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We investigate the polyhedral structure of the lot-sizing problem with inventory bounds. We consider two models, one
with linear cost on inventory, the other with linear and fixed costs on inventory. For both models, we identify facet-
defining inequalities that make use of the inventory bounds explicitly and give exact separation algorithms. We also
describe a linear programming formulation of the problem when the order and inventory costs satisfy the Wagner-Whitin
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1. Introduction

Given the demand for an item for each time period over
a finite discrete horizon, the lot-sizing problem is to deter-
mine the order and inventory quantity in each time period
so that the sum of order and inventory holding costs is min-
imized. In this paper, we study the problem with linear and
fixed costs on order as well as on inventory. Furthermore,
we impose upper bounds on the inventory carried in each
period. We refer to this problem as the lot-sizing problem
with bounded inventory. Throughout we assume that there
is no upper bound on the order quantity.

Motivation

Even though in almost every study on the lot-sizing prob-
lem inventory is assumed to be unbounded, for many prac-
tical applications the amount of inventory that is carried
from one period to the next is bounded due to either phys-
ical constraints such as warehouse capacity or managerial
policies.

Another aspect of the problem studied here, which has
not received much attention in the literature, is the inven-
tory fixed costs. Inventory fixed costs and capacities play
a significant role in situations where warehousing is out-
sourced. The lease cost of storage space in an off-site ware-
house is a fixed charge that cannot be treated as part of the
standard variable holding cost, which is commonly taken as
the cost of capital investment in inventory. Inventory fixed
costs and capacities also arise in situations where manu-
facturers rent shelf space at the retailers. These fixed rental
costs and limited storage capacities are considerations that
cannot be overlooked.

It has been demonstrated in earlier studies (Pochet and
Wolsey 1991, Wolsey 2002) that a good understanding of
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the polyhedral structure of single-item lot-sizing problems
can be very useful in solving more complicated prob-
lems, involving multiple products and stages. Because the
single-item lot-sizing polyhedron is contained as a funda-
mental substructure in those problems, investigating inven-
tory bounds and fixed costs within the lot-sizing context is
meaningful from a practical point of view.

Although the polyhedron of lot sizing with inventory
bounds and fixed costs is of interest in its own right, a sec-
ondary goal in this study is to gain a better understanding
of the polyhedral structure of paths in capacitated fixed-
charge networks. In this context, due to its simple path
network representation, the lot-sizing problem with inven-
tory bounds and fixed costs is the first natural problem to
investigate.

Relevant Literature

The lot-sizing problem lies at the core of production/order
and inventory-planning applications and has been studied
extensively. Wagner and Whitin (1958) give an O(n?) algo-
rithm for the lot-sizing problem with no bounds on order
quantity or inventory (uncapacitated lot-sizing problem),
where n is the number of time periods. Federgruen and
Tzur (1991), Wagelmans et al. (1992), and Aggarwal and
Park (1993) give O(nlogn) algorithms for this problem.
The first polyhedral study of the uncapacitated lot-sizing
problem is due to Bdrdny et al. (1984). They give a com-
plete linear description of the convex hull of the solutions.
Variants of the uncapacitated problem that include sales
and safety stocks (Loparic et al. 2001), order/production
lower bounds (Constantino 1998), backlogging and start-
ups (Pochet and Wolsey 1988, Constantino 1996, Agra
and Constantino 1999), and piecewise linear concave costs
(Aghezzaf and Wolsey 1994) have been studied.
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The lot-sizing problem with upper bounds on produc-
tion/order quantities is N %-hard (Florian et al. 1971).
Pochet (1988), Miller et al. (2000), Loparic et al. (2003),
and Atamtiirk and Mufioz (2004) give inequalities for lot
sizing with order capacities and uncapacitated inventory. If
order capacities are constant, the problem can be solved
in polynomial time (Florian and Klein 1980, Van Hoesel
and Wagelmans 1996). Leung et al. (1989) and Pochet and
Wolsey (1993) describe inequalities for this case. How-
ever, a complete linear description of the convex hull of the
solutions for the constant-capacity lot sizing is unknown.
Atamtiirk and Hochbaum (2001) study constant-capacity
lot sizing with capacity acquisition and subcontracting.

Belvaux and Wolsey (2000, 2001) discuss strong formu-
lations and a specialized branch-and-cut system for prac-
tical lot-sizing problems. Recently, van Vyve and Ortega
(2003) gave a linear description of the convex hull of the
solutions to uncapacitated lot sizing with inventory fixed
costs. This is the only polyhedral study we are aware of
that considers inventory fixed costs.

In all of the studies mentioned above, inventory is as-
sumed to be uncapacitated. Love (1973) proposes a polyno-
mial algorithm for the lot-sizing problem with unbounded
order quantity and bounded inventory. To the best of our
knowledge, the only polyhedral study on lot sizing that con-
siders inventory capacities is Pochet and Wolsey (1994), in
which the authors study lot-sizing problems under Wagner-
Whitin nonspeculative cost structure. They give a linear
programming formulation of lot-sizing problems with unca-
pacitated and constant-capacity production and inventory
upper bounds.

Lot-sizing problems are special fixed-charge network
flow problems. For uncapacitated fixed-charge network
flows, Van Roy and Wolsey (1985) give inequalities that
are based on path substructures. Ortega and Wolsey (2000)
present a computational study on the performance of
path and dicut inequalities in solving the uncapacitated
fixed-charge network flow problem. Padberg et al. (1985),
Stallaert (1997), Gu et al. (1999), and Atamtiirk (2001)
describe valid inequalities for capacitated fixed-charge net-
works based on single-node relaxations. These inequalities
do not capture the path substructure of capacitated net-
works. Submodular inequalities of Wolsey (1989) take into
account capacities, but not the fixed charges on arcs along
a path.

Outline

In §2, we formally present the lot-sizing problem with
inventory bounds and fixed costs and introduce the nota-
tion used in the paper. Section 3 is devoted to the special
case with linear inventory costs. In §4, we study the poly-
hedron for linear and fixed inventory costs and extend the
inequalities defined in §3 to this more general case. We give
polynomial exact separation algorithms for these inequali-
ties. In addition, we give a linear programming formulation
for the lot-sizing problem with inventory bounds and fixed

costs if order and inventory costs satisfy the Wagner-Whitin
nonspeculative property. Section 5 summarizes our com-
putational experiments on testing the effectiveness of the
inequalities when used as cuts for solving the problem. We
conclude in §6.

2. Lot-Sizing Problem with Bounded
Inventory

For a finite planning horizon n, given the demand d,, vari-
able order cost p,, and fixed order cost f, for time periods
t€{1,2,...,n}; and inventory capacity u,, variable inven-
tory holding cost %,, and fixed inventory holding cost g,
for t € {0, 1, ..., n}; the lot-sizing problem with bounded
inventory (LSBI) is to determine the order quantity and
inventory in each period so that the sum of order and inven-
tory holding costs over the horizon is minimized. We
assume that order quantity is unbounded, although given
the demand, there is an implicit upper bound on the order
quantity due to the inventory capacities. We let [i, j] :=
{t e Z: i<t < j} throughout.

Let y, denote the order quantity in time period ¢ and i,
denote the inventory at the end of period ¢. Also, let x,
and z, be the fixed-charge variables for order and inventory
in period ¢, respectively. Then, LSBI can be formulated as

(LSBI) min Y (f.x,+p,y, + &2, + hi,) + 2o+ ol

t=1

st i, +y —i,=d,, te[l,n]

0<i, <uz,. tel0,n],
0<y <(d,+u,)x,
x {0, 1}",
ze {0, 1},

Let d, = >_ d; for t € [1,1] and d,, =0 for 1 > .
We let @ denote the convex hull of the feasible solutions
to LSBI. Observe that for the optimization problem LSBI,
if desired, one may ensure that i, =i, =0 in an optimal
solution by assigning sufficiently high values to A, and #h,,.
Therefore, for generality, we keep i, and i, in the formu-
lation for the polyhedral analysis. Throughout the paper,
we assume that the data of the model consists of rational

numbers and satisfy the following:

te(l,n],

yeR", ie R,

AssUMPTION 1. u, > 0 for t € [0, n].
ASSUMPTION 2. u,_, >d, for t €[1, n].
ASSUMPTION 3. u,_, <d,+u, for t €[, n].
ASSUMPTION 4. d, >0 for t € [1, n].

Assumptions 1 and 3 are made without loss of gen-
erality. None of the validity proofs use Assumption 2.
Therefore, all inequalities in this paper are valid without
Assumption 2, which is used only in facet proofs for con-
venience. If u, =0 for ¢ € [0, n], then i, =0 and the prob-
lem decomposes into two subproblems for ¢ € [1,n — 1].
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If u, , <d, for t € [1,n], then x, =1 in every feasible
solution. If u,_, > d, + u, for t € [1, n], then u,_, can be
reduced to d, + u, without changing the feasible set of solu-
tions. Finally, d, < 0 does not make sense for the lot-sizing
problem.

