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ABSTRACT

We study the resource investment decision faced by a firm that offers two demand-

classes (i.e., products, services), while incorporating the firm’s pricing decision into the

investment decision. For this purpose, we consider a monopolistic situation and model the

demand curve of each demand-class as a downward sloping linear function of its own price.

The firm can invest in dedicated resources, which can only satisfy a specific demand-class,

and/or in a more expensive, flexible resource, which can satisfy both demand-classes.

We consider a two-stage stochastic decision model: In the first stage, the firm deter-

mines the dedicated and flexible resource capacities to invest in under demand uncertainty.

In the second stage, demand curves are realized and the firm optimizes its revenue through

pricing and resource allocation decisions, constrained by its capacity investment decision

in the first stage.

Our analysis provides the structure of the firm’s optimal resource investment strategy

as a function of price elasticities and investment costs, and shows how the value of resource

flexibility depends on these parameters and demand correlations. Based on our analysis,

we provide principles on the firm’s optimal resource investment strategy under uncertainty.

We show that it can be optimal for the firm to invest in the flexible resource when

demand patterns are perfectly positively correlated, while it is not always optimal to invest

in the flexible resource when demand patterns are perfectly negatively correlated.
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Chapter 1

Introduction

1.1 Introduction and Motivation

The resource investment decision in several industries is characterized by long investment

lead times (for example, 3-5 years in the automotive industry) and economies of scale

in investment costs. These necessitate the resource investment decision to be made early,

under high demand uncertainty. An example is the automotive industry, where the average

deviation of the demand forecast in the capacity investment stage from the actual sales is

about 40% [Bish et al. (2001), Jordan and Graves (1995)].

One strategy that can be used to hedge against demand uncertainty in the investment

stage is to invest in “flexible resources,” where flexible resources refer to the resources with

the ability to satisfy multiple “demand-classes” (i.e., products, services). Investments in

resource flexibility enable the firm to balance its supply with demand more effectively, while

reducing inter-period inventories, and enhance its competitiveness in the market place.

Since flexible resources are more expensive to invest in than dedicated resources, ef-

fective strategies for designing and managing flexible resources are highly valuable for
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management. Unfortunately, research that focuses on resource flexibility and analyzes its

value is very limited. Today’s market place is becoming more and more uncertain and

extremely competitive. Therefore, there is a great need to understand the structure of

the firm’s optimal strategy for investing in flexible resources in order to get insights into

managerial level decisions.

On the other hand, demand-side controls, such as pricing, can offer another valuable

strategy to reduce supply-demand imbalances. Most previous research that has studied

the value of resource flexibility has ignored the effect of pricing on the firm’s resource

investment decision. Therefore, in this research, we would like to answer the following

research questions: When should we invest in flexible resources? What is the structure of

the firm’s optimal investment and pricing strategy? How does the firm’s optimal investment

strategy depend on demand correlations and price elasticities?

The next section presents our research objectives.

1.2 Research Objectives

Our research objectives are:

• To understand the structure of the firm’s optimal resource investment strategy under

demand uncertainty;

• To understand how the optimal investment strategy depends on price elasticities and

demand correlations;

• To offer managerial guidelines and principles on the firm’s optimal resource invest-

ment decision based on the insights obtained.



3

1.3 Research Approach

We consider a two demand-class problem. In particular, we consider two demand-classes,

since this case is analytically tractable, while being sufficient to capture the important

elements of the problem. In this research, a two-stage stochastic decision model is devel-

oped, where in the first stage (a long time before production starts), the firm determines

its resource investment under demand uncertainty. The shapes of the demand curves are

known in stage 1, but the locations of the curves are unknown. In the second stage (a

short time before production starts), the firm optimizes its profit through pricing and re-

source allocation decisions, which are constrained by its resource investment in the first

stage. Our objective is to analyze the interactions between the firm’s optimal investment

strategy, pricing, and demand correlations so that we can provide principles and guidelines

on the firm’s optimal investment strategy at the managerial level.

This thesis is organized as follows. In Chapter 2, we present a brief review of the re-

lated literature. In Chapter 3, we introduce our model and assumptions. Chapters 4 and 5

provide our analysis on the characterization of the optimal pricing and resource allocation

strategy in stage 2, and the optimal investment strategy in stage 1, respectively. In Chap-

ter 6, we discuss the impact of demand correlations, i.e., perfectly positively correlated

and perfectly negatively correlated demand patterns, on the value of resource flexibility.

Finally, Chapter 7 presents the summary of the contributions in this study and suggestions

on future research directions.



Chapter 2

Literature Review

There are two papers that are very related to this research: the papers by Fine and Freund

(1990) and Van Mieghem (1998), in the sense that both papers address the resource invest-

ment problem for a two demand-class problem using a two-stage stochastic programming

formulation. In what follows, we refer to Fine and Freund (1990) as FF and Van Mieghem

(1998) as VM.

FF study the firm’s optimal resource investment strategy in the presence of flexible re-

sources. FF formulate the problem as a two-stage stochastic programming decision model.

In the first stage, the firm makes its resource investment decision under demand uncer-

tainty, which is characterized by a set of possible scenarios. In the second stage, the firm

optimizes its profit, given realizations of demand. FF characterize the optimal resource

investment decision for the two demand-class case. They also provide numerical analysis

on the sensitivity of the firm’s optimal capacity investment decision to the investment costs

and demand correlations. In FF’s study, price elasticity is implicitly considered through

concave revenue functions. Although our model is similar to theirs, we consider demand

4
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uncertainty through a continuous error term rather than a set of possible scenarios. Based

on this, we build a new characterization of the firm’s optimal investment strategy and its

sensitivity to various parameters such as price elasticities of demand, investment costs and

demand correlations.

VM studies a similar problem, considering that the firm is a price-taker, i.e., prices

are exogenously determined. VM also formulates the problem as a two-stage decision

problem. In stage 1, the firm determines its optimal resource investment strategy before

the resolution of the demand uncertainty. In stage 2, i.e., when demands are realized, the

firm decides on the allocation of the resources to the two demand-classes. VM uses a multi-

dimensional newsvendor model to characterize the firm’s optimal investment strategy. In

that sense, our model can be considered an extension of VM’s work to incorporate the

pricing decision into the optimal investment strategy. VM states that the flexible resource

can be considered as an optimal cost/benefit response to the variability in demand. He

analyzes the perfectly positive and negative correlations between the two demand-classes

and demonstrates that “the optimal levels of dedicated capacity increase in a concave

manner as correlation increases, while the optimal level of flexible capacity decreases in a

convex manner (page 1078 in Van Mieghem (1998)).” In addition, VM shows that when

the prices are different, it can be advantageous to invest in the flexible resource even when

demands are perfectly positively correlated.

“Flexibility” mentioned above can be seen as “full flexibility,” since the flexible resource

can be used to satisfy any demand-class. Some researchers have analyzed the “partial flex-

ibility” or “limited flexibility” case, where the flexible resources can be used to satisfy only

a subset of demand-classes. For example, Bassok, Anupindi and Akella (1999) consider the
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problem of determining the optimal order quantities in a multi-product inventory system

that allows “full downward substitution,” i.e., demand of one product can be substituted

by any product with a higher value. In their model, the order quantities are determined

under demand uncertainty, while the allocation of products to demands is determined after

demands are realized. They study properties of the optimal strategy and show that it can

be highly beneficial to consider the substitution possibility at the ordering stage, especially

in cases of high demand variability, low substitution cost, low profit margins, and product

similarity.

Another extension is considered by Netessine, Dobson and Shumsky (2002). Netessine,

Dobson and Shumsky study a single-period two-stage stochastic system under exogenously

determined prices. They consider only one-level substitution, present an analytical so-

lution for the optimal resource investment levels, and characterize the impact of demand

correlation on the optimal investment decision. Netessine, Dobson and Shumsky show that

for two types of demand-classes, as the demand correlation increases, there is a shift from

flexible resource to dedicated resources.

We want to note here that most of the existing literature considers prices as given while

addressing the value of resource flexibility. An exception is the work by Birge, Drogosz

and Duenyas (1998), who study the single-period newsvendor problem of determining the

optimal resource investment level and prices for two substitutable products. However, in

their model, it is the customers who substitute among the different demand-classes, and

not the firm. See also Petruzzi and Dada (1999) for a review of pricing models for the

single product case.
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Other relevant research includes research that addresses the optimal resource invest-

ment strategy in a multi-period setting, such as Caulkins and Fine (1990), Eberly and

Van Mieghem (1997), and Harrison and Van Mieghem (1999); and in a multi-product

multi-plant setting such as Jordan and Graves (1995) and Li and Tirupati (1994).



Chapter 3

Model, Notation, and Preliminaries

We consider a firm that offers multiple demand-classes (i.e., service levels/products). The

firm needs to determine its resource investment decision under high demand uncertainty,

and then makes its pricing and resource allocation decision as demands are realized. We

model this decision problem as a two-stage stochastic programming problem, as commonly

done in the previous literature. In the first stage, the firm determines its resource in-

vestment under uncertainty so as to maximize its expected profit. In the second stage,

uncertainty is resolved and the firm jointly determines its pricing and resource allocation

to maximize its revenue. Thus, the firm utilizes an integrated resource flexibility/price

postponement strategy in the second stage.

Our model can be characterized as a multi-dimensional newsvendor model with pricing

[see, for instance, Petruzzi and Dada (1999) and Porteus (1990) for the single newsvendor

problem]. In particular, we consider two demand-classes, since this case is analytically

tractable, while being sufficient to capture the important elements of the problem. Thus,

the firm has the option to invest in two dedicated resources, each of which can satisfy

8
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only one demand-class, and/or in a more expensive, flexible resource that can satisfy both

demand-classes. We model the demand for each demand-class i (di), as a downward-sloping

linear function of its own price (or contribution margin), denoted as pi. That is, for i = 1, 2,

di = ξi − αipi,

where αi > 0 is the price-elasticity of demand and ξi is the intercept. In the first stage of

our stochastic program, we model each ξi, i = 1, 2, as a continuous random variable with

positive support in [0,∞); this represents the uncertainty in the market size (long-term

uncertainty). Let fi(·), Fi(·), and F̄i(·) respectively denote the probability density function

(pdf), cumulative distribution function (CDF), and the tail distribution of ξi, i = 1, 2.

Throughout the thesis, we do not make any distributional assumptions on ξ1 and ξ2.

Therefore, all the following results hold for any continuous distribution of ξ1 and ξ2 defined

over [0,∞).

The firm seeks a coordinated resource investment, pricing, and allocation strategy to

maximize its expected profit. In stage 1, the values of random variables ~ξ = (ξ1, ξ2) are

uncertain. At this time, the firm makes its resource investment decision, ~K = (K1,K2,Kf ),

so as to maximize its expected profit, where Ki corresponds to the investment level for

dedicated resource i, i = 1, 2, and Kf that for the flexible resource. Let KT ≡ K1 + K2 +

Kf and V ( ~K) denote the expected profit in stage 1, which equals the expected revenue

( E[Π( ~K, ~ξ)] ) less the investment costs. Then, in stage 2 uncertainty is resolved (i.e., the

realization εi of random variable ξi is observed for i = 1, 2) and the firm maximizes its

profit through pricing (pi, i = 1, 2) and resource allocation decisions, constrained by its
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earlier investment decision. Let ~x = (y1, y2, z1, z2) denote the resource allocation vector in

stage 2, where yi and zi respectively correspond to the amount of class i demand satisfied

using the dedicated resource and the flexible resource, for i = 1, 2. As in the earlier

literature, we assume that investment costs are linear – all our results readily extend to

convex investment costs – and that the variable cost of satisfying a demand-class is the

same for the dedicated and the flexible resource. Let ci denote the unit cost of investing

in resource Ki, i = 1, 2, f , where c1, c2 < cf . In addition, we consider that cf < c1 + c2;

otherwise the problem becomes trivial (i.e., we never invest in the flexible resource).

This decision problem can be formulated as the following stochastic program:

(Stage 1 Problem) P1 : max
~K≥0

V ( ~K) = E[Π( ~K, ~ξ)]−
∑

i=1,2,f

ciKi (1)

(Stage 2 Problem) P2 : max
~x, ~p

Π( ~K,~ε) =
2∑

i=1

pi(yi + zi)

subject to

yi ≤ Ki, i = 1, 2 (2)

z1 + z2 ≤ Kf (3)

yi + zi ≤ εi − αipi, i = 1, 2 (4)

pi ≤ εi

αi
, i = 1, 2 (5)

yi, zi, pi ≥ 0, i = 1, 2 (6)

In the above formulation, constraints (2) and (3) are the capacity constraints for the

dedicated and flexible resources, respectively, whereas constraints (4) ensure that the total

amount of each demand-class satisfied does not exceed its demand, induced by the firm’s
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pricing decision. Finally, constraints (5) and (6) are the non-negativity constraints for

demands, allocation quantities, and prices, respectively.

Observe that we can write constraints (4) as equalities, since any solution with excess

demand would be sub-optimal for Problem P2 (i.e., price can be further increased to reduce

demand to the overall capacity level, resulting in a higher revenue), but of course, we can

have excess capacity. Based on this observation, we can write the following equivalent

formulation.

(Stage 2 Problem) P ′
2 : max

~p
Π( ~K,~ε) =

2∑

i=1

pi(εi − αipi)

subject to

pi ≥ εi −Ki −Kf

αi
, i = 1, 2 ←− λi (7)

α1p1 + α2p2 ≥ ε1 + ε2 −K1 −K2 −Kf ←− µ (8)

where λi, i = 1, 2, and µ represent the corresponding Lagrangian multiplier for each con-

straint. Observe that we have omitted the demand non-negativity constraints, yi + zi =

εi−αipi ≥ 0, i = 1, 2, and price non-negativity constraints. The optimal solution will always

satisfy them, since the amount of demand-class i satisfied will be at least min( εi
2 ,Ki) ≥ 0,

which is the optimal solution in the absence of the flexible resource, as detailed below.

Equivalently, the optimal price of demand-class i will be at most max( εi
2αi

, εi−Ki
αi

). Thus,

there exists a feasible solution, which generates a non-negative revenue for demand-class i

without affecting the available capacity for demand-class j 6= i, given by Kj + Kf . Hence,

demand and price non-negativity constraints can be eliminated.

For convenience, we are going to use this equivalent formulation when we characterize
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the optimal solution to the stage 2 problem in the next section. In our formulation, we

assume zero penalty cost for a lost sale rather than a forfeited profit. This is because the

firm is a price-setter and determines how much demand to satisfy through pricing. However,

a penalty cost per unsatisfied unit of demand or a salvage value for unused capacity can

be included in the model without changing the structure of the results.

Finally, observe that when the flexible resource is not available or it is not considered in

the investment decision, the investment decision will decompose by each demand-class, in

which case the optimal dedicated resource capacity for each demand-class can be obtained

independently. We will refer to this case as the “dedicated system.” Below we introduce

the formulation for each demand-class in the dedicated system and use it subsequently in

our analysis.

(Class i Stage 1 Problem) P1 (i) : max
Ki≥0

Vi(Ki) ≡ E[Πi(Ki, ξi)]− ciKi (9)

(Class i Stage 2 Problem) P ′
2 (i) : max

pi
Πi(Ki, εi) = pi(εi − αipi) (10)

subject to

pi ≥ εi −Ki

αi
←− γi

where γi denotes the corresponding Lagrangian multiplier.

