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We consider the scheduling problems arising when two agents, each with a set of nonpreemptive jobs, compete to perform
their respective jobs on a common processing resource. Each agent wants to minimize a certain objective function, which
depends on the completion times of its jobs only. The objective functions we consider in this paper are maximum of
regular functions (associated with each job), number of late jobs, and total weighted completion times. We obtain different
scenarios, depending on the objective function of each agent, and on the structure of the processing system (single machine
or shop). For each scenario, we address the complexity of various problems, namely, finding the optimal solution for
one agent with a constraint on the other agent’s cost function, finding single nondominated schedules (i.e., such that a
better schedule for one of the two agents necessarily results in a worse schedule for the other agent), and generating all
nondominated schedules.
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1. Introduction
In recent years, management problems in which multiple
agents compete on the usage of a common process-
ing resource are receiving increasing attention in differ-
ent application environments and different methodological
fields, such as artificial intelligence, decision theory, oper-
ations research, etc. One major stream of research in this
context is related to multiagent systems (MASs), i.e., sys-
tems in which different entities (agents) interact to perform
their respective tasks, negotiating among each other for the
usage of common resources over time. In this paper, we
focus on the following situation. There are two agents, each
with a set of jobs. The agents have to schedule their jobs on
a common processing resource, and each agent wishes to
minimize an objective function which depends on its own
jobs’ completion times. The problem is how to compute
schedules which account for each agent’s cost function, and
that can be used to support the negotiation between the two
agents.
A key issue is the determination of nondominated (or

Pareto-optimal) schedules, i.e., such that a better schedule
for one agent necessarily results in a worse schedule for
the other agent. In our analysis, we will adopt two differ-
ent viewpoints. The first consists of determining the best
solution for one agent, given that the other agent will not

accept schedules of cost greater than a certain value for it.
The second viewpoint consists of determining the set of
all nondominated solutions. These two viewpoints lead to
different (though related) optimization problems. The main
focus of this paper is the analysis of the complexity of
several problems, with different combinations of the two
agents’ objective functions (maximum of regular functions,
total weighted completion time, number of late jobs) and
different system structures (single machine or shop).
This paper is organized as follows. In §2, a review of

related works is given. In §3, we formally introduce the
notation and terminology used throughout the rest of this
paper. From §§4 to 10, we characterize the complexity of
several decision problems. In particular, from §§4 to 9, we
consider single-machine problems, and in §10 two-machine
shop problems. Section 11 is devoted to the problem of
enumerating all nondominated solutions. Conclusions fol-
low in §12.

2. Multiagent Scheduling Models
Scheduling situations in which agents (users, players) com-
pete for common processing resources are close to both
fields of combinatorial optimization and cooperative game
theory. In fact, a few papers investigate the problem from
an economic/market perspective. Curiel et al. (1989) define
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a class of single-machine sequencing games as follows.
There is a set of agents, each with exactly one job and
having a cost function related to the job’s completion
time. Starting from an initial job sequence �0, jobs can
be rearranged into a sequence �∗, which minimizes the
overall cost. Switching from �0 to �∗ produces an overall
gain which may be redistributed among the agents. Curiel
et al. (1989), as well as Hamers et al. (1996), prove that,
using certain redistribution rules, the agents have no advan-
tage in aggregating into smaller coalitions, i.e., agents are
encouraged to cooperate. (In technical terms, the core of
the game is nonempty.) In other papers, the analysis is
extended to other structural properties of the games, as
well as to different scenarios, including release times, or
agents holding more than one job (e.g., Hamers et al. 1995,
Fragnelli 2001).
A different view of the scheduling problem is provided

by the so-called market-oriented programming (Wellman
1993). In this approach, an overall schedule is determined
by means of market prices for the time slots in which
processing resources are to be used. In particular, a price
equilibrium is a situation in which each agent maximizes
its utility, given those prices. The prices are established
through a bidding mechanism (auction). For single-machine
problems in which each agent holds exactly one job, and
each job requires one time slot, Wellman et al. (2001)
analyze several auction protocols, and for each of them
they consider how far from the equilibrium the prices are
obtained.
Crès and Moulin (2001) address an agent-based schedul-

ing problem, in which agents arrive at a server, and each
agent decides whether or not to stay in line depending only
on how many other agents are ahead of him or her. They
analyze simple, probabilistic ordering rules of the agents
(e.g., random ordering), evaluating the expected number of
agents served and theoretical properties such as fairness or
incentive compatibility.
On the combinatorial optimization side, problems with

two agents (namely, A and B, each with the respective
set of jobs J A and J B) can be viewed as a special case
of general bicriteria optimization models. For instance, the
problem in which the agent A wants to minimize the
total completion time of the jobs in J A and the agent B
wants to minimize the maximum lateness of the jobs
in J B can be viewed as a bicriteria, single-agent problem
with weighted objective functions

∑
j∈JA∪J B q

�1�
j Cj and

maxj∈JA∪J B q
�2�
j Tj , where q

�1�
j = 1 and q

�2�
j = 0 for j ∈ J A,

whereas q
�1�
j = 0 and q

�2�
j = 1 for j ∈ J B. Hence, in prin-

ciple, general methods for bicriteria optimization can be
applied, although these may not exploit the peculiarity
of the problem. However, two-agent scheduling problems
differ from the problems commonly referred to as bicriteria
scheduling problems (Hoogeveen 1992, Nagar et al. 1995),
because in classical single-agent, bicriteria scheduling
problems, all jobs contribute to both criteria, whereas in
a two-agent situation, only the jobs belonging to an agent

contribute to that agent’s criterion. As a consequence, the
complexity results known for a certain bicriteria schedul-
ing problem in which there are two objectives f and g,
in general do not imply similar complexity results for the
corresponding two-agent problem in which agents A and B
have objectives f and g, respectively. (By complexity of
a bicriteria problem, we mean the complexity of minimiz-
ing one objective function with a constraint on the other.)
For instance, the NP-hardness of the single-agent, bicriteria
problem of minimizing the number of late jobs with a con-
straint on the maximum of regular functions (Lawler 1983),
does not imply the NP-hardness of the corresponding two-
agent problem (which is in fact polynomial; see §6). More-
over, note that some cases only make sense in the two-agent
setting, such as, for instance, when both agents have the
goal of minimizing the total (unweighted) completion time
of their respective jobs.
Table 1 compares the complexity status of single-

machine, two-agent scheduling problems and the analogous
bicriteria scheduling problems (where applicable). Besides
the references in Table 1, there are several other more
specific contributions to bicriteria scheduling, concerning
problems with unit execution time jobs (Chen and Bulfin
1990), problems with target start times (Hoogeveen and
van de Velde 2001), and nonregular objective functions
(Hoogeveen 1992). An extensive review on other bicrite-
ria scheduling problems can be found, for example, in the
survey paper by Nagar et al. (1995).
Multiagent scheduling problems occur in several applica-

tion environments in which the need for negotiation/bidding
procedures arises. Most of the papers on this subject inves-
tigate heuristic approaches for the construction of sched-
ules that are acceptable to the agents, with no particular
concern on optimality. For instance, Kim et al. (2000) dis-
cuss complex negotiation procedures for project scheduling
in a multiagent environment, allowing the parties to come
up with new schedules whenever unacceptable task timings
occur. Other approaches are based on distributed artificial
intelligence. Huang and Hallam (1995) address a multi-
agent scheduling problem in terms of a constraint satisfac-
tion problem where a subset of constraints can be relaxed
but is expected to be satisfied as well as possible. Chen
et al. (1999) propose a number of negotiation protocols
for functional agent cooperation in a supply chain context.
Brewer and Plott (1996) devise a bidding mechanism for
the problem of scheduling trains (agents) on a shared single
railtrack. Schultz et al. (2002) discuss the problem of the
integration of multimedia telecommunication services for a
Satellite-based Universal Mobile Telecommunication Sys-
tem (S-UMTS). The problem here is to fulfill the require-
ments of various integrated services (agents), such as voice
over IP, web browsing, file transfer via file transfer pro-
tocol, etc. Different agents have different objectives. For
instance, the voice service may tolerate the loss of some
packets, but under strict delay requirements. On the con-
trary, when transferring a data file, no packet can be lost,
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Table 1. Summary of complexity results for the constrained optimization problems.