DEFINITION 1. For a given point (y, x,i,z) in @, a con-
secutive sequence of time periods [k, [] is called a block
if i,_, €{0,u._,}, i, € {0,u}, and 0 < i, < u, for all
telk,l—1].

The block definition leads to a characterization of the
extreme points of @ and a polynomial dynamic program-
ming algorithm (Love 1973) for LSBI, which can be imple-
mented in O(n?). We represent the four types of blocks
by [k, l]g, where a € {0, u,_,} and B € {0, u,}. It follows
from the network structure of the problem that (y, x, i, z)
is an extreme point of @ if and only if there is at most one
period with positive order quantity in every block [k, [].
Consequently, the order quantity in such a period equals

dy+B—a

ExaMPLE 1. Suppose that LSBI is given as (d,,...,ds) =
(11, 12, 13, 14, 15) and (uy, ..., us) = (o0, 30, oo, oo,
00, 5). Then, we can strengthen the inventory bounds as
(ug, ..., us) = (41, 30, 47, 34, 20,5) to satisfy Assump-
tion 3. Figure 1 illustrates the four types of blocks in dif-
ferent extreme point solutions.

The linear programming (LP) relaxation of LSBI has the
same block structure; however, the fixed-charge variables
take the values x, € {1,y,/(d, +u,)} and z, € {1, i,/u,} and
are typically highly fractional. The LP extreme point solu-
tion in Figure 1(a) has (x,, ..., xs) =(1,0,0,24/34,0) and
(z45...,25)=1(0,1,18/47,5/34,3/4,0).

In §3, we consider the case with linear costs on inven-
tory, i.e., the restriction of @, where inventory fixed-charge
variables are one. We describe valid inequalities that cut off
all extreme points of the LP relaxation with fractional order
fixed-charge variables. In §4, we generalize these inequal-
ities to incorporate the inventory fixed-charge variables
as well.

Notation. We introduce the following notation, which
will be used throughout the paper: For 1 <k <1< n, let:
p=min{t €[k,I]: d,, > u,_,} (p=1+1if u,_, >d,),
g=min{r €[k, l]: d,, Zu,_,} (g=1+1if u,_, > d,),
r=max{t € [k,pl: u, < d,} (r =k —1ifu, >
d,41y for all € [k, p]).

3. Linear Inventory Costs

In this section, we address the special case of LSBI with
linear holding costs. When g = 0, the convex hull of the
feasible set of interest is % = {(y, x,i,z) €@: z=1} or

Ly +y—i,=d, tell,n],

0<i, <u, t €10, n],
9 = conv

0<y <(d,+u)x, tell,n]

yeR", xe{0,1}", ieR".

3.1. Uncapacitated Inequalities

For the special case of 9 with no inventory capacities,
Bardny et al. (1984) give the so-called (I, S) inequalities

v <Y dyx,+i, where SC[1,/]and l€[l,n]. (1)
teS teS

They show that adding inequalities (1) to the LP relax-
ation suffices to describe the convex hull of feasible solu-
tions. Example 1 illustrates that in the presence of inventory

Figure 1. Four types of blocks in extreme point solutions of @.
Block type [1,1]19 (2,511 [1,119 [2.51;
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upper bounds (I, S) inequalities may be weak and are not
sufficient to describe 2.

ExaMPLE 1 (continued). It is easy to check that the extreme
point solution of the LP relaxation with (x,...,x5) =
(1,29/59,0,0,0) (in Figure 1(b)) cannot be cut off by any
(1, S) inequality (1). Observe that the (/, S) inequality

v+ o+ s <65x, +54x, +42x5 +29x, + 15x5 + i5,
with [ =5 and S =[1, 5], can be strengthened as
yi+ o+ ys <4lx, +54x, +42x5 +29x, + 15x5 + i

because y, < 11 4 30. However, this inequality is dom-
inated by the variable upper-bound constraint y, < 41x,
and inequality (1) with / =5 and S = [2,5]. Thus, if
d,+u, <d, for some t € S, then inequality (1) and even
the strengthening of (1),

ZYt < Zmin{dd’ dz + ut}‘xt + il’

teS teS§

are weak.

3.2. Capacitated Inequalities

In §3.1, we have illustrated that (/, S) inequality (1) may
not cut off fractional LP extreme solutions if for a block
incoming or outgoing inventory is at capacity. Motivated by
this observation, we obtain new inequalities by saturating
incoming and outgoing inventory variables for a block.

ExaMpPLE 1 (continued). To derive a strong inequality that
uses inventory upper bounds, we observe that due to u, it
is not possible to meet the total demand d, 4+ d; +d, =39
from inventory i,. Therefore, an order must be placed in
Periods 2, 3, or 4, which is stated by the inequality

Xy +x3+x, =1,

cutting off the fractional solution in Figure 1(b) that cannot
be cut by the uncapacitated inequalities.

In general, for any 1 <k <! < n such that u,_, <d,
the “cut-set type” inequality

>ox =1 @)

telk, 1]

is valid for &. Note that if u;,_; < dy_,), then (2) is dom-
inated by >, ;—11X, = 1; therefore, strong inequalities
among (2) must satisfy dy_;) < u;_; < dy, implying that
there are only at most n strong inequalities among (2).
Next, we introduce inequalities that generalize (2).

The first class of inequalities is obtained by setting
the incoming inventory variable i,_, for [k, ] to u,_, for
u,_; < d,, (Figure 2). Then, due to the exogenous supply
u,_, in time period k, the effective total demand in peri-
ods t,t+1,...,1is min{d,, —u,_,, d,} for t € [k, []. Also

Figure 2.

_, /J\ i
. (eo) D)

Saturating incoming inventory.

observing, in this case, that the order quantity in period ¢
cannot exceed d, — u,_, + u, due to the inventory capac-
ity u,, we obtain the following inequalities.

For 1 <k <1< n such that u,_, <d, and S C [k, 1],
consider the inequality

Iy "‘Z)’z
teS

Suy_y+ Yy min{dy, +u,—w_y,dy—w_y,dg}x,+i. (3)

teS

PROPOSITION 1. Inequality (3) is valid for 9.

Proor. If u,_, = dy;, inequality follows from i,_, +
Yies ¥, S dy + i, = u,_; +i;. Otherwise, let p = min{z €
[k, 1]: u,_, < d,}. Observe that d,;, — u,_, < d, for
t € k,p] and d,, — u,_, > d,, for t € [p + 1,1]. For
(y,x,i)e P, letb=max{t € S:d,,+u,—u,_, <min{d,, —
u,_,d,} and x, = 1} (if no such ¢ exists, let b =k — 1)
and let h =min{r € [b+ 1,I] N S: x, =1} (if no such ¢
exists, let h=1+41). If h < p, then

ik—l +Zyt

te§

Sdyti=dytdeaytu,—u,+uw_ —u_ +i

S+ Zmin{dkt =y, dyy —uyy, dyg}x, + .

teS

The last inequality follows because x, =1, d\; —u,_, < dy,

for h < p, dy1y — w, < dyy — u,_, (by Assumption 3),

dy—t_; =20, and d,, + u, — u,_, =0 (by Assumption 3).
On the other hand, if & > p, then

ik—l + Zyt

teS

Sdytu,+dy+i+ue —uy
Suy+y min{dy, +u,—uy,_y,dy—uy_y,d x40 O

teS

REMARK 1. Note that Assumption 2 is not used to prove
the validity of inequality (3). If u,_, < d, for some k €
[1, n], then we write inequality (3) for k =1 and S = {k} as

oy + Ve Sty + (dy — w_)xg + iy

Adding the flow balance equality d, + i, =y, + i;_;, we
getd, —u,_ <(d,—up_)x, or x, > 1.
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REMARK 2. If there exists j € SN [p+ 1,1] with u; <
d ;41> then inequality (3) can be strengthened as

b+ 2oy Sy 4 y_min{dy, +u, —w g, dy —uyy,

teS teS

dtl’ dt + ut}xt + il' (4)

However, inequality (4) is weak, because it is dominated by

ik—1+ Z Vi

reS\{j}

Swuy o+ Yo min{dy, +u,—wy , dy—wy_y, dy}x, 40,
teS\{j}

and the constraint y; < (dj + uj)xj. It follows that u; >
d(jy1y for je[p+1,1] is a necessary facet condition for
inequality (3); see Proposition 13.

REMARK 3. We note that inequality (3) dominates inequal-
ity (2). To see this, suppose that u,_, < d,,, hence, inequal-
ity (2) is valid for 9. Rewriting inequality (3) for S = [k, []
by subtracting the aggregate flow balance equality

b+ Y y=dy+ips

telk, 1]

we obtain

Yo min{d,, +u, —wy, dy —wy s dyyx, > dy — ey,
telk, 1]

which is at least as strong as inequality (2).