Let pI
i and γI

i denote the optimal solution to demand-class i′s Stage 2 Problem,

P ′
2(i), i = 1, 2. Since Πi is strictly concave in pi, the first-order Karush-Kuhn-Tucker

(KKT) conditions are necessary and sufficient for optimality, which lead to the following
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results.

pI
i = max(

εi

2αi
,
εi −Ki

αi
) (11)

γI
i =

1
αi

(2αip
I
i − εi)+ =





1
αi

(εi − 2Ki), if εi > 2Ki,

0, otherwise.
(12)

We let ~KI = (KI
1 ,KI

2 ) denote the optimal investment vector in the dedicated system. The

following result will be used later in our analysis.

Lemma 3.1 Consider the optimal investment solution, ~KI , in the dedicated system. If

ci < E[ξi]
αi

, i = 1, 2, then KI
i , is the unique solution to:

E[ξi − 2KI
i |ξi > 2KI

i ] Pr(ξi > 2KI
i ) = αici (13)

Otherwise (if ci ≥ E[ξi]
αi

), KI
i = 0.

Proof: Using Eq. (11), the expected profit of demand-class i, i = 1, 2, in Stage 1 can be

written as:

Vi(Ki) = E[Πi(Ki, ξi)]− ciKi

=
∫ 2Ki

0

ε2i
4αi

fi(εi)dεi +
∫ ∞

2Ki

Ki(εi −Ki)
αi

fi(εi)dεi − ciKi

By Leibniz’s rule,

δVi(Ki)
δKi

=
δE[Πi(Ki, ξi)]

δKi
− ci =

∫ ∞

2Ki

(εi − 2Ki)
αi

fi(εi)dεi − ci

⇒ δ2Vi(Ki)
δK2

i

=
−2
αi

F̄i(2Ki) < 0, for any Ki > 0

Thus, Vi(Ki) is strictly concave in Ki, for Ki > 0. Observe that if δE[Πi(Ki,ξi)]
δKi

|Ki=0 ≤ ci,
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or equivalently, if ci ≥ E[ξi]
αi

, then it is not economically viable to invest in any dedicated

capacity for demand-class i in Stage 1, and KI
i = 0. Otherwise, KI

i is the unique solution

to:

δVi(Ki)
δKi

=
∫ ∞

2Ki

(εi − 2Ki)
αi

fi(εi)dεi − ci = 0

⇒ E[ξi − 2KI
i |ξi > 2KI

i ] Pr(ξi > 2KI
i ) = αici,

which completes the proof.



Chapter 4

Characterization of the Optimal Pricing

and Resource Allocation Strategy in

Stage 2

In the following, we first characterize the optimal solution to Problem P ′
2, the joint Stage 2

Problem for the two demand-classes, introduced in the previous section. For this purpose,

given a resource capacity vector, ~K, we decompose the demand space into the following

disjoint sets; see Figure 1.

Ω1 = {ξ1 < 2K1 + 2Kf , ξ2 < 2K2 + 2Kf , ξ1 + ξ2 < 2K1 + 2K2 + 2Kf} (14)

Ω2 = {2α1K2 − 2α2(K1 + Kf ) < α1ξ2 − α2ξ1 < −2α2K1 + 2α1(K2 + Kf ),

ξ1 + ξ2 > 2K1 + 2K2 + 2Kf}

Ω3 = {ξ2 > 2K2, α1ξ2 − α2ξ1 < 2α1K2 − 2α2(K1 + Kf )}

Ω4 = {ξ1 > 2K1, α1ξ2 − α2ξ1 > −2α2K1 + 2α1(K2 + Kf )}

15
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Ω5 = {ξ1 < 2K1, ξ2 > 2K2 + 2Kf}

Ω6 = {ξ1 > 2K1 + 2Kf , ξ2 < 2K2},

where “,” corresponds to the logical operator “and.”

 

 

)(22 12211221 fKKK +−=− ααεαεα  

)(22 21121221 fKKK ++−=− ααεαεα  

1ε  

12 222 KKK f ++
 

4Ω
 

2Ω
 

3Ω
 

6Ω
 

2ε
 

fKKK 222 2121 ++=+ εε
 

fKK 22 2 +  

22K
 

21 222 KKK f ++
 

fKK 22 1 +
 

12K  

1Ω
 

5Ω
 

Figure 1: The demand space for (ε1, ε2) in Stage 2

It is easy to show that function Π is strictly jointly concave in pi, i = 1, 2. Therefore,

the first order KKT conditions are necessary and sufficient for optimality and any optimal

solution is unique in pi, i = 1, 2. Using these properties, given realizations ε1 and ε2 of

random variables ξ1 and ξ2, the optimal solution value to Problem P ′
2 can be characterized

in the following lemma.

Lemma 4.1 Given realizations ε1 and ε2 of random variables ξ1 and ξ2 and a resource
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investment vector ~K, the optimal solution value to Problem P ′
2 can be expressed as:

Π( ~K,~ε) =





2∑

i=1

ε2i
4αi

, if Ω1

2∑

i=1

[
εi

2αi
+

ε1 + ε2 − 2(K1 + K2 + Kf )
2(α1 + α2)

]

[
εi

2
− αi(ε1 + ε2 − 2(K1 + K2 + Kf ))

2(α1 + α2)
], if Ω2

(ε1 −K1 −Kf )(K1 + Kf )
α1

+
(ε2 −K2)K2

α2
, if Ω3

(ε1 −K1)K1

α1
+

(ε2 −K2 −Kf )(K2 + Kf )
α2

, if Ω4

ε21
4α1

+
(ε2 −K2 −Kf )(K2 + Kf )

α2
, if Ω5

(ε1 −K1 −Kf )(K1 + Kf )
α1

+
ε22

4α2
, if Ω6

Proof: See Appendix A.

Observe that Ω1 is the set of demand realizations where resource capacities are not

constraining in the optimal solution, i.e., the unconstrained solution, p
(u)
i = εi

2αi
, which

induces a demand of d
(u)
i = εi

2 , i = 1, 2, is optimal. All other sets correspond to solutions

on the boundary lines of the feasible region. Ω2 is the set whose optimal solution uses

all resources fully and the flexible resource is shared by the two demand-classes with di =

εi
2 −

αi(ε1+ε2−2(K1+K2+Kf ))
2(α1+α2) , i = 1, 2; Ω3 is the set where the amount of demand-class 1

satisfied is optimally set to K1 + Kf and that of demand-class 2 to K2; symmetrically, Ω4

is the set where the amount of demand-class 2 satisfied is K2+Kf and that of demand-class

1 is K1; Ω5 is the set where the amount of demand-class 2 satisfied is K2 + Kf and that of

demand-class 1 is the unconstrained d
(u)
1 = ε1

2 ; and Ω6 is the set where the optimal amount

of demand-class 1 satisfied is K1 + Kf and that of demand-class 2 is the unconstrained
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d
(u)
2 = ε2

2 .

Observe that as α2, the price elasticity of demand-class 2, increases, the region for set

Ω3, corresponding to optimal allocation quantities of (K1 + Kf ,K2), will expand, while

the region for set Ω4, corresponding to optimal allocation quantities of (K1,K2 +Kf ), will

shrink. Thus, class 2 becomes less desirable to satisfy in the optimal solution.

This characterization of the optimal pricing and allocation decision extends the charac-

terization in FF to one with continuous distributions for the random variables ξi, i = 1, 2.

We also note here that this characterization extends the one in VM, since VM assumes that

the firm is a price-taker, i.e., p1 and p2 are exogenously determined, whereas our model

also incorporates the demand elasticities and pricing decision (in an environment with no

competition) into the resource investment framework.



Chapter 5

Characterization of the Optimal

Investment Strategy in Stage 1

Using the characterization of the optimal solution to the Stage 2 Problem, stated in

Lemma 4.1, we can now analyze the structure of the optimal investment strategy. The

firm seeks a coordinated strategy of investment, resource allocation, and pricing decision

so as to maximize its expected profit in Stage 1, given by:

(Stage 1 Problem) P1 : max
~K

V ( ~K) = E[Π( ~K, ~ξ)]−
∑

i=1,2,f

ciKi

subject to

Ki ≥ 0, i = 1, 2, f ←− vi

Let ~v = (v1, v2, vf ) ≥ 0 represent the corresponding Lagrangian multipliers. We denote

the maximizer of V ( ~K) by ~K∗ and refer to ~K∗ as the optimal investment vector. We have

the following results.

Lemma 5.1 V ( ~K) is strictly jointly concave in K1, K2,Kf for any continuous distribution

19
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of ξ1 and ξ2 in [0,∞).

Proof: See Appendix B.

Thus, the optimal investment vector ~K∗ is unique and the first-order KKT conditions

are necessary and sufficient for optimality. These lead to the following theorem.

Theorem 5.1 An investment vector ~K ∈ R3
+ is optimal if and only if there exists a ~v ∈ R3

+

that satisfies the following conditions:

E




ξ1+ξ2−2KT
α1+α2

ξ1+ξ2−2KT
α1+α2

ξ1+ξ2−2KT
α1+α2

∣∣∣∣∣Ω2




Pr(Ω2) + E




ξ1−2K1−2Kf

α1

ξ2−2K2

α2

ξ1−2K1−2Kf

α1

∣∣∣∣∣Ω3




Pr(Ω3)

+E




ξ1−2K1

α1

ξ2−2K2−2Kf

α2

ξ2−2K2−2Kf

α2

∣∣∣∣∣Ω4




Pr(Ω4) + E




0

ξ2−2K2−2Kf

α2

ξ2−2K2−2Kf

α2

∣∣∣∣∣Ω5




Pr(Ω5)

+E




ξ1−2K1−2Kf

α1

0

ξ1−2K1−2Kf

α1

∣∣∣∣∣Ω6




Pr(Ω6) =




c1 − v1

c2 − v2

cf − vf




viKi = 0, i = 1, 2, f

Theorem 5.1 extends Proposition 1 of VM to the case where prices are also decision

variables. Based on this theorem, we characterize the firm’s optimal investment strategy

in the following.



21

We first establish the necessary and sufficient conditions for investing in the flexible

resource. For this purpose, we analyze the boundary solution ~KD = (KD
1 > 0, KD

2 >

0, KD
f = 0) (with the corresponding optimal Lagrangian multipliers being v1 = 0, v2 = 0,

vf ≥ 0), where the firm only invests in the dedicated resources. We then use this solution

to characterize the conditions for investing in the flexible resource. At solution ~KD, our

demand space, given in Eq. (14), reduces to the following.

ΩD
1 = {ξ1 < 2KD

1 , ξ2 < 2KD
2 , ξ1 + ξ2 < 2KD

1 + 2KD
2 }

= {ξ1 < 2KD
1 , ξ2 < 2KD

2 } (15)

ΩD
2 = {ξ1 + ξ2 > 2KD

1 + 2KD
2 , 2α1K

D
2 − 2α2K

D
1 < α1ξ2 − α2ξ1 < 2α1K

D
2 − 2α2K

D
1 }

ΩD
3 = {ξ2 > 2KD

2 , α1ξ2 − α2ξ1 < 2α1K
D
2 − 2α2K

D
1 }

ΩD
4 = {ξ1 > 2KD

1 , α1ξ2 − α2ξ1 > −2α2K
D
1 + 2α1K

D
2 }

ΩD
5 = {ξ1 < 2KD

1 , ξ2 > 2KD
2 }

ΩD
6 = {ξ1 > 2KD

1 , ξ2 < 2KD
2 }

Observe that since ξi, i = 1, 2, are continuous random variables, ΩD
2 = ∅, except for the

special case where Pr(α1ξ2 = α2ξ1) = 1 and α1K
D
2 = α2K

D
1 . In order to simplify the

presentation, in the following we will consider that ΩD
2 = ∅. All our results hold for this

special case as well.

Thus, at boundary solution ~KD, the optimality conditions given in Theorem 5.1 reduce

to the following.

Corollary 5.1 Boundary solution ~KD = (KD
1 ≥ 0,KD

2 ≥ 0,KD
f = 0) is optimal if and
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only if there exists a vf ≥ 0 that satisfies the first-order KKT necessary and sufficient

conditions, given below:

KKT− 1 :

E[
ξ1 − 2KD

1

α1
|ΩD

3 ] Pr(ΩD
3 ) + E[

ξ1 − 2KD
1

α1
|ΩD

4 ] Pr(ΩD
4 ) + E[

ξ1 − 2KD
1

α1
|ΩD

6 ] Pr(ΩD
6 ) = c1

⇒ E[ξ1 − 2KD
1 |ξ1 > 2KD

1 ] Pr(ξ1 > 2KD
1 ) = α1c1 (16)

KKT− 2 :

E[
ξ2 − 2KD

2

α2
|ΩD

3 ] Pr(ΩD
3 ) + E[

ξ2 − 2KD
2

α2
|ΩD

4 ] Pr(ΩD
4 ) + E[

ξ2 − 2KD
2

α2
|ΩD

5 ] Pr(ΩD
5 ) = c2

⇒ E[ξ2 − 2KD
2 |ξ2 > 2KD

2 ] Pr(ξ2 > 2KD
2 ) = α2c2 (17)

KKT− 3 :

E[
ξ1 − 2KD

1

α1
|ΩD

3 ] Pr(ΩD
3 ) + E[

ξ2 − 2KD
2

α2
|ΩD

4 ] Pr(ΩD
4 ) + E[

ξ2 − 2KD
2

α2
|ΩD

5 ] Pr(ΩD
5 )

+E[
ξ1 − 2KD

1

α1
|ΩD

6 ] Pr(ΩD
6 ) = cf − vf

⇒ cf ≡ cf − vf =
1
α1

E[ξ1 − 2KD
1 |A] Pr(A) +

1
α2

E[ξ2 − 2KD
2 |B] Pr(B), (18)

where A = {ξ1 > 2KD
1 , α1ξ2 − α2ξ1 < 2α1K

D
2 − 2α2K

D
1 } and B = {ξ2 > 2KD

2 , α1ξ2 −

α2ξ1 > 2α1K
D
2 − 2α2K

D
1 }.

Observe that the first two KKT conditions in Corollary 5.1 also represent the optimality

conditions in the dedicated system, when it is viable to invest in any capacity for each

demand-class (see Lemma 3.1), and cf is defined as a function of KD
1 and KD

2 in the third

KKT condition. Recall that ~KI denotes the optimal solution to the dedicated system.

Thus, if solution (KD
1 = KI

1 ,KD
2 = KI

2 ,KD
f = 0) also satisfies the third KKT condition in

Eq. (18), then the optimal solution to the dedicated system is also optimal for the original
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problem and corresponds to boundary solution ~KD. These lead to the following lemma.

Lemma 5.2 The optimal investment strategy is such that K∗
f > 0 only if cf < cf , where

cf is defined in Equation (18).

Proof:

The proof follows directly from the KKT conditions at boundary solution ~KD. This

solution is optimal if and only if its corresponding KKT conditions, given in Eq.s (16), (17),

and (18), are satisfied with respect to a non-negative value of vf . Observe that when

cf < cf , the KKT condition in Eq. (18) cannot be satisfied with respect to a vf ≥ 0,

and hence, the boundary solution ~KD = (KD
1 > 0, KD

2 > 0, KD
f = 0) can no longer be

optimal. Thus, at optimality we must have K∗
f > 0.

