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ABSTRACT

We develop a framework for asymptotic optimization of a queueing system. The motivation

is the sta�ng problem of call centers with 100's of agents (or more). Such a call center is

modeled as an M/M/N queue, where the number of agents N is large. Within our framework,

we determine the asymptotically optimal sta�ng level N� that trades o� agents' costs with

service quality: the higher the latter, the more expensive is the former. As an alternative to

this optimization, we also develop a constraint satisfaction approach where one chooses the

least N� that adheres to a given constraint on waiting cost. Either way, the analysis gives rise

to three regimes of operation: quality-driven, where the focus is on service quality; e�ciency-

driven, which emphasizes agents' costs; and a rationalized regime that balances, and in fact

uni�es, the other two. Numerical experiments reveal remarkable accuracy of our asymptotic

approximations: over a wide range of parameters, from the very small to the extremely large,

N� is exactly optimal, or it is accurate to within a single agent. We demonstrate the utility of

our approach by revisiting the square-root safety sta�ng principle, which is a long-existing rule-

of-thumb for sta�ng the M/M/N queue. In its simplest form, our rule is as follows: if c is the

hourly cost of an agent, and a is the hourly cost of customers' delay, then N� = R+ y�(a
c
)
p
R,

where R is the o�ered load, and y�(�) is a function that is easily computable.

2000 Mathematics Subject Classi�cation: 60K25 (primary), 90B22 (secondary).

Keywords & Phrases: asymptotics, call centers, multi-server queues, optimal sta�ng.

Note: Work of the �rst author carried out in part under the project PNA2.1 \Communication

and Computer Networks".

�The research of A.M. was partially supported by the ISF (Israeli Science Foundation) grant 388/99{2 and

by the Technion funds for the promotion of research and sponsored research.

1



1 Introduction

Worldwide, telephone-based services have been expanding dramatically in both volume and

scope. This has given rise to a huge growth industry { the (telephone) call center industry.

Indeed, some assess [4] that 70% of all customer-business interactions in the U.S. occur in

call centers, which employ (conservatively speaking) 3% of the U.S. workforce (about 1.5 mil-

lion agents). Marketing managers refer to call centers as the modern business frontier, being

the focus of Customer Relationship Management (CRM); Operations managers are challenged

with the fact that personnel costs, speci�cally sta�ng, account for over 65% of the cost of

running the typical call center. The trade-o� between service quality (marketing) and e�-

ciency (operations) thus naturally arises, and a central goal of ours is to contribute to its

understanding.

We argue that call centers typify an emerging business environment in which the traditional

quality-e�ciency trade-o� paradigm could collapse: extremely high levels of both service qual-

ity and e�ciency can coexist. Consider, for example, a best-practice U.S. sales call center that

attends to an average of 15,000 phone callers daily; the average duration of a call is 4 minutes

and the variability of calls is signi�cant; agents are highly utilized (over 90%), yet customers

essentially never encounter a busy signal, hardly anyone abandons while waiting, and the av-

erage wait for service is a mere few seconds. Prerequisites for sustaining such performance, to

the best of our judgment, are technology-enabled economies-of-scale and scienti�cally-based

managerial principles and laws. In this paper we develop an analytical framework (Sections 3

and 8) that supports such principles. It is based on asymptotic optimization, which yields in-

sight that does not come out of exact analysis. A convincing example is the square-root safety

sta�ng principle, described in Subsection 1.3 below. It supports simple useful rules-of-thumb

for sta�ng large call centers, rules that so far have been justi�ed only heuristically. Indeed,

formal asymptotic justi�cations of such rules are not common in the Operations Research

literature. Hence another goal here is to convince the reader of their bene�ts.

1.1 Costs, optimization and constraint satisfaction

The cost of sta�ng is the principal component in the operating expenses of a call center. The

sta�ng level is also the dominant factor to determine service level, as measured in terms of

delay statistics: poor service levels incur either opportunity losses due to deteriorating goodwill,

or more direct revenue losses in case of abandonment and blocking (busy signals). While the

need to balance service quality and sta�ng cost is universal, the weight placed on each may

vary dramatically. In some call centers, providing maximal customer care is the primary drive

whereas in others, handling a high tra�c volume at minimal cost is the overriding goal. The

challenge, so we argue, is to translate such strategically-articulated goals into concrete sta�ng
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levels: simply put, how many agents are to be sta�ed in order to provide acceptable service

quality and operational e�ciency? In this paper we answer this question for the M/M/N

queue, which is the simplest yet most prevalent model that supports call center sta�ng. (In

future research we are hoping to add central features of call centers such as abandonment and

retrials [13].)

Within the M/M/N model, we postulate a sta�ng cost function F (N) for employing N agents.

Low costs (small N) give rise to long waits, which we quantify in terms of a delay cost function

D(t) for a customer being served after waiting t units of time. When F dominates D (or

conversely D dominates F ), the least costs are achieved in an e�ciency-driven (or conversely a

quality-driven) operation. When F and D are comparable, optimization leads to a rationalized

operation which, as it turns out, is robust enough to encompass most circumstances. Formally,

the three regimes emerge from an asymptotic analysis of the M/M/N queue, as the arrival

rate �, and accordingly the optimal sta�ng level N�
� , both scale up to in�nity. We refer to

such responsive sta�ng, in response to increased load, as dimensioning the call center, which

inspired our title. While the sta�ng levels that we recommend are only asymptotically optimal,

they are nevertheless remarkably accurate { to within a single agent in the majority of cases.

The asymptotics also provide insight, beyond that of exact analysis, about the dependence of

the optimal N�
� on �, F and D.

In industry practice, sta�ng levels are rarely determined through optimization. (One reason

is that there is no standard practice for quantifying waiting costs, let alone abandonment,

busy-signal and retrial costs; see [1] for some attempts.) Thus, if not by mere experience-based

guessing, common practice seeks the least number of agents N� that satis�es a given constraint

on service level. The latter is expressed in terms of some congestion measure, for example the

industry-standard Total Service Factor (TSF) given by

TSF = PrfWait > Tg; for some T � 0;

perhaps combined with 1-800 operating costs. We call this practice constraint satisfaction

(Section 8). It is to be contrasted with our previous optimization practice, where N� was

determined by cost minimization.

1.2 Structure of the paper

The rest of the Introduction is devoted to an exposition of the square-root safety sta�ng

principle, followed by a review of some related literature.

In Section 2 we set up our M/M/N model and its cost structure. The framework for asymptotic

optimality is developed in Section 3. Its applications require some special functions which

are introduced in Section 4. Of central importance to us is the Hal�n-Whitt delay function

P (�) [8], plotted in Figure 3. It provides an approximation for the delay probability in the
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M/M/N queue, N large, which operates in the rationalized regime. (Some useful properties

of P (�) and other functions are veri�ed in Appendices A-C.) In Sections 5-7 we analyze,

respectively, the rationalized, e�ciency- and quality-driven regimes, under the optimization

approach. While the analysis is abstract, each of these sections concludes with examples of

speci�c cost structures, for concreteness. In Section 8 we introduce the constraint satisfaction

approach, which gives rise to the same three regimes of operation as optimization.

Section 9 describes numerical experiments that test the accuracy of our asymptotically-supported

approximations. The �ndings are astounding { rarely do we miss by more than a single agent, as

far as optimal sta�ng levels are concerned. In addition, even though the theory is asymptotic,

our approximations are accurate with as few as 3 agents. In order to apply our approximations,

guidelines are required for �tting a given call center, represented by its parameters and costs,

to one of the three operational regimes. This turns out simpler than expected. Indeed, our

numerical experiments, backed up by some theory, clearly establish the robustness of the ratio-

nalized approximation, as it covers accurately both the e�ciency- and quality-driven regimes.

Thus, except for extreme settings, the rationalized approximation is the one to use, as we now

do in the following example. We conclude in Section 10 with a few worthy directions for future

research.

1.3 The square-root safety sta�ng principle

To recapitulate, we determine asymptotically optimal sta�ng levels in accordance with the

relative importance of agents' costs and e�ciency versus customers' service quality. This leads

to the (re)discovery, as well as a deeper understanding, of a remarkably robust rule-of-thumb,

the square-root safety sta�ng rule. It reads as follows: Suppose that the arrival rate is �

customers per hour, and service rate is �, which implies that the system's o�ered load is given

by R = �
� ; if the sta�ng cost is $ c per agent per hour, and waiting cost is $ a per customer

per hour, our recommended number of servers N� is given by

N� = R+ y�(
a

c
)
p
R; (1)

where the function y�(r), r � 0, is plotted in Figures 1 and 2. In simple words, at least

R agents (bRc + 1 to be exact) are required to guarantee stability; however, safety sta�ng

must be added to the minimum as a protection against stochastic variability. This number of

additional agents is proportional to
p
R, and the proportionality coe�cient y�(ac ) is determined

through the optimization (22), by the relative importance of customers' delay (a) to agents'

salary (c).

Note that the right-hand side of (1) need not be an integer, in which case N� is obtained by

rounding it o�. We demonstrate in Section 9, below (39), that this yields the sta�ng level

that minimizes waiting plus sta�ng costs, exactly in most cases and o� by a single agent in

the other rare ones.
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Figure 2: y�(r) as function of r, 0 � r � 500.

Small values of r correspond to e�ciency-driven sta�ng. In this range, the function y�(�) is
reasonably approximated by

y�(r) �
vuut r

1 + r(
q

�
2 � 1)

; 0 � r < 10:

Large values of r correspond to quality-driven sta�ng. In this range, a close lower bound is

y�(r) � p
s� ln s, where s = 2 ln rp

2�
, r " 1. (See Remark 5.4 for some details on these

asymptotic expansions.)