The next class of inequalities is obtained by saturat-
ing incoming as well as outgoing inventory variables i,_,;
and i, for a block [k, [] (Figure 3). Then, due to the exoge-
nous supply in time period k, the effective total demand in
periods t,t+1,...,1 is min{d,, — u,_, + u,, d,; + u,} for
t € [k, []. However, observing in this case that the order
quantity in period ¢ cannot exceed d,, — u;_; + u, due
to the inventory capacity u,, and that d;, — u,_, + u, <
dy; — u,_, + u; by Assumption 3, we obtain the following
inequalities.

For k > 1 and S C [k, n], consider the inequality

b+ 2y Su + ) (dy —we +u)x,. (5
tes tes

PROPOSITION 2. Inequality (5) is valid for %.

Figure 3.

" /\\ u
k1 \f'{'/ k+1 —a e J— !

dy A 4

Saturating incoming and outgoing inventory.

ProoF. Let (y,x,i) € . If x, =0 for all 7 € S, then
inequality is trivially valid. Otherwise, let w = max{t €
S: x, =1}. Then,

P +Zyz Sdpytu,+uey —uy_,

te§

< Up—y + Z(dkr + u, — Mk—l)xt' O

teS

REMARK 4. Suppose that S C [k,[I] for [ > k. Then,
inequality

i+ oy <uy_y+y min{dy, 4u,—u,_y,d,+u}x,  (6)

tes§ teS

is dominated by inequality (5) with S’ =S N[k, ¢], where
q = min{z € [k,I]: d;, > u,_,} and inequality y, < (d, +
u,)x, for t € S\S’ because d, + u, < d,; + u;, by Assump-
tion 3. It follows that S C [k, ¢] is a necessary facet condi-
tion for Inequality (5); see Proposition 14.

In the appendix we study the strength of inequalities (1),
(3), and (5) with respect to %.

ExampLE 1 (continued). For [k, ] =[2,5], we have p =
q = 4. Then, all facet-defining inequalities (3) of & for
[k, 1] =2, 5] with |S| <2 are

iy +y, <30+ 24x, +is,
i+ vy, <30+ 24x5 4 is,
iy +y, <30+ 24x, 4+ is,
iy +y, +y; <304 24x, +24x; +is,
i, +y, +y, <304 24x, +24x, 4 is,
i+ v+ v, <304 24x; + 24x, + is,

30 + 24x; + 15x + is,

<
<
i+ v, +y; <304 24x, + 15x5 +is,
4y +ys <
<

i+ y,+ys <304 24x, + 15x5 +is.

On the other hand, all facet-defining inequalities (5) of &
for [k, 1] =2, 5] are
i) <30,
< 30+ 29x,,
i+ y; <30+ 29x,,
iy +y, <30+ 29x,,
i; +y, +y; <30429x, + 29x;,
30 + 29, + 29x,,

i+

ity +y <
i)+ 3+ v, <304 29x; 4 29x,.
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3.3. Fractional Extreme Points of the
LP Relaxation

Now we show that the inequalities described in §§3.1
and 3.2 cut all fractional extreme point solutions of the lin-
ear programming relaxation of LSBI. Recall that extreme
point solutions are characterized by blocks [k, []g for 1<
k<1< n, where @ € {0, u,_,} and B € {0, u,}. Note that in
an extreme point solution there can be at most one period
with positive order quantity in a block.

PRrOPOSITION 3. Inequalities (1), (3), and (5) cut all frac-
tional extreme point solutions of the LP relaxation of LSBI.

ProoF. Let (y, x, i) be an extreme point solution of the LP
relaxation of LSBI. For a block type [k, ]}, there exists
one period 7 € [k, [] with y, =d,, = d,,. (Note that t =k
if d;, > 0.) Therefore, the order fixed-charge variable x, =
dy/(d,+u,). If 0 < x, <1, then inequality (1),

Y Sdyx, +1ip,

cuts off this point.

For a block type [k, [],*"', there exists one period t €
[k, I] with y, = d,, — u,_,. Therefore, the order fixed-charge
variable x, = (d,; — u,_,)/(d, + u,). If 0 < x, < 1, then
inequality (3),

o Y Sy +(dy —up_y)x, +1ip,

cuts off (y, x, i).

For a block type [k, ]!, there exists one period f €
[k,1] with y, = dy; + u; — uy_,. Therefore, the order
fixed-charge variable x, = (d,; + u;, — u,_,)/(d, + u,). If
0 < x, < 1, then inequality (5),

oy Ty, Sty + (dyg +wy — u_)x,,

cuts off (y, x, i).

Finally, for a block type [k, 1]21, there exists one period
t € [k,[] with y, = d,; + u,. In this case, we must have
dy +u, = d,+u,. Therefore, the order fixed-charge variable

is integral. [

3.4. Separation

Now we discuss how to find inequality (3) violated by a
given point (y, x, i) € R¥"*'. Let A=Y, ¢(y, — min{d,, +
u, — uy_y,dy —u,_y,d,}x,). For fixed k and [ such that
u,_; <dy, A is maximized by placing ¢ € [k, /] in S if and
only if y, > min{d,, +u, —u;,_,, d, — u,_;, d, }x,. Because
this can be done in linear time for each k and [, the obser-
vation leads to an O(n?) separation algorithm for inequal-
ity (3). Next, we improve the computational complexity of
separation.

THEOREM 4. There is an O(n*logn) algorithm to solve
the separation problem for inequalities (3). There are
O(nlogn) algorithms to solve the separation problems for
inequalities (1) and (5).

ProoF. For k €[1,n—1], let p(k) = min{r € [k, I]: u,_, <
d,} (p(k)=1+1if u,_, >d,). Also, let ¥ = max{t €
[1,1]: u, < d(,.y}. Therefore, in inequality (3), x, for 7 € §
has coefficient d,, +u, —u,_, if t € [k, min{r’, p(k)}], d,,—
u,_, if t e[r+1,pk)], and d,, if ¢t € [max{r’, p(k)} +
1,1]. (Observe that to obtain a strong inequality, we must
have SN[p(k)+1,r =@ for r' > p(k).)

In the rest of the discussion, we fix / and decrement k
from [ to 1. A set S that maximizes A for all k € [1, /] will
be computed in O(nlogn). The following observations are
due to Assumption 3: (a) p(k — 1) < p(k), and (b) d;, —
Uy S dyy — Uy

Let S(k) be a subset of [k, /] maximizing A for k (and
fixed 7). Observation (b) implies that if 7 € [k, r'] and r' <
p(k) and r ¢ S(k), then r ¢ S(j) for any j < k; also, if
te[r+1, pk)] and r & S(k), then ¢t € S(j) for any j <k
such that ¢t < p(j). However, t may be in S(j) if p(j) <. It
is clear that if ¢ € [max{r’, p(k)} +1,[] and ¢ & S(k), then
t ¢ S(j) for any j < k. Also note that S(j)N[p(j)+1, 7] =
& for r' > p(k).

Let T be the list of r € [k, '] for ¥ < p(k) such that
¥, =y,/x, — (d, +u, —u,_,) >0, sorted by ¢,; T’ be
the list of t € [r' + 1, p(k)] such that g, :=y,/x, — (d;; —
u,_;) > 0, sorted by ¢,; and, finally, 7" be the (unsorted)
list of 7 € [max{r’, p(k)} +1, [] such that y, —d,,x, > 0. For
k'=k—1,if &’ <+, then we place k' into T in O(logn)
time by binary search on ¢, and delete permanently from 7'
all r <" with ) =, — (d_; —uy_, +u;_;) <0. On the
other hand, if ' < k', then we place k" into 7’ in O(logn)
time by binary search on g,. We delete from 7’ all ¢ > p(k’)
and all 7 € 7" such that €, =€, — (d;_; — uy_r +1;_,) <0
permanently. Finally, 7 € [p(k’) + 1, p(k)] is placed in T”
permanently if and only if y, — d,;x, > 0. Thus, S(k') =
TUT' UT”.

Keeping separate sums y(7) = ,cr ¥, X(T) =21 X,
and y(T') = > ,cp Vi, X(T") = 3,1 x, allows us to com-
pute A for S(k) in constant average time. Because variables
are inserted into and deleted from each list at most once,
all updates in A for the changes in the lists can be done
in O(n). For the elements remaining in the lists, updates
can be done in constant time per iteration. For instance, let
T C T be the set of elements that remain from one itera-
tion to the next. Because the coefficients of x; for all i € T
reduce by d;_; —u;_, +u,_,, the required change for them
in Ais —(dy_y —up_y +up_)x(T).

There are at most n insertions to 7 and 7', all of
which take total O(nlogn). Also, there are at most n dele-
tions from 7’ and insertions to 7, all of which can be
done in total O(n). Because A can be updated in a total
of O(n), the complexity of the algorithm is O(nlogn) for
each [, giving an overall O(n?logn) separation algorithm
for inequality (3).