Complexity of Related
Problem Name Computational Complexity Reference Theorem Bicriteria One-Agent Problem

1�f A
max 
 f

B
max O�n2� 4�1 —

1�∑wiC
A
i 
 f B

max Binary NP-hard 5�2 Unary NP-hard
Lenstra et al. (1977)

1�∑CA
i 
 f B

max O�n logn� 5�5 O�n logn�
Smith (1956), Hoogeveen and Van de Velde (1995)

1�∑UA
i 
 f B

max O�n logn� 6�3 Binary NP-hard
Lawler (1983)

1�∑UA
i 


∑
UB

i O�n3� 7�3 —

1�∑CA
i 


∑
UB

i Open — Binary NP-hard
Chen and Bulfin (1993)

1�∑wiC
A
i 


∑
UB

i Binary NP-hard 5�2 Binary NP-hard
Chen and Bulfin (1993)

1�∑CA
i 


∑
CB

i Binary NP-hard 9�2 —

F2�f A
max 
 f

B
max Binary NP-hard 10�1 —

O2�f A
max 
 f

B
max Binary NP-hard 10�2 —

but some delay can be tolerated. In the work by Ling
(1998), two agents, each with a set of jobs, compete for
a single machine with the objective of minimizing total
completion time. Negotiation alternatives are generated via
implicit enumeration. No complexity analysis is carried out.
Agnetis et al. (2000) consider a two-jobs job shop sce-
nario in which jobs JA and JB belong to the agents A
and B, respectively. Each agent’s objective function only
depends on the job’s completion time (CA and CB, respec-
tively). After characterizing the set of feasible solutions
in the �CA�CB�-plane, it is shown that if the two objec-
tive functions are quasiconvex, the set of nondominated
pairs �CA�CB� consists of a polynomial number of isolated
points and line segments.

3. Problem Definition and Notation
In this section, we introduce the notation and terminology
we use throughout this paper. For the sake of simplicity,
the notation refers to the single-machine case. This notation
will be generalized to more complex shop systems in §10.1.
There are two competing agents, called agent A and

agent B. Each of them has a set of nonpreemptive jobs to
be processed on a common machine. The agent A has to
execute the job set J A = �J A

1 � J
A
2 � � � � � J

A
nA
�, whereas the

agent B has to execute the job set J B = �J B
1 � J

B
2 � � � � � J

B
nB
�.

We call A-jobs and B-jobs the jobs of the two sets. The
processing time of job J A

h �J B
k � will be denoted by pA

h �pB
k �.

Also, let PA =∑nA
h=1 p

A
h and PB =∑nB

k=1 p
B
k . In some cases

we will consider job due dates as well: dA
h �dB

k �. In this
paper, we always assume zero release dates for all jobs.
Each of the two agents will have to schedule his or her jobs
on the machine complying with the presence of the other
agent’s jobs.
Let � indicate a feasible schedule of the n = nA + nB

jobs, i.e., a feasible assignment of starting times to the jobs

of both agents. The completion times of job J A
h and J B

k in �
will be denoted as CA

h ��� and CB
k ���, respectively. We will

use the notation Jh, ph, dh, Sh�Ch��� when referring to
a job in the set J A ∪ J B, and J X

h , p
X
h , d

X
h , S

X
h ���, CX

h ���
when referring to a job of a specific agent X, which can be
either A or B.
Each agent has a certain objective function, which

depends on the completion times of its jobs only. We indi-
cate by f A��� and f B��� the two functions. In this paper,
we consider the minimization of the following objective
functions:
• fmax���=maxi=1� ���� n�fi�Ci�����, where each fi�·� is

a nondecreasing function of the completion time of job Ji
(maximum of regular functions).
• ∑

Ui��� =∑n
i=1Ui���, where Ui��� = 1 if job Ji is

late in � and zero otherwise (number of late jobs).
• ∑

wiCi��� = ∑n
i=1wiCi��� (total weighted comple-

tion time).
Note that all these objective functions are regular (i.e.,

nondecreasing in the completion times). Hence, there is
no convenience in keeping the machine idle, and there-
fore each job is started as soon as the previous job in the
sequence is completed. Also, note that the first objective
function includes the maximum completion time Cmax���
and the maximum lateness Lmax��� as special cases. We
use

∑
Ci for

∑
wiCi when wi = 1 for all i.

We say that a schedule � is nondominated if there is
no schedule �̄ such that f A��̄�� f A���, f B��̄�� f B���
and at least one of the two inequalities is strict, i.e., a
schedule is nondominated if a better schedule for one
of the two agents necessarily results in a worse sched-
ule for the other agent. Distinct nondominated schedules
��� ′� � � � may yield the same pair of objective function val-
ues �f A���� f B���� = �f A�� ′�� f B�� ′�� = · · · = �yA� yB�.
We call �yA� yB� a nondominated pair of objective function
values. We say that ��� ′� � � � are equivalent schedules, and
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for each nondominated pair we are interested in finding one
of them, not all of them.
The problems we address in this paper can be described

as follows.

Constrained Optimization Problem �CP�. Given the
job sets J A and J B of the two agents, the two objec-
tive functions f A�·� and f B�·�, and an integer Q, find
a schedule �∗ such that f B��∗� � Q, and f A��∗� is
minimum.

Following the classification scheme for scheduling prob-
lems by Graham et al. (1979), we indicate this problem as
1�f A 
 f B �Q, or simply 1�f A 
 f B whenever this does not
generate confusion.

Pareto-Optimization Problem �PP�. Given the job sets
J A and J B of the two agents and the two objective func-
tions f A�·� and f B�·�, find the set of all nondominated pairs
�f A�·�� f B�·�� and a corresponding schedule of J A and J B

for each pair. We indicate this problem as 1�f A � f B.

Note that the viewpoints are different in the two prob-
lems. In the former problem �CP�, the agent A wants to
find the best solution for it, given that the agent B will
accept a schedule of cost up to Q. An instance of CP may
not have feasible solutions (e.g., if Q is too small). If there
is at least one feasible solution, we say that the instance is
feasible. Note that the problem of finding, among optimal
schedules, one which is also nondominated can be always
addressed by binary search. In fact, let �∗ be the opti-
mal solution to 1�f A 
 f B � Q̃. We can solve 1�f A 
 f B �

Q̃/2, obtaining a solution � ′. If f A�� ′� > f A��∗�, Q̃/2
was indeed too small, so we try next 3Q̃/4, or else we
decrease Q again to Q̃/4. This goes on until we individu-
ate the smallest value Q∗ of Q such that the value of the
optimal solution to 1�f A 
 f B �Q is still equal to f A��∗�.
Clearly, �f A��∗��Q∗� is a nondominated pair. However, as
we will see, in many cases the problem of finding a non-
dominated pair can be approached in a more efficient and
straightforward way.
In the latter problem �PP�, the two agents want to list all

possible nondominated pairs, to negotiate the most accept-
able trade-off for both.
The main focus of this paper is to analyze the complexity

of these problems and propose solution algorithms. In some
proofs, we make use of the following recognition problem:

Recognition Problem. Given two integers QA and QB,
the job sets J A and J B of the two agents, and the two
objective functions f A�·� and f B�·�, find whether a feasible
schedule � exists such that f B����QB and f A����QA.
We refer to this problem as 1�f A �QA�f

B �QB.

3.1. Symmetric Scenarios

Observe that 1�f 
 g and 1�g 
 f are indeed equivalent,
because they are reducible to each other by means of
a binary search. In fact, suppose we want to solve

1�f 
 g � 
Q for a given 
Q, and we have an algorithm for
solving 1�g 
 f �Q for any Q. Because the optimal solu-
tion value of 1�g 
 f � Q is nonincreasing for increasing
values of Q, by iteratively solving 1�g 
 f � Q for differ-
ent values of Q, we can find the threshold value f ∗ such
that, when Q< f ∗, the optimal value of g is strictly greater
than 
Q, while for Q= f ∗ the optimal value is smaller or
equal to 
Q. Clearly, such f ∗ is the optimal solution value
of 1�f 
 g � 
Q. If Q0 is an upper bound on the optimal
solution value of 1�f 
 g � 
Q, then f ∗ can be found by
solving O�log2Q0� instances of 1�g 
 f � Q. Because of
this symmetric relationship, in the single-machine case we
consider only six distinct scenarios, addressed in §§4 to 9.
The corresponding results are summarized in Table 1.

4. 1�fAmax � f
B
max

Here we address the problem of finding an optimal solu-
tion to 1�f A

max 
 f
B
max. We show that this problem can be

efficiently solved by an easy reduction to the well-known,
single-agent problem 1�prec�fmax. For the latter problem,
Lawler (1973) devises an O�n2� time algorithm, which can
be seen as an extension of a previous algorithm proposed
by Livshits (1969) for the problem without precedence
constraints.
Given a schedule � for the two job sets i ∈ J A and J B,

we indicate, as usual, with Ci��� the completion time of
the ith job �i ∈ J A ∪ J B�. Let

fmax = max
i∈JA∪J B

�fi�Ci������

where, for t � 0,

fi�t�=




f A
i �t� if i ∈ J A�

� if i ∈ J B and f B
i �t� >Q�

−� if i ∈ J B and f B
i �t��Q�

With these positions, if a feasible schedule �∗ exists
solving 1�prec�fmax with finite objective function value f ∗

max,
then �∗ is also feasible and optimal for 1�f A

max 
 f
B
max �Q,

and achieves the same optimal objective function value
f A
max = f ∗

max. Otherwise, if fmax =�, then no feasible solu-
tion exists for the two-agents problem.
In view of the above reduction, Lawler’s algorithm for

this special case may be sketched as follows. At each step,
the algorithm selects, among unscheduled jobs, the job to
be scheduled last. If we let &̄ be the sum of the process-
ing times of the unscheduled jobs, then any unscheduled
B-job J B

k such that f B
k �&̄��Q can be scheduled to end at &̄ .

