�d̄n� and d = infn�dn�. Let 0 = d̄/d. Define N ∗∗ =
2+�0N ∗�. We will show that N ∗∗ is a forecast horizon for
our stochastic demand problem.

Lemma 13. For all n�N and x > d̄n, f
N
n �x��−cn−hn+

�cn+1+�vNn+1�x− d̄n�.

Proof. For all x > d̄n, x − 1 � Dn with probability one.
From (13), we have

un�x�=E��x−Dn�
+ − �x− 1−Dn�

+�= 1�

From (8) and (11), because un�x�= 1, we have

f N
n �x�=−cn −hn +�cn+1+�E�+N

n+1�x−Dn���

However, vNn+1�x� is nonincreasing in x by Lemma 5,
and x > d̄n by assumption. Thus, with probability one,

+N
n+1�x−Dn�� vNn+1�x− d̄n��

Therefore,

f N
n �x��−cn −hn +�cn+1+�vNn+1�x− d̄n�� �

Lemma 14. For all N >N ∗, �SN
1 �

∑N ∗
k=1 d̄n.

Proof. Proof by contradiction. Suppose for some N �N ∗

we have �SN
1 >

∑N ∗
k=1 d̄k. Because �SN

1 >
∑N ∗

k=1 d̄k > d̄1, by
Lemma 13 we get

f N
1 � �SN

1 ��−c1−h1+�c2+�vN2 � �SN
1 − d̄1��

From Lemma 5, vN2 � �SN
1 − d̄1�� f N

2 � �SN
1 − d̄1�. Therefore,

f N
1 � �SN

1 ��−c1−h1+�c2+�f N
2 � �SN

1 − d̄1��

Applying the same procedure with f N
1 � �SN

1 � replaced by
f N
2 � �SN

1 − d̄1�, we have

f N
1 � �SN

1 ��−c1−h1+�c2−�c2−�h2

+�2c3+�2f N
3 � �SN

1 − d̄1− d̄2��
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Applying the same procedure recursively, we have

f N
1 � �SN

1 ��−c1−
N ∗∑
k=1

�k−1hk +�N ∗
cN ∗+1

+�N ∗−1vNN ∗

(
�SN
1 −

N ∗∑
k=1

d̄k

)
�

From Lemma 5, vNN ∗�x�� 0 for all x. Thus,

f N
1 � �SN

1 ��−c1−
N ∗∑
k=1

�k−1hk +�N ∗
cN ∗+1�

By definition of N ∗,

f N
1 � �SN

1 � < 0�

This contradicts (14). Therefore, for all N � N ∗, �SN
1 �∑N ∗

k=1 d̄k. �

Theorem 10. N ∗∗ is a forecast horizon for stochastic
demand problems.

Proof. Because �N is a forecast horizon for stochastic
demand problems, it is sufficient to show

�SN ∗∗
1 <

N ∗∗−1∑
k=1

dk�

which implies by (22) that N ∗∗ � �N . By definition of d,
N ∗∗−1∑
k=1

dk �

N ∗∗−1∑
k=1

d= d�N ∗∗ − 1�� (32)

By definition of 0,

d�N ∗∗ − 1�� d̄�N ∗∗ − 1�
0

� (33)

By definition of d̄,
∑N ∗

k=1 d̄k/N
∗ � d̄ so that

d̄�N ∗∗ − 1�
0

�

∑N ∗
k=1 d̄k

N ∗ · N
∗∗ − 1
0

� (34)

Because we define N ∗∗ = 2+�0N ∗�, �N ∗∗ −1�/�0N ∗� > 1,
we get∑N ∗

k=1 d̄k

N ∗ · N
∗∗ − 1
0

>
N ∗∑
k=1

d̄k� (35)

However, by Lemma 14,

N ∗∑
k=1

d̄k �
�SN ∗∗
1 � (36)