From the above algorithm, it also follows that the separa-
tion for the simpler inequality (5) can be done in O(nlogn)
by fixing [ = n only. Separation for inequality (1) can be
done similarly in O(nlogn) by keeping the elements of 7”
sorted by y,/x, — d,; and incrementing / from 1 to n. [
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4. Fixed Costs on Inventory

In this section, we expand the study to incorporate the
inventory fixed-charge variables. Thus, the polyhedron
studied in this section is

Lty —i=d, re[l,n],

0<i, <uz, t €10, n],
@ = conv

Ogytg(dt—i_ut)xt’ te[l’n]’

yGRn, XE{O,I}”, iGRn+1, ZG{O,I}H-H.

4.1. Uncapacitated Inequalities

As before, we first describe inequalities that do not consider
the inventory upper bounds. For 7 € [0,n — 1], let b, be
the first time period after ¢ with positive demand, i.e., b, =
min{k € ¢ + 1,n]: d; > 0}. Then, because d, is either
satisfied from inventory at ¢ or from an order in a later
period up to b,, inequality

Xt tx, 21 (7

is valid for @.
For 0 <k <I<nand S C [k, ], inequality

P ny Sdyzi + Zdtl'xt +i, (8)

teS teS

where i_, and z_, are taken as 0, generalizes (7) as well
as the (/, S) inequalities (1). When there are no inventory
upper bounds, van Vyve and Ortega (2003) show that it
suffices to add inequalities (8) to the LP relaxation of the
uncapacitated lot-sizing problem with inventory fixed costs
to obtain the convex hull of the feasible solutions. Inequali-
ties (8) are not sufficient to describe @; however, they define
facets of @, as shown in the appendix.

4.2. Capacitated Inequalities

To obtain strong inequalities that use the inventory fixed
costs as well as the upper bounds, we introduce the inven-
tory fixed-charge variables into inequalities (3) and (5).

For 1 < k <1< n such that u,_, <dy,, let S C [k, [] and
T:={t,ty,....1,} C[k—1,p—1]. For jeT, let s(j) =
min{t € SU{l+ 1}: t > j}. Consider the inequality

ikfl + Zyt +Z'}’,(l _Zt)

res teT
Sty +y_min{dy, +u, —wp_y, dyg — ey, dyx, + 1,
res ©)
where
Uy — dy, if j=7 and s(¢;) > p,
y, = Vi <7 ands(@) =s(ge). o

J

diineep-n A (<7 and s(t;) < s(;41)))
or (j=r7 and 5(¢;) < p).

EXAMPLE 1 (continued). Consider inequality (3) for [k, ] =
[2,5] (where p=4) and S = {2}:

i +y, <30+ 24x, +is, (11)

which is facet defining for the restriction z, =1 for ¢ €
[0,5]. Now if z, = 0, then we observe that i; + y, <
12 = d,. Therefore,

i +y, +18(1 —z,) <30+ 24x, +is

is valid for @, where T ={2}, 1, =2, and s(2) =1+ 1=
6>p,soy,=u —d,=18.

Alternatively, for inequality (11), if z; =0, then i, +y, <
25 = d,;. Therefore,

i1+ y,+5(1 —z5) <30+ 24x, + i, (12)

where y; = u; — d,; = 5. Now for (12), if z, =0, then
ii+v,+5(1 —z3) <12+ 5=d, + v, and inequality

L+ +13(1=2)+5(1-z3) <12+ 5=d, + s,

which is equivalent to inequality (9) with T = {2, 3},
5(2)=5(3) =6, and y, =d;=13.

This example illustrates that y in (10) are sequence-
dependent lifting coefficients for z,, t € T. Next, we give a
direct proof of validity.

PROPOSITION 5. Inequality (9) is valid for @.

Proor. Let (y, x,i,z) € @. If z, =1 for all t € T, valid-
ity follows from Proposition 1. Therefore, we assume that
7z, =0 for some 7 € T. For a given point (y, x,i,z) € @,
for 1<k<i<n SClk,/]and TS [k—1,p—1], if
z, =0 for some t € T, then let V = {v,,v,,...,v,} =
Ujesupeny(min{z € T: z, = 0, s(z) = j}). Without loss
of generality, assume that v, < v, < --- < v,; v, =0
and v, = n. Thus, S N [s,p — 1] is partitioned as
(81,85, .58, Sep1), where S, ={teS: v, <t<v},
and T is partitioned as (T, Ty, ..., T,, T,,,), where T; =
{teT: s(vy) <t <s(v)} with s(vy) =k — 1 and
§(v,y1) = n. Observe that for #; € T if s(¢;) < p,

> Ve S A nys)-1) (13)

teTN(t;, s(t;)—1]

and if s(¢;) > p,

> Ve Sy —dyy, (14)

teTN(t;, s(t;)—1]

First, we express the left-hand side of (9) as the sum
of k+1 terms: i;_y + X icsico, Vi + Dreriasy) Y, (1 —2,),
ZteS:v-,1<t<v/ Vit ZteT:s(vj,l)gtq(u/) yt(l - Zt) for .] € [2’ K]
and }_cg. -y, Y- Next, we show the following relations for
the first k of these terms.
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Observe from (13) that if s(v,) < p,

P Z et Z Y.(1—2,)

teS:t<y; teT:t<s(vy)

S dyy, + d i 1) 60)-1) = Drisp -1 (15)

because iy_; + > cs<y, Vi < di, When z, =i, =0. Simi-
larly, if s(v;) > p (in which case k = 1), then

i1+ Z Yo+ Z Y.(1-z,)

teS:1<v, teT:t<s(vy)

< dkvl + dv]t,. R dsz = Up_y- (16)

For v;, j €[2, k] with s(v;) < p, we have

> ot >

teSv;_ | <t<v; teT:s(vj_p)<r<s(vj)

’Yt(l _Zt)

S sy, T Awn6e)-1)
=d 50,501 (17)

On the other hand, for v, if k >2 and s(v,) > p, then

> ot )

teS, <ty teT:s(ve_)<t<s(v,)

Sy, yo, Ty, Ty — dyy,
=Up_ — dk(s(v,(,l)fl)' (18)

7t(1 _Zt)

To see the validity of inequality (9), we consider six
cases. Let b and h be defined as in the proof of Propo-
sition 1. First, suppose that & < p. If s(v,) > p, then
from (15)—(18), we have

i1+ Z y1+2%(1—2f)+ Z Y

teS:t<y, teT teS:t>v,

S+ Z Vi

teS:it>v,

Sy Fd iy +i
Sy +dy—w_+i, (because u,_, <d,,)

Sy + Yy min{dy, +u, —wuy_y, dy— . dg}x, i,

teS

where the second inequality follows, because }_,s.,., ¥, <
d(pi1y + i if s(v,) > p and the last inequality follows,
because x, 20forte S, x,=1,andfor h < p,d;,;—u,_; <
min{d,, +u, —u;_,,d,}.

Similarly, if s(v,) < p, then from (15) and (17),

ik—1+ Z yt+zyt(1_zt)+ Z Vi

1€8:<v, teT 18>0,
S i1y T Ay T
=dy+ ey — w1
Sup_y+ Yy min{d,, +u, —u_y, dyy —u_y, dy}x, 4.

teS

Now suppose that & > p. If s(v,) > p and b > v,, then

o1+ Z y,—l—Zy,(l—z,)—l— Z Y+ Z Vi

teS1<u, teT teSive<t<b tesuzh
Sy +dgy o tu,+dy,+i

=+ dytuy, —uyy +dpy i+ (e — dk(s(vK)—l))
Sy + ) min{dy, +u, —w_y, dyy —w_y, dy}x, + 1,

teS

where the last inequality follows because u;_; < dy )1
for s(v,) > p. If s(v,) < p and b > v,, then

ik—l+ Z yl+ZYI(1_Zl)+ Z yt+ Z Yt

teS:<y, teT teSw, <t<b teS:itzh
S di(so-1) T dyop T tp +dy + 1+ —
Sy Yy min{d,, +u, —u_y, dyy —w_y, dyg}x, 4.

teS

If s(v,) > p and b < v,, then

i1+ Z y1+271(1_zr)+ Z Y

teS:t<v, teT teS:t=h
Suyp_y+dy+i
S+ Yy min{dy, +u, —wy,dy—uy . dy}x, 40
teS

Finally, if s(v,) < p and b < v,, then

ik—l+ Z yt+277(]_zt)+ Z Vi

teS:t<y, teT teS:it>v,
S disy-ny T du i
Suy+ ) min{dy, +u, —w_ . dy—w_y, dyyx, +i;. O

te§

In the next class of inequalities, we introduce inven-
tory fixed-charge variables into inequality (5). For 1 <k <
I<nletSClk,]and T :={t}, tp,....t,} S [k—1,p—1],
where p =min{¢ € [k, []: u,_, <d,,}. For t € T, let s(j) =
min{t € SU{l+ 1}: ¢ > j}. Then, consider the inequality

Iy +Z%+Z7’t(l —7,) Sy +Z(dkt+ut — U)X,
teS§ teT teS
(19)

where v, is defined as in (10).
PROPOSITION 6. Inequality (19) is valid for @Q.