Thus, the flexible resource will be beneficial only when its unit investment cost is not

too expensive. Lemma 5.2 extends Theorem 1 of FF to our multi-dimensional newsvendor

model with pricing and has a similar interpretation. Recall that γI
i is the optimal La-

grangian multiplier corresponding to the capacity constraint for the dedicated resource in

the Stage 2 Problem of demand-class i in the dedicated system. Using Eq.s (12) and (18),

we can write:

cf = E[
ξ1 − 2KD

1

α1
|ΩD

3 ] Pr(ΩD
3 ) + E[

ξ1 − 2KD
1

α1
|ΩD

6 ] Pr(ΩD
6 )

+E[
ξ2 − 2KD

2

α2
|ΩD

4 ] Pr(ΩD
4 ) + E[

ξ2 − 2KD
2

α2
|ΩD

5 ] Pr(ΩD
5 )

= E[ max
i=1,2

{γI
i } ],
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thus establishing the relationship between Theorem 1 of FF and our result. Hence, as

stated in FF, the firm invests in the flexible resource “when the expected value of its best

usage exceeds its cost (page 450 in Fine and Freund (1990)).”

We next develop insights into the firm’s optimal investment decision when it includes

the flexible resource. We first note that when K∗
f > 0 in the optimal solution, the solution

must be one of the following forms, each of which corresponds to a boundary solution of

the feasible region for the Stage 1 Problem:

~KF = (KF
1 = 0, KF

2 = 0, KF
f > 0)

~K1F = (K1F
1 > 0, K1F

2 = 0, K1F
f > 0)

~K2F = (K2F
1 = 0, K2F

2 > 0, K2F
f > 0)

~KA = (KA
1 > 0, KA

2 > 0, KA
f > 0).

In what follows, we let ΩF
j , Ω1F

j , Ω2F
j , and ΩA

j respectively denote set Ωj , j = 1, · · · , 6, given

in Equation (14), at boundary solutions ~KF , ~K1F , ~K2F , and ~KA.

Lemma 5.3 Consider the boundary solutions ~KF , ~K1F , ~K2F , and ~KA. We have the

following properties:

1. ~KF = (KF
1 = 0, KF

2 = 0, KF
f > 0) is not a possible solution if {(ΩF

3 = ∅) or

(ΩF
4 = ∅)};

2. ~K1F = (K1F
1 > 0, K1F

2 = 0, K1F
f > 0) is not a possible solution if {(Ω1F

3 = ∅) or

(Ω1F
4 = ∅, Ω1F

5 = ∅)};

3. ~K2F = (K2F
1 = 0, K2F

2 > 0, K2F
f > 0) is not a possible solution if {(Ω2F

4 = ∅) or
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(Ω2F
3 = ∅, Ω2F

6 = ∅)};

4. ~KA = (KA
1 > 0, KA

2 > 0, KA
f > 0) is not a possible solution if {(ΩA

4 = ∅,ΩA
5 = ∅)

or (ΩA
3 = ∅, ΩA

6 = ∅)}.

Proof: See Appendix C.

Lemma 5.3 leads to the following result.

Theorem 5.2 Consider the case where Pr( ξ1
α1

< ξ2
α2

) = 1, that is, α2ξ1 < α1ξ2 with

probability 1. Then, if cf < cf , the optimal strategy must be one of the following forms:

1. Invest in dedicated resource 2 and the flexible resource only (boundary solution ~K2F ).

In this case, K2F
2 > α2

α1
K2F

f ; or

2. Invest in all three resources (boundary solution ~KA). In this case, KA
2 > α2

α1
(KA

1 +

KA
f ).

Proof:

Consider that Pr( ξ1
α1

< ξ2
α2

) = 1. Since α1ξ2 − α2ξ1 > 0 with probability 1, ΩF
3 =

{α1ξ2 − α2ξ1 < −2α2K
F
f } = ∅ for any KF

f > 0, where ΩF
3 is obtained by setting KF

f > 0,

KF
1 = 0, KF

2 = 0 in Ω3, given in Eq. (14). Thus, it follows, by Lemma 5.3, that ~KF is not

a possible solution in this case. Similarly, Ω1F
3 = {α1ξ2 − α2ξ1 < −2α2(K1F

1 + K1F
f )} = ∅

for any K1F
1 > 0 and K1F

f > 0, and hence ~K1F is not a possible solution by Lemma 5.3.

Thus, when cf < cf , Lemma 5.2 implies that K∗
f > 0 in the optimal solution, which must

correspond to either boundary solution ~K2F or ~KA.
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Observe that by Lemma 5.3, ~KA is a possible solution only when {(ΩA
4 6= ∅ or ΩA

5 6=

∅) and (ΩA
3 6= ∅ or ΩA

6 6= ∅)}. We can write the second condition as:

(ΩA
3 6= ∅ or ΩA

6 6= ∅) = {(ΩA
3 or ΩA

6 ) 6= ∅}

= {ξ1 > 2KA
1 + 2KA

f , α1ξ2 − α2ξ1 < 2α1K
A
2 − 2α2(KA

1 + KA
f )} 6= ∅,

(see Eq. (14) and Figure 1)

or equivalently, Pr{ξ1 > 2KA
1 + 2KA

f , α1ξ2−α2ξ1 < 2α1K
A
2 − 2α2(KA

1 + KA
f )} 6= 0. Since

α1ξ2 − α2ξ1 > 0 with probability 1, we must have 2α1K
A
2 − 2α2(KA

1 + KA
f ) > 0. Thus,

KA
2 > α2

α1
(KA

1 + KA
f ), if ~KA is the optimal solution. By a similar argument, we can show

that if ~K2F is the optimal solution, then it must satisfy K2F
2 > α2

α1
K2F

f . This completes

the proof.

Consider the Stage 2 Problem, P ′
2. If resource levels were unconstraining, then the

price for demand-class i, i = 1, 2, would be optimally set to p
(u)
i = εi

2αi
. Thus, when

Pr( ξ1
α1

< ξ2
α2

) = 1, we have p
(u)
1 < p

(u)
2 ; that is, demand-class 2 would be priced higher than

demand-class 1 if resource capacities were not constraining. In other words, demand-class

2 is the more desirable demand-class to satisfy. Theorem 5.2 states that in this case the

optimal investment strategy gives higher priority to resources that can satisfy demand-class

2: If a flexible resource investment is made, then we either invest in dedicated resource 2

and the flexible resource only (solution ~K2F ); or we invest in all three resources (solution

~KA). No other solution can be optimal. Furthermore, the optimal level of dedicated

resource 2 is greater than the combined optimal capacities of the other resources (flexible

resource plus the dedicated resource of the other demand-class) times its relative price
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elasticity (α2/α1). This result, together with Lemma 5.2, extends Proposition 2 in VM,

who shows that the optimal investment strategy, when prices are exogenously determined,

is to invest either in dedicated resources only, or in the dedicated resource for the higher

priced demand-class and the flexible resource, or in all three resources.

We also want to point out that when α1 = α2, that is, when both demand-classes

have the same price elasticity of demand, the condition that Pr( ξ1
α1

< ξ2
α2

) = 1 reduces to

the condition that Pr(ξ1 < ξ2) = 1. In this case, the demand curve of demand-class 2

dominates that of demand-class 1 over the entire range of prices; that is, the same demand

level corresponds to a higher price for demand-class 2 over demand-class 1, or equivalently,

the same price induces a higher demand for demand-class 2. Theorem 5.2 shows that in

such cases, the optimal strategy will invest more in dedicated resource 2, thus translating

into higher revenues. That is, if solution ~K2F is optimal, then K2F
2 > K2F

f ; if solution ~KA

is optimal, then KA
2 > KA

1 + KA
f .



Chapter 6

Impact of Demand Correlation on the

Optimal Investment Strategy

In the following, we study the impact of demand correlation on the optimal investment

strategy and show that it might be optimal to invest in the flexible resource even when the

demand patterns for the two demand-classes are perfectly positively correlated, whereas it

might be optimal not to invest in the flexible resource when demand patterns are perfectly

negatively correlated. In order to avoid the trivial cases and simplify the presentation, in

the following we consider the case where it is economically viable to invest in any capacity

for each demand-class; that is, we consider that ci < E[ξi]
αi

, i = 1, 2 (see Lemma 3.1).

Let ρ denote the correlation coefficient between ξ1 and ξ2. As in the previous section,

we do not make any distributional assumptions on ξ1 and ξ2. All the following results hold

for any continuous distribution of ξ1 and ξ2 defined over [0,∞).

28
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6.1 Perfectly Positively Correlated Demand Patterns

We first analyze the case where the demand patterns are perfectly positively correlated. For

this purpose, we consider that Pr(ξ1 = aξ2) = 1, for some constant a > 0; that is, ρ = +1.

For the sake of simplicity in notation, let ξ2 = ξ, and thus ξ1 = aξ.

In this case, the first two optimality conditions at boundary solution ~KD = (KD
1 >

0, KD
2 > 0, KD

f = 0), given in Eq.s (16) and (17), reduce to the following:

E[ξ − 2KD
1

a
|ξ >

2KD
1

a
] Pr(ξ >

2KD
1

a
) =

α1c1

a
(19)

E[ξ − 2KD
2 |ξ > 2KD

2 ] Pr(ξ > 2KD
2 ) = α2c2 (20)

As was done in Chapter 5 for the general case, we first study the characteristics of the

boundary solution ~KD, which corresponds to the case where the firm does not invest in

the flexible resource.

Lemma 6.1 Let the demand patterns for the two demand-classes be perfectly positively

correlated; that is, Pr(ξ1 = aξ2) = 1, for some constant a > 0, and hence ρ = +1. If

boundary solution ~KD = (KD
1 > 0, KD

2 > 0, KD
f = 0) is optimal, then it must have the

following structure:

1. If α1c1
a > α2c2, then KD

1
a < KD

2 ;

2. If α1c1
a = α2c2, then KD

1
a = KD

2 ;

3. If α1c1
a < α2c2, then KD

1
a > KD

2 .

Proof: The proof directly follows from the optimality conditions in Eq.s (19) and (20).
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Now we can characterize the optimal investment strategy in the case of perfectly pos-

itively correlated demands. We first analyze the conditions under which we invest in the

flexible resource in the following lemma.

Lemma 6.2 Consider the case where Pr(ξ1 = aξ2) = 1, for some constant a > 0. In the

optimal strategy, we invest in the flexible resource (K∗
f > 0) only if { (α1c1

a > α2c2 and

α1 > aα2 and cf < cf ) or (α1c1
a < α2c2 and α1 < aα2 and cf < cf ) }.

Proof: See Appendix D.

Our main result in the case of perfectly positively correlated demand patterns is given

in the following theorem.

Theorem 6.1 Consider the case where Pr(ξ1 = aξ2) = 1, for some constant a > 0;

that is, the two demand patterns are perfectly positively correlated. The optimal capacity

investment decision has the following structure:

1. If {α1c1
a > α2c2 and α1 ≤ aα2} or {α1c1

a = α2c2} or {α1c1
a < α2c2 and α1 ≥ aα2},

then the optimal strategy is always to invest in dedicated resources only, such that

- If α1c1
a > α2c2, then KD

1
a < KD

2 ;

- If α1c1
a = α2c2, then KD

1
a = KD

2 ; and

- If α1c1
a < α2c2, then KD

1
a > KD

2 .

2. If {α1c1
a > α2c2 and α1 > aα2}, then

- If cf > cf , then we invest in dedicated resources only ( ~KD);
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- If cf < cf , then the optimal solution is either to (1) invest only in dedicated

resource 2 and the flexible resource ( ~K2F ); or (2) invest in all three resources

( ~KA). Furthermore,

(a) If strategy ~K2F is optimal, then KI
1

a <
K2F

f

a < K2F
2 < KI

2 ;

(b) If strategy ~KA is optimal, then KA
1
a <

KI
1

a <
KA

1 +KA
f

a < KA
2 < KI

2 <

KA
2 + KA

f , where ~KI denotes the optimal solution to the dedicated system.

3. Symmetrically, if {α1c1
a < α2c2 and α1 < aα2}, then

- If cf > cf , then we invest in dedicated resources only ( ~KD);

- If cf < cf , then the optimal solution is either to (1) invest only in dedicated

resource 1 and the flexible resource ( ~K1F ); or (2) invest in all three resources

( ~KA). Furthermore,

(a) If strategy ~K1F is optimal, then KI
2 < K1F

f <
K1F

1
a <

KI
1

a ;

(b) If strategy KA is optimal, then KA
2 < KI

2 < KA
2 + KA

f <
KA

1
a <

KI
1

a <

KA
1 +KA

f

a .

Proof.

Part (1) follows from Lemmas 6.1 and 6.2. We now prove part (2). When cf < cf , it

follows, by Lemma 6.2, that K∗
f > 0 in the optimal solution. Thus, in this case, the optimal

strategy must correspond to one of the boundary solutions ~KF , ~K1F , ~K2F , or ~KA, each

of which is analyzed below for the case where α1c1
a > α2c2, α1 > aα2.

~KF = {KF
1 = 0, KF

2 = 0, KF
f > 0}
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When ξ1 = aξ2, ΩF
3 , at boundary solution ~KF , reduces to

ΩF
3 = {ξ (α1 − aα2)︸ ︷︷ ︸

>0

< −2α2K
F
f︸ ︷︷ ︸

<0

} = ∅.

Thus, by Lemma 5.3, ~KF is not a possible solution in this case.

~K1F = {K1F
1 > 0, K1F

2 = 0, K1F
f > 0}

In this case, Ω1F
3 , at boundary solution ~K1F , reduces to

Ω1F
3 = {ξ (α1 − aα2)︸ ︷︷ ︸

>0

< −2α2(K1F
1 + K1F

f )︸ ︷︷ ︸
<0

} = ∅.

Thus, by Lemma 5.3, ~K1F is not a possible solution.

On the other hand, we can show, in a similar way, that boundary solutions ~K2F and

~KA are possible. Consequently, when {α1c1
a > α2c2, α1 > aα2, cf < cf}, the optimal

solution must be either ~K2F or ~KA.

Proofs of (2a) and (2b): See Appendix E.

The proof of part (3) is in the same spirit as the proof of part (2), and follows due

to Lemma 5.3, since ΩF
4 = ∅ (corresponding to boundary solution ~KF ) and Ω2F

4 = ∅

(corresponding to boundary solution ~K2F ) when α1 < aα2. Finally, proofs for parts (3a)

and (3b) are also similar to that of part (2), and therefore, are omitted.

Theorem 6.1 states that if cf < cf , then the firm should invest in the flexible resource
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only when either (i) α1c1
a > α2c2, α1 > aα2 or (ii) α1c1

a < α2c2, α1 < aα2.

Consider the first condition, α1c1
a > α2c2, α1 > aα2. This condition implies that (1)

the firm would charge a higher price for demand-class 2 than demand-class 1 if resource

capacities were not constraining; that is, p
(u)
2 = ε

2
1

α2
> p

(u)
1 = ε

2
a
α1

; and (2) the dedicated

resource investment cost per unconstrained price ratio corresponding to demand-class 2

is lower than that for demand-class 1; that is, c2
1/α2

< c1
a/α1

. Thus, demand-class 2 is

the “preferred” demand-class to satisfy. As a result, the optimal strategy gives higher

priority to resources that can satisfy demand-class 2: If a flexible resource investment

is made, then the firm invests in either dedicated resource 2 and the flexible resource

only (boundary solution ~K2F ) or all three resources (boundary solution ~KA); no other

solution can be optimal. The second condition is symmetric and corresponds to the case

where demand-class 1 is preferred. Thus, Theorem 6.1 shows that in the case of perfectly

positively correlated demand patterns (ρ = +1), the flexible resource can still be valuable,

but only when one demand-class is preferred, where the definition of preferred depends

on demand function parameters and dedicated resource investment costs. If no demand-

class is preferred, then the optimal solution does not invest in the flexible resource. Thus,

our result nicely generalizes the result in VM, who shows that under exogenously fixed

prices, flexible resource investment in the case of perfect positive correlation requires a

price differential between the demand-classes.