If there is no such B-job, we schedule the A-job J A
h for

which f A
h �&̄� is minimum. If, at a certain point in the algo-

rithm, all A-jobs have been scheduled and no B-job can be
scheduled last, the instance is not feasible. (We observe that
the above algorithm can be easily extended to the case in
which precedence constraints exist among jobs, even across
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the job sets J A and J B. This may be the case, for instance,
of assembly jobs that require components machined and
released by the other agent.)
For each B-job J B

k , let us define a deadline D
B
k , such that

f B
k �C

B
k ��Q for CB

k �DB
k and f B

k �C
B
k � > Q for CB

k > DB
k .

(If the inverse function f B
k

−1
�·� is available, the deadlines

can be computed in constant time; otherwise this requires
logarithmic time.) The job set J B can be ordered a priori, in
nondecreasing order of deadlines DB

k , in time O�nB lognB�.
At each step the only B-job that needs to be considered is
the unscheduled one with largest DB

k . On the other hand,
for each job in J A, the corresponding f A

h �&̄� value must
be computed. If we suppose that each f A

h �·� value can
be computed in constant time, whenever no B-job can be
scheduled, all unscheduled A-jobs may have to be tried out.
Because this happens nA times, we may conclude with the
following:

Theorem 4.1. 1�f A
max 
 f

B
max can be solved in time O�n2A +

nB lognB�.

4.1. Finding a Nondominated Schedule

Using the above algorithm, we obtain an optimal solution
�∗ to 1�f A

max 
 f B
max � Q. Let QA = f A

max��
∗� and QB =

f B
max��

∗�. In general, we are not guaranteed that �∗ is non-
dominated. To find an optimal solution which is also non-
dominated, we only need to exchange the roles of the two
agents, and solve an instance of CP in which the cost for
the agent A is bounded by QA, i.e., 1�f B

max 
 f
A
max � QA.

Call �̃ the optimal schedule obtained in this way. Note that
f A
max��̃�=QA (because otherwise �∗ would not be optimal
for the original problem).

Theorem 4.2. The schedule �̃ is nondominated.

Proof. Suppose a schedule � ′ exists which dominates �̃ .
The schedule � ′ cannot be strictly better than �̃ for both
agents, because otherwise �̃ would not be optimal for both
1�f A

max 
 f B
max � Q and 1�f B

max 
 f A
max � QA. If f A

max��
′� =

f A
max��̃�, for � ′ to dominate �̃ it must be f B

max��
′� <

f B
max��̃�. This is not possible, because f A

max��̃�=QA and �̃
is optimal for 1�f B

max 
 f
A
max � QA. However, if f B

max��
′� =

f B
max��̃�, then, for � ′ to dominate �̃ it must be f A

max��
′� <

f A
max��̃�. This is also not possible, because QB � Q and
hence � ′ would be better than �∗ in 1�f A

max 
 f
B
max �Q. �

5. 1�∑wiC
A
i � fBmax

Here we address the problem in which the agent A wants
to minimize total weighted completion time, given that the
agent B only accepts schedules such that maxk�f

B
k �C

B
k ��

does not exceed Q. As in §4, because all functions f B
k �C

B
k �

are regular, for each job J B
k we can define a deadline DB

k .
The complexity of the problem is different for the

weighted and the unweighted cases. For this reason we
address them separately.

5.1. Weighted Case

We next show that 1�∑wiC
A
i 
 f B

max is binary NP-hard,
even when the objective function of the agent B is max-
imum completion time, i.e., f B

max = CB
max. We use the

well-known NP-complete Knapsack Problem (Garey and
Johnson 1979):

Problem 5.1. Knapsack. Given two sets of nonnegative
integers �u1� u2� � � � � un� and �w1�w2� � � � �wn�, and two
integers b and W , is there a subset S ⊆ �1� � � � � n� such that∑

i∈S ui � b and
∑

i∈S wi �W ?

Theorem 5.2. 1�∑wiC
A
i 
 CB

max is binary NP-hard.

Proof. We reduce Knapsack to 1�∑wiC
A
i � QA�C

B
max �

QB. Given an instance of Knapsack, let û = ∑
i=1� ���� n ui

and ŵ = ∑
i=1� ���� n wi. Consider the following instance of

1�∑wiC
A
i �QA�C

B
max �QB. The agent A has nA = n jobs,

having processing times pA
i = ui and weights wA

i = wi,
i= 1� � � � � n. The agent B has only one job, having pro-
cessing time pB

1 = ŵû. Finally, QB = b + pB
1 and QA =

ŵû+ �ŵ−W�pB
1 = �1+ ŵ−W�pB

1 .
Given a feasible solution to Knapsack, we can define

a solution to 1�∑wiC
A
i �QA�C

B
max �QB, sequencing the

A-jobs in the set �J A
i � i ∈ S� before the B-job (and the

others after the B-job). Hence, the completion time of
the B-job does not exceed b+pB

1 =QB, while the total cost
of the A-jobs,

∑
i=1� ���� n wiC

A
i , can be written as∑

i∈S
wiC

A
i +∑

i�S
wi�C

A
i −pB

1 �+pB
1

∑
i�S

wi� (1)

The sum of the first two terms in (1) is smaller than
ŵû. Because

∑
i∈S wi � W , then

∑
i�S wi � ŵ − W , and

the last term is therefore smaller than �ŵ−W�pB
1 . Hence,∑

i=1� ���� n wiC
A
i � ŵû+ �ŵ−W�pB

1 =QA, and the solution
is feasible for 1�∑wiC

A
i �QA�C

B
max �QB.

However, given a feasible solution to 1�∑wiC
A
i � QA,

CB
max � QB, let us define a solution to the correspond-

ing Knapsack instance by letting S be the set of A-jobs
sequenced before the B-job. Then,

QA = �1+ ŵ−W�pB
1

�
∑

i=1� ���� n
wiC

A
i >

∑
i�S

wiC
A
i > pB

1

∑
i�S

wi� (2)

Comparing the first and the last term in (2), we obtain 1+
ŵ −W >

∑
i�S wi and hence, considering that all weights

are integer, ŵ−W �
∑

i�S wi, which implies
∑

i∈S wi �W .
Because the jobs in S are sequenced before the B-job, then∑

i∈S pA
i � QB − pB

1 = b, and the set S provides a feasible
solution to Knapsack. �

5.2. Unweighted Case

In this section, we show that 1�∑CA
i 
 f B

max is polynomi-
ally solvable. Two lemmas allow us to devise the solution
algorithm for this problem.
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Lemma 5.3. Consider a feasible instance of 1�∑CA
i 
 f B

max,
and let & = PA + PB. If there is a B-job J B

k̄
such that

f B
k̄
�&��Q, then there is an optimal schedule in which J B

k̄

is scheduled last, and there is no optimal schedule in which
an A-job is scheduled last.

Proof. Let � ′ be an optimal schedule in which J B
k̄
is not

scheduled last, and let �∗ be the schedule obtained by mov-
ing J B

k̄
to the last position. For any job J X

i other than J B
k̄
,

CX
i ��

∗� � CX
i ��

′�, and therefore
∑

CA
i ��

∗� �
∑

CA
i ��

′�.
In particular, if an A-job is last in � ′, then

∑
CA

i ��
∗� <∑

CA
i ��

′�, thus contradicting the optimality of � ′. For what
concerns J B

k̄
, its completion time is now & , and by hypoth-

esis f B
k̄
�&� � Q. Hence, due to the regularity of f B

k �·� for
all k, the schedule �∗ is still feasible and optimal. �

The second lemma specifies the order in which the
A-jobs must be scheduled.

Lemma 5.4. Consider a feasible instance of 1�∑CA
i 


f B
max �Q, and let & = PA+PB. If for all B-jobs J

B
k , f

B
k �&� >

Q, then in any optimal schedule a longest A-job is sched-
uled last.

Proof. The result is established by a simple interchange
argument. Let J A

h̄
be a longest A-job, and let � ′ be an opti-

mal schedule in which J A
h̄
is not scheduled last. By hypoth-

esis, the last job in � ′ is an A-job; call it J A
l , such that p

A
l �

pA
h̄
. Let �∗ be the schedule obtained by swapping J A

l and
J A
h̄
. For any job preceding J A

h̄
in � ′ nothing has changed,

while CX
i ��

∗� � CX
i ��

′� for any job J X
i between J A

h̄
and

J A
l . In particular, if pA

l < pA
h̄
, then CA

l ��
∗� + CA

h̄
��∗� <

CA
l ��

′�+CA
h̄
�� ′�. Because the functions f B

h �·� are regular,
f B
max��

∗� � f B
max��

′�, while also
∑

CA
i ��

∗� �
∑

CA
i ��

′�,
the equality holding if and only if pA

l = pA
h̄
. �

The solution algorithm is similar to the one in §4. At
each step, the algorithm selects a job to be scheduled last
among unscheduled jobs. If possible, a B-job is selected.
Otherwise, the longest A-job is scheduled last. If all A-jobs
have been scheduled and no B-job can be scheduled last,
the instance is infeasible. The algorithm is summarized in
Figure 1.