Proor. For (y, x,i,z) € Q if x, =0 for all ¢ € S, inequality
follows from i,_; +Y_,c7 v,(1 —2z,) < uy_, due to (15)—(18).
Otherwise, let o = max{r € S: x, = 1}. Using the defini-
tions in the proofs of Propositions 1 and 5, if s(v,) > p
and w > v,, then

i+ Z yf+2%(1—2z)+ Z Ve
teS: <y, teT teSw, <t<w

< U + dx(v,()m + u, + (dkp - ukfl)
Sty + ) (dy +u, — w_y)x,.

teS
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If s(v,) < p and w > v,, then

ik71+ Z yt+27t(l_zt)+ Z Vi

teS:t<y, teT teS, <t<w
< dk(s(v,()—l) + ds(vK)w + u, + Uy — Uy
Sy + ) (dy +u, —w_y)x,.

tesS

Finally, if o < v,, then

ikfl + Z Vi +27t(1 _Zt)

teS:<y, teT

S Uy S Uy +Z(dkr +u, —u_y)x,. O

teS§

In the appendix we study the strength of inequalities (9)
and (19) with respect to @.

ExaMPLE 1 (continued). All facet-defining inequalities (19)
of @ for [k, ] =[2,5] with |S| < I are

i +12(1 —z;) +13(1 — z,) + 5(1 — z3) < 30,

i+ 12(1—z) +18(1 —z,) < 30,

i +25(1 —2z;)+5(1 —z3) <30,

i +30(1 —z;) <30,

i +18(1 —z,) +y, <30+429x,,

i+ 13(1—2) +5(1 —2z3) + ¥,
i+ 12(1 —z) +5(1 —z3) +y;
i +25(1 —z;) +y, <30+ 29x,,

i +12(1 —z;) + 13(1 — z,) + v, <30+ 29x,.

30 +29x,,
30 +29x;,

NN

Observe that these inequalities are extensions of inequali-
ties (5) with inventory fixed-charge variables. The first four
inequalities are extensions of inequality i, < 30, the next
two are extensions of i; +y, <30+ 29x,, and so on.

On the other hand, all facet-defining inequalities (9) of @
for [k, ] =[2,5] with |S|=1 are

i, +18(1 — z) +y, <30+ 24x, + is,

i+ 13(1—z) +5(1 —z3) + v, <304+ 24x, +is,

L+ 12(1—z)+5(1 —z5) + y; <304+ 24x; +is,

i +25(1 —z¢) +y, <30+ 24x, + is,

i+ 12(1 —z) + 13(1 — 2,) + ¥, < 30+ 24x, + is.
Because the extreme point solutions of the LP relaxation

have the same block structure with or without inventory

fixed costs, it follows from Proposition 3 and Assumption 3

that inequalities (8), (9), and (19), which are generalizations

of inequalities (1), (3), and (5), cut off all fractional extreme
points of the LP relaxation of LSBI.

4.3. Separation

In this section, we study the separation problems for in-
equalities (9) and (19) and show that they can be solved in
polynomial time.

THEOREM 7. There is an O(n*) algorithm to solve the sep-
aration problem for inequalities (9) and an O(n®) algo-
rithm to solve the separation problem for inequalities (19).

PrOOF. Rewriting inequality (9) as

Zyz + Z Y.(1-2,)
tes teT
— Zmin{dk, Fu, =y, dyg — ey, dyglx,

tes

Sy =y +ip, (20)

for each k and [ such that 1 <k <I<n and u,_, <d,,
we wish to determine sets S C [k, /]and T C[k—1,p—1]
such that the left-hand side of (20) is maximized for a given
point (y, x, i, z). We formulate this problem as a longest-
path problem on a directed acyclic network. The arcs on a
longest path determine the sets S and 7.

Consider a directed graph G = (V,A) with a single
source (k—1) € V and a single sink (I+1) e V. LetteV
for ¢ € [k, I[]\[p + 1, '], where r' = max{t € [k,I]: u, <
diyy (' =k—1if u, > d .,y for all 1 € [k, p]).

There is an arc (¢, j)° € A, a € {T, S}, for each r € V
and j € V such that k — 1 <t < j < p—1 so that if the path
includes arc (7, j)“, then j is included in both S and T if
a=3S, jisincluded in T if a=T (k — 1 is assumed to be
in T because {k—1}U(SN[k,p—1)) ST C[k—1,p—1]
for strong inequalities). Also, for k <r<p—1<j<l+1
with ¢, j € V, arc (¢, )5 is in A and if the path includes
this arc, then je€ S. For p<t<j<[I+1 witht,jeV,
arc (¢, j)% is in A and if the path includes this arc, then
j € S. Finally, let ((k — 1), p)S be an arc in A; if the path
includes this arc, then p € S. (Note that there is no arc
(k, j)S for j > p, because we must have SN[k, p] # @
from Condition 6 of Proposition 13.)

Now we assign lengths to the arcs. Let the length of
arc (t,j)T fork—1<t<j<p—1be

. jyr =dgn,(1—2,).

Also, let the length of arc (¢, j)S be

d(t+1)(j71)(1 - Zt) +yj - min{dkt + Uy — Uy
dy—wu_}x; ifk—1<t<j<p,

Cu s = ey —di) (M —2,) +y;, — dyx;
ifk<t<p<j<i+1,

NN

y;—d;x; if p<r<j<i+1,

where we use ;| — d(;1),%4 =0, for simplicity of nota-
tion. It is easy to see that the total length of a path from
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Network for separation for inequality (9)
k<j<t<p<v<w<l).

Figure 4.

------ = a' aeA
— a’ acA

(ukfl_dkz)(l _Zz)
Ty dul Xy

Y=y %

wl w

i no-n1=2)

+Y= (=W)X,

vertex (k— 1) to vertex (I + 1) equals the left-hand side of
the corresponding inequality (20).

Different arc types and costs for k < j<t<p<v<
w < [ are illustrated in Figure 4. For simplicity, not all the
arcs in the subgraph induced by j, ¢, v, w are shown in the
figure.

Note that G is a directed acyclic graph with O(n) ver-
tices and O(n?) arcs. Therefore, the longest path in G can
be found in O(n?) time (see Ahuja et al. 1993). Because
we solve a longest-path problem for each k and [ such that
u,_, <d,,, the overall complexity of the separation algo-
rithm for inequalities (9) is O(n*). The graph G can be
preprocessed to remove low-length parallel arcs between
two nodes, but this does not change the complexity of the
algorithm.

It follows that separation for inequalities (19) is done in
O(n’) by letting I=n. O

Separation for inequalities (8) is done in O(nlogn) sim-
ilar to separation for inequalities (1).

4.4. A Special Case: Wagner-Whitin
Nonspeculative Costs

In this section, we consider the special case of LSBI, in
which the objective function satisfies the Wagner-Whitin
nonspeculative property, i.e., p, + h, =2 p,., for all t €
[0, n], where p, = p,,; = 0. For this case, Pochet and
Wolsey (1994) give an LP formulation for the lot-sizing
problem with inventory bounds, but no inventory fixed
costs. On the other hand, van Vyve and Ortega (2003) give
an LP formulation for the lot sizing with inventory fixed
costs, but no bounds. In this section, we generalize these
results to the lot-sizing problem with inventory bounds and
fixed costs by observing that the intersection of the previ-
ously given LP formulations is an integral polyhedron.

Unlike in the general cost case, if the Wagner-Whitin
nonspeculative property holds, then there is an optimal
inventory-minimal solution; that is, the demand in each
period ¢ € [1, n] is satisfied either from inventory or by
ordering in that period, but not both, because otherwise,
because the order quantity is unbounded, we can increase y,
until i,_, =0 without increasing the objective value.

ProposITION 8. If p, + h, > p,,, for all t € [0, n], where
Do = Pyt =0, then min{py + fx + hi+gz: (y,x,i,2) €
@} has an optimal solution that satisfies i,_,y, =0 for all
te[l,n].

Thus, if the costs satisfy the Wagner-Whitin nonspecu-
lative property, then there exists an optimal solution that
consists of blocks of type [k, ] only, which implies that,
in this case, LSBI can be solved as the uncapacitated lot-
sizing problem by simply ignoring solutions with blocks
[k, ]} that do not satisfy inventory upper bounds.

Next, we describe a formulation of LSBI over the
inventory-minimal solutions. Note that (y, x,i,z) is an
inventory-minimal solution if and only if for all ¢ € [1, n]
we have i,_; = d,; for some j € [z, n]. Let p,, be a binary
variable such that p, =1 1if i, 2 d(,4; >0 and p, =0
otherwise for k € [¢ + 1, n]. Then, inventory-minimal solu-
tions can be modeled as i, = } ic(+1, 5 Py and py =
(1 = Xjcps1,1x;)" for k € [b,, n], where b, is the first
period after ¢ with positive demand, i.e., b, = min{k €
[t 41, n]: d, > 0}. Observe that the second set of equali-
ties implies p, = p,i1) = -+ 2 p,,; hence, i, =d,,; for
some j € [t+ 1, n] (see Pochet and Wolsey 1994).