Under our square-root safety sta�ng, it is anticipated that service level, as expressed by the

industry-standard TSF, equals

TSF = PrfWait > Tg � P (y�)� e�Ty
�

p
��; y� = y�(

a

c
);

in which

P (y�) = [1 +
y��(y�)
�(y�)

]�1 � PrfWait > 0g; (2)

is the Hal�n-Whitt delay function [8] (see Figure 3 and Section 4); �(�) and �(�) are the density
and cumulative distribution function of the standard normal distribution, respectively. A more

management-friendly representation of TSF is

TSF = PrfWait > T � E[Service Time]g � PrfWait > 0g � e�T�: (3)
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Figure 3: The Hal�n-Whitt delay function P (y).

Here delay is measured in units of average service time (E[Service Time] = 1
� ), and � =

y�
p
R is the safety sta�ng level. Another service level standard is the average waiting time,

often referred to as Average Speed of Answer (ASA). With N� as in (1), and again naturally

quanti�ed in units of service durations, it is given by

ASA

1=�
=

E[Wait]

E[Service Time]
� P (y�)

�
: (4)

The industry standard for measuring operational e�cieny is agent utilization, namely R
N , which

is traded o� against service level. Agents are thus idle, or more appropriately described as

being available for service, a fraction �
N of their time.

Example 1.1

Consider, for example, the best-practice call center, described in the second paragraph of our

Introduction. Assuming 1800 calls per busy hour, the o�ered load equals R = 120. With 90%

utilization, one expects that about N� � 133 agents share the load (� = 13), hence the center

operates with y� � 1:22. Inverting y�(�) in Figure 1 shows that, in this call center, an hour

wait of customers is valued as 3 times the hourly wage of an agent. With this sta�ng level,

it is expected that about 15% of the customers (P (1:22) = 0:15) are delayed; that 5% of the
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customers are delayed over 20 seconds (using (3) with T = 1
12); and that, by (4), ASA equals

2.7 seconds (while those who were delayed actually averaged 18 seconds waiting).

2

But the sta�ng level in the example can be interpreted di�erently. To this end, recall that the

prevalent alternative to the above optimization approach is constraint satisfaction. Speci�cally,

in Example 8.5 it is shown that the least N that guarantees PrfWait > 0g < � is closely

approximated by rounding up

N� = R+ P�1(�)
p
R; (5)

where P (�) is the Hal�n-Whitt delay function introduced in (2). Returning to the above best-

practice call center, P�1(�) = 1:22 yields, as expected, � = 0:15.

Example 1.2

One should note that a constraint on the fraction of delayed customers is severe, hence it

�ts call centers that cater to say emergency calls. This can be nicely explained within our

framework. For example, requiring that � = 0:01, namely 1 customer out of 100 delayed on

average, corresponds to y� = P�1(0:01) = 2:38 (see Figure 3), which could be interpreted as

saying that a
c = (y�)�1(2:38) = 75! An evaluation of customers' time as being worth 75-fold of

agents' time seems reasonable only under extreme circumstances: for example, if the `servers'

are `cheap' being say Interactive Voice Reponse (IVR) units, or customers' time is highly valued

as with emergency call centers.

2

Example 1.3

Most call centers de�ne TSF with a positive T , and then requiring � = 0:01 need not be

extreme. We now illustrate this in terms of the following scenario. A prevalent standard is

to aspire that no more than 80% of the callers are delayed over T = 20 seconds. Incidentally,

we believe that the source of this standard is the familiar 20:80 managerial rule-of-thumb,

stating in great generality and vagueness that \only 20% of the reasons already give rise to

80% of the problems". While there is no apparent reason for connecting this rule-of-thumb

with any sta�ng standard, it is nevertheless worthwhile to note that our framework provides

some interesting implications for using this rule.

Consider a large call center with � = 100 calls per minute, and 4 minutes average call duration.

Thus R = 400, and adhering to the 20:80 rule implies that y� = 0:53, hence N� = 411. By

Figure 1, this translates into a
c = 0:32. It follows that, while customers are not highly valued,

the 20:80 rule is `easy' to adhere to because of the call center's size. To wit, increasingN� to 429
amounts to y� = 1:4, or a

c = 4:9, re
ecting a signi�cant yet reasonable increase of the relative

value of customers' to agents' time. This is accompanied by an increase in server availability
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(idleness), from 3% to 7%, which enables an order-of-magnitude reduction in TSF, from 0.2 to

little less than 0.01: about 1 out of 100 customers is delayed for more than 20 seconds.

To underscore the role of scale in the above scenario, consider a call center with the same

o�ered load parameters as Example 1.1: 30 calls per minute, and again 4 minutes average call

duration. Now R = 120, but it takes N� = 140 to achieve TSF = 0.01, with T = 20 seconds.

This corresponds to y� = 1:75, or a
c = 12:5, a 2.5-fold increase over the large call center. It is

interesting to note that with an average call duration of 30 seconds (as in 411 services), with

T held at 20 seconds, N� = 126 would su�ce, which amounts to y� = 0:53 and a
c = 0:32. This

is identical to the large call center with the 20:80 rule operation, but the latter accommodates

mean service time of 4 minutes, in contrast to the 30 seconds here.

2

The square-root safety sta�ng principle emerged from the simplest cost structure (linear

sta�ng and waiting costs). While our framework accommodates general costs, the corre-

sponding safety sta�ng levels are nevertheless always proportional to
p
R; it is only the pro-

portionality coe�cient that varies with the cost.

1.4 Related Literature

The square-root safety sta�ng principle has been part of the queueing-theory folklore for a

long time. This is well documented by Grassmann [6, 7], and recently revisited by Kolesar

& Green [12], where both its accuracy and applicability have been convincingly con�rmed.

The principle was substantiated by Whitt [15], then adapted in Jennings et.al. [11] to non-

stationary models. All of this works applies in�nite-server heuristics, grounded in the fact that

the steady-state number of customers in the M/M/1 queue, say Q1, is Poisson distributed

with mean R = �
� . It follows that Q1 is approximately normally distributed, with mean R

and standard deviation
p
R, when R is not too small. To relate this to sta�ng in the M/M/N

model, one approximates the latter's probability of delay by

PrfQ1 � Ng � 1� �(
N �Rp

R
):

Then, the sta�ng level N� that guarantees � delay probability is chosen to be

N� = R+ ���1(�)
p
R; (6)

where �� = 1� �.

The square-root principle has two parts to it: �rst, the conceptual observation that the safety

sta�ng level is proportional to the square-root of the o�ered load; and second, the explicit

calculation of the proportionality coe�cient y�. Our framework accommodates both of these

two needs, while in all previous works, to the best of our understanding, at least one of them
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is treated in a heuristic fashion or simply ignored. (We shall be speci�c momentarily.) More

important, however, is the fact that our approach and framework allow an arbitrary cost

stucture, and they have the potential to generalize beyond Erlang-C. For a concrete example,

Garnet et.al. [5] accommodate impatient customers: in their main result, the square-root rule

arises conceptually, but the determination of the value of y� is left open.
Being speci�c now, [15] and [11] refer to y� as a measure of service level, but leave out any

explicit calculation of it. Grassmann [7], taking the optimization approach, leads the reader

through an instructive progression of increasingly complex sta�ng models, culminating in

his `equilibrium model' (Erlang-C), for which no `square-root' justi�cation is provided. (It is

justi�ed for his less complex model, under the `Independence Assumption', but this amounts

to using (6).) Some numerical experiments, inspired by [7], are reported at the beginning of

Section 9. Finally Kolesar & Green [12] advocate the use of (6), in order to support constraint

satisfaction that achieves PrfWait > 0g � �. We, on the other hand, recommend the use

of (5) for constraint satisfaction, which is proven asymptotically accurate in Example 8.5. The

approximations (5) and (6) essentially coincide for small �'s, but (5) is uniformly more accurate.

We refer to the beginning of Section 9 for more details.

2 Model description

We consider the classical M/M/N (Erlang-C) model with N servers and in�nite-capacity wait-

ing room. Customers arrive as a Poisson process of rate �, and have independent exponentially

distributed service times with mean 1=�. The service rate � will be arbitrary but �xed, whereas

the arrival rate � will grow large in order to obtain asymptotic scaling results. We assume

�=N� < 1 for stability. Customers are served in order of arrival; then (see for instance [3]) the

waiting-time distribution is given by

PrfWait > tg = �(N;�=�) e�(N���)t;

where the probability of waiting �(N;�=�) = PrfWait > 0g is determined by

�(N; �) =
�N

N !

(
(1� �=N)

N�1X
n=0

�n

n!
+
�N

N !

)�1
:

We consider the problem of determining the sta�ng level N that optimally balances sta�ng

cost against quality-of-service. To this end, a sta�ng cost F (N) per unit of time is associated

with sta�ng N servers. We assume that F (N) is also de�ned for all non-integer values N >

�=�, and that this extended function F (�) is convex and strictly increasing.

Quality-of-service is quanti�ed in terms of a waiting-cost function D�(�): a cost D�(t) is

incurred when a customer waits for t time units. (The subscript � is attached to allow for

the possibility that the primitives vary with the arrival intensity.) We assume that D�(�) is
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strictly increasing. Without loss of generality, we may take D�(0) = 0. The expected total

cost per unit of time is then given by

C(N;�) = F (N) + �ED�(Wait) = F (N) + ��(N;�=�)G(N;�);

where

G(N;�) = ED�(WaitjWait > 0) = (N�� �)

1Z
0

D�(t) e
�(N���)tdt:

Notice that G(N;�) is also de�ned for all non-integer values N > �=�. We assume that D�(�)
is such that G(N;�) is �nite for all �=� < N .