Theorem 5.5. 1�∑CA
i 
 f B

max can be solved in time
O�nA lognA + nB lognB�.

Proof. Job set J A can be ordered according to shortest
processing times (SPT) in time O�nA lognA�. J

B can be
ordered in nondecreasing order of deadline DB

k in time
O�nB lognB�. At each step there is only one candidate from
each job set. Hence, the complexity of this algorithm is
dominated by the ordering of the jobs, i.e., O�nA lognA +
nB lognB�. �

5.2.1. Finding a Nondominated Schedule. The opti-
mal solution obtained by the above algorithm may not be
nondominated. The next lemma specifies the structure of
any optimal solution to 1�∑CA

i 
 f B
max, thus including the

Figure 1. Scheme of the algorithm for 1�∑CA
i 
 f B

max.

{
σ := ∅; τ = PA + PB

while there are unscheduled jobs

{
if an unscheduled B-job JB

k is such that fB
k (τ) ≤ Q

then Ji := JB
k

else if all A-jobs have been scheduled

then no solution exists, STOP.

else

let JA
h be the longest unscheduled A-job,Ji := JA

h ;

σ := {Ji} ◦ σ

τ := τ − pi

}
}

nondominated ones. Given a feasible sequence � , in what
follows we define B-block as a maximal set of consecutive
B-jobs in � .

Lemma 5.6. Given a feasible instance of 1�∑CA
i 
 f B

max,
for all optimal solutions
(1) the partition of B-jobs into B-blocks is the same, and
(2) the B-blocks are scheduled in the same time

intervals.

Proof. Let �∗ and � ′ be two optimal solutions. Lem-
mas 5.3 and 5.4 imply that the A-jobs are SPT ordered in
both �∗ and � ′. If the sequences of the A-jobs are not the
same in �∗ and � ′, we can always swap some identical A-
jobs, without affecting the starting time of the B-jobs, until
we find a new optimal solution � ′′ in which the sequence
of the A-jobs is the same as in �∗.
Now consider an A-job J A

h in �∗. Let t∗ be its completion
time in �∗ (i.e., t∗ = CA

h ��
∗�), and indicate by Aprec and

Bprec the sets of A-jobs and B-jobs, respectively, preceding
J A
h in �∗. We now observe two points:
(i) From Lemma 5.3, it follows that if J B

k ∈ Bprec, then
f B
k �t

∗� >Q, because otherwise J B
k would have been sched-

uled to end at t∗, and J A
h could have been scheduled earlier.

(ii) The A-jobs preceding J A
h in �∗ and in � ′′ are the

same.
Now we claim that in � ′′, J A

h cannot complete earlier
than t∗. In fact, suppose by contradiction that J A

h completes
before t∗ in � ′′. Point (i) above shows that all jobs in Bprec
must complete strictly before t∗ in any feasible solution,
while point (ii) implies that also all jobs in Aprec would
complete strictly before t∗. However,

∑
i∈Aprec∪Bprec pi+pA

h =
t∗, so there would be no room for other jobs to end in t∗,
a contradiction. In conclusion, it is proved that

CA
h ��

′′��CA
h ��

∗�� (3)

Formula (3) holds for each A-job J A
h in �∗. Because � ′′ is

also optimal,
nA∑
h=1

CA
h ��

∗�=
nA∑
h=1

CA
h ��

′′�� (4)
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(3) and (4) together imply CA
h ��

′′� = CA
h ��

∗� for h =
1� � � � � nA. So, the B-jobs preceding each A-job are the
same in �∗ and � ′′. Because the whole discussion can be
repeated starting from any optimal solution, it turns out
that in all optimal solutions the B-blocks occupy exactly
the same time intervals. As a consequence of Lemma 5.3,
exactly the same B-jobs are selected in each interval. �

Note that Lemma 5.6 completely characterizes the struc-
ture of the optimal solutions. The completion times of the
A-jobs are the same in all optimal solutions, modulo per-
mutations of identical jobs. The B-blocks are also the same
in all optimal solutions, the only difference being the inter-
nal scheduling of each B-block. To find an optimal non-
dominated schedule, it is sufficient to slightly modify the
algorithm in Figure 1. If &̄ is the sum of the lengths of
the currently unscheduled jobs, the algorithm in Figure 1
schedules any B-job J B

k such that f B
k �&̄��Q. Instead, we

schedule the job J B
l such that f B

l �&̄� = mink∈UB�f B
k �&̄��

(where UB stands for the unscheduled B-jobs). Ties are
broken arbitrarily. Let �̃ be the optimal schedule generated
in this way.

Theorem 5.7. The schedule �̃ is nondominated.

Proof. Lemma 5.6 shows that the partition of B-jobs into
B-blocks is the same for all optimal solutions. Because
A-jobs do not play any role within each block, the problem
decomposes into several instances of 1�f B

max, one for each
B-block. When building the schedule, if we pick every time
the B-job for which f B

k �&̄� is minimum, the very same proof
of Lawler’s algorithm (Lawler 1973) restricted to 1�fmax
implies that �̃ minimizes f B

max. �

Note that selecting at each step the B-job of lowest
cost implies an explicit computation of the f B

k �·� functions.
As a result, we cannot order the B-jobs a priori, and the
following theorem holds.

Theorem 5.8. A nondominated optimal solution to
1�∑CA

i 
 f B
max can be computed in time O�nA lognA+n2B�.

6. 1�∑UA
i � fBmax

Let us turn to the problem in which the agent A wants to
minimize the number of late jobs, given that the agent B
only accepts schedules in which maxk�f

B
k �C

B
k �� � Q. As

in the previous sections, we define a deadline DB
k for

each B-job J B
k such that f B

k �C
B
k � � Q for CB

k � DB
k and

f B
k �C

B
k � >Q for CB

k >DB
k .

In what follows, we call the latest start time �LSk� of job
J B
k the maximum value the starting time of J B

k can attain
in a feasible schedule such that CB

k � DB
k for all J B

k ∈ J B.
The values LSk can be computed as follows. Order the
B-jobs in nondecreasing order of DB

k . Start from the last
job, J B

nB
. Schedule job J B

nB
to start at time DB

nB
− pB

nB
. Con-

tinue backwards, letting LSk 
= min�DB
k �LSk+1� − pB

k for
all k = nB − 1� � � � �1. Clearly, if job J B

k starts after time
LSk, at least one B-job attains f B

k �C
B
k � >Q.

Now consider, for each B-job J B
k , the latest processing

interval ,LSk�D
B
k -. Let I =

⋃nB
k=1,LSk�D

B
k -. Set I consists

of a number / � nB of intervals, I1� h1� Ih1� h2� � � � � Ih/−1� nB ,
called reserved intervals. Each reserved interval Iu�v ranges
from LSu to DB

v . Note that, by construction, �Iu�v� =DB
v −

LSu =
∑v

k=u p
B
k . We say that jobs J B

u � J
B
u+1� � � � � J

B
v are asso-

ciated with Iu�v.
Let 1�pmtn�∑UA

i 
 f B
max be the preemptive variant of

1�∑UA
i 
 f B

max.

Lemma 6.1. Given an optimal solution to 1�pmtn�∑UA
i 


f B
max, there exists an optimal solution to 1�∑UA

i 
 f B
max with

the same number of late A-jobs.

Proof. Observe that if in the optimal solution to
1�pmtn�∑UA

i 
 f B
max there is a job Ji (of any agent), end-

ing at Ci, which is preempted at least once, we can always
schedule the whole Ji in interval ,Ci−pi�Ci-, moving other
(parts of) jobs backwards, without increasing the comple-
tion time of any job. Repeating this for each preempted job,
we eventually obtain a nonpreemptive solution. �

Lemma 6.2. There exists an optimal solution to
1�pmtn�∑UA

i 
 f B
max in which each B-job is nonpreemptively

scheduled in the reserved interval it is associated with.

Proof. In an optimal solution to 1�pmtn�∑UA
i 
 f B

max, all
the B-jobs associated with interval Iu�v complete before D

B
v .