Furthermore, for an inventory-minimal solution, i, < u,z,
if and only if (24) z, > p,, and (23) X i1,y %; = 1
where [, is the first time period after ¢ in which demand
cannot be completely satisfied by i,, i.e.,, [, = min{k €
[t+1,n]: u, <d ;). To see this, suppose that i, < u,z,
holds. Then, d(, ) _1) < #, < d(;41y,» and we have (23).
Also, z, =0 implies i, = 0 and from i, = 3 ;111 0 diPuk
(inventory minimality), it follows that p,, =0 for all k €
[+ 1, n]. Thus, we have (24) as well. For the other direc-
tion, suppose (23)—(24) hold. From (23), x, =1 for some
k € [t + 1,1,]. Then, for an inventory-minimal solution,
from p, = (1= X ¢j141.9 %)) ", we have pyy =---=p,, =0
and i, < d 4 1)4-1) < U,. From (24), if z, =0, then p,, =0,
which, by p, = (1 — Z];:,H x;)" implies that x; =1 for
some j € [t + 1, b,]. Then, again by inventory minimality,
P, = =pPn=0and i, =0as dg,,, —1=0.

After eliminating the order variables y, by substituting
d,+i, —i,_,, the inventory costs become &, = p, + h, —
D41 and the objective contains the constant term K =
2 iefi,n Pid,. Because h' >0 due to the Wagner-Whitin
nonspeculative costs, the problem can be stated as

min Z Sfix,+ Z (gtzt+h;it)+K

te[1,n] te[0,n]

i,> Y dipy, tel0,n—1], (21)
ke[t+1,n]

put Y. x;=21, te[0,n—1],ke(b,.n], (22)
jel+1.4]

> x;=1, te[0,n—1], (23)

Jelt+1,1,]

=P, 20, t€[0,n—1], (24)

P20, te[0,n—1],ke[t+1,n], (25)

0<x, <1, te[l,n], (26)

0<z,<1, 1€[0,n], (27)

ieR™, xe{0,1}", ze{0,1}",

pe{0,1}0). (28)
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Pochet and Wolsey (1994) show that the constraint
matrix for (22)—(23) and (25)—(27) is totally unimodular.
Because each z, appears once in (24), the following state-
ment holds.

PROPOSITION 9. Let w = (p, x, z) and let Aw = b represent
constraints (22)—(27). The constraint matrix A is totally
unimodular.

Because the right-hand side of constraints (22)—(27) is
integral and each inventory variable i, appears only once in
constraint (21), the extreme points of

Cww =1{(x,1,2,p): (x,1, 2z, p) satisfies (21)—(27)},

are the inventory-minimal solutions of LSBI.

CorROLLARY 10. The linear program min{fx + h'i + gz +
K: (x,i,z,p) € Qyy} is an extended formulation of LSBI
with Wagner-Whitin nonspeculative costs.

Projecting out the auxiliary variables p in @, and
reintroducing order variables y, we obtain a linear pro-
gramming formulation of the problem with the original
variables.

THEOREM 11. LSBI with Wagner-Whitin nonspeculative
costs can be formulated as the following linear program:

min{py + fx + hi+ gz: (y, x, i, z) satisfies (29)—(35)},

where
Yoy —dpx) <ip, 1<t<k<n, (29)
Jjelt. k]
> ox; =21, re[l,n], (30)
Jelt 1]
i+ Y. x; 21, tell,n], (31)
Jelt, b_y]
ity =d +i, te[l,n] (32)
0<y,, te[l,n], (33)
0<x <1, rell,n], (34)
0<z, <1, te[0,n]. (35)

Note that inequality (29) is a special case of (I, S)
inequalities with S = [k, [], inequality (30) is a special case
of inequality (3) with S = [k, /,], and inequality (31) is a
special case of inequality (8) with S = [k, b,_,].

5. Computational Results

To test the effectiveness of the inequalities described in §§3
and 4 in solving LSBI, we implement a branch-and-
cut algorithm that incorporates these inequalities and we
perform computational experiments. All computations are
done on a 2 GHz Pentium 4/Linux workstation with 1 GB
main memory.

The data used in the experiments has the following prop-
erties: Demands are generated from integer uniform dis-
tribution between O and 30. Inventory upper bounds are
generated from integer uniform distribution between 30
and 30(c 4+ 1), where ¢ > 0 is a parameter to determine
tightness of capacity. Order costs are generated from integer
uniform distribution between 4 and 24, and holding cost is
equal to 1 for every period. Let f be the ratio of order fixed
cost to variable inventory cost and g be the ratio of order
fixed cost to inventory fixed cost. To observe the effect of
varying capacity and cost parameters on the computations,
we let ¢ € {2,5,10,20}, f € {1,000, 2,000, 5,000}, and
g €{2,5, 10}, and generate five random instances for each
combination.

The first set of experiments is on solving LSBI with
linear inventory costs. The problem instances are solved
with the MIP solver of CPLEX! Version 8.1 Beta using
first only the uncapacitated inequality (1) (Unc) and then
using inequalities (1), (3), and (5) (Cap) as cutting planes
in the branch-and-cut tree. Given a fractional point, we find
violated inequalities (1), (3), and (5) using the separation
algorithms discussed in §3.4. CPLEX cuts are disabled in
these experiments to isolate the impact due to the inequal-
ities discussed in this paper. However, to see how CPLEX
cuts would perform, we also solve the same instances with
the default settings of CPLEX (Def) without adding any
user cuts.

A summary of these experiments for instances with 120
and 180 time periods is reported in Tables 1 and 2. In the
second column of the tables we report the average integral-
ity gap, which is 100 x (zub — zinit)/zub, where zinit
is the objective value of the initial LP relaxation and zub is
the objective value of the best integer solution. In the third
column, we compare the average percentage improvement
of the integrality gap at the root node (% gapimp), which
is 100 x (zroot — zinit)/(zub — zinit), where zroot is
the objective value of the LP at the root node after the cuts
are added. Columns cuts and nodes compare the average
number of cuts added, and the average number of branch-
and-cut nodes explored, respectively. In the last column,
we report the average CPU time elapsed (in seconds) if the
problem is solved within a one-hour time limit. Otherwise,
we also report, in parentheses, the average percentage gap
between the best lower bound and the best integer solu-
tion found in the search tree (endgap) and the number of
instances that have positive end gap (unslv). Except for
percentage gaps, the entries in the tables are rounded to a
nearest integer.

In Tables 1 and 2, we observe that the initial integrality
gap increases with the length of the planning horizon and
the ratio of order fixed cost to linear inventory cost f. The
capacitated cuts close almost all of the integrality gap for
most instances and reduce the computational effort dramat-
ically. Indeed, many instances are solved without the need
for branching, and the rest require only a few branches to
prove optimality. While many of the instances cannot be
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Table 1. LSBI with linear inventory holding costs, n = 120.
% gapimp cuts nodes time (endgap:unslv)
f ¢ gap Def Unc Cap Def Unc Cap Def Unc Cap Def Unc Cap
1,000 2 17.8 735 22.1 952 195 42 482 93,655 1,220,825 7 360 3,574 (6.9:2) 2
5 17.1 777 345 96.9 131 60 504 9,109 579,048 2 31 2,285 (1.7:2) 3
10 175 81.1 51.2 99.6 97 81 529 13,495 65,678 1 37 335 2
20 17.8 83.5 674 99.7 72 111 525 1,666 2,793 1 5 17 2
2,000 2 196 60.7 143 95.9 198 35 560 700,111 1,388,269 3 2,207 (1.6:3) 3,614 (10.5:5) 2
5 186 542 21.7 95.1 150 49 492 701,982 1,151,008 6 1,884 (0.9:2) 3,613 (5.3:5) 3
10 18.7 67.0 36.2 99.6 108 73 533 308,372 675,722 1 867 2,637 (2.4:3) 3
20  17.2 80.7 53.8 99.5 80 120 569 447 16,085 1 2 87 2
5,000 2 225 449 6.2 96.9 192 28 528 1,182,451 1,554,172 2 2,936 (6.5:4) 3,614 (15.7:5) 2
5 21.0 60.3 10.7 94.8 194 35 493 501,072 1,225,022 3 1,218 (1.9:1) 3,137 (9.3:4) 3
10 209 532 193 100.0 384 58 591 666,193 875,933 0 2,184 (1.7:3) 2,938 (5.6:3) 3
20 18.0 685 299 100.0 189 88 667 31,493 166,887 0 115 924 (0.9:1) 2
Average 189 67.1 285 97.8 166 65 539 350,837 743,454 2 988 (1.1:1) 2,231 (4.9:3) 2

solved to optimality in an hour of CPU time with default
CPLEX and with uncapacitated lot-sizing inequalities (1),
when the capacitated cuts (3) and (5) are added, all of them
are solved within a few seconds. Note that uncapacitated
lot-sizing inequalities (1) results in small gap improve-
ment at the root node and have high endgap on average.
As expected, the root gap improvement with uncapacitated
inequalities increases with maximum capacity ratio c.