From (32) to (36), we have

N ∗∗−1∑
k=1

dk > �SN ∗∗
1 �

which implies that N ∗∗ � �N . Therefore, N ∗∗ is a forecast
horizon. �

Table 1. The forecast horizon in days for the first infi-
nite horizon optimal production level for a
ratio of maximum to minimum daily demands
of at most two.

u

r v 1.2 1.4 1.6 1.8 2

0.2 0�2 4 6 8 10 12
0.2 0�1 6 10 14 18 22
0.2 0�05 10 18 26 34 42
0.1 0�2 4 6 8 10 12
0.1 0�1 6 10 14 18 22
0.1 0�05 10 18 26 34 42
0.05 0�2 4 6 8 10 12
0.05 0�1 6 10 14 18 22
0.05 0�05 10 18 26 34 42

Corollary 1. If 1= 1+ 0, then N ∗∗ � 2+1N ∗.

Proof.

N ∗∗ = 2+�0N ∗�� 2+ �1+ 0�N ∗� �

From Corollary 1, we conclude that the effect of uncer-
tainty in demand is to increase the horizon we need to
forecast demand over by a constant plus a factor of at most
one plus the ratio of maximum to minimum per-period
demands.
Also note that the stopping rule of the Solution Algo-

rithm of §4.2 is always met at any forecast horizon N . We
conclude that the Solution Horizon Algorithm will termi-
nate after at most N ∗∗ iterations. Table 1, derived from
Table 1 in Smith and Zhang (1998), gives numerical val-
ues for N ∗∗ for a variety of parameters. In the table, we
have assumed the ratio of maximum to minimum daily
demands is at most two. The maximum unit production cost
is the factor u times the unit production cost in period 1;
i.e., u= c̄/c1 while minimum inventory cost is v times the
first-period production cost, i.e., v = h/c1. The table pro-
vides the forecast horizon N ∗∗ for various inventory charges
v per day and interest rates r per year for u, respectively,
one and two. The results are shown in Table 1.
Because the Solution Horizon Algorithm terminates

within a horizon of at most N ∗∗, we conclude from Table 1
that it terminates very rapidly for these parameter values
with an infinite horizon optimal production decision after
only a few increments of the horizon N . Moreover, fore-
cast horizons are evidently remarkably short for problems
with significant inventory costs, sometimes just a few days
in length.

Appendix
Lemma 7. If �N

n → �n as N → � for all n when �N ∈
�N , N = 1�2� � � � � then ZN ��N �→Z��� as N →�.
Proof. Let Nk � k be large enough that �N

n = �n for all
n � k when N � Nk. Such an Nk exists because �N

n is
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integer and uniformly bounded over N for all n. Moreover,
Nk →� as k→�. By the definition of Z��� and ZN ��N �,
we have for all N ,∣∣Z���−ZN ��N �

∣∣
=
∣∣∣∣ �∑
n=1

�n−1Pn���Zn���−
N−1∑
n=1

�n−1Pn��N �Zn��
N �

−�N−1PN ��N �Z̃

∣∣∣∣�
Now, for all N � Nk, because �n = �N

n for all n � k,
we have

Pn���= Pn��N � and Zn���=Zn��
N � for all n� k�

Thus, for all k and N �Nk,∣∣Z���−ZN ��N �
∣∣

=
∣∣∣∣ �∑
n=1

�n−1Pn���Zn���−
N−1∑
n=1

�n−1Pn��N �Zn��
N �

−�N−1PN ��N �Z̃

∣∣∣∣
� �k−1

�∑
n=k

�n−kPn����Zn����

+�k−1
N−1∑
n=k

�n−kPn��N ��Zn��
N ��

+�N−1PN ��N ��Z̃��
Hence, for all k,

lim
N→�

�Z���−ZN ��N ��

� �k−1
�∑

n=k

�n−kPn����Zn����

+�k−1
�∑

n=k

�n−kPn��N ��Zn��
N ��

+ lim
N→�

�N−1PN ��N ��Z̃�

= �k−1
�∑

n=k

�n−kPn����Zn����

+�k−1
�∑

n=k

�n−kPn��N ��Zn��
N ��

because limN→��N−1PN ��N ��Z̃� = 0. Assumptions 1, 2,
and 3 imply that expected costs and revenues per period
are uniformly bounded. Therefore, Zn��� and Zn��

N � are
uniformly bounded; i.e., there exist M <� such that each
component of Zn��� and Zn��

N � is bounded by M for
all n. Hence, we have
�∑

n=k

�n−kPn����Zn���� +
�∑

n=k

�n−kPn��N ��Zn��
N ��

�

�∑
n=k

�n−k�2M��
2M
1−�

�

Thus, taking the limit as k→�, we get

lim
N→�

�Z���−ZN ��N ��� lim
k→�

�k−1 2M
1−�

= 0�
Hence, limN→� �Z���−ZN ��N �� = 0 or
lim
N→�

ZN ��N �=Z���� �

Acknowledgments
This work was partially supported by the National Sci-
ence Foundation under Grants DMI-9713723, 982074, and
9900267.

References
Alden, J., R. L. Smith. 1992. Rolling horizon procedures in nonhomo-

geneous Markov decision processes. Oper. Res. 40(Suppl. 2) S183–
S194.

Bean, J., R. L. Smith. 1984. Conditions for the existence of planning
horizons. Math. Oper. Res. 9(3) 391–401.

Denardo, E. V. 1982. Dynamic Programming, Models and Applications.
Prentice-Hall, Englewood Cliffs, NJ.

Federgruen, A., M. Tzur. 1996. Detection of minimal forecast horizons in
dynamic programs with multiple indicators of the future. Naval Res.
Logist. 43 169–189.

Garcia, S., R. L. Smith. 2000a. Solving nonstationary infinite horizon
stochastic production planning problems. Oper. Res. Lett. 27 135–
141.

Garcia, S., R. L. Smith. 2000b. Solving nonstationary infinite horizon
dynamic optimization problems. J. Math. Anal. Appl. 244(2) 304–
317.

Hernandez-Lerma, O., J. Lasserre. 1990. Error bounds for rolling hori-
zon policies in discrete-time Markov control processes. IEEE Trans.
Automatic Control 35(10).

Karlin, S. 1960a. Dynamic inventory policy with varying stochastic
demand. Management Sci. 6 231–258.

Karlin, S. 1960b. Optimal policy for dynamic inventory process with
stochastic demand. SIAM 8 611–629.

Kleindorfer, P., H. Kunreuther. 1978. Stochastic horizons for the aggregate
planning problem. Management Sci. 25 1020–1031.

Lovejoy, W. S. 1992. Stopped myopic policies in some inventory models
with generalized demand processes. Management Sci. 38 688–707.

Morton, T. E. 1978. The nonstationary infinite horizon inventory problem.
Management Sci. 24 1474–1482.

Morton, T. E., D. W. Pentico. 1995. The finite horizon nonstationary
stochastic inventory problem: Near-myopic bounds, heuristics, test-
ing. Management Sci. 41 334–343.

Sethi, S., F. Cheng. 1997. Optimality of (s� S) policies in inventory models
with Markovian demand. Oper. Res. 45 931–939.

Smith, R. L., R. Q. Zhang. 1998. Infinite horizon production planning in
time varying systems with convex production and inventory costs.
Management Sci. 44 1313–1320.

Sobel, M. J. 1981. Myopic solution of Markov decision processes and
stochastic games. Oper. Res. 29 995–1009.

Topkis, D. M. 1998. Supermodularity and Complementarity. Princeton
University Press, Princeton, NJ.

Veinott, A. F. 1965. Optimal policy for a multi-product, dynamic, nonsta-
tionary inventory problem. Management Sci. 12 206–222.

Zhang, R. Q. 1998. New results in infinite horizon production planning.
Technical report, Department of Industrial and Operations Engineer-
ing, University of Michigan, Ann Arbor, MI.