Hence, if we move all the pieces of each such job to exactly
fit the interval Iu�v, we obtain a solution in which the com-
pletion time of no A-job has increased, because we only
moved pieces of A-jobs backward. �

Lemma 6.2 allows us to fix the position of the B-jobs
in an optimal solution to 1�pmtn�∑UA

i 
 f B
max. The position

of the A-jobs can then be found by solving an auxiliary
instance of the well-known single-agent (nonpreemptive)
1�∑Ui, solvable by Moore’s algorithm (Moore 1968).
Given an instance of 1�pmtn�∑UA

i 
 f B
max, such an aux-

iliary instance consists of the A-jobs only, with modified
due dates as follows. For each job J A

h , if d
A
h falls outside

any reserved interval, we subtract from dA
h the total length

of all the reserved intervals preceding dA
h , i.e., we define

the modified due date �A
h as �A

h = dA
h −

∑
u� v
DB

v �dA
h
�Iu�v�.

If dA
h falls within the reserved interval Ip�q , we do the same,

but instead of dA
h we use the left extreme of Ip�q , i.e., we

let �A
h = LSp −

∑
u� v
DB

v <dA
h
�Iu�v�.

Theorem 6.3. 1�∑UA
i 
 f B

max can be solved in time
O�nA lognA + nB lognB�.

Proof. Given a schedule � for the auxiliary instance
of 1�∑Ui, it is possible to define a solution � ′ to
1�pmtn�∑UA

i 
 f B
max by reinserting the reserved intervals

(with the associated B-jobs) in the schedule, one at a
time, from the first to the last, every time shifting every-
thing forward. Each reinsertion can possibly preempt one
A-job. From the definition of the due dates in the auxiliary
instance, it follows immediately that each A-job is early



Agnetis, Mirchandani, Pacciarelli, and Pacifici: Scheduling Problems
236 Operations Research 52(2), pp. 229–242, © 2004 INFORMS

in � ′ if and only if it is early in � . Hence, from an opti-
mal solution to the auxiliary instance we obtain an optimal
solution to 1�pmtn�∑UA

i 
 f B
max. Applying Lemma 6.1, we

can obtain an optimal solution to 1�∑UA
i 
 f B

max by rear-
ranging those A-jobs that had been preempted during the
reinsertion phase. Let us turn to complexity issues. The
B-jobs are ordered first; complexity for this is O�nB lognB�.
Then, the computation of the reserved intervals takes time
O�nB�. The auxiliary instance can be defined in time O�nA�
and solved in time O�nA lognA� by Moore’s algorithm.
The optimal solution to 1�pmtn�∑UA

i 
 f B
max can be recon-

structed in time O�nA+nB�. Finally, the optimal solution to
1�∑UA

i 
 f B
max is obtained in time O�nA +nB�. The overall

complexity is therefore dominated by the ordering steps,
and the theorem follows. �

7. 1�∑UA
i �

∑
UB

i

In this section, we address the problem in which the
agent A wants to minimize the number of late A-jobs, while
the agent B only accepts schedules in which at most Q late
B-jobs are scheduled. We next show that this problem can
be efficiently solved by dynamic programming. The follow-
ing lemma relates to the structure of an optimal schedule.

Lemma 7.1. There is an optimal schedule �∗ of 1�∑UA
i 
∑

UB
i in which all the late jobs are scheduled consecu-

tively at the end of the schedule, and all the early jobs are
scheduled consecutively in earliest due date (EDD) order
at the beginning of the schedule.

Proof. Consider an optimal schedule �∗ and move all the
late jobs to the end of the schedule, thus obtaining a new
schedule � ′. Clearly,

∑
UA

i ��
′��

∑
UA

i ��
∗�, because we

are moving the early jobs backward. Now consider all the
early jobs in � ′ that are sequenced consecutively at the
beginning of the schedule, and resequence them in EDD
order. This does not increase the number of late jobs, thus
completing the proof. �

In the remaining part of this section, we assume that the
jobs in J A ∪ J B are numbered from J1 to JnA+nB

according
to EDD order.
We next illustrate a recursion relation that can be

exploited to design a polynomial dynamic programming
algorithm for 1�∑UA

i 

∑

UB
i .

Let C�i�h� k� be the minimum completion time of the
last early job in a partial schedule of the job set �J1� � � � � Ji�
in which there are at most h late A-jobs and at most k late
B-jobs. By definition, we set C�i�h� k� = +� if no such
schedule exists.
The following relations hold:

Boundary Conditions

C�0�0�0�= 0�

C�i�h� k�=+� if i < 0 or h< 0 or k < 0�

Recursion Relation

f �i� h� k�=


+� if C�i− 1� h� k�+pi > di�

0 otherwise.

C�i�h� k�=




min�C�i− 1� h� k�+pi + f �i� h� k�2

C�i− 1� h− 1� k�� if Ji ∈ J A�

min�C�i− 1� h� k�+pi + f �i� h� k�2

C�i− 1� h� k− 1�� if Ji ∈ J B�

Lemma 7.2. If C�i�h� k� is finite, then it is the minimum
completion time of the last early job over all feasible sched-
ules for the job set �J1� � � � � Ji�, with at most h late A-jobs
and k late B-jobs. If C�i�h� k� is infinite, then there is no
such feasible schedule.

Proof. The proof is by induction on i. Clearly, the prop-
erty holds for i = 1 for any h�k = 1� � � � � n. Now, assume
that the property holds until �i− 1�. We will show that the
property holds also for i and for any h, k.
Let � be a feasible schedule for the job set �J1� � � � � Ji�,

such that the completion time & of the last early job in �
is minimum among all feasible schedules with at most h
late A-jobs and k late B-jobs. First, assume that Ji is an
A-job. If Ji is late in � , then, from the inductive hypothesis,
& =C�i− 1� h− 1� k�. If Ji is early in � , then, again from
the inductive hypothesis, & =C�i−1� h� k�+pi. Hence, the
above recursion relation

∑
UA

i ,
∑

UB
i correctly chooses the

smallest between the two quantities. Note that the schedule
attaining C�i�h� k� is feasible if either C�i−1� h� k�+pi <
di or C�i− 1� h− 1� k� <+�. If neither of the two holds,
there can be no feasible schedule of �J1� � � � � Ji� with at
most h late A-jobs and k late B-jobs, and the algorithm sets
C�i�h� k�=+�. The proof is absolutely symmetrical if Ji
is a B-job. If Ji is late in � , then & = C�i − 1� h� k− 1�,
whereas if Ji is early in � , then & =C�i−1� h� k�+pi. The
schedule attaining C�i� j� k� is feasible if either C�i − 1,
h�k�+pi < di or C�i− 1� h� k− 1� <+�. �

Theorem 7.3. The value h∗ =min�h
 C�nA +nB�h�Q� <
+�� is an optimal solution value to 1�∑UA

i 

∑

UB
i , and

it can be computed in time O�n2AnB + nAn
2
B�.

Proof. Suppose that an optimal schedule � for 1�∑UA
i 
∑

UB
i exists in which

∑
UA

i ��� < h∗. Without loss of gen-
erality, we can assume that � has the structure illustrated
in Lemma 7.1. Note that by definition of h∗, C�nA + nB�∑

UA
i ����Q�=+�. Now let Jj be the last early job in � .

From Lemma 7.2, Cj����C�nA+nB�
∑

UA
i ����Q�. This

implies C�nA + nB�
∑

UA
i ����Q� < +�, a contradiction.

Therefore h∗ is the optimal value for 1�∑UA
i 


∑
UB

i .
We now turn to complexity. Computing each C�i�h� k�

requires constant time, and therefore computing all of them
requires O�n2AnB + nAn

2
B� time. Computing h∗ requires

O�nA� time. The overall complexity is therefore dominated
by the former quantity. �
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8. 1�∑wiC
A
i �

∑
UB

i

Here we observe that the problem in which the agent A
wants to minimize the weighted sum of completion times,
and the agent B accepts that up to a certain number of
his or her own jobs are late is NP-hard. This follows
straightforwardly from the NP-hardness of 1�∑wiC

A
i 


CB
max, proved in §5 (Theorem 5.2). In fact, given an instance

of 1�∑wiC
A
i 
 CB

max � Q, we can define an instance of
1�∑wiC

A
i 


∑
UB

i � Q′ having exactly the same jobs, all
B-jobs have due date Q, and Q′ = 0. Clearly, a feasible
solution to the latter problem is a feasible solution to the
former, and vice versa. Note that the complexity of the
unweighted problem 1�∑CA

i 

∑

UB
i is open.

9. 1�∑CA
i �

∑
CB

i

Here we consider the problem in which both agents wish
to minimize their own total completion time. We show that
even in the unweighted case, the problem is NP-hard.
First, the very same argument of Lemma 5.4 shows that,

with no loss of generality, we can suppose that both agents
order their jobs in SPT order. Hence, for simplicity we
number the jobs of each agent accordingly. We use the
following well-known NP-complete problem (Karp 1972):

Problem 9.1. Partition. Given a set of k integers, S =
�p1� p2� � � � � pk�, let P = ∑k

i=1 pi. Is there a bipartition
�S� 
S� of S such that

∑
i∈S pi =

∑
i∈
S pi = P/2?