We are interested in determining the optimum sta�ng level

N�
� := arg min

N>�=�
C(N;�) (7)

(the minimization being over integer values). To see that N�
� is well-de�ned, notice that

lim
N!1

F (N) = 1, and thus lim
N!1

C(N;�) = 1. Hence, C(N;�) indeed achieves a minimum

value.

3 Framework for asymptotic optimality

In principle, the optimum sta�ng level N�
� in equation (7) may be obtained through brute-

force enumeration. Rather than determining the optimum sta�ng level numerically, however,

we are primarily interested in gaining insight into how N�
� grows with the arrival intensity �,

and how it depends on the sta�ng and waiting cost functions F (N) and G(N;�). In order to

do so, we develop an approximate analytical approach for determining the optimum sta�ng

level. As a �rst step, we translate the discrete optimization problem (7) into a continuous

one. The next step is to approximate the latter problem by a related continuous version which

is easier to solve. To validate the approach, we then prove that the optimal solution to the

approximating continuous problem provides an asymptotically optimal solution to the original

discrete problem.

We �rst transform the discrete optimization problem into a continuous one. Let

N�(x) = �=�+ x
q
�=�;

so that the variable x = (N � �=�)=
p
�=� is the (normalized) number of servers in excess of

the minimum number �=� required for stability. In terms of x, we de�ne

F�(x) := F (N�(x))� F (�=�);

G�(x) := �G(N�(x); �);

11



C�(x) := C(N�(x); �) � F (�=�);

��(x) := H(N�(x); �=�);

with

H(M;�) =

8<
:�

1Z
0

e��tt(1 + t)M�1dt

9=
;
�1

:

It can be veri�ed ([9], [10]) that ��(x) = �(N�(x); �=�) for integer values of N�(x). The total

cost per unit of time (up to the additive constant factor F (�=�)) can thus be rewritten

C�(x) = F�(x) + ��(x)G�(x):

Denote

x�� := argmin
x>0

C�(x): (8)

To see that x�� is well-de�ned, �rst notice that the function C�(�) is strictly convex. This follows
from the assumption that F (�) is convex and the fact that ��(�) is convex ([9], [10]) and G�(�)
is strictly convex (Appendix C). In addition, lim

x#0
C�(x) =1, since lim

N#�=�
G(N;�) =1. Also,

lim
x!1C�(x) =1, because lim

N!1
F (N) =1. Hence, C�(�) is unimodal, implying that it indeed

achieves a unique minimum value at x�� 2 (0;1). Further notice that either N�
� = bN�(x

�
�)c or

N�
� = dN�(x

�
�)e, which establishes the link between the discrete problem and the corresponding

continuous problem. (Here buc and due denote the largest integer smaller than or equal to u,

and the smallest integer larger than or equal to u, respectively.)

Next, we approximate x�� in (8) by

z�� := argmin
z>0

C[z; F̂�; �̂�; Ĝ�]; (9)

where

C[z; F̂�; �̂�; Ĝ�] := F̂�(z) + �̂�(z)Ĝ�(z);

with the functions F̂�(�), �̂�(�), Ĝ�(�) `approximating' F�(�), ��(�), G�(�), respectively. (Note
that with this notation, x�� = argmin

x>0
C[x;F�; ��; G�].) The approximating functions F̂�(�),

Ĝ�(�), and �̂�(�) that we consider will always be such that z�� exists and is unique. If F̂�(�),
Ĝ�(�), �̂�(�) have a simple form, then solving for z�� will be easier than determining x��. At

the same time, if F̂�(�), Ĝ�(�), and �̂�(�) approximate F�(�), G�(�), and ��(�) well, then it is

reasonable to expect that z�� provides a good approximation to x�� and, moreover, N�(z
�
�) yields

a good approximation to N�
� .

12



Before formalizing the above approximation principle, we �rst introduce the following nota-

tional conventions: for any pair of functions a� and b� (implicitly assuming existence of the

limits), denote

a�
1� b� : lim

�!1
a�
b�

= 1; a�
1� b� : lim

�!1
a�
b�

= 
; 0 < 
 <1;

a�
1� b� : lim

�!1
a�
b�

= 0; a�
1� b� : lim

�!1
a�
b�

=1;

a�
sup
� b� : lim sup

�!1
a�
b�
� 1; a�

inf� b� : lim inf
�!1

a�
b�
� 1;

a�
inf
< b� : lim inf

�!1
a�
b�

< 1; a�
sup
> b� : lim sup

�!1
a�
b�

> 1;

a�
inf� b� : lim inf

�!1
a�
b�

= 0; a�
sup� b� : lim sup

�!1
a�
b�

=1:

Lemma 3.1

Denote Ĉ�(z) = C[z; F̂�; �̂�; Ĝ�].

Then C�(z
�
�)

1� C�(x
�
�) if both C�(x

�
�)

1� Ĉ�(x
�
�) and C�(z

�
�)

1� Ĉ�(z
�
�).

Proof

By de�nition of x��, C�(z
�
�) � C�(x

�
�), so it su�ces to show that C�(z

�
�)

sup
� C�(x

�
�), which

follows directly from

C�(z
�
�)

1� Ĉ�(z
�
�) � Ĉ�(x

�
�)

1� C�(x
�
�):

2

De�ne

S�(x) := minfC(bN�(x)c; �); C(dN�(x)e; �)g: (10)

Lemma 3.2

If C�(z
�
�)

1� C�(x
�
�), then S�(z

�
�)� F (�=�)

1� C(N�
� ; �)� F (�=�).

Proof

By de�nition, S�(z
�
�) � C(N�

� ; �), so it su�ces to show that S�(z
�
�) � F (�=�)

sup
� C(N�

� ; �) �
F (�=�).

For �xed �, we distinguish between four cases.

i. N�
� � 1 < N�(z

�
�) � N�

� . Then dN�(z
�
�)e = N�

� , and S�(z
�
�) = C(N�

� ; �).

ii. N�
� � N�(z

�
�) < N�

� + 1. Then bN�(z
�
�)c = N�

� , and S�(z
�
�) = C(N�

� ; �).

iii. N�(z
�
�) � N�

� � 1. Then

z�� �
dN�(z

�
�)e � �=�p
�=�

� N�
� � 1� �=�p

�=�
� bN�(x

�
�)c � �=�p
�=�

� x��;

13



so that

S�(z
�
�)� F (�=�) � C(dN�(z

�
�)e; �)� F (�=�) = C�(

dN�(z
�
�)e � �=�p
�=�

) � C�(z
�
�)

because of the unimodality of C�(�).
iv. N�(z

�
�) � N�

� + 1. Then

z�� �
bN�(z

�
�)c � �=�p
�=�

� N�
� + 1� �=�p

�=�
� dN�(x

�
�)e � �=�p
�=�

� x��;

so that

S�(z
�
�)� F (�=�) � C(bN�(z

�
�)c; �)� F (�=�) = C�(

bN�(z
�
�)c � �=�p
�=�

) � C�(z
�
�):

Thus, for all �,

S�(z
�
�)� F (�=�) � maxfC(N�

� ; �)� F (�=�); C�(z
�
�)g

1� maxfC(N�
� ; �)� F (�=�); C�(x

�
�)g

= C(N�
� ; �)� F (�=�):

2

Combining Lemmas 3.1 and 3.2, we obtain the fundamental approximation principle underlying

our approach:

Corollary 3.3 (Asymptotic Optimality)

Denote Ĉ�(z) = C[z; F̂�; �̂�; Ĝ�]. Let x
�
� and z�� be as in (8) and (9) respectively. If C�(x

�
�)

1�
Ĉ�(x

�
�) and C�(z

�
�)

1� Ĉ�(z
�
�), then the sta�ng function z�� is asymptotically optimal in the

sense that, as �!1,

S�(z
�
�)� F (�=�)

1� C(N�
� ; �)� F (�=�);

with S�(x) given in (10).

Note that the quantities S�(z
�
�) � F (�=�) and C(N�

� ; �) � F (�=�) may be interpreted as the

total cost in excess of the minimum required sta�ng cost F (�=�) for the approximately optimal

sta�ng level N�(z
�
�) and for the truly optimal level N�

� , respectively. The above corollary

identi�es conditions under which these two quantities are asymptotically equal, implying that

the approximate solution is asymptotically optimal in a certain sense.

In the next sections, we will identify `simple' functions F̂�(�), Ĝ�(�), and �̂�(�), such that

F�(x
�
�)

1� F̂�(x
�
�) and F�(z

�
�)

1� F̂�(z
�
�), G�(x

�
�)

1� Ĝ�(x
�
�) and G�(z

�
�)

1� Ĝ�(z
�
�), ��(x

�
�)

1�
�̂�(x

�
�) and ��(z

�
�)

1� �̂�(z
�
�). This implies C�(x

�
�)

1� Ĉ�(x
�
�) and C�(z

�
�)

1� Ĉ�(z
�
�) as required

in the above corollary, which then will enable us to gain insight into the behavior of N�
� , as a

function of �.
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4 Some special functions

In this section we introduce some functions that will play a central role in our analysis.

For any x > 0, de�ne

P (x) :=
1

1 +
x

h(�x)
; (11)

where h(�) is the `hazard rate' function of the standard normal distribution, namely

h(x) :=
�(x)

1� �(x)
;

with

�(x) =
1p
2�

e�x
2=2; �(x) =

xZ
�1

�(y)dy:

In Lemma B.1 we prove that P (�) is strictly convex decreasing.

Also de�ne

Q�(x) :=
expfN�(x)[1 � r�(x) + log r�(x)]gp

2�N�(x)(1 � r�(x))
;

with

r�(x) :=
�=�

N�(x)
;

and let

Q(x) :=
�(x)

x
=

e�x
2=2

x
p
2�

: (12)

The following two lemmas characterize the asymptotic behavior of ��(�), as �!1.