Theorem 6.1 also provides insights on the substitution effect of the flexible resource.

It shows that if it is optimal to invest in dedicated resource 2 and the flexible resource

only (solution ~K2F ), then the structure of the optimal strategy is such that KI
1 < K2F

f
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and K2F
2 < KI

2 ; that is, the flexible resource substitutes dedicated resource 1 in the ded-

icated system (solution ~KI) and is larger, while less of dedicated resource 2 is invested

in, compared to solution ~KI (part 2(a) of the theorem). Similarly, if it is optimal to

invest in all resources (solution ~KA), then the firm invests less in each dedicated re-

source, while the total resource levels that can satisfy each demand-class are both higher

(KA
i < KI

i < KA
i +KA

f , i = 1, 2), compared to the optimal solution to the dedicated system

(part 2(b) of the theorem).

Consider next the special case where a = 1; that is, Pr(ξ1 = ξ2) = 1. Then, the

first condition reduces to α1c1 > α2c2, α1 > α2. In this case, the demand curve of class

2 dominates that of class 1 over all possible prices, since the same demand level corre-

sponds to a higher price for demand-class 2 over demand-class 1. In addition, the cost

per unconstrained price ratio for class 2 is lower than that of class 1. Then, the optimal

investment strategy gives priority to resources that can satisfy demand-class 2. In addition,

the firm always invests more in dedicated resource 2 than the combined levels of the other

resources (i.e., if solution ~KD is optimal, then KD
1 < KD

2 ; if solution ~K2F is optimal, then

K2F
f < K2F

2 ; if solution ~KA is optimal, then KA
1 + KA

f < KA
2 ).

6.2 Perfectly Negatively Correlated Demand Patterns

Next we analyze the case where demand patterns are perfectly negatively correlated. For

this purpose, we consider that Pr(ξ1 + ξ2 = a) = 1 for some constant a > 0, and hence

ρ = −1. Thus, the sum of the random variables ξ1 and ξ2 is known with certainty, but the

split between the two demand-classes is uncertain in Stage 1. Our main result in the case

of perfect negative correlation is presented in the following theorem.
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Theorem 6.2 Consider the case where Pr(ξ1 + ξ2 = a) = 1, for some constant a > 0;

that is, the two demand patterns are perfectly negatively correlated (ρ = −1). Then, there

exists a threshold value, ∆th, such that:

1. If KI
1 + KI

2 ≥ a
2 , or equivalently if α2c2 − α1c1 ≤ ∆th, then K∗

f > 0 in the optimal

solution, regardless of the value of cf (in the range 0 < c1, c2 < cf < c1 + c2).

2. If KI
1 + KI

2 < a
2 , or equivalently if α2c2 − α1c1 > ∆th, then

- if cf < cf , then K∗
f > 0 in the optimal solution;

- if cf > cf , then K∗
f = 0 in the optimal solution and the optimal solution is given

by ~KD.

Proof: See Appendix F.

Thus, Theorem 6.2 shows that if the total capacity investment level in the dedicated

system is high (i.e., KI
1 + KI

2 ≥ a
2 ), then the optimal solution always invests in the flexible

resource, regardless of the investment cost of the flexible resource, in the range considered.

However, when the total capacity investment level in the dedicated system is lower (i.e.,

KI
1 +KI

2 < a
2 ), then it is not always optimal to invest in the flexible resource. This depends

on the investment cost of the flexible resource.



Chapter 7

Conclusions and Future Research

Directions

Resource flexibility can provide a competitive advantage to a firm by hedging against the

demand uncertainty inherent in the capacity planning stage in most industries. However,

flexible resources are generally more expensive than dedicated resources and the research

that studies the value of resource flexibility is rather limited in the operations manage-

ment/operations research literature. As a result, the utilization of flexible resources has

been, so far, limited in industry. However, increasing competition in today’s highly un-

certain market place is forcing companies to look for strategies to more effectively match

their supply with demand. Consequently, there is a great need to understand the value of

resource flexibility and the factors that impact it. The value of resource flexibility depends

on the firm’s pricing strategy, demand characteristics, and correlations between the dif-

ferent demand-classes offered by the firm. Therefore, these factors need to be considered

while studying the value of resource flexibility.

The resource investment decision in many industries requires long lead times and

36
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economies of scale in investment costs. As a result, this decision needs to be made under

high demand uncertainty, and is difficult and expensive to change later on. Examples in-

clude investments in plant capacities or service capacities. Timing of these events naturally

leads to the formulation of the decision problem as a two-stage stochastic decision problem

with recourse, as is commonly done in the operations management literature. Our objec-

tive is to derive structural properties of the firm’s optimal resource investment strategy

and to understand how it is affected by the firm’s pricing strategy, demand characteris-

tics, and correlations. For this purpose, we make several simplifying assumptions so that

the resulting models are amenable to analytical analysis. In that sense, our approach is

highly stylized to serve as a practical decision support system, which may need to consider

multi-period models with time-varying demand patterns and multiple resource types (such

as plants, people, etc.). For such models, one generally must resort to numerical analysis,

as has been done in, for instance, Caulkins and Fine (1990) and Li and Tirupati (1994).

As a result, we consider a simple two demand-class model, since this model is analyti-

cally tractable, while capturing the essential elements of the problem. We study the firm’s

optimal resource investment strategy, while incorporating the resource flexibility and the

firm’s pricing strategy into the investment decision. We characterize the structure of the

firm’s optimal resource investment strategy and use these results to understand the con-

ditions under which the firm invests in the flexible resource, considering investment costs

and demand parameters. We show that when one of the demand-classes is preferred to

satisfy over the other one, then the optimal investment strategy gives a higher priority to

resources that can satisfy the preferred demand-class. Specifically, if a flexible resource

investment is made, then the firm either invests in the dedicated resource for the preferred
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demand-class and the flexible resource only, or in all three resources; no other solution can

be optimal.

In addition, studying demand patterns that are perfectly positively correlated and

perfectly negatively correlated, we are able to identify the conditions under which the firm

invests in the flexible resource. Specifically, we are able to show that the firm can invest

in the flexible resource even when demand patterns are perfectly positively correlated,

under the condition that one demand-class is preferred over the other one, where the

definition of preferred depends on demand function parameters and dedicated resource

investment costs. If no demand-class is preferred, then the optimal solution does not

invest in the flexible resource. Thus, our result nicely generalizes the result in VM, who

shows that under exogenously fixed prices, flexible resource investment in the case of perfect

positive correlation requires a price differential between the demand-classes. In addition,

our analysis shows that when demand patterns are perfectly negatively correlated, it is

not always optimal for the firm to invest in the flexible resource. This depends on the

investment cost of the flexible resource. Thus, our results provide new insights into the

value of resource flexibility under perfectly positively and perfectly negatively correlated

demand patterns.

Our model and results contribute to the literature in several ways. First, we extend

the well-known newsvendor problem by incorporating multiple suppliers, multiple demand

types, and the pricing decision into the framework. Second, we characterize the structure of

the firm’s optimal investment strategy under the existence of flexible resources. Third, we

study the impact of demand correlation on the firm’s optimal resource investment strategy

and provide new insights.
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Numerous extensions of our model deserve further analysis. Our study considered

demand patterns that are perfectly positively and perfectly negatively correlated. These

results need to be extended to any correlation coefficient to get a complete characterization

of the impact of demand correlations on the value of resource flexibility. Other important

extensions include analyzing different variable costs for the flexible and dedicated resources,

different investment cost structures (including concave investment costs for the resources),

and different demand functions.

In this thesis, we considered that the firm can utilize an integrated resource flexibil-

ity/price postponement strategy in the second stage to match its supply with demand. The

next step would be to analyze the impact of the postponed pricing decision on the value

of resource flexibility. We also assumed that the demand-classes are not substitutable with

each other; that is, unsatisfied consumers will be lost. An interesting direction would be to

consider the value of resource flexibility, considering that consumers might also substitute

the demand-classes with each other, based on the firm’s pricing strategy.
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Appendix

In the following, let Ω∪ represent the universal set.

A Proof of Lemma 4.1

If a feasible solution (p1, p2) is a maximizer to problem P ′
2, then the first order KKT

necessary conditions require that there exists a vector (λ1, λ2, µ) ≥ 0 such that

ε1 − 2α1p1 + α1λ1 + α1µ = 0 ⇒ p1 =
ε1 + α1λ1 + α1µ

2α1
(21)

ε2 − 2α2p2 + α2λ2 + α2µ = 0 ⇒ p2 =
ε2 + α2λ2 + α2µ

2α2
(22)

λ1 (α1p1 − ε1 + K1 + Kf ) = 0 (23)

λ2 (α2p2 − ε2 + K2 + Kf ) = 0 (24)

µ (α1p1 + α2p2 − ε1 − ε2 + K1 + K2 + Kf ) = 0 (25)

We define sets E = {ε1 ≤ 2K1 + 2Kf , ε2 ≤ 2K2 + 2Kf , ε1 + ε2 ≤ 2K1 + 2K2 + 2Kf}

and F = {2α1K2 − 2α2(K1 + Kf ) ≤ α1ε2 − α2ε1 ≤ −2α2K1 + 2α1(K2 + Kf )}. Observe

that the optimal solution to the unrestricted problem, p
(u)
i ≡ εi

2αi
, i = 1, 2, is optimal for

Problem P ′
2 (and (µ, λ1, λ2) = 0) if it satisfies all constraints of Problem P ′

2; that is, if

42



43

{ε1 ≤ 2K1 + 2Kf , ε2 ≤ 2K2 + 2Kf , ε1 + ε2 ≤ 2K1 + 2K2 + 2Kf}. Otherwise (if Ec), the

optimal solution will be on a boundary line of the feasible region (and its corresponding

Lagrangean multiplier will be positive); see KKT conditions (23)–(25).

Consider case Ec. We first analyze the boundary solutions on line α1p1 + α2p2 =

ε1 + ε2 −K1 −K2 −Kf (µ ≥ 0 and λi = 0, i = 1, 2). Thus, setting λi = 0, i = 1, 2, in (21)

and (22), we find the maximizing solution on this boundary line as:

pi =
εi

2αi
+

µ

2
, i = 1, 2, where (26)

µ =
ε1 + ε2 − 2(K1 + K2 + Kf )

α1 + α2
. (27)

Substituting (27) in (26), we obtain:

pi =
εi

2αi
+

ε1 + ε2 − 2(K1 + K2 + Kf )
2(α1 + α2)

, for i = 1, 2. (28)

If this solution also satisfies constraints (7), then it will be optimal for Problem P ′
2. That

is, if

ε1 −K1 −Kf

α1
≤ ε1

2α1
+

ε1 + ε2 − 2(K1 + K2 + Kf )
2(α1 + α2)

and

ε2 −K2 −Kf

α2
≤ ε2

2α2
+

ε1 + ε2 − 2(K1 + K2 + Kf )
2(α1 + α2)

⇔ 2α1K2 − 2α2(K1 + Kf ) ≤ α1ε2 − α2ε1 ≤ −2α2K1 + 2α1(K2 + Kf ), (29)

or equivalently, if EcF , then it is the optimal solution. If not (if EcF c), then the optimal

solution must be on one of the boundary lines pi = εi−Ki−Kf

αi
, i = 1, 2, of the feasible
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region. Consider the boundary line p1 = ε1−K1−Kf

α1
(i.e., λ1 ≥ 0, λ2 = 0, µ = 0), which

yields a demand for class 1 of d1 = K1 + Kf . Thus, Problem P ′
2 reduces to:

max
p2

p2(ε2 − α2p2)

subject to

p2 ≥ ε2 −K2

α2

p2 ≥ 0

Since the objective function is concave in p2, the maximizing solution on this boundary

line is given by

p1 =
ε1 −K1 −Kf

α1
, p2 = max(

ε2
2α2

,
ε2 −K2

α2
).

Similarly, on boundary line p2 = ε2−K2−Kf

α2
, p1 = max( ε1

2α1
, ε1−K1

α1
).

Thus, the optimal solution to Problem P ′
2 is as follows:

1. If E, then

pi =
εi

2αi
, for i = 1, 2.

2. If EcF , then

pi =
εi

2αi
+

ε1 + ε2 − 2(K1 + K2 + Kf )
2(α1 + α2)

, for i = 1, 2.

3. Else (if EcF c), the optimal solution is the best of the following solutions:
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(a) p1 = ε1−K1−Kf

α1
, p2 = max( ε2

2α2
, ε2−K2

α2
).

(b) p2 = ε2−K2−Kf

α2
, p1 = max( ε1

2α1
, ε1−K1

α1
).

We analyze the optimal solution in region EcF c by decomposing this region into four

disjoint sets: (i) {EcF c, ε1 < 2K1, ε2 < 2K2}, (ii) {EcF c, ε1 > 2K1, ε2 < 2K2}, (iii)

{EcF c, ε1 > 2K1, ε2 > 2K2}, (iv) {EcF c, ε1 < 2K1, ε2 > 2K2}.

(i) Observe that {EcF c, ε1 < 2K1, ε2 < 2K2} = ∅.

(ii) If {EcF c, ε1 > 2K1, ε2 < 2K2}, then the optimal solution is the best of

~p = (
ε1 −K1 −Kf

α1
,

ε2
2α2

) and ~p = (
ε1 −K1

α1
,

ε2 −K2 −Kf

α2
).

(iii) If {EcF c, ε1 > 2K1, ε2 > 2K2}, then the optimal solution is the best of

~p = (
ε1 −K1 −Kf

α1
,

ε2 −K2

α2
) and ~p = (

ε1 −K1

α1
,

ε2 −K2 −Kf

α2
).

(iv) If {EcF c, ε1 < 2K1, ε2 > 2K2}, then the optimal solution is the best of

~p = (
ε1 −K1 −Kf

α1
,

ε2 −K2

α2
) and ~p = (

ε1
2α1

,
ε2 −K2 −Kf

α2
).

Consider again case (ii), where {EcF c, ε1 > 2K1, ε2 < 2K2}. In this case, the optimal

solution is given by ~p = ( ε1−K1−Kf

α1
, ε2

2α2
) if

(ε1 −K1 −Kf )(K1 + Kf )
α1

+
ε22

4α2
>

(ε1 −K1)K1

α1
+

(ε2 −K2 −Kf )(K2 + Kf )
α2
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⇒ 4α1ε2(K2 + Kf )−α1ε
2
2− 4α2ε1Kf < 4α1(K2 + Kf )2− 4α2Kf (2K1 + Kf ) ⇒ Kf (α1ε2−

α2ε1) < α1(K2 + Kf )2 − α2Kf (2K1 + Kf ) + 1
4α1ε

2
2 − α1ε2K2 ≡ G.

Hence, if {EcF c, ε1 > 2K1, ε2 < 2K2, G}, then the optimal solution is ~p = ( ε1−K1−Kf

α1
, ε2

2α2
).

Observe that

{EcF c, ε1 > 2K1, ε2 < 2K2} = {ε1 > 2K1 + 2Kf , ε2 < 2K2},

which implies that:

Kf (α1ε2 − α2ε1) < α1Kf (2K2)− α2Kf (2K1 + 2Kf ) (since ε1 > 2K1 + 2Kf and ε2 < 2K2)

< α1(K2 + Kf )2 − α2Kf (2K1 + Kf ) +
1
4
α1ε

2
2 − α1ε2K2.