For the sake of simplicity, we number the integers in
nondecreasing order, i.e., p1 � p2 � · · ·� pk. First, consider
its recognition form. The following theorem establishes the
complexity of 1�∑CA

i 

∑

CB
i .

Theorem 9.2. 1�∑CA
i 


∑
CB

i is binary NP-hard.

Proof. Membership in NP is trivial. Given an instance of
Partition, define an instance of 1�∑CA

i �QA,
∑

CB
i �QB,

as follows. The two job sets J A and J B are identical, and
each contains k jobs, having length p1� p2� � � � � pk. More-
over, we choose QA =QB = �3/2�P + 2�

∑k
i=1�k− i�pi�.

Consider a schedule � having the following structure.
The two jobs of length p1 are scheduled first, followed by
the two jobs of length p2� � � � � followed by the two jobs of
length pk. We call SPT such a schedule. Note that there
exist exactly 2k SPT schedules, obtained by choosing in all
possible ways the agent who has the precedence in a pair
of jobs having the same length. Also, note that

∑
CA

i ���+∑
CB

i ��� is the same for all SPT solutions. Simple arith-
metic shows that this value is T = 3P + 4

∑k
i=1�k − i�pi,

where P =∑k
i=1 pi. Note that QA =QB = T /2.

Now we consider the cost of an SPT schedule for each
agent. We denote by J ,i- the pair of jobs J A

i and J B
i (both

of length pi). Given an SPT schedule, the notation A≺i B
means that in this schedule J A

i precedes J B
i in J ,i-. Given

an SPT schedule, observe that the contribution to the total
completion time of the jobs in J ,1- is p1 for one agent
and 2p1 for the other, the contribution of the jobs in J ,2- is

2p1+p2 for one agent and 2p1+2p2 for the other, � � � � the
contribution of the jobs in J ,h- is 2p1+2p2+· · ·+2ph−1+
ph for one agent and 2p1 + 2p2 + · · · + 2ph−1 + 2ph for
the other. Hence, in a given SPT schedule, the contribution
of J ,h- to

∑
CA

i can be obtained by adding to 2p1 +
2p2+· · ·+2ph−1+ph either 0 or ph, depending on whether
the agent A precedes the agent B in J ,h- or vice versa for
each h= 1� � � � � k. For the agent B the opposite holds, i.e., if
A≺i B, then the value ph is added. Given an SPT schedule,
let x�0� ph� = 0 if A ≺h B and x�0� ph� = ph if B ≺h A in
the solution, and let x=∑k

h=1 x�0� ph�. Hence, in any SPT
schedule, the total completion time for the agent A is

p1 + x�0� p1�+
+2p1 +p2 + x�0� p2�+

+2p1 + 2p2 +p3 + x�0� p3�+
· · ·

+2p1 + 2p2 + · · ·+ 2ph−1 +ph + x�0� ph�+
· · ·

+2p1 + 2p2 + · · ·+ 2pk−1 +pk + x�0� pk�=

P + 2
( k∑

i=1
�k− i�pi

)
+ x� (5)

whereas for the agent B it is

P + 2
( k∑

i=1
�k− i�pi

)
+ �P − x�� (6)

We next prove that if a feasible schedule � for
1�∑CA

i � T /2,
∑

CB
i � T /2 exists, then � is an SPT

schedule.
Suppose in fact that a feasible schedule � ′ exists that

is not SPT. Then, there must be at least two consecutive
jobs in � ′, say J A

i and J B
j , such that pi > pj . Now if we

swap the two jobs, we obtain a new schedule �∗ such that∑
CA

i ��
∗�=∑

CA
i ��

′�+pj and
∑

CB
i ��

∗�=∑
CB

i ��
′�−

pi. Because pi > pj , one has
∑

CA
i ��

′� + ∑
CB

i ��
′� >∑

CA
i ��

∗� +∑
CB

i ��
∗�, i.e., the overall total completion

time
∑

CA
i +∑

CB
i has decreased by the amount pi − pj .

So, each B-job following a longer A-job can be swapped
with the A-job, until no such pair of jobs exists. At each
swap, the overall total completion time of the solution
decreases. We could have symmetrical discussion for each
A-job following a longer B-job. This time, if we swap them,
the agent A gains pu and the agent B loses pv, and so the
overall total completion time of the solution decreases by
pu −pv. By repeatedly applying the above swaps, we even-
tually find an SPT solution. However, because the solution
we started with, � ′, was feasible, its overall total com-
pletion time cannot exceed 3P + 4

∑k
i=1�k− i�pi. At each

swap, the overall total completion time of the solution
actually decreased. However, we ended up with an SPT
schedule, whose weight is exactly 3P + 4

∑k
i=1�k− i�pi, a
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contradiction. Therefore, only SPT schedules can be fea-
sible. For a schedule to be feasible, the total completion
time for both agents must be T /2. Recalling the expres-
sions (5) and (6) of the completion times for the agents A
and B in an SPT solution, we observe that a feasible solu-
tion to 1�∑CA

i � T /2,
∑

CB
i � T /2 may exist if and only

if x = P/2, i.e., if and only if there is a solution to the
instance of Partition. �

We next illustrate a dynamic-programming, pseudopoly-
nomial algorithm for 1�∑CA

i 

∑

CB
i . The approach

exploits the property that the jobs of J A and J B are SPT
ordered. In what follows, we denote by P�i� j� the sum
of the processing times of the i shortest A-jobs and the
j shortest B-jobs.
Let F �i� j� q� denote the value of an optimal solution

to the instance of 1�∑CA
i 


∑
CB

i in which only jobs
J A
1 � J

A
2 � � � � � J

A
i and J B

1 � J
B
2 � � � � � J

B
j are considered. In an

optimal solution to this problem, the last job is either J A
i

or J B
j . In the former case, the contribution of J A

i (given
by P�i − 1� j� + pA

i ) must be added to the optimal solu-
tion up to that point. In the latter case, the completion time
of J B

j is P�i� j�. Therefore, using the following dynamic-
programming formula

F �i� j� q�=min
{
F �i− 1� j� q�+P�i− 1� j�+pA

i 2

F �i� j − 1� q−P�i� j��
}
� (7)

F �nA�nB�Q� gives the optimal solution value. Because
each quantity F �i� j� q� can be computed in constant time,
the following theorem holds:

Theorem 9.3. 1�∑CA
i 


∑
CB

i can be solved in time
O�nAnBQ�.

Formula (7) must be suitably initialized, by setting
F �0�0� q�= 0 for all q = 0� � � � �Q and F �i� j� q�=+� for
q < 0.

10. Shop Problems
In this section, we address the case in which the process-
ing resource shared by the two agents is a complex shop
system. We will investigate the two simplest cases, i.e.,
two-machine flow shop and two-machine open shop, with
the simplest objective function, i.e., Cmax. We will show
that even in these cases, the problems are hard.
Let us briefly rule out a special shop problem, namely

the case of a job shop in which each agent has exactly one
job. For general nonregular, quasiconvex objective func-
tions of the two jobs’ completion times (note that this
includes regular functions as a special case), Agnetis et al.
(2000) show that the solution to CP can be found in time
O�nAnB lognAnB+ logP�, where nA and nB are the number
of tasks of the two jobs, and P denotes the sum of all the
processing times of the two jobs.

10.1. F2�CA
max � C

B
max

Let us consider a two-machine flow shop and let us limit
ourselves to the simplest case, where both agents wish to
complete their jobs as soon as possible. We show that even
this problem is binary NP-hard. It is easy to show that
any other combination of objective functions (among those
considered in this paper) is also NP-hard.
Let pX

ih be the processing time of job J X
i on machine h

(X =A�B, h= 1�2).

Theorem 10.1. F 2�CA
max 
 C

B
max is NP-hard.

Proof. We reduce Partition (see §9) to this problem.
Denote the k integers of Partition as pi, i = 1� � � � � k. Let
P =∑k

i=1 pi and 4= 1/�k+ 1�.
Consider an instance of the problem in recognition form,

F 2�CA
max � QA, C

B
max � QB, where the agent A has nA =

k jobs, and the agent B has only one job �nB = 1�. All the
A-jobs have processing time pA

i1 = 4 on the first machine,
while the length of the jobs on the second machine is equal
to pA

i2 = pi for all i = 1� � � � � k. The B-job has process-
ing times pB

11 = P/2 − �k − 1�4 and pB
12 = P/2. Finally,

let QA = 3P/2 + 4, QB = P + 4. The constraint CB
max �

QB = P + 4 can be satisfied only if the B-job starts pro-
cessing on the second machine not after time P/2 + 4,
thus completing within time P + 4. Hence, in a feasible
solution, the total processing time of the A-jobs preceding
J B
1 on the second machine (call S this subset of J A) can-
not be greater than P/2, otherwise J B

1 would complete
after QB. Moreover, J B

1 cannot complete on the second
machine before pB

11+pB
12 = P − �k− 1�4, and therefore the

constraint CA
max �QA = 3P/2+4 can be satisfied only if the

total processing time of the A-jobs following J B
1 on the sec-

ond machine is smaller or equal to �P/2+ k4� = P/2 (see
Figure 2). Hence, because the total length of the A-jobs is
P , the total length of the A-jobs preceding and following
the B-job must equal P/2; that is, a feasible schedule exists
if and only if the corresponding instance of Partition is a
yes instance. �

10.2. O2�CA
max � C

B
max

A similar result holds for the open shop with two machines
when both agents wish to complete their jobs as soon as
possible. Again, pX

ih denotes the processing time of job J X
i

on machine h �X =A�B, h= 1�2�.