Lemma 4.1 (Hal�n & Whitt [8])

For any function x� with lim sup
�!1

x� <1,

��(x�)
1� P (x�):

If, moreover, lim
�!1

x� = x, then ��(x�)
1� P (x), x � 0.

In particular, if lim
�!1

x� = 0, then ��(x�)
1� 1.

Proof

Suppose to the contrary. Then there must be a subsequence f�ng with lim
n!1�n =1 such that

lim
n!1x�n = � and lim

n!1��n(x�n) = �, where 0 < � <1 and � 6= P (�). This is in contradiction

with Proposition 1 of Hal�n & Whitt [8], which asserts that � = P (�) must prevail for such a

sequence f�ng.
2
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Lemma 4.2 (Appendix A)

For any function x� with lim
�!1

x� =1,

��(x�)
1� Q�(x�):

If also x�
sup
� �1=6, then

��(x�)
1� Q(x�):

If speci�cally x� = �
p
�=� for some constant � > 0, then

��(x�)
1� 1

�
p
2��=�(1 + �)

�
e�

(1 + �)1+�

��=�
:

2

We conclude the section with some observations on the behavior of the functions F�(�), G�(�),
and ��(�), as de�ned at the outset of Section 3.

Recall that the sta�ng cost function F (�) is convex increasing, which implies that the func-

tion F�(�) is convex increasing as well. In addition, F�(0) = 0. Hence, F�(x)=F�(y) � x=y for

any pair of numbers x � y. Thus,

a�
sup
> b� =) F�(a�)

sup
> F�(b�); (13)

and

a�
sup� b� =) F�(a�)

sup� F�(b�): (14)

Also, from Lemmas 4.1 and B.1, for �xed b � 0,

a�
inf
< b =) P (a�)

sup
> P (b); ��(a�)

sup
> ��(b); (15)

a�
sup
> b =) P (a�)

inf
< P (b); ��(a�)

inf
< ��(b); (16)

and noting that lim
x!1��(x) = 0,

a�
sup� b =) P (a�)

inf� P (b); ��(a�)
inf� ��(b): (17)

5 Case I: Rationalized regime

In this section we consider what we call a rationalized scenario, by which we mean that, for

some � > 0,

F�(�)
1� G�(�); (18)
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or in words, the sta�ng cost F�(�) is comparable to the waiting cost G�(�), as �!1.

For any � > 0, de�ne

y�� := argmin
y>0

C[y;F�; P;G�]; (19)

with P (�) as in (11).

Theorem 5.1

The sta�ng function y�� is asymptotically optimal in the sense of Corollary 3.3.

Proof

We start with showing that lim sup
�!1

x�� <1. Suppose to the contrary. Then x��
sup� �, so that

F�(x
�
�)

sup� F�(�)

from (14). By de�nition,

C�(x
�
�) = F�(x

�
�) + ��(x

�
�)G�(x

�
�) � F�(x

�
�):

Using (18),

F�(�)
1� F�(�) +G�(�) � F�(�) + ��(�)G�(�) = C�(�):

Combining the above relations, we deduce

C�(x
�
�)

sup� C�(�);

contradicting the optimality of x��.
Thus, lim sup

�!1
x�� <1.

By similar arguments, lim sup
�!1

y�� <1.

Hence, according to Lemma 4.1, ��(x
�
�)

1� �̂�(x
�
�) = P (x��) and ��(y

�
�)

1� �̂�(y
�
�) = P (y��).

Applying Corollary 3.3 then completes the proof.

2

Proposition 5.2

Assume that there exist functions f(�), g(�), and H� such that, for any function k� > 0,

F�(k�)
1� f(k�)H�; (20)

and

G�(k�)
1� g(k�)H�; (21)

so certainly F�(�)
1� G�(�) for all � > 0.

17



De�ne

y� = argmin
y>0

C[y; f; P; g]:

The sta�ng function y� is then asymptotically optimal in the sense of Corollary 3.3.

Proof

Similar to that of Theorem 5.1. Note that F�(x
�
�)

1� F̂�(x
�
�) = f(x��)H�, F�(y

�) 1� F̂�(y
�) =

f(y�)H�, G�(x
�
�)

1� Ĝ�(x
�
�) = g(x��)H�, and G�(y

�) 1� Ĝ�(y
�) = g(y�)H�.

2

Example 5.3

Assume there is a sta�ng cost c� per server per time unit, and a waiting cost a� per customer

per time unit, as well as a �xed penalty cost b� when the waiting time exceeds d� time units,

i.e., F (N) := Nc� and D�(t) = a�t + b� Ift>d�g, so that G(N;�) =
a�

N�� �
+ b� e

�(N���)d� .

Thus F�(�) = c��
p
�=� and G�(�) =

a�
p
�=�

�
+ b�� e

���d�
p
�=�.

First suppose that a�
1� a, b�

p
� e���d�

p
�=� 1� 1, and c�

1� c. Then (20)-(21) are satis�ed for

f(�) = c�, g(�) =
a

�
, and H� =

p
�=�. Proposition 5.2 says that the sta�ng function

y� = argmin
y>0

�
cy +

aP (y)

y

�
(22)

is asymptotically optimal in the sense of Corollary 3.3. This is exactly the y�(ac ) that arose
in (1) of the Introduction. The numerical search for y� is straightforward, since the function
that it minimizes is unimodal. It is important enough for our purposes, as demonstrated in

the Introduction, that we plotted it in Figures 1 and 2.

Now suppose that a�
1� 1, b�

1� b=
p
�, c�

1� c, and d�
1� d=

p
� with bd� > c. Then (20)-(21)

are satis�ed for f(�) = c�, g(�) = b
p
� e�d�

p
�, and H� =

p
�=�. The asymptotically optimal

sta�ng function is

y� = argmin
y>0

n
cy + bP (y)

p
� e�dy

p
�
o
:

Finally, consider the `combined' case where all costs show up in the limit, i.e., suppose that

a�
1� a, b�

1� b=
p
�, c�

1� c, and d�
1� d=

p
�. Then (20)-(21) are satis�ed for f(�) = c�,

g(�) =
a

�
+ b

p
� e�d�

p
�, and H� =

p
�=�. The asymptotically optimal sta�ng function is

y� = argmin
y>0

�
cy + P (y)

�
a

y
+ b

p
� e�dy

p
�
��

:

2
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Remark 5.4 (Asymptotic expansions for y�(�))
Two asymptotic expansions for y�(r) were quoted in the Introduction, one for small r and the

other for large. To derive the former, one simply replaces P (y) in (22) by P (0) + yP 0(0) +
1
2y

2P 00(0), then uses the values for the derivatives from Appendix B, and �nally minimizes

the resulting simple function. As for large values, one uses the well-known approximation

1 � �(y) � �(y)=y to get that also P (y) � �(y)=y. Substituting this approximation for P (y)

into (22) identi�es y� as the solution y of

yey
2=2 =

ap
2�

:

Changing variables to x = y2, then squaring, gives x(t)ex(t) = t, where t = a2

2� . A complete

asymptotic expansion of x(t), for large t, is calculated in [2], pages 25{28. Only its �rst two

terms were used by the approximation in the Introduction, namely

x(t) = log t� log log t+O(
log log t

log t
):

Our qualitative assessments in the Introduction, about the above two approximations, are

based on plotting them against the true y�.
2

6 Case II: E�ciency-driven regime

In this section we consider an e�ciency-driven scenario, meaning that, for all � > 0,

F�(�)
1� G�(�); (23)

(lim sup
�!1

G�(�)
F�(�)

< 1 is actually su�cient) or in words, the sta�ng cost dominates the waiting

cost, as �!1.

For any � > 0, de�ne

y�� := argmin
y>0

C[y;F�; 1; G�]: (24)

Theorem 6.1

The sta�ng level y�� is asymptotically optimal in the sense of Corollary 3.3.

Proof

We start with showing that lim
�!1

x�� = 0. Suppose to the contrary. Then x��
sup
> u for some

u > 0, so that

F�(x
�
�)

sup
> F�(u)
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from (13).

By de�nition,

C�(x
�
�) = F�(x

�
�) + ��(x

�
�)G�(x

�
�) � F�(x

�
�):

Using (23),

F�(u)
1� F�(u) +G�(u) � F�(u) + ��(u)G�(u) = C�(u):

Combining the above relations, we obtain

C�(x
�
�)

sup
> C�(u);

contradicting the optimality of x��.
Thus, lim

�!1
x�� = 0.

By similar arguments, lim
�!1

y�� = 0.

Hence, according to Lemma 4.1, ��(x
�
�)

1� �̂�(x
�
�) = P (x��)

1� 1, and ��(y
�
�)

1� �̂�(y
�
�) =

P (y��)
1� 1.

Applying Corollary 3.3 then completes the proof.

2

Proposition 6.2

Assume that there exist functions f(�), g(�), H�, and J� such that, for any function k� > 0,

F�(k�)
1� f(k�)H�; (25)

and

G�(k�)
1� g(k�)H�J�; (26)

with J�
1� 1, so certainly F�(�)

1� G�(�) for all � > 0.

De�ne

y�� = argmin
y>0

C[y; f; 1; gJ�]:

The sta�ng function y�� is then asymptotically optimal in the sense of Corollary 3.3.

Proof

Similar to that of Theorem 6.1. Note that F�(x
�
�)

1� F̂�(x
�
�) = f(x��)H�, F�(y

�
�)

1� F̂�(y
�
�) =

f(y��)H�, G�(x
�
�)

1� Ĝ�(x
�
�) = g(x��)H�J�, and G�(y

�
�)

1� Ĝ�(y
�
�) = g(y��)H�J�.

2

Remark 6.3 The rationalized sta�ng function (19) is in fact also asymptotically optimal in

the e�ciency-driven regime as de�ned by (23). However, the sta�ng function (24), where P (�)
is replaced by 1, is asymptotically optimal as well, while considerably simpler.