Thus,

{EcF c, ε1 > 2K1, ε2 < 2K2} ⇒ {EcF c, ε1 > 2K1, ε2 < 2K2, G}.

Consequently, if {EcF c, ε1 > 2K1, ε2 < 2K2} = {ε1 > 2K1 + 2Kf , ε2 < 2K2}, then

the optimal solution is ~p = ( ε1−K1−Kf

α1
, ε2

2α2
).

Cases (iii) and (iv) are analyzed in a similar way, obtaining the desired results. This

completes the proof.
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B Proof of Lemma 5.1

In what follows, we prove that V ( ~K) is strictly concave in the investment vector ~K =

(K1, K2, Kf ). For this purpose, we first derive the Hessian matrix of V ( ~K) corresponding

to ~K (this can be derived either using the Leibnizs’ rule or using the definition of the

derivative).

We define the following non-negative elements:

a ≡ 2
(α1 + α2)

∫ ∫

Ω2

f1(ε1)f2(ε2)dε1 dε2

b ≡ 2
α1

∫ ∫

Ω3

f1(ε1)f2(ε2)dε1 dε2 +
2
α1

∫ ∫

Ω6

f1(ε1)f2(ε2)dε1 dε2

c ≡ 2
α1

∫ ∫

Ω4

f1(ε1)f2(ε2)dε2 dε1

d ≡ 2
α2

∫ ∫

Ω3

f1(ε1)f2(ε2)dε1 dε2

e ≡ 2
α2

∫ ∫

Ω4

f1(ε1)f2(ε2)dε2 dε1 +
2
α2

∫ ∫

Ω5

f1(ε1)f2(ε2)dε1 dε2

Then, we can write −H, negative of the Hessian matrix of ~K corresponding to ~K, as

follows:

−H =




a + b + c a a + b

a a + d + e a + e

a + b a + e a + b + e




Next we apply the super diagonalization algorithm to check the positive definiteness of

−H (see, for instance, Bazaraa, Sherali, and Shetty (1993)).

Observing that all elements on the diagonal are non-negative, −H reduces to following
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form by elementary row operations:

−H =




a + b + c a a + b

0 a + d + e− a2

a+b+c a + e− a(a+b)
a+b+c

0 a + e− a(a+b)
a+b+c a + b + e− (a+b)2

a+b+c




Let

Gnew ≡




a + d + e− a2

a+b+c a + e− a(a+b)
a+b+c

a + e− a(a+b)
a+b+c a + b + e− (a+b)2

a+b+c


 =




g11 g12

g21 g22




where g12 = g21.

Observe that for any continuous distribution of ξ1 and ξ2 defined over [0,∞), we have:

g11 =
a(b + c + d + e) + (b + c)(d + e)

a + b + c
> 0 (30)

g22 =
(a + b)(c + e) + ce

a + b + c
> 0 (31)

⇒ g11g22 − g2
12 =

abc + abe + acd + ade + bcd + bce + bde + cde

a + b + c
> 0 (32)

Eq.s (30), (31), and (32) imply that Gnew is positive definite, and therefore, −H is

positive definite. Thus H is negative definite, and therefore, we conclude that E[Π] is

jointly concave in ~K. Since V ( ~K) = E[Π] − ∑
i=1,2,f ciKi, we conclude that V ( ~K) is

strictly concave in ~K. This completes the proof.
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C Proof of Lemma 5.3

Consider the boundary solution ~KF = (KF
1 = 0, KF

2 = 0, KF
f > 0), which corresponds to

optimal Lagrangean multipliers of v1 ≥ 0, v2 ≥ 0, vf = 0. At solution ~KF , our state space

reduces to:

ΩF
1 = {ξ1 + ξ2 < 2KF

f } (33)

ΩF
2 = {ξ1 + ξ2 > 2KF

f , −2α2K
F
f < α1ξ2 − α2ξ1 < 2α1K

F
f }

ΩF
3 = {α1ξ2 − α2ξ1 < −2α2K

F
f }

ΩF
4 = {α1ξ2 − α2ξ1 > 2α1K

F
f }

ΩF
5 = ∅; ΩF

6 = ∅

Thus, the first-order KKT necessary & sufficient conditions, given in Theorem 5.1,

reduce to:

KKT− 1 :

E[
ξ1 + ξ2 − 2KF

f

α1 + α2
|ΩF

2 ] Pr(ΩF
2 ) + E[

ξ1 − 2KF
f

α1
|ΩF

3 ] Pr(ΩF
3 ) + E[

ξ1

α1
|ΩF

4 ] Pr(ΩF
4 )

= c1 − v1 (34)

KKT− 2 :

E[
ξ1 + ξ2 − 2KF

f

α1 + α2
|ΩF

2 ] Pr(ΩF
2 ) + E[

ξ2

α2
|ΩF

3 ] Pr(ΩF
3 ) + E[

ξ2 − 2KF
f

α2
|ΩF

4 ] Pr(ΩF
4 )

= c2 − v2 (35)

KKT− 3 :
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E[
ξ1 + ξ2 − 2KF

f

α1 + α2
|ΩF

2 ] Pr(ΩF
2 ) + E[

ξ1 − 2KF
f

α1
|ΩF

3 ] Pr(ΩF
3 ) + E[

ξ2 − 2KF
f

α2
|ΩF

4 ] Pr(ΩF
4 )

= cf (36)

Observe that when ΩF
3 = ∅, KKT conditions (35) and (36) imply that cf = c2−v2 ≤ c2,

which is a contradiction, since cf > c2 by definition. Similarly, when ΩF
4 = ∅, by KKT

conditions (34) and (36), cf = c1 − v1 ≤ c1, which is a contradiction, since cf > c1 by

definition. Thus, if {(ΩF
3 = ∅) or (ΩF

4 = ∅)}, then ~KF = (KF
1 = 0, KF

2 = 0, KF
f > 0) is

not a possible solution.

Next, consider the boundary solution ~K1F = (K1F
1 > 0, K1F

2 = 0, K1F
f > 0), which

implies that v1 = 0, v2 ≥ 0, vf = 0. Then our state space reduces to the following:

Ω1F
1 = {ξ2 < 2K1F

f , ξ1 + ξ2 < 2K1F
1 + 2K1F

f } (37)

Ω1F
2 = {ξ1 + ξ2 > 2K1F

1 + 2K1F
f , −2α2(K1F

1 + K1F
f ) < α1ξ2 − α2ξ1 < −2α2K

1F
1 + 2α1K

1F
f }

Ω1F
3 = {α1ξ2 − α2ξ1 < −2α2(K1F

1 + K1F
f )}

Ω1F
4 = {ξ1 > 2K1F

1 , α1ξ2 − α2ξ1 > −2α2K
1F
1 + 2α1K

1F
f }

Ω1F
5 = {ξ1 < 2K1F

1 , ξ2 > 2K1F
f }; Ω1F

6 = ∅

Thus, the first-order KKT necessary & sufficient conditions reduce to the following:

KKT− 1 :

E[
ξ1 + ξ2 − 2K1F

1 − 2K1F
f

α1 + α2
|Ω1F

2 ] Pr(Ω1F
2 ) + E[

ξ1 − 2K1F
1 − 2K1F

f

α1
|Ω1F

3 ] Pr(Ω1F
3 )
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+E[
ξ1 − 2K1F

1

α1
|Ω1F

4 ] Pr(Ω1F
4 ) = c1 (38)

KKT− 2 :

E[
ξ1 + ξ2 − 2K1F

1 − 2K1F
f

α1 + α2
|Ω1F

2 ] Pr(Ω1F
2 ) + E[

ξ2

α2
|Ω1F

3 ] Pr(Ω1F
3 )

+E[
ξ2 − 2K1F

f

α2
|Ω1F

4 ] Pr(Ω1F
4 ) + E[

ξ2 − 2K1F
f

α2
|Ω1F

5 ] Pr(Ω1F
5 ) = c2 − v2 (39)

KKT− 3 :

E[
ξ1 + ξ2 − 2K1F

1 − 2K1F
f

α1 + α2
|Ω1F

2 ] Pr(Ω1F
2 ) + E[

ξ1 − 2K1F
1 − 2K1F

f

α1
|Ω1F

3 ] Pr(Ω1F
3 )

+E[
ξ2 − 2K1F

f

α2
|Ω1F

4 ] Pr(Ω1F
4 ) + E[

ξ2 − 2K1F
f

α2
|Ω1F

5 ] Pr(Ω1F
5 ) = cf (40)

Observe that when Ω1F
3 = ∅, KKT conditions (39) and (40) imply that cf = c2−v2 ≤ c2,

which is a contradiction, since cf > c2 by definition. Similarly, when (Ω1F
4 = ∅, Ω1F

5 = ∅),

by KKT conditions (38) and (40), cf = c1, which is a contradiction, since cf > c1 by defini-

tion. So, if {Ω1F
3 = ∅ or (Ω1F

4 = ∅, Ω1F
5 = ∅)}, then ~K1F = (K1F

1 > 0, K1F
2 = 0, K1F

f > 0)

is not a possible solution.

At boundary solution ~K2F = (K2F
1 = 0, K2F

2 > 0, K2F
f > 0), which implies that

v1 ≥ 0, v2 = 0, vf = 0, our state space reduces to the following:

Ω2F
1 = {ξ1 < 2K2F

f , ξ1 + ξ2 < 2K2F
2 + 2K2F

f } (41)

Ω2F
2 = {ξ1 + ξ2 > 2K2F

2 + 2K2F
f , 2α1K

2F
2 − 2α2K

2F
f < α1ξ2 − α2ξ1 < 2α1(K2F

2 + K2F
f )}

Ω2F
3 = {ξ2 > 2K2F

2 , α1ξ2 − α2ξ1 < 2α1K
2F
2 − 2α2K

2F
f }

Ω2F
4 = {α1ξ2 − α2ξ1 > 2α1(K2F

2 + K2F
f )}

Ω2F
5 = ∅; Ω2F

6 = {ξ1 > 2K2F
f , ξ2 < 2K2F

2 }
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Thus, the first-order KKT necessary & sufficient conditions reduce to the following:

KKT− 1 :

E[
ξ1 + ξ2 − 2K2F

2 − 2K2F
f

α1 + α2
|Ω2F

2 ] Pr(Ω2F
2 ) + E[

ξ1 − 2K2F
f

α1
|Ω2F

3 ] Pr(Ω2F
3 )

+E[
ξ1

α1
|Ω2F

4 ] Pr(Ω2F
4 ) + E[

ξ1 − 2K2F
f

α1
|Ω2F

6 ] Pr(Ω2F
6 ) = c1 − v1 (42)

KKT− 2 :

E[
ξ1 + ξ2 − 2K2F

2 − 2K2F
f

α1 + α2
|Ω2F

2 ] Pr(Ω2F
2 ) + E[

ξ2 − 2K2F
2

α2
|Ω2F

3 ] Pr(Ω2F
3 )

+E[
ξ2 − 2K2F

2 − 2K2F
f

α2
|Ω2F

4 ] Pr(Ω2F
4 ) = c2 (43)

KKT− 3 :

E[
ξ1 + ξ2 − 2K2F

2 − 2K2F
f

α1 + α2
|Ω2F

2 ] Pr(Ω2F
2 ) + E[

ξ1 − 2K2F
f

α1
|Ω2F

3 ] Pr(Ω2F
3 )

+E[
ξ2 − 2K2F

2 − 2K2F
f

α2
|Ω2F

4 ] Pr(Ω2F
4 ) + E[

ξ1 − 2K2F
f

α1
|Ω2F

6 ] Pr(Ω2F
6 ) = cf (44)

Observe that when Ω2F
4 = ∅, KKT conditions (42) and (44) imply that cf = c1−v1 ≤ c1,

which is a contradiction, since cf > c1 by definition. Similarly, when (Ω2F
3 = ∅,Ω2F

6 = ∅), by

KKT conditions (43) and (44), cf = c2, which is a contradiction, since cf > c2 by definition.

Thus, if {Ω2F
4 = ∅ or (Ω2F

3 = ∅,Ω2F
6 = ∅)}, then ~K2F = (K2F

1 = 0, K2F
2 > 0, K2F

f > 0) is

not a possible solution.

At boundary solution ~KA = (K1 > 0, KA
2 > 0, KA

f > 0), the firm invests in all

resources, which implies that v1 = 0,, v2 = 0, vf = 0. Thus, the state space is the same as

the general case, given in Eq. (14), where ΩA
i = Ωi, i = 1, . . . , 6.
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Thus, the first-order KKT necessary & sufficient conditions are given in the following:

KKT− 1 :

E[
ξ1 + ξ2 − 2KA

1 − 2KA
2 − 2KA

f

α1 + α2
|ΩA

2 ] Pr(ΩA
2 ) + E[

ξ1 − 2KA
1 − 2KA

f

α1
|ΩA

3 ] Pr(ΩA
3 )

+E[
ξ1 − 2KA

1

α1
|ΩA

4 ] Pr(ΩA
4 ) + E[

ξ1 − 2KA
1 − 2KA

f

α1
|ΩA

6 ] Pr(ΩA
6 ) = c1 (45)

KKT− 2 :

E[
ξ1 + ξ2 − 2KA

1 − 2KA
2 − 2KA

f

α1 + α2
|ΩA

2 ] Pr(ΩA
2 ) + E[

ξ2 − 2KA
2

α2
|ΩA

3 ] Pr(ΩA
3 )

+E[
ξ2 − 2KA

2 − 2KA
f

α2
|ΩA

4 ] Pr(ΩA
4 ) + E[

ξ2 − 2KA
2 − 2KA

f

α2
|ΩA

5 ] Pr(ΩA
5 ) = c2 (46)

KKT− 3 :

E[
ξ1 + ξ2 − 2KA

1 − 2KA
2 − 2KA

f

α1 + α2
|ΩA

2 ] Pr(ΩA
2 ) + E[

ξ1 − 2KA
1 − 2KA

f

α1
|ΩA

3 ] Pr(ΩA
3 )

+E[
ξ2 − 2KA

2 − 2KA
f

α2
|ΩA

4 ] Pr(ΩA
4 ) + E[

ξ2 − 2KA
2 − 2KA

f

α2
|ΩA

5 ] Pr(ΩA
5 )

+E[
ξ1 − 2KA

1 − 2KA
f

α1
|ΩA

6 ] Pr(ΩA
6 ) = cf (47)

Observe that when (ΩA
4 = ∅, ΩA

5 = ∅), KKT conditions in Eq.s (45) and (47) imply

that cf = c1, which is a contradiction, since cf > c1 by definition. Similarly, when (ΩA
3 =

∅, ΩA
6 = ∅), KKT conditions (46) and (47) imply that cf = c2, which is a contradiction,

since cf > c2 by definition. Thus if {(ΩA
4 = ∅, ΩA

5 = ∅) or (ΩA
3 = ∅, ΩA

6 = ∅)}, then

~KA = (KA
1 > 0, KA

2 > 0, KA
f > 0) is not a possible solution. This completes the proof.

D Proof of Lemma 6.2

Recall that by Lemma 5.2, K∗
f > 0 in the optimal solution only if cf < cf . Thus, in the

following, we analyze whether or not this is possible in each case.
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D.1 Case 1: α1c1
a > α2c2

Since α1c1
a > α2c2, it follows by Lemma 6.1 that KD

1
a < KD

2 .