Figure 2. Reduction of Partition to F 2�CA
max � QA,

CB
max �QB.

0
P/2 + P + 3P/2 +

M1

M2

(k – 1) B
A

ε
ε

εε εε
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Figure 3. Reduction of Partition to O2�CA
max �QA,

CB
max �QB.

0

J1
B

J1
BS JA – S

P/2 P 3P/ 2

M1

M2

SJA – S

0

J1
B

J1
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P/2 P 3P/ 2
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SJ A– S

Theorem 10.2. O2�CA
max 
 C

B
max is NP-hard.

Proof. We reduce Partition (see §9) to this problem. Given
an instance of Partition, consider an instance of O2�CA

max �

QA, C
B
max � QB, where the agent A has nA = k jobs, and

the agent B has only one job �nB = 1�. Each A-job has
the same processing time on the two machines, equal to
the integers of Partition �pA

i1 = pA
i2 = pi, i = 1� � � � � k�.

The B-job has processing time P/2 on both machines,
i.e., pB

11 = pB
12 = P/2. Finally, choose QA = 3P/2, QB = P .

Note that for the B-job only two cases are possible, i.e.,
visit first M1 and then M2 or vice versa (see Figure 3).
The constraint CB

max �QB = P can be satisfied only if the
B-job starts processing on one of the two machines at
time 0 and on the other machine at time P/2, thus com-
pleting at time P . Hence, in a feasible solution, all the
A-jobs processed from 0 to P/2 are processed on the same
machine, and hence their total processing time must be
smaller or equal to P/2. On the other hand, because no
A-job completes after QA = 3P/2, and because

∑nA
i=1 p

A
i +∑nB

i=1 p
B
i = 2P , the total processing time of the A-jobs pro-

cessed from 0 to P/2 must equal P/2. Hence, a feasible
schedule exists if and only if the corresponding instance of
Partition is a yes instance. �

11. Pareto-Optimization Problems
In this section, we consider the situation in which the
two agents wish to determine all the nondominated pairs
�yA

1 � y
B
1 �� �y

A
2 � y

B
2 �� � � � � �y

A
k � y

B
k �. With each nondominated

pair �yA
i � y

B
i �, we associate one nondominated sched-

ule �i such that f A��i� = yA
i , f B��i� = yB

i . Let � =
��1� � � � ��k�. PP consists of determining � .
A straightforward way to do this is to repeatedly solve

instances of the corresponding CP for decreasing values
of Q. After computing a nondominated optimal schedule
for 1�f A 
 f B � Q, let Q′ be the value of f B in such
a schedule (clearly, Q′ � Q). We then solve 1�f A 
 f B �

Q′ − 4, where 4 > 0 is small enough to ensure that no non-
dominated schedule is missed, and so on. Thus, we have
the scheme shown in Figure 4.

Figure 4. Scheme for enumerating nondominated
schedules.

PP {
S := ∅; Q := +∞; i := 0
while 1||fA : fB ≤ Q is feasible

{
i := i + 1
σi := nondominated optimal solution to 1||fA : fB ≤ Q

S := S ∪ σi

Q′ := fB(σi)
Q := Q′ − ε

}
}

Note that, depending on the particular problem, we may
have a number of nondominated pairs (and thus a car-
dinality for � ) which is polynomially bounded (or not).
The scheme in Figure 4 turns out to be polynomial for
those problems with a polynomial number of nondominated
pairs, of course provided that the corresponding CP version
is polynomially solvable. As we saw in §§4.1 and 5.2.1, in
some cases we are able to find an optimal solution for CP
which is also nondominated. Otherwise, we have to resort
to a binary search (§3.1), but the computation time is still
polynomial.
In this section, we elaborate on the cardinality of � in

the single-machine cases for which we have solved the cor-
responding CP.

11.1. 1�fAmax � fBmax

Here we address the situation in which both agents want to
minimize the maximum of regular functions.

Lemma 11.1. Let �yA� yB� and �ỹA� ỹB� be two nondomi-
nated pairs, with yA < ỹA and yB > ỹB. Given an A-job J A

h

and a B-job J B
k , there exist two nondominated schedules

� and �̃ (corresponding to �yA� yB� and �ỹA� ỹB�, respec-
tively) such that if J B

k precedes J A
h in � , then J B

k precedes
J A
h also in �̃ .

Proof. Consider two nondominated schedules � ′ and � ′′,
corresponding to �yA� yB� and �ỹA� ỹB�, respectively. We
next prove that, if J B

k precedes J A
h in � ′ and J B

k follows J A
h

in � ′′, it is possible to build two nondominated schedules �
and �̃ for which the lemma holds. This is done in two
different ways. In the first subcase (i), we show that there
exist two nondominated schedules with J B

k preceding J A
h in

both. In the second subcase (ii), we show that there exist
two nondominated schedules with J A

h preceding J B
k in both.

(i) CB
k ��

′′� � CA
h ��

′�. Call 6 the sequence of jobs
between J A

h and J B
k in � ′′. We let � 
= � ′ and let �̃ be

the schedule obtained from � ′′ by moving J A
h after job

J B
k , i.e., replacing the sequence � � � J A

h �6� J
B
k � � � with � � � 6,

J B
k � J

A
h � � � � Note that in �̃ , job J A

h completes at time
CB

k ��
′′�, and therefore its associated cost f A

h �CB
k ��

′′�� is
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not greater than f A
h �CA

h ��
′�� � yA < ỹA. However, no job

other than J A
h is delayed in �̃ as compared to � ′′. Hence,

�̃ is another nondominated schedule for the pair �ỹA� ỹB�.
(ii) CB

k ��
′′� > CA

h ��
′�. Call 7 the sequence of jobs

between J B
k and J A

h in � ′. We let �̃ 
= � ′′ and let � be
obtained from � ′ by moving J B

k after job J A
h , i.e., replacing

the sequence � � � J B
k �7� J A

h � � � with � � �7� J A
h � J

B
k � � � � Note

that in � , job J B
k completes at time CA

h ��
′�, and there-

fore its associated cost f B
k �C

A
h ��

′�� is not greater than
f B
k �C

B
k ��

′′��� ỹB < yB. However, no job other than J B
k is

delayed in � as compared to � ′. Hence, � is another non-
dominated schedule for the pair �yA� yB�. �

Lemma 11.2. Let �yA� yB� and �ỹA� ỹB� be two nondomi-
nated pairs, with yA < ỹA and yB > ỹB. There exist two non-
dominated schedules � and �̃ (corresponding to �yA� yB�
and �ỹA� ỹB�, respectively) such that if J B

k precedes J A
h in � ,

then J B
k precedes J A

h also in �̃ for any J A
h ∈ J A and J B

k ∈ J B.

Proof. Consider two nondominated schedules � ′ and � ′′,
corresponding to �yA� yB� and �ỹA� ỹB�, respectively, and
any two jobs J A

h ∈ J A and J B
k ∈ J B. If J A

h precedes J B
k in

� ′ or J B
k precedes J A

h in � ′′, the lemma holds. So, we only
need to take care of the contrary job pairs J A

h , J
B
k such that

J A
h follows J B

k in � ′ and J A
h precedes J B

k in � ′′. Consider
one contrary job pair. By applying the constructive proof of
Lemma 11.1, we can enforce the condition of Lemma 11.1
for J A

h � J
B
k , and thus eliminate such a contrary pair. This is

done by either delaying J B
k in � ′ or by delaying J A

h in � ′′.
Delaying a B-job in � ′ can only increase the number of
A-jobs preceding that B-job. Similarly, delaying an A-job
in � ′′ can only increase the number of B-jobs preceding
that A-job. Hence, in both cases we cannot create any new
contrary job pair. By repeatedly applying Lemma 11.1, we
eventually find two nondominated schedules � and �̃ hav-
ing no contrary job pairs. �

Theorem 11.3. There are at most nAnB nondominated
schedules in 1�f A

max � f B
max.