2
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Example 6.4

Assume F (N) := Nc� andD�(t) = a�t+b�Ift>d�g, so that G(N;�) =
a�

N�� �
+ b� e

�(N���)d� .

Thus F�(�) = c��
p
�=� and G�(�) =

a�
p
�=�

�
+ b�� e

���d�
p
�=�.

First suppose that a�
1� aJ�, b�

p
� e���d�

p
�=� 1� J�, and c�

1� c, with J�
1� 1. Then (25)-(26)

are satis�ed for f(�) = c�, g(�) =
a

�
, and H� =

p
�=�. Proposition 6.2 says that the sta�ng

function

y�� = argmin
y>0

�
cy +

a

y
J�

�

is asymptotically optimal in the sense of Corollary 3.3.

Next, consider the `combined' case where all costs show up in the limit, i.e., suppose that

a�
1� aJ�, b�

1� bJ�=
p
�, c�

1� c, d�
1� d=

p
�, and J�

1� 1. Then (25)-(26) are satis�ed for

f(�) = c�, g(�) =
a

�
+ b

p
� e�d�

p
�, and H� =

p
�=�. The asymptotically optimal sta�ng

function is

y�� = argmin
y>0

�
cy +

�
a

y
+ b

p
� e�dy

p
�
�
J�

�
:

2

7 Case III: Quality-driven regime

In this section we consider a quality-driven regime, meaning that, for all � > 0,

F�(�)
1� G�(�); (27)

or in words, the sta�ng cost is negligible compared to the waiting cost, as �!1.

For any � > 0, de�ne

y�� := argmin
y>0

C[y;F�; Q�; G�]:

Theorem 7.1

The sta�ng function y�� is asymptotically optimal in the sense of Corollary 3.3.

Proof

We start with showing that lim
�!1

x�� = 1. Suppose to the contrary. Then x��
inf
< u for some

u > 0, so that

��(x
�
�)G�(x

�
�)

sup
> ��(u)G�(u)

from (15) and the fact that G�(�) is decreasing.
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By de�nition,

C�(x
�
�) = F�(x

�
�) + ��(x

�
�)G�(x

�
�) � ��(x

�
�)G�(x

�
�):

Using Lemma 4.2 and (27),

��(u)G�(u)
1� P (u)G�(u)

1� F�(u) + P (u)G�(u)
1� F�(u) + ��(u)G�(u) = C�(u):

Combining the above relations, we deduce

C�(x
�
�)

sup
> C�(u);

contradicting the optimality of x��.
Thus, lim

�!1
x�� =1.

By similar arguments, lim
�!1

y�� =1.

Hence, according to Lemma 4.2, ��(x
�
�)

1� �̂�(y
�
�) = Q�(x

�
�), and ��(y

�
�)

1� �̂�(y
�
�) = Q�(y

�
�).

Applying Corollary 3.3 then completes the proof.

2

Proposition 7.2

Assume that there exist functions f(�), g(�), H�, and J� such that, for any function k� > 0,

F�(k�)
1� f(k�)H� (28)

and

G�(k�)
1� g(k�)H�J�; (29)

with J�
1� 1, and g(��)J�Q(�

�)
1� f(��) for some � < 1=6, so that certainly F�(�)

1� G�(�)

for all � > 0.

De�ne

y�� = argmin
y>0

C[y; f;Q; gJ�]: (30)

The sta�ng function y�� is then asymptotically optimal in the sense of Corollary 3.3.

Proof

We start with showing that x��
sup
� ��. Suppose to the contrary. Then x��

sup
> ��, so that

F�(x
�
�)

sup
> F�(�

�)

from (13).

By de�nition,

C�(x
�
�) = F�(x

�
�) + ��(x

�
�)G�(x

�
�) � F�(x

�
�):
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Using Lemma 4.2 and (28), (29),

F�(�
�)

1� F�(�
�) +Q(��)G�(�

�)
1� F�(�

�) + ��(�
�)G�(�

�) = C�(�
�):

Combining the above relations, we obtain

C�(x
�
�)

sup
> C�(�

�);

contradicting the optimality of x��.

Thus, x��
sup
� ��.

By similar arguments, y��
sup
� ��.

It may further be shown that lim
�!1

x�� = 1 and lim
�!1

y�� = 1 in a similar fashion as in

the proof of Theorem 7.1. Hence, according to Lemma 4.2, ��(x
�
�)

1� �̂�(x
�
�) = Q(x��), and

��(y
�
�)

1� �̂�(y
�
�) = Q(y��).

Applying Corollary 3.3 then completes the proof. Note that F�(x
�
�)

1� F̂�(x
�
�) = f(x��)H�,

F�(y
�
�)

1� F̂�(y
�
�) = f(y��)H�, G�(x

�
�)

1� Ĝ�(x
�
�) = g(x��)H�J�, and G�(y

�
�)

1� Ĝ�(y
�
�) =

g(y��)H�J�.

2

Remark 7.3 The rationalized sta�ng function (19) is in fact also asymptotically optimal in

the quality-driven regime as de�ned by (27) when x��
1� �1=6, since the proof of Theorem 7.2

then shows that ��(x
�
�)

1� Q(x��), while Q(x
�
�)

1� P (x��). However, the sta�ng function (30) is

asymptotically optimal as well, while simpler.

2

Example 7.4

Assume F (N) := Nc� andD�(t) = a�t+b�Ift>d�g, so that G(N;�) =
a�

N�� �
+ b� e

�(N���)d� .

Thus F�(�) = c��
p
�=� and G�(�) =

a�
p
�=�

�
+ b�� e

���d�
p
�=�.

First suppose that a�
1� aJ�, b�

p
� e���d�

p
�=� 1� J�, and c�

1� c, with J�
1� 1. Then (28)-(29)

are satis�ed for f(�) = c�, g(�) =
a

�
, and H� =

p
�=�. Proposition 7.2 says that the sta�ng

function

y�� = argmin
y>0

�
cy +

aQ(y)

y
J�

�

is asymptotically optimal in the sense of Corollary 3.3.

Now suppose that a�
1� J�, b�

1� bJ�=
p
�, c�

1� c, and d�
1� d=

p
�, with J�

1� 1. Then (28)-

(29) are satis�ed for f(�) = c�, g(�) = b
p
� e�d�

p
�, and H� =

p
�=�. The asymptotically

optimal sta�ng function is

y�� = argmin
y>0

n
cy + bQ(y)

p
� e�dy

p
�J�

o
:
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Finally, consider the `combined' case where all costs show up in the limit, i.e., suppose that

a�
1� aJ�, b�

1� bJ�=
p
�, c�

1� c, and d�
1� d=

p
�, with J�

1� 1. Then (28)-(29) are satis�ed

for f(�) = c�, g(�) =
a

�
+ b

p
� e�d�

p
�, and H� =

p
�=�. The asymptotically optimal sta�ng

function is

y�� = argmin
y>0

�
cy +Q(y)

�
a

y
+ b

p
� e�dy

p
�
�
J�

�
:

2

8 Constraint satisfaction

In the previous sections, we have considered the problem of determining the sta�ng level so

as to minimize the total sta�ng and waiting cost. A closely related problem, which is in fact

motivated by actual practice, is to minimize the sta�ng level subject to a constraint M� > 0

on the waiting cost.

So we are now interested in determining

N�
� := min

N>�=�
fN : K(N;�) �M�g; (31)

withK(N;�) := ��(N;�=�)G(N;�) denoting the waiting cost. Notice that lim
N!1

K(N;�) = 0,

so N�
� is well-de�ned.

As for the cost minimization problem, our approach is to �rst translate the discrete prob-

lem (31) into a continuous one, and then approximate the latter problem by a related contin-

uous problem which is easier to solve. Denote

x�� := min
x>0

fx : K�(x) �M�g;
with K�(x) := ��(x)G�(x). Since ��(�) and G�(�) are both continuous and strictly decreasing,

x�� is the unique solution to the equation K�(x) = M�. Further notice that N�
� = dN�(x

�
�)e,

which establishes the link between the discrete problem and the corresponding continuous

problem.

To approximate x��, de�ne z
�
� as the solution to the equation �̂�(z)Ĝ�(z) = M�. The func-

tions �̂�(�) and Ĝ�(�) that we consider will always be such that z�� exists and is unique.

We now formulate the approximation principle underlying our approach, in parallel to that for

the cost minimization problem.

De�ne

T�(x) := minfj K(bN�(x)c; �)�M� j; j K(dN�(x)e; �)�M� j; j K(dN�(x)e; �)�K(N�
� ; �) jg:(32)

Lemma 8.1 (Asymptotic Optimality)

Denote K̂�(y) = �̂�(y)Ĝ�(y). Let z
�
� be as de�ned above. If K�(z

�
�)

1� K̂�(z
�
�), then the sta�ng

function z�� is asymptotically optimal in the sense that, as � ! 1, T�(z
�
�)

1� M�, with T�(�)
given in (32).
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Proof

For �xed �, we distinguish between three cases.

i. N�
� � 1 < N�(z

�
�) � N�

� . Then dN�(z
�
�)e = N�

� , so that T�(z
�
�) = 0.

ii. N�(z
�
�) � N�

� � 1. Then

M� = K�(x
�
�) � K(N�

� � 1; �) � K(dN�(z
�
�)e; �) � K�(z

�
�);

so that

T�(z
�
�) � j K(dN�(z

�
�)e; �) �M� j � K�(z

�
�)�M�:

iii. N�(z
�
�) > N�

� . Then

K�(z
�
�) � K(bN�(z

�
�)c; �) � K(N�

� ; �) � K�(x
�
�) =M�;

so that

T�(z
�
�) � j K(bN�(z

�
�)c; �) �M� j �M� �K�(z

�
�):

Thus, for all �,

T�(z
�
�) � j K�(z

�
�)�M� j

1�M�;

as K̂�(z
�
�) =M� by de�nition.