D.1.1 Subcase 1: α1 > aα2

In this case, at boundary solution ~KD our state space, given in Eq. (15), reduces to the

following:

ΩD
1 = {ξ <

2KD
1

a
, ξ < 2KD

2 } = {ξ <
2KD

1

a
}

ΩD
2 = ∅

ΩD
3 = {ξ > 2KD

2 , ξ(α1 − aα2) < 2α1K
D
2 − 2α2K

D
1 } = {2KD

2 < ξ <
2α1K

D
2 − 2α2K

D
1

α1 − aα2
}

ΩD
4 = {ξ >

2KD
1

a
, ξ(α1 − aα2) > 2α1K

D
2 − 2α2K

D
1 } = {ξ >

−2α2K
D
1 + 2α1K

D
2

α1 − aα2
}

ΩD
5 = {ξ <

2KD
1

a
, ξ > 2KD

2 } = ∅

ΩD
6 = {ξ >

2KD
1

a
, ξ < 2KD

2 } = {2KD
1

a
< ξ < 2KD

2 }

Thus, the first-order KKT necessary & sufficient conditions for boundary solution ~KD,

given in Eq.s (16) and (18), reduce to the following:

KKT− 1 :

E[
aξ − 2KD

1

α1
|ΩD

3 ] Pr(ΩD
3 ) + E[

aξ − 2KD
1

α1
|ΩD

4 ] Pr(ΩD
4 ) + E[

aξ − 2KD
1

α1
|ΩD

6 ] Pr(ΩD
6 )

= c1 (48)

KKT− 2 :

E[
ξ − 2KD

2

α2
|ΩD

3 ] Pr(ΩD
3 ) + E[

ξ − 2KD
2

α2
|ΩD

4 ] Pr(ΩD
4 ) = c2 (49)
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KKT− 3 :

E[
aξ − 2KD

1

α1
|ΩD

3 ] Pr(ΩD
3 ) + E[

ξ − 2KD
2

α2
|ΩD

4 ] Pr(ΩD
4 ) + E[

aξ − 2KD
1

α1
|ΩD

6 ] Pr(ΩD
6 )

= cf − vf ≡ cf (50)

⇒ cf = c1 + c2 − { a

α1
E[ξ − 2KD

1

a
|ΩD

4 ] Pr(ΩD
4 ) +

1
α2

E[ξ − 2KD
2 |ΩD

3 ] Pr(ΩD
3 ) }

Recall that K∗
f > 0 in the optimal solution if cf < cf , as stated in Lemma 5.2. Also,

by definition, c1, c2 < cf < c1 + c2. Thus, in order to show that K∗
f > 0 is possible in the

optimal solution, we need to show that:

a

α1
E[ξ − 2KD

1

a
|ΩD

4 ] Pr(ΩD
4 ) +

1
α2

E[ξ − 2KD
2 |ΩD

3 ] Pr(ΩD
3 ) < min (c1, c2).

(i) We first show that a
α1

E[ξ − 2KD
1

a |ΩD
4 ] Pr(ΩD

4 ) + 1
α2

E[ξ − 2KD
2 |ΩD

3 ] Pr(ΩD
3 ) < c1. Ob-

serve that by Eq. (48), this is equivalent to showing that

E[ξ(α1 − aα2)− 2α1K
D
2 + 2α2K

D
1 |ΩD

3 ]︸ ︷︷ ︸
<0(by definition of ΩD

3 )

Pr(ΩD
3 ) < aα2 E[ξ − 2KD

1

a
|ΩD

6 ]
︸ ︷︷ ︸

>0(by definition of ΩD
6 )

Pr(ΩD
6 ),

which always holds by definitions of ΩD
3 and ΩD

6 , thus proving the first part.

(ii) Similarly, we next show that a
α1

E[ξ− 2KD
1

a |ΩD
4 ] Pr(ΩD

4 )+ 1
α2

E[ξ−2KD
2 |ΩD

3 ] Pr(ΩD
3 ) <

c2. Note that, by Eq. (49), this is equivalent to showing that

E[ξ(α1 − aα2)− 2α1K
D
2 + 2α2K

D
1 |ΩD

4 ] Pr(ΩD
4 ) > 0,

which always holds by definition of ΩD
4 , thus proving the second part.



56

Hence, K∗
f > 0 is possible in the optimal solution in this case.

D.1.2 Subcase 2: α1 = aα2

In this case, our state space reduces to the following:

ΩD
1 = {ξ <

2KD
1

a
}

ΩD
2 = ∅

ΩD
3 = {ξ > 2KD

2 }

ΩD
4 = ∅

ΩD
5 = ∅

ΩD
6 = {2KD

1

a
< ξ < 2KD

2 }

Thus, we have the following first-order KKT necessary & sufficient conditions:

KKT− 1 : E[
aξ − 2KD

1

α1
|ΩD

3 ] Pr(ΩD
3 ) + E[

aξ − 2KD
1

α1
|ΩD

6 ] Pr(ΩD
6 ) = c1 (51)

KKT− 2 : E[
ξ − 2KD

2

α2
|ΩD

3 ] Pr(ΩD
3 ) = c2 (52)

KKT− 3 : E[
aξ − 2KD

1

α1
|ΩD

3 ] Pr(ΩD
3 ) + E[

aξ − 2KD
1

α1
|ΩD

6 ] Pr(ΩD
6 ) = cf − vf = cf (53)

KKT conditions (51) and (53) imply that cf = c1. By Lemma 5.2, K∗
f > 0 in the

optimal solution only if cf < cf = c1. However, by definition, cf > c1 = cf . Thus, K∗
f = 0

in the optimal solution.
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D.1.3 Subcase 3: α1 < aα2

In this case, our state space reduces to the following:

ΩD
1 = {ξ <

2KD
1

a
}

ΩD
2 = ∅

ΩD
3 = {ξ > 2KD

2 , ξ(α1 − aα2) < −2α2K
D
1 + 2α1K

D
2 }

ΩD
4 = {ξ >

2KD
1

a
, ξ(α1 − aα2) > −2α2K

D
1 + 2α1K

D
2 }

ΩD
5 = ∅

ΩD
6 = {2KD

1

a
< ξ < 2KD

2 }

There are two cases to consider:

1. 2α1K
D
2 − 2α2K

D
1 ≥ 0 ⇒ {ξ(α1 − aα2) ≤ −2α2K

D
1 + 2α1K

D
2 } = Ω∪, since α1 < aα2

and ξ > 0. Thus, ΩD
3 = {ξ > 2KD

2 } and ΩD
4 = ∅.

2. 2α1K
D
2 − 2α2K

D
1 < 0 ⇒ 2α2KD

1 −2α1KD
2

aα2−α1
<

2aα2
KD

1
a
−2α1

KD
1
a

aα2−α1
= 2KD

1
a .

Thus, ΩD
3 = {ξ > 2KD

2 } and ΩD
4 = ∅.

Thus, the first-order KKT necessary and sufficient conditions are the same as in subcase

2, which imply that cf = c1. Therefore, K∗
f = 0 in the optimal solution.

D.2 Case 2: α1c1
a = α2c2

Since α1c1
a = α2c2, it follows by Lemma 6.1 that KD

1
a = KD

2 .
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D.2.1 Subcase 1: α1 > aα2

In this case, our state space reduces to the following:

ΩD
1 = {ξ <

2KD
1

a
, ξ < 2KD

2 } = {ξ < 2KD
2 }

ΩD
2 = ∅

ΩD
3 = {ξ > 2KD

2 , ξ < 2KD
2 } = ∅

ΩD
4 = {ξ >

2KD
1

a
} = {ξ > 2KD

2 }

ΩD
5 = {ξ <

2KD
1

a
, ξ > 2KD

2 } = ∅

ΩD
6 = {ξ >

2KD
1

a
, ξ < 2KD

2 } = ∅

Thus, we have the following first-order KKT necessary & sufficient conditions:

KKT− 1 : E[
aξ − 2KD

1

α1
|ΩD

4 ] Pr(ΩD
4 ) = c1 (54)

KKT− 2 : E[
ξ − 2KD

2

α2
|ΩD

4 ] Pr(ΩD
4 ) = c2 (55)

KKT− 3 : E[
ξ − 2KD

2

α2
|ΩD

4 ] Pr(ΩD
4 ) = cf − vf = cf (56)

KKT conditions (55) and (56) imply that cf = c2. However, since by definition cf >

c2 = cf , it follows, by Lemma 5.2, that K∗
f = 0 in the optimal solution.

D.2.2 Subcase 2: α1 = aα2

In this case, our state space reduces to the following:

ΩD
1 = {ξ <

2KD
1

a
} = {ξ < 2KD

2 }
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ΩD
2 = {ξ > 2KD

2 }

ΩD
3 = ΩD

4 = ΩD
5 = ΩD

6 = ∅

Since ΩD
3 = ΩD

4 = ΩD
5 = ΩD

6 = ∅, the first-order KKT condition 3, given in Eq. (18),

implies that cf = 0. Thus, K∗
f = 0 in the optimal solution by Lemma 5.2.

D.2.3 Subcase 3: α1 < aα2

In this case, our state space reduces to the following:

ΩD
1 = {ξ <

2KD
1

a
} = {ξ < 2KD

2 }

ΩD
2 = ∅

ΩD
3 = {ξ > 2KD

2 }

ΩD
4 = {ξ >

2KD
1

a
, ξ < 2KD

2 } = ∅

ΩD
5 = {ξ <

2KD
1

a
, ξ > 2KD

2 } = ∅

ΩD
6 = {ξ >

2KD
1

a
, ξ < 2KD

2 } = ∅

Thus, the first-order KKT necessary & sufficient conditions, given in Eq.s (16) and (18),

imply that cf = c1. Since, by definition, cf > c1 = cf , it follows, by Lemma 5.2, that

K∗
f = 0 in the optimal solution.

D.3 Case 3: α1c1
a < α2c2

Since α1c1
a < α2c2, it follows by Lemma 6.1 that KD

1
a > KD

2 .
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D.3.1 Subcase 1: α1 > aα2

In this case, our state space reduces to the following:

ΩD
1 = {ξ < 2KD

2 }

ΩD
2 = ∅

ΩD
3 = {ξ > 2KD

2 , ξ <
2α1K

D
2 − 2α2K

D
1

α1 − aα2
} = ∅

ΩD
4 = {ξ >

2KD
1

a
, ξ >

2α1K
D
2 − 2α2K

D
1

α1 − aα2
} = {ξ >

2KD
1

a
}

ΩD
5 = {2KD

2 < ξ <
2KD

1

a
}

ΩD
6 = {ξ >

2KD
1

a
, ξ < 2KD

2 } = ∅

Thus, the first-order KKT necessary & sufficient conditions reduce to the following:

KKT− 1 : E[
aξ − 2KD

1

α1
|ΩD

4 ] Pr(ΩD
4 ) = c1 (57)

KKT− 2 : E[
ξ − 2KD

2

α2
|ΩD

4 ] Pr(ΩD
4 ) + E[

ξ − 2KD
2

α2
|ΩD

5 ] Pr(ΩD
5 ) = c2 (58)

KKT− 3 : E[
ξ − 2KD

2

α2
|ΩD

4 ] Pr(ΩD
4 ) + E[

ξ − 2KD
2

α2
|ΩD

5 ] Pr(ΩD
5 ) = cf − vf = cf (59)

KKT conditions (58) and (59) imply that cf = c2. However, since by definition cf >

c2 = cf , Lemma 5.2 implies that K∗
f = 0 in the optimal solution.

D.3.2 Subcase 2: α1 = aα2

In this case, our state space reduces to the following:

ΩD
1 = {ξ < 2KD

2 }
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ΩD
2 = ∅

ΩD
3 = {ξ > 2KD

2 , ξ(α1 − aα2) < 2α1K
D
2 − 2α2K

D
1 }

= {ξ > 2KD
2 , 0 < 2α1K

D
2 − 2α2K

D
1︸ ︷︷ ︸

<0 (since KD
2 <

KD
1
a

)

} = ∅

ΩD
4 = {ξ >

2KD
1

a
, ξ(α1 − aα2) > 2α1K

D
2 − 2α2K

D
1 }

= {ξ >
2KD

1

a
}

ΩD
5 = {2KD

2 < ξ <
2KD

1

a
}

ΩD
6 = {ξ >

2KD
1

a
, ξ < 2KD

2 } = ∅

Thus, the first-order KKT necessary & sufficient conditions are the same as in subcase

1. Therefore, K∗
f = 0 in the optimal solution.

D.3.3 Subcase 3: α1 < aα2

In this case, our state space reduces to the following:

ΩD
1 = {ξ < 2KD

2 }

ΩD
2 = ∅

ΩD
3 = {ξ > 2KD

2 , ξ >
2α2K

D
1 − 2α1K

D
2

aα2 − α1
} = {ξ >

2α2K
D
1 − 2α1K

D
2

aα2 − α1
}

ΩD
4 = {ξ >

2KD
1

a
, ξ <

2α2K
D
1 − 2α1K

D
2

aα2 − α1
} = {2KD

1

a
< ξ <

2α2K
D
1 − 2α1K

D
2

aα2 − α1
}

ΩD
5 = {2KD

2 < ξ <
2KD

1

a
}

ΩD
6 = {2KD

1

a
< ξ < 2KD

2 } = ∅
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Thus, we have the following first-order KKT necessary & sufficient conditions:

KKT− 1 :

E[
aξ − 2KD

1

α1
|ΩD

3 ] Pr(ΩD
3 ) + E[

aξ − 2KD
1

α1
|ΩD

4 ] Pr(ΩD
4 ) = c1 (60)

KKT− 2 :

E[
ξ − 2KD

2

α2
|ΩD

3 ] Pr(ΩD
3 ) + E[

ξ − 2KD
2

α2
|ΩD

4 ] Pr(ΩD
4 ) + E[

ξ − 2KD
2

α2
|ΩD

5 ] Pr(ΩD
5 ) = c2(61)

KKT− 3 :

E[
aξ − 2KD

1

α1
|ΩD

3 ] Pr(ΩD
3 ) + E[

ξ − 2KD
2

α2
|ΩD

4 ] Pr(ΩD
4 ) + E[

ξ − 2KD
2

α2
|ΩD

5 ] Pr(ΩD
5 )

= cf − vf = cf

⇒ cf = c1 + c2 − { a

α1
E[ξ − 2KD

1

a
|ΩD

4 ] Pr(ΩD
4 ) +

1
α2

E[ξ − 2KD
2 |ΩD

3 ] Pr(ΩD
3 )} (62)

Recall that K∗
f > 0 in the optimal solution only if cf < cf , as stated in Lemma 5.2.

Also, by definition, c1, c2 < cf < c1 + c2. Thus, in order to show that K∗
f > 0 is possible

in the optimal solution, we need to show that:

a

α1
E[ξ − 2KD

1

a
|ΩD

4 ] Pr(ΩD
4 ) +

1
α2

E[ξ − 2KD
2 |ΩD

3 ] Pr(ΩD
3 ) < min (c1, c2)

(i) We first show that a
α1

E[ξ − 2KD
1

a |ΩD
4 ] Pr(ΩD

4 ) + 1
α2

E[ξ − 2KD
2 |ΩD

3 ] Pr(ΩD
3 ) < c1. Ob-

serve that, by Eq. (60), this is equivalent to showing that

(aα2 − α1) E[ξ − (2α2K
D
1 − 2α1K

D
2 )

aα2 − α1
|ΩD

3 ]
︸ ︷︷ ︸

>0(by definition of ΩD
3 )

Pr(ΩD
3 ) > 0,

which always holds by definition of ΩD
3 , thus proving the first part.
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(ii) We next show that a
α1

E[ξ − 2KD
1

a |ΩD
4 ] Pr(ΩD

4 ) + 1
α2

E[ξ − 2KD
2 |ΩD

3 ] Pr(ΩD
3 ) < c2.