Proof. Starting from Q=+�, the scheme PP generates a
succession of nondominated schedules �1��2� � � � � Let �
and �̃ denote the two nondominated schedules obtained
at consecutive iterations of the scheme for decreasing val-
ues of Q, corresponding to nondominated pairs �yA� yB�
and �ỹA� ỹB�, respectively. Let J B

k∗ be the job attaining the
cost value yB in � . Note that CB

k∗��̃� < CB
k∗���, because

ỹB < yB. So, some jobs preceding J B
k∗ in � must follow

it in �̃ . Among them, there must be at least one A-job.
If not, then at least one B-job preceding J B

k∗ in � would
complete at time CB

k∗��� or later, thus attaining a cost
value not smaller than yB, a contradiction. Thus, there
must be at least one pair of jobs J A

h ∈ J A, J B
k ∈ J B, which

exchange their relative ordering when switching from �
to �̃ . Lemma 11.2 guarantees that these two jobs will not
reverse their relative ordering when Q is further decreased.
Hence, throughout the execution of the scheme PP, each
B-job overtakes each A-job at most once. Even supposing

that two consecutive nondominated schedules only differ
for one such pair of jobs, there can be no more than nAnB

nondominated schedules. �

We already observed that the scheme PP in Figure 4
must be applied with a sufficiently small 4 > 0 in order not
to miss any nondominated solution. In this case, the 4 to
be used depends on the actual shape of the f functions. If
their slope is small, small values of 4 may be needed.

11.2. 1�∑CA
i � fBmax

We next address only the situation in which one of the two
agents has

∑
Ci as his or her objective function. The more

general case of
∑

wiCi is open.
Without loss of generality, let A be the agent with

∑
Ci

objective. From Lemma 5.4 we know that in any non-
dominated schedule, the jobs of J A are SPT ordered. As
Q decreases, the optimal schedule for 1�∑CA

i 
 f B
max � Q

changes. The next lemma shows that when the constraint
on the objective function of the agent B becomes tighter,
the completion time of no A-job can decrease.

Lemma 11.4. Let � be an optimal schedule for 1�∑CA
i 


f B
max � Q, and consider job j ∈ J A. Let � ′ be an opti-

mal schedule for 1�∑CA
i 
 f B

max � Q′, with Q′ <Q. Then,
Cj��

′��Cj���.

Proof. Suppose that the opposite holds, that is, Cj��
′� <

Cj���. Because the A-jobs are always SPT ordered, the
A-jobs preceding j in � ′ are the same as in � . There-
fore, there must be some B-jobs preceding j in � and
following j in � ′, whose cumulative processing time is
at least Cj��� − Cj��

′�. Among these B-jobs, let u be
the one which is completed last in � ′. Hence, Cu��

′� �
Cj���. Because fu�Cu��

′�� � Q′ and Q′ < Q, then also
fu�Cj���� < Q. The latter inequality implies that if, in � ,
we move u from its current position to the position imme-
diately after j , we obtain a new schedule which is cer-
tainly feasible for 1�∑CA

i 
 f B
max �Q, and is strictly better

than � , because the completion time of j has decreased
by pu. This is a contradiction. �

A straightforward consequence of the above lemma is
the following.

Lemma 11.5. Let � be an optimal schedule for 1�∑CA
i 


f B
max � Q, and suppose that k ∈ J B precedes j ∈ J A in � .

Then, if � ′ is an optimal schedule for 1�∑CA
i 
 f B

max �Q′,
with Q′ <Q, k precedes j also in � ′.

Proof. Suppose by contradiction that k ∈ J B follows
j ∈ J A in � ′. From Lemma 11.4, Cj��

′� � Cj���. So,
Ck��

′� > Cj���. Therefore, moving k to follow right after j
in � results in a schedule, say � ′′, with Ck��

′′�=Cj��� <
Ck��

′�, and hence, is feasible for 1�∑CA
i 
 f B

max � Q.
Because A-jobs between k and j in � are done earlier
in � ′′,

∑
CA

i ��
′′� <

∑
CA

i ���. This is a contradiction. �

Lemma 11.5 shows that, once a B-job overtakes (i.e.,
it is done before) an A-job, as Q is decreased, no reverse
overtake can occur when Q decreases further.
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Theorem 11.6. There are at most nAnB nondominated
schedules in 1�∑CA

i � f B
max.

Proof. Starting from Q = +�, the scheme PP generates
a succession of nondominated schedules �1��2� � � � � Let
� and � ′ denote the two nondominated schedules obtained
at consecutive iterations of the scheme. Because the two
schedules must be different, there must be at least one pair
of jobs h ∈ J B, j ∈ J A, which exchange their relative order-
ing when switching from � to � ′, i.e., h follows j in �
and h precedes j in � ′ (otherwise the value of

∑
Ci would

be the same in both schedules). Lemma 11.5 guarantees
that these two jobs will not reverse their relative ordering
when Q is further decreased. Hence, throughout the execu-
tion of the scheme PP, each B-job overtakes each A-job at
most once. Even supposing that two consecutive nondomi-
nated schedules only differ for one such pair of jobs, there
can be no more than nAnB nondominated schedules. �

The scheme given in Figure 4 works for any 0< 4� 1.

11.3. 1�fAmax �
∑

UB
i , 1�

∑
wiC

A
i �∑UB

i , and
1�∑UA

i �∑UB
i

When at least one of the agents has
∑

Ui as an objective
function, the number of nondominated schedules is obvi-
ously linear. The scheme PP in Figure 4 can be applied
with 0< 4� 1.

11.4. 1�∑CA
i �∑CB

i

We have seen in §9 that finding one nondominated solution
for 1�∑CA

i �∑CB
i is binary NP-hard. We next show that

the number of nondominated solutions may be exponential
with respect to the instance size.

Example 11.7. Consider an instance in which the sets J A

and J B are identical. Each set consists of k jobs of size
p0 = 1, p1 = 2, p2 = 4, p3 = 8� � � � � pk−1 = 2k−1. Now con-
sider a subset of all possible schedules, namely those in
which the two jobs of length p0 are scheduled first, then
the two jobs of length p1, the two of length p2, etc. Let �
be one such schedule. In � , for each pair of jobs having
equal length, either A’s or B’s job is scheduled first. Call �J A

the set of job pair indices in which the A-job precedes the
B-job having the same length in � , and �J B the set of pair
indices in which the opposite holds in � . Consider job J A

h .
If it is scheduled before J B

h , its contribution to the cost
function is 2h+2�2h−1�, otherwise it is 2�2h�+2�2h−1�.
Hence, the total completion time for the agent A is given by

∑
h∈JA

CA
h = ∑

h∈ �JA

�2h+1 + 2h − 2�+ ∑
h∈ �J B

�2h+2 − 2� (8)

= ∑
h∈ �JA

�3�2h�− 2�+ ∑
h∈ �J B

�4�2h�− 2� (9)

=
k−1∑
h=0

3�2h�− 2k+ ∑
h∈ �J B

2h� (10)

Note that only the last term in expression (10) depends
on the actual schedule � . This expression shows that the
quantity

∑
h∈JA CA

h may attain 2k different values, one for
each possible set �J B. Symmetrically, the same analysis for
the agent B yields

∑
h∈J B

CB
h =

k−1∑
h=0

3�2h�− 2k+ ∑
h∈ �JA

2h� (11)

Because obviously
∑

h∈ �J B 2h +∑
h∈ �JA 2h = 2k − 1, for each

choice of the set �J A we find a nondominated solution.

The scheme PP in Figure 4 works for any 0< 4� 1.

12. Conclusions
In this paper, we propose a novel approach for model-
ing scheduling problems in a multiagent environment. In
particular, we address the problem in which two agents
compete for the usage of shared processing resources,
and each agent has his or her own criterion to optimize.
Our approach complements other contributions arising in
different research areas, such as game theory, probabilis-
tic scheduling, multiagent systems, and market mecha-
nisms. Rather than analyzing negotiation protocols, we
focus directly on schedule generation. In PP, we tackle
the problem of generating a minimum set of alternative
schedules to provide an operational basis for negotiation.
In this case, the negotiation process takes place after a
set of (Pareto-optimal) schedules has been generated, and
consists of reaching an agreement over one of them. In
the CP model, negotiation takes place before computing a
schedule, and consists of specifying minimum performance
values for one of the two agents, i.e., the value Q.
Several different directions for future research may be

foreseen.
• Generalization of the problems to more than two

agents. Note that in some cases such extension is fairly
straightforward. For instance, the polynomial solution
approaches of §§4 and 7 can be easily extended to the
k-agents problems 1�f 1

max 
 f
2
max � Q2� � � � � f k

max � Qk and
1�∑U 1

i 

∑

U 2
i � Q2� � � � �

∑
Uk

i � Qk. On the contrary,
the complexity of “mixed” situations such as, for instance,
1�∑C1

i 
 f
2
max �Q2,

∑
U 3

i �Q3 is less obvious.
• Design of effective enumeration algorithms for com-

putationally hard cases.
• Design of approximation algorithms and polynomial

approximation schemes for hard cases.
• Extension to different resource usage modes (concur-

rent usage, preemption, etc.) and/or different system struc-
tures (e.g., parallel machines).
• Analysis of online scenarios or semi-online scenarios.
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