2

In full generality, it seems di�cult to establish a stronger optimality property than indicated

in the above lemma. Under additional conditions, however, it is possible to make sharper

statements. For example, a more desirable criterion for asymptotic optimality would be

j K(dN�(z
�
�)e; �)�K(N�

� ; �) j
1�M�:

And indeed, following the same reasoning of the proof of Lemma 8.1, it can be guaranteed to

hold but under additional constraints on the oscillation of our costs.

8.1 Rationalized regime

We �rst consider a rationalized scenario, by which we mean that, for some � > 0,

G�(�)
1�M�; (33)

(lim sup
�!1

G�(�)
M�

<1 is actually su�cient) or in words, the waiting cost G�(�) is comparable to

the constraint M�, as �!1.

For any � > 0, de�ne y�� as the solution to the equation P (y)G�(y) =M�.

Note that P (�) and G�(�) are both continuous and strictly decreasing with lim
x#0

P (x)G�(x) =1
and lim

x!1P (x)G�(x) = 0, so that y�� exists and is unique.
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Theorem 8.2

The sta�ng function y�� is asymptotically optimal in the sense of Lemma 8.1.

Proof

We start with showing that lim sup
�!1

y�� <1. Suppose to the contrary. Then y��
sup� �, so that

P (y��)G�(y
�
�)

inf� P (�)G�(�)

from (17) and the fact that G�(�) is decreasing.
Using (33),

P (�)G�(�) � G�(�)
1�M�:

Combining the above relations, we deduce

P (y��)G�(y
�
�)

inf�M�;

contradicting the de�nition of y��.
Thus, lim sup

�!1
y�� <1.

Hence, according to Lemma 4.1, ��(y
�
�)

1� �̂�(y
�
�) = P (y��).

Applying Lemma 8.1 then completes the proof.

2

Proposition 8.3

Assume that there exists a function g(�), such that, for any function k� > 0,

G�(�)
1� g(�)M�; (34)

so certainly G�(�)
1�M� for all � > 0.

De�ne y� as the solution to the equation P (y)g(y) = 1.

Assume that g(�) is continuous and decreasing, with lim
x#0

g(x) > 1 so that y� exists and is unique.

The sta�ng function y� is then asymptotically optimal in the sense of Lemma 8.1.

Proof

Similar to that of Theorem 8.2. Note that G�(y
�) 1� Ĝ�(y

�) = g(y�)M�.

2

Example 8.4

Assume there is a waiting cost a� per customer per time unit, as well as a �xed penalty

cost b� when the waiting time exceeds d� time units, i.e., D�(t) = a�t + b� Ift>d�g, so that

G(N;�) =
a�

N�� �
+ b� e

�(N���)d� . Thus G�(�) =
a�
p
�=�

�
+ b�� e

���d�
p
�=�.
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First suppose that a�
1� a

p
�=�, b� e

���d�
p
�=� 1� 1, and M� = M�. Then (34) is satis�ed

for g(�) =
a

��M
. Proposition 8.3 says that the sta�ng function y� determined as the unique

solution to the equation

aP (y)

�y
=M

is asymptotically optimal in the sense of Lemma 8.1.

Now suppose that a�=
p
�

1� 1, b�
1� b, d�

1� d=
p
�, and M� = M� with b > M . Then (34)

is satis�ed for g(�) = b e�d�
p
�=M . The asymptotically optimal sta�ng function is the unique

solution to the equation

bP (y) e�dy
p
� =M:

Finally, consider the `combined' case where all costs show up in the limit, i.e., suppose that a�
1�

a
p
�=�, b�

1� b, d�
1� d=

p
�, andM� =M�. Then (34) is satis�ed for g(�) =

a

��M
+ b e�d�

p
�=M .

The asymptotically optimal sta�ng function is the unique solution to the equation

P (y)[
a

�y
+ b e�dy

p
�] =M:

2

Example 8.5

An important special case is a� = 0, b� = 1, d� = 0, M� = ��, which corresponds to a target

waiting probability �. Case ii) of the above example then shows that the sta�ng function

y� = P�1(�) is asymptotically optimal. We described this example in our Introduction {

see (5). It is to be compared with (6), used in [15] and [12]. On the di�erences and similarities

between the two approximations, see Section 9.

2

8.2 E�ciency-driven regime

We now consider an e�ciency-driven scenario, meaning that, for all � > 0,

G�(�)
1�M�; (35)

(in fact G�(�)
sup
� M� would be su�cient for the results below to hold) or in words, the waiting

cost is dominated by the target upper bound, as �!1.

For any � > 0, de�ne y�� as the solution to the equation G�(y) =M�.

Note that G�(�) is continuous and strictly decreasing with lim
x#0

G�(x) =1 and lim
x!1G�(x) = 0,

so that y�� exists and is unique.

Theorem 8.6

The sta�ng function y�� is asymptotically optimal in the sense of Lemma 8.1.
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Proof

We start with showing that lim
�!1

y�� = 0. Suppose to the contrary. Then y��
sup
> u for some

u > 0, so that

P (y��)G�(y
�
�)

inf
< P (u)G�(u);

from (16) and the fact that G�(�) is decreasing.
Using (35),

P (u)G�(u) � G�(u)
sup
� M�;

Combining the above relations, we deduce

P (y��)G�(y
�
�)

inf
< M�;

contradicting the de�nition of y��.
Thus, lim

�!1
y�� = 0.

Hence, according to Lemma 4.1, ��(y
�
�)

1� �̂�(y
�
�) = P (y��)

1� 1.

Applying Lemma 8.1 then completes the proof.

2

Proposition 8.7

Assume that there exist functions g(�) and J� such that, for any function k� > 0,

G�(k�)
1� g(k�)J�M�; (36)

with J�
1� 1, so certainly G�(�)

1�M� for all � > 0.

De�ne y�� as the unique solution to the equation g(y)J� = 1.

Assume that g(�) is continuous and strictly decreasing, with lim
x#0

g(x) =1 so that y�� exists and

is unique.

The sta�ng function y�� is then asymptotically optimal in the sense of Lemma 8.1.

Proof

Similar to that of Theorem 6.1. Note that G�(y
�
�)

1� g(y��)J�M�.

2

Example 8.8

Assume D�(t) = a�t+ b� Ift>d�g, so that G(N;�) =
a�

N�� �
+ b� e

�(N���)d� . Thus G�(�) =

a�
p
�=�

�
+ b�� e

���d�
p
�=�.

First suppose that a�
1� a

p
�=�, b� e

���d�
p
�=� 1� 1, and M� = M�=J�, with J�

1� 1. Then

(36) is satis�ed for g(�) =
a

��M
. Proposition 8.7 says that the sta�ng function

y�� =
a

�M
J�
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is asymptotically optimal in the sense of Lemma 8.1.

Next, consider the `combined' case where all costs show up in the limit, i.e., suppose that

a�
1� a

p
�=�, b�

1� b, d�
1� d=

p
�, and M� = M�=J�, with J�

1� 1. Then (36) is satis�ed

for g(�) =
a

��M
+ b e�d�

p
�=M . The asymptotically optimal sta�ng function is the unique

solution to the equation�
a

�y
+ b e�dy

p
�
�
J� =M:

2

8.3 Quality-driven regime

We �nally consider a quality-driven scenario, meaning that, for all � > 0,

G�(�)
1�M�; (37)

or in words, the waiting cost dominates the target upper bound, as �!1.

For any � > 0, de�ne y�� as the solution to the equation G�(y)Q�(y) =M�.

Note that G�(�) and Q�(�) are continuous and strictly decreasing with lim
x#0

G�(x)Q�(x) = 1
and lim

x!1G�(x)Q�(x) = 0, so that y�� exists and is unique.

Theorem 8.9

The sta�ng function y�� is asymptotically optimal in the sense of Lemma 8.1.

Proof

We start with showing that lim
�!1

y�� = 1. Suppose to the contrary. Then y��
inf
< u for some

u > 0, so that

P (y��)G�(y
�
�)

sup
> P (u)G�(u)

from (15) and the fact that G�(�) is decreasing.
Using Lemma 4.2 and (37),

P (u)G�(u)
1� P (u)G�(u)

1�M�:

Combining the above relations, we deduce

P (y��)G�(y
�
�)

sup
> M�;

contradicting the de�nition of y��.
Thus, lim

�!1
y�� =1.

Hence, according to Lemma 4.2, ��(y
�
�)

1� �̂�(y
�
�) = Q�(y

�
�).

Applying Lemma 8.1 then completes the proof.

2

29



Proposition 8.10

Assume that there exist functions g(�) and J� such that, for any function k� > 0,

G�(k�)
1� g(k�)J�M�; (38)

with J�
1� 1, and g(��)J�Q(�

�)
1� 1 for some � < 1=6, so that certainly G�(�)

1�M� for all

� > 0.

De�ne y�� as the unique solution to the equation

Q(y)g(y)J� = 1:

Assume that g(�) is continuous and strictly decreasing, with lim
x#0

g(x) > 0 so that y�� exists and

is unique.

The sta�ng function y�� is then asymptotically optimal in the sense of Lemma 8.1.

Proof

It may easily be shown that y��
sup
� ��. Hence, according to Lemma 4.2, ��(y

�
�)

1� �̂�(y
�
�) =

Q(y��).
The proof is further similar to that of Theorem 8.9. Note that G�(y

�
�)

1� Ĝ�(y
�
�) = g(y��)M�J�.