Observe that, by Eq. (61), this is equivalent to showing that

(aα2 − α1)E[ξ − (2α2K
D
1 − 2α1K

D
2 )

aα2 − α1
|ΩD

4 ]
︸ ︷︷ ︸

<0(by definition of ΩD
4 )

Pr(ΩD
4 ) < α1 E[ξ − 2KD

2 |ΩD
5 ]︸ ︷︷ ︸

>0(by definition of ΩD
5 )

Pr(ΩD
5 ),

which always holds by definitions of ΩD
4 and ΩD

5 , and since aα2 > α1 by assumption,

thus proving the second part. Hence K∗
f > 0 is possible in the optimal solution in

this case. This completes the proof.

E Proof of Theorem 6.1 parts (2a) and (2b)

E.1 Proof of (2a)

In the following, we first prove that
K2F

f

a < K2F
2 , and then, using this result, we prove the

other inequalities.

E.1.1 Proof of
K2F

f

a < K2F
2

Suppose that ~K2F is the optimal solution. Suppose, to the contrary, that
K2F

f

a ≥ K2F
2 . In

addition, recall that α1 > aα2. Then, we can show that the following inequalities hold:

2α1K
2F
2 − 2α2K

2F
f

α1 − aα2
≤ 2K2F

2 ≤ 2K2F
2 + 2K2F

f

1 + a
≤ 2K2F

f

a
;

and
2α1(K2F

2 + K2F
f )

α1 − aα2
≥ 2K2F

2 + 2K2F
f

1 + a
.
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Thus, if
K2F

f

a ≥ K2F
2 , then Ω2F

3 = {ξ > 2K2F
2 , ξ <

2α1K2F
2 −2α2K2F

f

α1−aα2
} = ∅ and Ω2F

6 = {ξ >

2K2F
f

a , ξ < 2K2F
2 } = ∅, which follow by Eq. (41). Hence, by Lemma 5.3, ~K2F is not a

possible solution, which is a contradiction. Thus, we must have
K2F

f

a < K2F
2 . This implies

the following inequalities:

2K2F
f

a
<

2K2F
2 + 2K2F

f

1 + a
< 2K2F

2 <
2α1K

2F
2 − 2α2K

2F
f

α1 − aα2

Thus, our state space reduces to the one depicted in Figure 2.
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Figure 2: The demand space at solution ~K2F for perfectly positively correlated demand
patterns.
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E.1.2 Proof of K2F
2 < KI

2

Observe that we can write:

E[
ξ(1 + a)− 2K2F

2 − 2K2F
f

α1 + α2
|Ω2F

2 ]

= E[
ξ − 2K2F

2

α2
|Ω2F

2 ] + E[
2α1K

2F
2 − 2α2K

2F
f − ξ(α1 − aα2)

α2(α1 + α2)
|Ω2F

2 ] (63)

Using Eq. (63), KKT condition, given in Eq. (43), can be written as:

E[ξ − 2K2F
2 |Ω2F

2 ] Pr(Ω2F
2 ) + E[

2α1K
2F
2 − 2α2K

2F
f − ξ(α1 − aα2)

α1 + α2
|Ω2F

2 ] Pr(Ω2F
2 )

+E[ξ − 2K2F
2 |Ω2F

3 ] Pr(Ω2F
3 ) + E[ξ − 2K2F

2 |Ω2F
4 ] Pr(Ω2F

4 )− 2K2F
f Pr(Ω2F

4 ) = α2c2 (64)

Observe that (Ω2F
2 ∪ Ω2F

3 ∪ Ω2F
4 ) = {ξ > 2K2F

2 } (see Figure 2).

Thus, we can write Eq. (64) as:

E[ξ − 2K2F
2 |ξ > 2K2F

2 ] Pr(ξ > 2K2F
2 )

= α2c2 + 2K2F
f Pr(Ω2F

4 )− 1
α1 + α2

E[2α1K
2F
2 − 2α2K

2F
f − ξ(α1 − aα2)|Ω2F

2 ]︸ ︷︷ ︸
<0(by definition of Ω2F

2 )

Pr(Ω2F
2 )

> α2c2.

We now compare this optimality condition at solution ~K2F with the optimality condi-

tion at solution ~KI , given as follows (see Eq. (13)):

E[ξ − 2KI
2 |ξ > 2KI

2 ] Pr(ξ > 2KI
2 ) = α2c2.
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Hence,

E[ξ − 2K2F
2 |ξ > 2K2F

2 ] Pr(ξ > 2K2F
2 ) > E[ξ − 2KI

2 |ξ > 2KI
2 ] Pr(ξ > 2KI

2 ) ⇒ K2F
2 < KI

2 .

E.1.3 Proof of K2F
f > KI

1

Observe that:

E[
ξ(1 + a)− 2K2F

2 − 2K2F
f

α1 + α2
|Ω2F

2 ] Pr(Ω2F
2 )

= E[
aξ − 2K2F

f

α1
|Ω2F

2 ] Pr(Ω2F
2 ) + E[

2α2K
2F
f − 2α1K

2F
2 + ξ(α1 − aα2)

α1(α1 + α2)
|Ω2F

2 ] Pr(Ω2F
2 )(65)

Using Eq. (65), we can write the KKT condition in Eq. (42) as:

a

α1
E[ξ − 2K2F

f

a
|Ω2F

2 ] Pr(Ω2F
2 ) + E[

2α2K
2F
f − 2α1K

2F
2 + ξ(α1 − aα2)

α1(α1 + α2)
|Ω2F

2 ] Pr(Ω2F
2 )

+
a

α1
E[ξ − 2K2F

f

a
|Ω2F

3 ] Pr(Ω2F
3 ) +

a

α1
E[ξ − 2K2F

f

a
|Ω2F

4 ] Pr(Ω2F
4 ) +

2K2F
f

α1
Pr(Ω2F

4 )

+
a

α1
E[ξ − 2K2F

f

a
|Ω2F

6 ] Pr(Ω2F
6 ) = c1 − v1 (66)

Observe that (Ω2F
2 ∪ Ω2F

3 ∪ Ω2F
4 ∪ Ω2F

6 ) = {ξ >
2K2F

f

a } (see Figure 2). Thus, Eq. (66)

can be written as:

E[ξ − 2K2F
f

a
|ξ >

2K2F
f

a
] Pr(ξ >

2K2F
f

a
)

=
α1

a
(c1 − v1)−

2K2F
f

a
Pr(Ω2F

4 )

− 1
a(α1 + α2)

E[2α2K
2F
f − 2α1K

2F
2 + ξ(α1 − aα2)|Ω2F

2 ]︸ ︷︷ ︸
>0(by definition of Ω2F

2 )

Pr(Ω2F
2 )



67

<
α1c1

a
.

Next, we compare this optimality condition at solution ~K2F with the optimality con-

dition at solution ~KI , given as follows (see Eq. (13)):

E[ξ − 2KI
1

a
|ξ >

2KI
1

a
] Pr(ξ >

2KI
1

a
) =

α1c1

a
.

Thus, E[ξ − 2K2F
f

a |ξ >
2K2F

f

a ] Pr(ξ >
2K2F

f

a ) < E[ξ − 2KI
1

a |ξ >
2KI

1
a ] Pr(ξ >

2KI
1

a ), which

implies that K2F
f > KI

1 .

Recall that we have already shown that
K2F

f

a < K2F
2 and K2F

2 < KI
2 . Thus,

KI
1

a
<

K2F
f

a
< K2F

2 < KI
2 ,

which completes the proof of part 2(a) of Theorem 6.1.

E.2 Proof of (2b)

At ~KA = {KA
1 > 0, KA

2 > 0, KA
f > 0}, our state space is given by the following:

Ω1 = {ξ <
2KA

1 + 2KA
f

a
, ξ < 2KA

2 + 2KA
f , ξ <

2KA
1 + 2KA

2 + 2KA
f

1 + a
}

Ω2 = {2α1K
A
2 − 2α2(KA

1 + KA
f )

α1 − aα2
< ξ <

−2α2K
A
1 + 2α1(KA

2 + KA
f )

α1 − aα2
, ξ >

2KA
1 + 2KA

2 + 2KA
f

1 + a
}

Ω3 = {ξ > 2KA
2 , ξ <

2α1K
A
2 − 2α2(KA

1 + KA
f )

α1 − aα2
}

Ω4 = {ξ >
2KA

1

a
, ξ >

−2α2K
A
1 + 2α1(KA

2 + KA
f )

α1 − aα2
}
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Ω5 = {ξ <
2KA

1

a
, ξ > 2KA

2 + 2KA
f }

Ω6 = {ξ >
2KA

1 + 2KA
f

a
, ξ < 2KA

2 }

Thus, the first-order KKT necessary & sufficient conditions are given in the following:

KKT− 1 :

E[
ξ(1 + a)− 2KA

1 − 2KA
2 − 2KA

f

α1 + α2
|ΩA

2 ] Pr(ΩA
2 ) + aE[

ξ − 2KA
1

a − 2KA
f

a

α1
|ΩA

3 ] Pr(ΩA
3 )

+aE[
ξ − 2KA

1
a

α1
|ΩA

4 ] Pr(ΩA
4 ) + aE[

ξ − 2KA
1

a − 2KA
f

a

α1
|ΩA

6 ] Pr(ΩA
6 ) = c1 (67)

KKT− 2 :

E[
ξ(1 + a)− 2KA

1 − 2KA
2 − 2KA

f

α1 + α2
|ΩA

2 ] Pr(ΩA
2 ) + E[

ξ − 2KA
2

α2
|ΩA

3 ] Pr(ΩA
3 )

+E[
ξ − 2KA

2 − 2KA
f

α2
|ΩA

4 ] Pr(ΩA
4 ) + E[

ξ − 2KA
2 − 2KA

f

α2
|ΩA

5 ] Pr(ΩA
5 ) = c2 (68)

KKT− 3 :

E[
ξ(1 + a)− 2KA

1 − 2KA
2 − 2KA

f

α1 + α2
|ΩA

2 ] Pr(ΩA
2 ) + aE[

ξ − 2KA
1

a − 2KA
f

a

α1
|ΩA

3 ] Pr(ΩA
3 )

+E[
ξ − 2KA

2 − 2KA
f

α2
|ΩA

4 ] Pr(ΩA
4 ) + E[

ξ − 2KA
2 − 2KA

f

α2
|ΩA

5 ] Pr(ΩA
5 )

+aE[
ξ − 2KA

1
a − 2KA

f

a

α1
|ΩA

6 ] Pr(ΩA
6 ) = cf (69)

In the following proof, we will make use of the KKT optimality conditions for solution

~KI , given in Eq. (13) in Lemma 3.1, which states that:

E[ξ − 2KI
1

a
|ξ >

2KI
1

a
] Pr(ξ >

2KI
1

a
) =

α1c1

a
(70)

E[ξ − 2KI
2 |ξ > 2KI

2 ] Pr(ξ > 2KI
2 ) = α2c2 (71)
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In the following, we first show that
KA

1 +KA
f

a < KA
2 , and then use this result to prove

the other inequalities.

The proof follows by contradiction. Suppose that ~KA is the optimal solution. Suppose,

to the contrary, that
KA

1 +KA
f

a ≥ KA
2 . Then we have:

(1) 2KA
2 ≤ 2KA

1 + 2KA
2 + 2KA

f

1 + a
≤ 2KA

1 + 2KA
f

a
; and (2)

2α1K
A
2 − 2α2(KA

1 + KA
f )

α1 − aα2
≤ 2KA

2 .

(1) and (2) imply that ΩA
3 = ∅ and ΩA

6 = ∅. However, Lemma 5.3 implies that in this

case ~KA is not a possible solution, which is a contradiction. Thus, if ~KA is the optimal

solution, then we must have
KA

1 +KA
f

a < KA
2 . In this case, it is easy to show that:

2KA
1 + 2KA

f

a
<

2KA
1 + 2KA

2 + 2KA
f

1 + a
< 2KA

2 <
2α1K

A
2 − 2α2(KA

1 + KA
f )

α1 − aα2

<
2α1K

A
2 + 2α1K

A
f − 2α2K

A
1

α1 − aα2

Thus, ΩA
5 = ∅ and the state space reduces to the one given in Figure 3.

In what follows, we analyze the relationships between KA
1 , KA

2 , KA
f and KI

1 , KI
2 .

E.2.1 Proof of KA
1 + KA

f > KI
1

Observe that:

E[
ξ(1 + a)− 2(KA

1 + KA
2 + KA

f )
α1 + α2

|ΩA
2 ]
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Figure 3: The demand space at solution ~KA for perfectly positively correlated demand
patterns.

= E[
aξ − 2(KA

1 + KA
f )

α1
|ΩA

2 ] + E[
ξ(α1 − aα2)− 2α1K

A
2 + 2α2(KA

1 + KA
f )

α1(α1 + α2)
|ΩA

2 ] (72)

Using Eq. (72) and observing that (ΩA
2 ∪ ΩA

3 ∪ ΩA
4 ∪ ΩA

6 ) = {ξ >
2(KA

1 +KA
f )

a }, we can

write the KKT condition in Eq. (67) as follows:

a

α1
E[ξ − 2(KA

1 + KA
f )

a
|ΩA

2 ] Pr(ΩA
2 ) + E[

ξ(α1 − aα2)− 2α1K
A
2 + 2α2(KA

1 + KA
f )

α1(α1 + α2)
|ΩA

2 ] Pr(ΩA
2 )

+
a

α1
E[ξ − 2(KA

1 + KA
f )

a
|ΩA

3 ] Pr(ΩA
3 ) +

a

α1
E[ξ − 2(KA

1 + KA
f )

a
|ΩA

4 ] Pr(ΩA
4 )

+
a

α1

2KA
f

a
Pr(ΩA

4 ) +
a

α1
E[ξ − 2(KA

1 + KA
f )

a
|ΩA

6 ] Pr(ΩA
6 ) = c1

⇒ E[ξ − 2(KA
1 + KA

f )
a

|ξ >
2(KA

1 + KA
f )

a
] Pr(ξ >

2(KA
1 + KA

f )
a

)

=
α1c1

a
− 2KA

f

a
Pr(ΩA

4 )− α1

a
E[

ξ(α1 − aα2)− 2α1K
A
2 + 2α2(KA

1 + KA
f )

α1(α1 + α2)
|ΩA

2 ] Pr(ΩA
2 )
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=
α1c1

a
− 2KA

f

a
Pr(ΩA

4 )− (α1 − aα2)
a(α1 + α2)

E[ξ − (2α1K
A
2 − 2α2(KA

1 + KA
f ))

α1 − aα2
|ΩA

2 ]
︸ ︷︷ ︸

>0(by definition of ΩA
2 )

Pr(ΩA
2 )

<
α1c1

a
(73)

Thus, Eq.s (70) and (73) imply that

KA
1 + KA

f > KD
1 . (74)

E.2.2 Proof of KA
1 < KI

1

Observe that:

E[
ξ(1 + a)− 2KA

1 − 2KA
2 − 2KA

f

α1 + α2
|ΩA

2 ]