The second set of computational experiments is on solv-
ing LSBI with linear and fixed inventory costs. In these
experiments we test the marginal impact of the inequalities
with fixed-charge variables (8), (9), and (19) over inequal-
ities that do not make use of the fixed-charge variables (1),
(3), and (5) as well as the marginal impact of inequali-
ties that exploit the inventory bounds and fixed charges (9)
and (19) over inequalities that only use inventory fixed
charges (8). Violated inequalities (8), (9), and (19) are
found as described in §4.3. A summary of these exper-
iments for instances with 120 and 180 time periods is
reported in Tables 3 and 4. The columns labelled as Def

are for default CPLEX, Unc are for runs with uncapacitated
inequalities (8), Lin are for runs with inequalities (1), (3),
and (5), and, finally, (Cap) are for runs with inequalities (8),
(9), and (19). For these instances we set the order fixed
cost to inventory fixed cost ratio g equal to 10. The initial
integrality gap of the LP relaxation of LSBI with inventory
fixed costs is larger than for the case with linear inventory
costs only. We observe that a significant effort is spent in
strengthening the LP relaxations with the cutting planes;
the numbers of cuts added are in the thousands.

A comparison of column Unc and Lin with Cap show that
inequalities that ignore either the capacities or the inventory
fixed-charge variables are not sufficient to solve the prob-
lem efficiently. We see that the addition of inequalities (9)
and (19) close almost all of the integrality gap consistently
for varying order fixed-cost inventory ratios and capaci-
ties. Consequently, all of the instances that could not be
solved within an hour of CPU time without inequalities (9)
and (19), are solved in a few minutes when they are added.
These experiments clearly demonstrate the positive impact

Table 2. LSBI with linear inventory costs, n = 180.
% gapimp cuts nodes time (endgap:unslv)
f ¢ gap Def Unc Cap Def TUnc Cap Def Unc Cap Def Unc Cap
1,000 2 17.5 739 17.6 99.1 271 74 879 358,306 701,225 4 2,404 (0.7:2) 3,608 (14.2:5) 9
5 17.1  78.7 303 99.7 201 85 852 140,510 629,417 2 854 (0.3:1) 3,605 (8.9:5) 10
10 174 825 475 99.3 182 114 818 28,232 457,648 2 181 3,606 (4.2:5) 9
20 185 777 67.6 99.6 128 152 839 106,858 112,079 1 559 1,400 12
2,000 2 19.1 551 10.0 99.8 230 58 972 620,669 730,623 1 2,897 (6.4:4) 3,612 (20.6:5) 9
5 18.2 68.7 18.7 99.7 186 72 821 397,850 705,143 1 1,527 (2.7:2) 3,614 (13.8:5) 11
10 18.8 64.8 32.1 99.7 190 100 881 402,263 469,990 1 1,859 (1.6:2) 3,612 (8.4:5) 11
20 19.0 70.0 51.0 99.9 169 158 738 175,411 314,706 0 1,043 3,589 (2.5:4) 13
5,000 2 222 444 5.4 100.0 237 46 956 818,413 787,667 1 3,612 (9.6:5) 3,613 (24.9:5) 9
5 204 56.6 9.6 100.0 269 53 956 647,729 747,869 0 2,656 (4.5:3) 3,614 (17.8:5) 12
10 212 564 197 100.0 195 75 1,053 694,361 660,580 0 2,890 (5.1:4) 3,613 (12.4:5) 10
20 19.7 52.8 22.0 100.0 347 103 1,016 551,326 537,426 0 2,901 (2.6:4) 3,611 (8.3:5) 14
Average 19.1 651 27.6 997 217 91 898 411,827 57,119 1 1949 (2.8:2) 3.425(11.3:5) 11




Atamtiirk and Kiiciikyavuz: Lot Sizing with Inventory Bounds and Fixed Costs

Operations Research 53(4), pp. 711-730, © 2005 INFORMS 723

Table 3. LSBI with fixed and linear inventory costs, n =120 and g = 10.
% gapimp cuts nodes time (endgap:unslv)

f ¢ gap Def Unc ILin Cap Def Unc Lin Cap Def Unc Lin Cap Def Unc Lin Cap

1,000 2 245 828 49.6 674 995 373 1,210 529 2,395 116,844 66,587 758,430 1 671 3,615 (9.4:5) 3,611 (3.0:5) 51

5 260 88.8 64.0 650 99.8 325 1,334 590 2,376 55,381 49,587 652,147 1 294 3,617 (4.8:5) 3,610 (2.9:5) 57

10 28.1 88.1 76.6 64.1 99.9 288 1,486 689 2,531 192,749 26,742 548,199 1 731 (0.4:1) 2,693 (1.5:2) 3,610 (3.7:5) 47

20 30.6 90.1 872 626 999 265 1,686 721 2,030 25,848 7,231 460,097 0 139 905 (0.2:1) 3,610 (4.8:5) 52

2,000 2 276 652 44.1 656 100.0 391 1,276 549 2,108 827,225 65,867 753,632 1 3,612 (5.9:5) 3,614 (14.8:5) 3,612 (4.2:5) 54

5 289 815 62.0 61.7 99.6 345 1,327 543 2,438 447,568 50,818 675,077 4 2,206 (0.4:2) 3,613 (6.9:5) 3,613 (4.8:5) 60

10 31.0 826 729 609 100.0 322 1,586 748 2,320 404,856 35,623 475,499 0 1,455 (1.4:2) 2,921 (3.7:4) 3,612 (5.9:5) 56

20 33.1 858 858 60.7 99.9 305 1,812 921 2,333 210,006 9,894 328,056 1 961 (0.2:1) 1,343 3,610 (6.4:5) 58

5,000 2 308 654 429 64.0 100.0 433 1,345 512 2,552 900,144 62,652 789,896 1 3,610 (6.8:5) 3,613 (16.7:5) 3,613 (6.0:5) 63

5 314 639 572 593 99.9 356 1,343 549 2,755 919,685 58,119 820,783 0 3,612 (6.5:5) 3,613 (10.5:5) 3,613 (6.9:5) 59

10 340 723 655 57.0 100.0 417 1,484 641 2,256 764,752 46,794 583,127 0 2,891 (4.9:3) 3,613 (7.9:5) 3,611 (8.6:5) 60

20 35.1 78.1 80.1 56.4 100.0 525 1,838 818 2,113 560,411 21,298 337,941 0 2,893 (2.0:4) 2,680 (1.9:3) 3,611 (8.5:5) 57

Average 30.1 78.7 65.7 62.1 99.9 362 1,477 651 2,351 452,122 41,768 598,574 1 1,923 (2.4:2) 2,978 (6.5:4) 3,611 (5.5:5) 56

of inequalities (9) and (19) over uncapacitated inequali-
ties (8) that use fixed charge variables, as well as inequali-
ties (8), (9), and (19) over inequalities (1), (3), and (5) that
do not incorporate fixed-charge variables.

Table 5 summarizes the effect of changing the order fixed
cost to inventory fixed-cost ratio g. We observe that the
smaller the ratio is, the bigger the initial integrality gap.
However, although the initial gap is higher, CPLEX cuts
(especially flow cover cuts) lead to a better gap improve-
ment at the root node for the instances with small g. It
is remarkable that even with 97%—98% gap improvement
at the root node, thousands of branch-and-cut nodes are
needed to obtain provably optimal solutions. However, for
the case g =2 and ¢ = 10, default CPLEX finishes compu-
tations more quickly even when many nodes are explored.
We also note that the performance of our branch-and-
cut algorithm is not affected significantly by the tightness
of the inventory upper bounds, whereas the performance
of the alternative branch-and-cut algorithms degrades with
lower c.