2

Example 8.11

Assume D�(t) = a�t+ b� Ift>d�g, so that G(N;�) =
a�

N�� �
+ b� e

�(N���)d� . Thus G�(�) =

a�
p
�=�

�
+ b�� e

���d�
p
�=�.

First suppose that a�
1� a

p
�=�, b� e

���d�
p
�=� 1� 1, and M� = M�=J�, with J�

1� 1. Then

(38) is satis�ed for g(�) =
a

��M
. Proposition 8.10 says that the sta�ng function y�� determined

by the unique solution of the equation

aQ(y)

�y
J� =M

is asymptotically optimal in the sense of Lemma 8.1.

Now suppose that a�
1� p

�, b�
1� b, d�

1� d=
p
�, and M� =M�=J�, with J�

1� 1. Then (38)

is satis�ed for g(�) = b e�d�
p
�=M . The asymptotically optimal sta�ng function is the unique

solution of the equation

bQ(y) e�dy
p
�J� =M:

Finally, consider the `combined' case where all costs show up in the limit, i.e., suppose that

a�
1� a

p
�=�, b�

1� b, d�
1� d=

p
�, and M� = M�=J�, with J�

1� 1. Then (38) is satis�ed

for g(�) =
a

��M
+ b e�d�

p
�=M . The asymptotically optimal sta�ng function is the unique

solution of the equation

Q(y)[
a

�y
+ b e�dy

p
�]J� =M:

2
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Remark 8.12 Notice that the results for the constraint satisfaction problem closely mirror

those for the cost minimization problem. In fact, the two problems may be formally related

as follows. Consider a strictly decreasing function M(�) on (0;1) with lim
x#0

M(x) = 1 and

lim
x!1M(x) = 0. Then the (unique) solution to the equation M(x) = 1 is argmin

x>0
fM(x) +

1=M(x)g. Thus, the solution to the constraint satisfaction problem ��(x)G�(x) = M� may

also be represented as argmin
x>0

f M2

�

��(x)G�(x)
+ ��(x)G�(x)g, which has the form of the cost min-

imization problem. The relation thus established is only formal. We could not utilize it to

derive the results for constraint satisfaction from the optimization results.

2

9 Numerical experiments

In this section we present the results of some numerical experiments that we carried out. The

main purpose of the numerical experiments was to test the accuracy of the approximations that

arise from our asymptotically optimal sta�ng levels. The numerical results indicate that the

rationalized approximation performs exceptionally well in all regimes. By Remark 6.3 we know

that the rationalized approximation is in fact asymptotically optimal in all regimes. On the

other hand, the accuracy displayed by the rationalized approximation is astonishingly better

than our rigorous results lead us to believe.

Our �rst two experiments address [7] and [12], which correspond to Examples 5.3 and 8.5,

respectively.

Grassmann [7], Table 3: Grassmann calculates the optimal sta�ng level N� for the M/M/N

queue, with o�ered loads R = 1; 3; 10; 30; 100 and costs r = a
c = 10; 20; 100; 200. While the

latter are rather extreme values, our approximation (1) is nevertheless accurate: it is exact in

7 cases and o� by only 1 agent in the other 13 cases.

2

Kolesar & Green [12], Table 1: Kolesar & Green use (6) in order to calculate N� that achieves
PrfWait > 0g = �, for � = 0:2; 0:1; 0:05; 0:025; 0:01; 0:001, and o�ered loads R = 2m;m =

0; 1; : : : ; 10. The approximation (1) is superior to (6). This is to be expected in view of the

theory that supports the former, while the latter is heuristically based. Indeed, for � = 0:2,

(1) is exact for 9 cases and misses by 1 agent for the other 2. In contrast, (6) misses by up to

7 agents. But more signi�cantly, the misses in sta�ng levels lead to misses in the target delay

probabilities, o� by 25-75% in 8 out of the 11 cases.

The approximation (6) improves as � decreases, until eventually it coincides with (1). This is

understood as follows: small values of � give rise to large y� (quality-driven), for which

��(y) � �(y)

y
� P (y):
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2

We now turn to numerical experiments related to Examples 5.3, 6.4, and 7.4. In all cases we

compared an approximation to the optimal sta�ng level obtained from the asymptotics with

the exact optimal sta�ng level, which we obtained through a simple search procedure. (The

unimodality of C(N;�) in N makes such a search simple.)

In all of the examples we use c� = c = 1 and � = 1. Once we set c� = c, taking c = 1 is without

loss of generality because we can take this as the de�nition of the monetary unit. Similarly,

taking � = 1 is also without loss of generality because we can take 1=� as the de�nition of the

time unit.

We �rst describe the numerical results related to Example 5.3. We considered three cases:

i) a� = a; b� = 0

ii) a� = 0; b� = b=
p
�; d� = d=

p
�

iii) a� = a; b� = b
p
�; d� = d=

p
�.

These correspond to the three cases in Example 5.3. First consider case i). For r > 0, let

y�(r) = argmin
y>0

�
y +

rP (y)

y

�
: (39)

We plot y�(r), 0 � r � 10 in Figure 1.

Let

n� = �=�+ y�(r)
q
�=�:

The rationalized approximation for case i) of Example 5.3 is obtained by rounding n� to the

nearest integer. (The asymptotic analysis gives no guidance of how to go from n� to an integer

sta�ng level. Preliminary numerical calculations comparing rounding up, rounding down, and

rounding o� showed that rounding o� is generally superior. So all of our numerical results

involve rounding o�. Of course, if rounding o� n� yields a value smaller than �=�, the sta�ng

level must be increased by 1 to avoid an unstable system.)

To check this approximation we �rst tried � = 100 and the seven di�erent values a =

0:1; 0:25; 0:5; 1; 2; 4; 10. In all of these cases rounding o� n� gave the exact optimal sta�ng

level. We next set a = 2 and tried all integer values of � between 5 and 100. Here rounding

o� n� is never o� by more than 1, and is usually exact (83 out of 96 cases).

For case ii) we let

n� = �=�+ y�(b; d)
q
�=�;

where

y�(b; d) = argmin
y>0

n
y + bP (y) e�dy

o
:
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To check this approximation we �rst tried � = 100 and the seven di�erent values b =

0:1; 0:25; 0:5; 1; 2; 4; 10. Again we found that in all of these cases rounding o� n� gave the

exact optimal sta�ng level. We next set b = 5 and d = 1 and tried all integer values between 5

and 100 for �. Rounding o� n� is almost always exact (84 out of 96 times), and is never o� by

more than 1.

For case iii) we let

n� = �=�+ y�(a; b; d)
q
�=�;

where

y�(a; b; d) = argmin
y>0

�
y + P (y)[

a

y
+ b e�dy]

�
:

Here we set a = 2, b = 2:5, and d = 0:1, and tried all integer values between 5 and 100 for �.

Here again, rounding o� n� is almost always exact (80 out of 96 cases), and is never o� by

more than 1.

For Example 6.4 we restricted our attention to b� = 0. We initially set

a� = a��1=2: (40)

De�ning

y��(a) = argmin
y>0

(
y +

a

y
p
�

)
;

we can solve explicitly to obtain y��(a) =
p
a��1=4. We thus let

n� = �=�+
q
a=��1=4:

For the numerical test of this approximation we set a = 1 and tried all integer multiples of 10

between 10 and 200 for �, using (40) to determine a�. Rounding o� n� to the nearest integer

is almost always exact (95 out of 96 times), and is never o� by more than 1.

For Example 7.4 we restricted our attention to b� = 0. We took

a� = a
p
�: (41)

Let

n� = �=�+ y��(a)
q
�=�;

where

y��(a) = argmin
y>0

�
y +

aQ(y)p
�

y

�
; (42)

and Q(y) is given by (12).
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For the numerical test of this approximation we set a = 1 and tried all integer multiples of 10

between 10 and 200 for �, using (41) to determine a�. Rounding o� n� to the nearest integer

is almost always exact (92 out of the 96 times), and is never o� by more than 1.

The above tests were run under favorable conditions: The asymptotic scaling of the parameters

was known, and the approximation used was that associated with the regime corresponding

to the parameter scaling. On the other hand, the results of the test are astoundingly good:

Rounding n� to the nearest integer is almost always exact, and is never o� by more than 1.

Note that these tests include values of � that do not appear to be very large.

It is clear that more numerical testing is in order. There are two aims to this testing: 1) Find

parameter values that `break' the approximations, and 2) Determine if any of the asymptotic

approximations is robust enough to work outside of its regime and/or determine rules of thumb

for when each approximation should be used. (Indeed, this last point is central for obtaining

a practically useful approximation.)

The additional testing takes the form of `wrong-regime' testing. The �rst `wrong-regime' test

we conducted involved scaling the parameters as in the e�ciency-driven regime with c� = c = 1,

� = 1, b� = 0, and a� = a��1=2, and using the approximation from the rationalized regime.

Thus our approximation rounded o�

n� = �=�+ y�(a��1=2)
q
�=�

to obtain the sta�ng level. For our numerical results we set a = 1 and tried all integer multiples

of 10 between 10 and 200 for �. The approximation was exact in all but one case (� = 160),

where it was o� by 1.

Using the same parameters as in the preceding example we used the approximation from the

quality-driven regime (as if a� = a
p
�). Thus our approximation rounded o�

n� = �=�+ y��

�
a

�

�q
�=�;

where y�� is given by (42), to obtain the sta�ng level. For our numerical results we set a = 1

and tried all integer multiples of 10 between 10 and 200 for �. The approximation was good,

but not as good as the rationalized regime: it was o� by 1 in 14 cases and o� by 2 in 4 cases.