= E[
aξ − 2KA

1

α1
|ΩA

2 ] + E[
ξ(α1 − aα2) + 2α2K

A
1 − 2α1K

A
2 − 2α1K

A
f

α1(α1 + α2)
|ΩA

2 ] (75)

Then we can write KKT condition in Eq. (67) as follows:

a

α1
E[ξ − 2KA

1

a
|ΩA

2 ] Pr(ΩA
2 ) + E[

ξ(α1 − aα2) + 2α2K
A
1 − 2α1(KA

2 + KA
f )

α1(α1 + α2)
|ΩA

2 ] Pr(ΩA
2 )

+
a

α1
E[ξ − 2KA

1

a
|ΩA

3 ] Pr(ΩA
3 )− a

α1

2KA
f

a
Pr(ΩA

3 ) +
a

α1
E[ξ − 2KA

1

a
|ΩA

4 ] Pr(ΩA
4 )

+
a

α1
E[ξ − 2KA

1

a
|ΩA

6 ] Pr(ΩA
6 )− a

α1

2KA
f

a
Pr(ΩA

6 ) = c1 (76)

⇒ E[ξ − 2KA
1

a
|ξ >

2KA
1

a
] Pr(ξ >

2KA
1

a
)

=
α1c1

a
+

2KA
f

a
Pr(ΩA

3 ) +
2KA

f

a
Pr(ΩA

6 )

+E[ξ − 2KA
1

a
|2KA

1

a
< ξ <

2KA
1 + 2KA

f

a
] Pr(

2KA
1

a
< ξ <

2KA
1 + 2KA

f

a
)
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−E[
ξ(α1 − aα2) + 2α2K

A
1 − 2α1K

A
2 − 2α1K

A
f

a(α1 + α2)
|ΩA

2 ]
︸ ︷︷ ︸

<0(by definition of ΩA
2 )

Pr(ΩA
2 )

>
α1c1

a
(77)

Thus, Eq.s (70) and (77) imply that

KA
1 < KI

1 . (78)

E.2.3 Proof of KA
2 < KI

2

Observe that:

E[
ξ(1 + a)− 2KA

1 − 2KA
2 − 2KA

f

α1 + α2
]

= E[
ξ − 2KA

2

α2
|ΩA

2 ] + E[
2α1K

A
2 − 2α2(KA

1 + KA
f )− ξ(α1 − aα2)

α2(α1 + α2)
|ΩA

2 ] (79)

Recalling that ΩA
5 = ∅ and observing that (ΩA

2 ∪ΩA
3 ∪ΩA

4 ) = {ξ > 2KA
2 }, we can write

the KKT condition in Eq. (68) as follows:

1
α2

E[ξ − 2KA
2 |ΩA

2 ] Pr(ΩA
2 ) +

1
α2

E[
2α1K

A
2 − 2α2(KA

1 + KA
f )− ξ(α1 − aα2)

(α1 + α2)
|ΩA

2 ] Pr(ΩA
2 )

+
1
α2

E[ξ − 2KA
2 |ΩA

3 ] Pr(ΩA
3 ) +

1
α2

E[ξ − 2KA
2 |ΩA

4 ] Pr(ΩA
4 )− 1

α2
2KA

f Pr(ΩA
4 ) = c2

⇒ E[ξ − 2KA
2 |ξ > 2KA

2 ] Pr(ξ > 2KA
2 )

= α2c2 + 2KA
f Pr(ΩA

4 )− E[
2α1K

A
2 − 2α2(KA

1 + KA
f )− ξ(α1 − aα2)

α1 + α2
|ΩA

2 ]
︸ ︷︷ ︸

<0(by definition of ΩA
2 )

Pr(ΩA
2 )

> α2c2 (80)
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Thus, Eq.s (71) and (80) imply that

KA
2 < KI

2 . (81)

E.2.4 Proof of KI
2 < KA

2 + KA
f

Observe that:

E[
ξ(1 + a)− 2KA

1 − 2KA
2 − 2KA

f

α1 + α2
]

= E[
ξ − 2(KA

2 + KA
f )

α2
|ΩA

2 ] Pr(ΩA
2 )

+E[
2α1(KA

2 + KA
f )− 2α2K

A
1 − ξ(α1 − aα2)

α2(α1 + α2)
|ΩA

2 ] Pr(ΩA
2 ) (82)

Since KA
2 >

KA
1 +KA

f

a , it is easy to show that 2KA
2 + 2KA

f <
2α1KA

2 +2α1KA
f −2α2KA

1

α1−aα2
.

There are two cases to consider:

Case 1: 2KA
2 + 2KA

f ≤ 2α1KA
2 −2α2(KA

1 +KA
f )

α1−aα2

In this case, the demand space can be decomposed into Figure 4. KKT condition in

Eq. (68) can be written as:

E[
ξ − 2(KA

2 + KA
f )

α2
|ΩA

2 ] Pr(ΩA
2 ) + E[

2α1(KA
2 + KA

f )− 2α2K
A
1 − ξ(α1 − aα2)

α2(α1 + α2)
|ΩA

2 ] Pr(ΩA
2 )

+E[
ξ − 2KA

2

α2
|ΩA

′
3 ] Pr(ΩA

′
3 ) + E[

ξ − 2KA
2 − 2KA

f

α2
|ΩA

′′
3 ] Pr(ΩA

′′
3 )

+
2KA

f

α2
Pr(ΩA

′′
3 ) + E[

ξ − 2KA
2 − 2KA

f

α2
|ΩA

4 ] Pr(ΩA
4 ) = c2

⇒ E[ξ − 2(KA
2 + KA

f )|ξ > 2KA
2 + 2KA

f ] Pr(ξ > 2KA
2 + 2KA

f )

= α2c2 − 2KA
f Pr(ΩA

′′
3 )− E[ξ − 2KA

2 |ΩA
′

3 ]︸ ︷︷ ︸
>0(by definition of ΩA

′
3 )

Pr(ΩA
′

3 )
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Figure 4: The demand space at solution ~KA for case 1.

−E[
2α1(KA

2 + KA
f )− 2α2K

A
1 − ξ(α1 − aα2)

α1 + α2
|ΩA

2 ]
︸ ︷︷ ︸

>0(by definition of ΩA
2 )

Pr(ΩA
2 )

< α2c2 (83)

Thus, Eq.s (71) and (83) imply that:

KA
2 + KA

f > KI
2 . (84)

Case 2: 2KA
2 + 2KA

f >
2α1KA

2 −2α2(KA
1 +KA

f )

α1−aα2

In this case, the demand space can be decomposed into Figure 5. KKT condition in
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Figure 5: The demand space at solution ~KA for case 2.

Eq. (68) can be written as:

E[
ξ(1 + a)− 2(KA

1 + KA
2 + KA

f )
α1 + α2

|ΩA
′

2 ]
︸ ︷︷ ︸

>0(by definition of ΩA
′

2 )

Pr(ΩA
′

2 ) + E[
ξ − 2(KA

2 + KA
f )

α2
|ΩA

′′
2 ] Pr(ΩA

′′
2 )

+E[
2α1(KA

2 + KA
f )− 2α2K

A
1 − ξ(α1 − aα2)

α2(α1 + α2)
|ΩA

′′
2 ]

︸ ︷︷ ︸
>0(by definition of ΩA

′′
2 )

Pr(ΩA
′′

2 )

+ E[
ξ − 2KA

2

α2
|ΩA

3 ]
︸ ︷︷ ︸

>0(by definition of ΩA
3 )

Pr(ΩA
3 ) + E[

ξ − 2(KA
2 + KA

f )
α2

|ΩA
4 ] Pr(ΩA

4 ) = c2

⇒ E[ξ − 2(KA
2 + KA

f )|ξ > 2KA
2 + 2KA

f ] Pr(ξ > 2KA
2 + 2KA

f ) < α2c2 (85)
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Thus, Eq.s (71) and (85) imply that:

KA
2 + KA

f > KI
2 . (86)

Hence, Eq.s (74), (78), (81) and (86) imply the following relationship:

KA
1

a
<

KI
1

a
<

KA
1 + KA

f

a
< KA

2 < KI
2 < KA

2 + KA
f .

This completes the proof of part 2(b) of Theorem 6.1.

F Proof of Theorem 6.2

Letting ξ2 = ξ and ξ1 = a− ξ, our demand space at boundary solution ~KD reduces to:

ΩD
1 = {a− 2KD

1 < ξ < 2KD
2 }

ΩD
2 = {a > 2KD

1 + 2KD
2 , ξ =

α2(a− 2KD
1 ) + α1(2KD

2 )
α1 + α2

} = ∅

(since ξ is a continuous random variable)

ΩD
3 = {ξ > 2KD

2 , ξ(α1 + α2) < 2α1K
D
2 − 2α2K

D
1 + aα2}

ΩD
4 = {ξ < a− 2KD

1 , ξ(α1 + α2) > 2α1K
D
2 − 2α2K

D
1 + aα2}

ΩD
5 = {ξ > a− 2KD

1 , ξ > 2KD
2 }

ΩD
6 = {ξ < a− 2KD

1 , ξ < 2KD
2 }



77

Thus, at boundary solution ~KD, the first-order KKT necessary & sufficient conditions,

given in Theorem 5.1, reduce to the following:

KKT− 1 :

E[
a− 2KD

1 − ξ

α1
|ΩD

3 ] Pr(ΩD
3 ) + E[

a− 2KD
1 − ξ

α1
|ΩD

4 ] Pr(ΩD
4 )

+E[
a− 2KD

1 − ξ

α1
|ΩD

6 ] Pr(ΩD
6 ) = c1 (87)

KKT− 2 :

E[
ξ − 2KD

2

α2
|ΩD

3 ] Pr(ΩD
3 ) + E[

ξ − 2KD
2

α2
|ΩD

4 ] Pr(ΩD
4 ) + E[

ξ − 2KD
2

α2
|ΩD

5 ] Pr(ΩD
5 ) = c2(88)

KKT− 3 :

E[
a− 2KD

1 − ξ

α1
|ΩD

3 ] Pr(ΩD
3 ) + E[

ξ − 2KD
2

α2
|ΩD

4 ] Pr(ΩD
4 )

+E[
ξ − 2KD

2

α2
|ΩD

5 ] Pr(ΩD
5 ) + E[

a− 2KD
1 − ξ

α1
|ΩD

6 ] Pr(ΩD
6 ) = cf − vf = cf (89)

Consider the optimal solution, KI
i , to the independent problem for demand-class i, i =

1, 2 (Problem P2(i)). By definition, solution (KI
1 ,KI

2 ) satisfies conditions KKT-1 and

KKT-2. If this solution also satisfies condition KKT-3, then by Theorem 5.1, it must be the

optimal solution, with the optimal investment vector being ~KD = (KI
1 ,KI

2 , 0). Otherwise,

the optimal solution must have K∗
f > 0. Thus, in the following, letting (KD

1 ,KD
2 ) =

(KI
1 ,KI

2 ), we analyze whether or not this solution satisfies KKT-3. There are three possible

cases:

1. If 2KI
1 + 2KI

2 = a, then ΩD
1 = ΩD

2 = ΩD
3 = ΩD

4 = ∅. Then, KKT conditions in

Eq.s (87)-(89) imply that cf = c1 + c2. Since cf < c1 + c2 by definition, it follows by

Lemma 5.2 that K∗
f > 0 in the optimal solution.
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2. If 2KI
1 +2KI

2 > a, then ΩD
2 = ΩD

3 = ΩD
4 = ∅. Then, KKT conditions in Eq.s (87)-(89)

imply that cf = c1 + c2, and therefore, it follows by Lemma 5.2 that K∗
f > 0 in the

optimal solution.

3. If 2KI
1 +2KI

2 < a, then ΩD
1 = ΩD

2 = ∅. Then, KKT conditions in Eq.s (87)-(89) imply

that cf = c1 + c2 − { 1
α1

E[a− 2KI
1 − ξ|ΩD

4 ] Pr(ΩD
4 ) + 1

α2
E[ξ − 2KI

2 |ΩD
3 ] Pr(ΩD

3 )}. By

Lemma 5.2, K∗
f > 0 in the optimal solution only if cf < cf . Also, by our assumption,

c1, c2 < cf < c1 + c2. Thus, in order to show that K∗
f can be positive in the optimal

solution, we need to show that:

1
α1

E[a− 2KI
1 − ξ|ΩD

4 ] Pr(ΩD
4 ) +

1
α2

E[ξ − 2KI
2 |ΩD

3 ] Pr(ΩD
3 ) < min(c1, c2).

(i) First, we show that

1
α1

E[a− 2KI
1 − ξ|ΩD

4 ] Pr(ΩD
4 ) +

1
α2

E[ξ − 2KI
2 |ΩD

3 ] Pr(ΩD
3 ) < c1.

Observe that by Eq. (87), this is equivalent to showing that:

E[ξ(α1 + α2)− 2α1K
I
2 + 2α2K

I
1 − aα2|ΩD

3 ]︸ ︷︷ ︸
<0(by definition of ΩD

3 )

Pr(ΩD
3 ) < α2 E[a− 2KI

1 − ξ|ΩD
6 ]︸ ︷︷ ︸

>0(by definition of ΩD
6 )

Pr(ΩD
6 ),

which always holds by definitions of ΩD
3 and ΩD

6 . (ii) Next, we show that

1
α1

E[a− 2KI
1 − ξ|ΩD

4 ] Pr(ΩD
4 ) +

1
α2

E[ξ − 2KI
2 |ΩD

3 ] Pr(ΩD
3 ) < c2.
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Observe that by Eq. (88), this is equivalent to showing that:

E[α2(a− 2KI
1 )− ξ(α1 + α2) + 2α1K

I
2 |ΩD

4 ]︸ ︷︷ ︸
<0(by definition of ΩD

4 )

Pr(ΩD
4 ) < α1 E[ξ − 2KI

2 |ΩD
5 ]︸ ︷︷ ︸

>0(by definition of ΩD
5 )

Pr(ΩD
5 ),

which always holds by definitions of ΩD
4 and ΩD

5 . Thus, K∗
f may be positive in the

optimal solution.

Finally, to prove the equivalence relations, we substitute ξ2 = ξ and ξ1 = a − ξ in

KKT-1 and KKT-2 and obtain:

KKT− 1 : E[a− 2KI
1 − ξ|ξ < a− 2KI

1 ] Pr(ξ < a− 2KI
1 ) = α1c1 (90)

KKT− 2 : E[ξ − 2KI
2 |ξ > 2KI

2 ] Pr(ξ > 2KI
2 ) = α2c2 (91)

Consider again the condition that 2KI
1 + 2KI

2 ≥ a, or equivalently, 2KI
2 ≥ a− 2KI

1 . Thus,

we can write:

E[ξ − 2KI
2 |ξ > 2KI

2 ] Pr(ξ > 2KI
2 ) ≤ E[ξ − (a− 2KI

1 )|ξ > a− 2KI
1 ] Pr(ξ > a− 2KI

1 )

+E[ξ − (a− 2KI
1 )|ξ < a− 2KI

1 ] Pr(ξ < a− 2KI
1 )

+E[a− 2KI
1 − ξ|ξ < a− 2KI

1 ] Pr(ξ < a− 2KI
1 )

⇒ α2c2 ≤ α1c1 + E[ξ − (a− 2KI
1 )], by Eq.s (90) and (91)

⇒ α2c2 − α1c1 ≤ E[ξ]− (a− 2KI
1 )

Letting ∆th ≡ E[ξ]− (a− 2KI
1 ) leads to the relation. The other case is obtained similarly.

This completes the proof.
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