We next scaled the parameters as in the quality-driven regime with c� = c = 1, � = 1, b� = 0,

and a� = a
p
�, and used the approximation from the rationalized regime, rounding o�

n� = �=�+ y�
�
a
p
�
�q

�=�;

where y�(�) is given by (39), to obtain the sta�ng level. For our numerical results we set a = 1

and tried all integer multiples of 10 between 10 and 200 for �. The approximation was o� by 1

in 6 cases and exact in the others.
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Using the same parameters as in the preceding example we used the approximation from the

e�ciency-driven regime (as if a� = a��1=2). Thus our approximation rounded o�

n� = �=�+
q
a=��3=4

to obtain the sta�ng level. For our numerical results we set a = 1 and tried all integer

multiples of 10 between 10 and 200 for �. This approximation did not perform well, leading

to oversta�ng of 10{15%.

We next scaled the parameters as in the rationalized regime, with c� = c = 1, � = 1, b� = 0,

and a� = a, using the approximation from the quality-driven regime (as if a� = a
p
�). Thus

our approximation rounded o�

n� = �=�+ y��
�

ap
�

�q
�=�;

where y��(�) is given by (42), to obtain the sta�ng level. For our numerical results we set a = 1

and tried all integer multiples of 10 between 10 and 200 for �. The approximation here was

exact in 8 cases and o� by 1 in 12 cases.

Using the same parameters as in the preceding example we used the approximation from the

e�ciency-driven regime (as if a� = a��1=2). Thus our approximation rounded o�

n� = �=�+
q
a=�

p
�

to obtain the sta�ng level. For our numerical results we set a = 1 and tried all integer multiples

of 10 between 10 and 200 for �. The approximation is not as good as that of the rationalized

or quality-driven regime: 3 cases were exact, 8 were o� by 1, and 9 were o� by 2.

In the tests so far that involve scaling parameters for the e�ciency-driven and quality-driven

regimes we have used a� = a��1=2 and a� = a
p
�, respectively. These regimes hold more

generally with a� = a��� and a� = a�� respectively, for � > 0. In addition to � = 1=2,

we also tried values of � = 1=4 and 1. The runs for � = 1 involved multiples of 50 from 50

to 1000 for �. (The approximations used the same value of � as used to scale the actual

parameters.) The results can be summarized as follows. The rationalized approximation was

excellent: it was mostly exact, and when it was wrong it was never o� by more than 1. The

quality-driven approximation was good, but not as good as the rationalized approximation

(even in the quality-driven regime!). The e�ciency-driven solution was the worst of the three,

and substantially oversta�ed in the quality-driven regime. In the e�ciency-driven regime with

� = 1, the e�ciency-driven solution provided the infeasible solution of � as the sta�ng level.

Of course this can be corrected by simply requiring that the sta�ng level must be strictly

greater than �.
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10 Future research

There are a few directions of research that suggest themselves. First, we would like to explain

theoretically the extreme accuracy of our approximations. This cannot be anticipated from

the corresponding asymptotic approximations.

The call center environment enjoys features that are not captured by the M/M/N (Erlang-C)

model. Examples include non-exponential service times (M/G/N) and abandonment. The

goal is to incorporate such features into our framework. Regarding abandonment, a �rst step

was taken in [5]: in the M/M/N queue with exponential abandonment, the square-root safety

sta�ng rule was structurally identi�ed, but y� was not calculated. (It is important to note that

abandonment renders the queue always stable, hence y� can also take negative values.) As for

the M/G/N queue, it is not amenable to exact analysis, and letting N ! 1 does not make

things easier. Indeed, even the accuracy of the standard multi-server numerical approximations

is unclear as N becomes large, which is the relevant regime for call centers. A key challenge

is the calculation of the Hal�n-Whitt delay function for the M/G/N queue. To this end, one

could �rst attempt the M/PH/N queue, following [14].

Also, in the present paper we assumed that the o�ered tra�c parameters are exactly known,

and focused on determining the amount of safety sta�ng needed to deal with stochastic vari-

ability only. In practice, the o�ered tra�c forecasts are typically not completely accurate,

and additional sta�ng may be required in view of the inherent uncertainty in the parameters.

However, we feel that the analysis for known parameters is an essential step towards situations

where the o�ered tra�c estimates may contain inaccuracies.

Lastly, one could perhaps use duality theory from Mathematical Programming to relate the

optimization approach to constraint satisfaction. This could perhaps add insight on the opti-

mality criteria for constraint satisfaction, which should be sharpened.
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A Proof of Lemma 4.2

Lemma 4.2

For any function x� with lim
�!1

x� =1,

��(x�)
1� Q�(x�):

If also x�
sup
� �1=6, then

��(x�)
1� Q(x�):

If speci�cally x� = �
p
�=� for some constant � > 0, then

��(x�)
1� 1

�
p
2��=�(1 + �)

�
e�

(1 + �)1+�

��=�
:
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Proof

The �rst statement follows after some manipulations from the proof of Proposition 1 of Hal�n

& Whitt [8].

If x� = �
p
�=� for some constant � > 0, then N�(x�) = (1 + �)�=�, r�(x�) = 1=(1 + �), and

1� r�(x�) = �=(1 + �), so that

Q�(x�) =
1

�
p
2��=�(1 + �)

�
e�

(1 + �)1+�

��=�
:

We now prove the third statement. Using the Taylor series expansion

log u = log(1� (1� u)) = �
1X
m=1

(1� u)m

m
= �(1� u)�

1X
m=2

(1� u)m

m
;

we obtain

exp fN�(x)[1 � r�(x) + log r�(x)]gp
2�N�(x)(1� r�(x))

=

exp

�
�N�(x)

1P
m=2

(1�r�(x))m
m

�
p
2�N�(x)(1� r�(x))

=

exp

�
�N�(x)(1� r�(x))

2=2�N�(x)
1P
m=3

(1�r�(x))m
m

�
p
2�N�(x)(1� r�(x))

=

Q(x)
xp

N�(x)(1� r�(x))
exp

n
[x2 �N�(x)(1� r�(x))

2]=2
o
exp

(
�N�(x)

1X
m=3

(1� r�(x))
m

m

)
:

Thus it remains to be shown that

x�p
N�(x�)(1� r�(x�))

expf[x2� �N�(x�)(1� r�(x�))
2]=2gexpf�N�(x�)

1X
m=3

(1� r�(x�))
m

m
g 1� 1

if x�
1� �1=6.

Note thatq
N�(x�)(1� r�(x�)) =

x�
p
�=�q

�=�+ x�
p
�=�

1� x�;

and

N�(x�)(1 � r�(x�))
2 =

x2��=�

�=�+ x�
p
�=�

;

so that

0 � x2� �N�(x�)(1 � r�(x�))
2 =

x3�
p
�=�

�=�+ x�
p
�=�

� x3�p
�=�

1� 1:

Finally,

0 � N�(x�)
1X
m=3

(1� r�(x�))
m

m
� N�(x�)

1X
m=3

(1� r�(x�))
m =

N�(x�)(1 � r�(x�))
3

r�(x�)
� x3�p

�=�

1� 1;

which completes the proof.

2
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B Properties of P (�)

Lemma B.1

The function P (�) is strictly convex decreasing.

Proof

The function P (�) may be written

P (x) =
1

1 + U(x)
;

with

U(x) := x ex
2=2V (x);

and

V (x) :=

xZ
�1

e�y
2=2dy:

Di�erentiating,

P 0(x) =
�U 0(x)

(1 + U(x))2
;

and

P 00(x) =
2U 0(x)2 � U 00(x)(1 + U(x))

(1 + U(x))3
:

Observing that V 0(x) = e�x
2=2 and V 00(x) = �x e�x2=2,

U 0(x) = x+ (x2 + 1) ex
2=2V (x);

and

U 00(x) = x2 + 2 + (x3 + 3x) ex
2=2V (x):

Thus, P (�) is decreasing since U 0(x) > 0 for any x > 0.

Also, P (�) is strictly convex because for any x > 0,

2U 0(x)2 � U 00(x)(1 + U(x)) =

2
h
x+ (x2 + 1) ex

2=2V (x)
i2 � hx2 + 2 + (x3 + 3x) ex

2=2V (x)
i h
1 + x ex

2=2V (x)
i
=

x2 � 2 +
h
2x3 � x

i
ex

2=2V (x) +
h
x4 + x2 + 2

i h
ex

2=2V (x)
i2
>

x2 � 2 +
h
x4 + 2x3 + x2 � x+ 2ex

2=2V (x)
i
ex

2=2V (x) >
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x2 � 2 +

�
x4 + 2x3 + x2 � x+ 2

q
�=2

�
ex

2=2V (x) >

x2 +

�
x4 + 2x3 + x2 � x+ 2(

q
�=2 � 1)

�
ex

2=2V (x) >

�
x2 � x+ 2(

q
�=2 � 1)

�
ex

2=2V (x) =

�
(x� 1=2)2 + 2(

q
�=2� 9=8)

�
ex

2=2V (x) > 0:

2

C Properties of G�(�)

Lemma C.1

The function G�(�) is strictly convex decreasing.

Proof

It su�ces to show that K�(�) is strictly convex decreasing with

K�(!) := !

1Z
0

D�(t) e
�!tdt:

Di�erentiating,

K 0
�(!) =

1Z
0

[1� !t] e�!tD�(t)dt;

and

K 00
�(!) =

1Z
0

[!t� 2] t e�!tD�(t)dt;

for all ! > 0.

Since D�(�) is strictly increasing, we have

[1� !t]D�(t) � [1� !t]D�(!)

for all ! > 0, t > 0, with strict inequality for t 6= 1=!, so that

1Z
0

[1� !t] e�!tD�(t)dt < D�(1=!)

1Z
0

[1� !t] e�!tdt = 0;

and
1Z
0

[!t� 2] t e�!tD�(t)dt > D�(2=!)

1Z
0

[!t� 2] t e�!tdt = 0;

for all ! > 0.

2
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