Our experiments with problems that satisfy the Wagner-
Whitin nonspeculative cost structure show that the compact

linear program in Theorem 11 is solved faster than the
cutting-plane algorithm that starts with the standard for-
mulation (LSBI). Finally, we compare the performance
of a branch-and-bound algorithm that solves the strength-
ened formulation given by (29)-(35) (Compact) with the
performance of the branch-and-cut algorithm (Cap) that
uses inequalities (8), (9), and (19) on instances that do
not satisfy the Wagner-Whitin nonspeculative cost struc-
ture. For this experiment, n = 180, g = 10, and order vari-
able costs are drawn from discrete uniform distribution
between 4 and 104. We increase the variance in the order
variable costs so that they are not approximately nonspec-
ulative. Recall that the strengthened formulation contains
a subset of the inequalities generated by the branch-and-
cut algorithm. In Table 6 we report the initial integrality
gap of the test problems (gap), the number of branch-and-
cut nodes explored, and the time to solve the problems.
For the branch-and-cut algorithm, under columns rgap and
cuts, we report the gap at the root node when all violated
inequalities (8), (9), and (19) are added and the number of
cuts added, respectively. We observe that the initial inte-
grality gap at the root node for the compact formulation

Table 4. LSBI with fixed and linear inventory costs, n = 180 and g = 10.
% gapimp cuts nodes time (endgap:unslv)
f ¢ gap Def Unc ILin Cap Def Unc Lin Cap Def Unc Lin Cap Def Unc Lin Cap
1,000 2 247 845 456 70.8 99.4 592 2,598 747 6,388 279,834 22,117 505,488 15 2,909 (1.1:3) 3,629 (13.9:5) 3,613 (4.5:5) 418
5 26.1 889 56.8 662 999 498 2,778 885 7,198 83,519 20,199 410,016 1 753 3,629 (10.6:5) 3,614 (5.4:5) 391
10 287 90.1 694 643 99.6 467 3,074 940 7,777 93,670 16,162 410,060 3 926 (0.0:1) 3,627 (7.0:5) 3,612 (6.6:5) 359
20 314 86.0 844 63.6 999 413 3,546 1,079 6,454 345,818 9,770 323,822 1 2,780 (0.6:2) 3,624 (1.9:5) 3,612 (7.6:5) 410
2,000 2 277 678 41.0 683 99.7 518 2,851 680 4,735 430,593 21,937 541,781 4 2965 (7.7:4) 3,630 (18.8:5) 3,613 (6.1:5) 420
5 29.1 765 54.6 639 999 476 2,929 819 7,081 368,271 20,142 405,146 1 2424 (44:3) 3,628 (13.3:5) 3,610 (7.5:5) 433
10 319 754 67.8 614 999 441 3,365 956 5,653 466,267 12,844 336,865 2 3,117 (4.7:4) 3,631 (8.5:5) 3,611 (8.7:5) 409
20 348 743 76.6 60.1 99.9 375 3,871 1,109 4,699 609,782 9,226 209,676 2 2916 (4.9:4) 3,632 (5.8:5) 3,612 (10.1:5) 468
5,000 2 310 646 413 66.7 99.9 536 2,891 732 5,134 410,827 20,719 481,684 2 2930 (10.5:4) 3,629 (20.3:5) 3,614 (7.6:5) 432
5 31.8 71.1 542 61.5 100.0 498 2,914 824 3,983 459,227 21,050 419,505 0 2923 (7.3:4) 3,629 (14.7:5) 3,612 (9.1:5) 389
10 345 715 619 579 1000 386 3,242 863 5,768 562,321 17,503 385,868 1 2,898 (7.2:4) 3,631 (12.4:5) 3,613 (10.6:5) 378
20 369 712 723 56.7 100.0 379 3,755 1,263 5,720 595,220 13,545 219,399 0 2,930(7.2:4) 3,655 (8.4:5) 3,613 (12.9:5) 437
Average 30.7 76.8 60.5 63.5 99.9 465 3,151 908 5,882 392,115 17,101 387,443 3 2,539 (4.6:3) 3,631 (11.3:5) 3,612 (8.1:5) 412
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Table 5. LSBI with fixed and linear inventory costs, n =180 and f = 5000.
% gapimp cuts nodes time (endgap:unslv)

g ¢ gap Def Unc Cap Def Unc Cap Def Unc Cap Def Unc Cap

10 2 305 59.3 40.5 100.0 491 2,998 5,636 565,010 21,855 2 3,610 (11.4:5) 3,631 (20.8:5) 501

5 323 787 49.0 100.0 462 2,904 10,692 457,550 20,259 1 2,899 (4.5:4) 3,630 (17.9:5) 490

10 351 659 605 100.0 433 3,329 4,974 685,967 18,336 1 3,610 (9.9:5) 3,635 (13.3:5) 457

20 39.0 705 719 100.0 542 4,292 7,763 649,701 11,277 1 3,611 (8.5:5) 3,660 (9.2:5) 484

5 2 403 702 622 100.0 539 4,004 4,762 554,394 15,671 2 3,611 (10.7:5) 3,630 (15.8:5) 471

5 437 755 71.7 100.0 441 3,899 6,373 664,511 16,873 1 3,612 (8.3:5) 3,629 (12.0:5) 492

10 47.8 739 77.8 100.0 434 4,181 7,647 719,258 14,012 2 3,611 (9.4:5) 3,654 (9.7:5) 545

20 526 75.8 86.0 99.9 430 4,771 6,027 665,906 9,885 1 3,599 (8.4:4) 3,637 (5.8:5) 631

2 2 599 0951 850 100.0 572 4,817 6,544 266,314 11,101 2 2,329 (0.8:3) 3,631 (8.5:5) 562

5 645 958 919 100.0 485 4,835 5,416 174,766 10,936 1 1,128 (0.6:1) 3,629 (4.5:5) 572

10 685 98.0 927 100.0 452 4,934 5,568 9,169 12,206 1 82 3,631 (4.3:5) 602

20 725 974 97.3 100.0 424 5,282 8,120 145,534 8,847 0 759 (0.2:1) 3,631 (1.2:5) 682

Average 489 79.7 73.8 100.0 475 4,187 6,627 463,173 14,272 1 2,705 (6.1:4) 3,636 (10.3:5) 541

is much lower than that of the standard formulation. How-
ever, with the addition of violated inequalities (8), (9),
and (19) to the standard formulation, the root integrality
gap is almost closed. Consequently, the number of nodes
explored is smaller for the branch-and-cut algorithm. We
observe that the tighter the inventory upper bounds, the
larger the integrality gap is and the longer the solution time
is for the compact formulation. Also, as the ratio of order
fixed cost to variable inventory cost (f) increases, the ini-
tial integrality gap of the standard formulation as well as
the number of explored nodes and the elapsed time increase
for the branch-and-cut algorithm. The branch-and-cut algo-
rithm is faster than the branch-and-bound algorithm for the
compact formulation for smaller f.

In summary, these computational experiments show that:

1. Inequalities that do not take into account inventory
capacities result in a poor performance of the branch-and-
cut algorithm;

2. Similarly, inequalities that do not take into account
inventory fixed-charge variables also result in a poor per-
formance of the algorithm;

3. However, inequalities that exploit inventory bounds
as well as fixed costs are very effective in strengthening
the LP relaxations of the lot-sizing problem with inventory
bounds and fixed costs consistently for a wide range of cost
and capacity parameters;

4. Consequently, they are very useful in solving the
problem efficiently.

6. Concluding Remarks

In this paper, we study the facial structure of the poly-
hedron of lot sizing with inventory upper bounds and
fixed costs (LSBI). We first define facet-defining inequal-
ities for the special case with linear inventory costs and
then extend them to incorporate inventory fixed-charge
variables. We give polynomial time separation algorithms

Table 6. LSBI with fixed and linear inventory costs, compact formulation.
Compact Cap
f c gap nodes time gap rgap cuts nodes time
1,000 2 2.0 12,199 765 19.3 0.1 7,112 9 66
5 1.7 4,649 401 20.0 0.1 3,806 1 40
10 1.2 1,126 127 20.5 0.4 10,192 1 17
20 1.0 136 44 21.4 0.1 4,315 1 16
2,000 2 1.9 10,637 791 229 0.3 10,128 9 138
5 1.7 4,417 396 24.2 0.1 4,472 13 131
10 1.4 1,297 156 25.3 0.1 8,690 1 71
20 1.2 278 60 26.6 0.1 13,479 2 61
5,000 2 1.2 6,368 641 26.0 0.2 4,956 23 414
5 1.6 4,201 417 28.5 0.3 5,872 47 560
10 1.5 701 119 30.0 0.3 5,169 17 296
20 0.9 129 51 31.4 0.3 20,754 2 105
Average 1.4 3,845 331 24.7 0.2 8,245 10 159
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and a linear programming formulation of LSBI under the
Wagner-Whitin nonspeculative cost structure. The compu-
tational experiments suggest that the inequalities are very
effective in solving the lot-sizing problem with inventory
upper bounds and fixed costs.

The inequalities described here and extensions of them
may be effective in solving more complicated produc-
tion/order and inventory-planning problems that contain
inventory upper bounds and fixed costs as a substructure.
Other classes of strong inequalities for LSBI are described
in Kiiciikyavuz (2004). Currently we are exploring how the
results for LSBI can be used for solving general capacitated
fixed-charge network flow problems.

Appendix. Strength of the Inequalities

In this section, we give conditions under which the pro-
posed inequalities are facet defining. We introduce the fol-
lowing notation, which will be used throughout this section:
For 1 < k <1< n and nonempty S C [k, [], let

s =min{z € S},

5" =max{r € S},

§=min{z € [s,+ 1]\S}, and

S=max{reS: t<p} G=k—1if SN[k, p]=9).

Also, let e, and r, be the unit vectors corresponding to x,
and y, for ¢ € [1, n], respectively, ¢, be the unit vector cor-
responding to z, for t € [0, n], and r, and v, be the unit
vectors for i, and i,. Finally, let € > 0 be an infinitesimally
small number.

Under Assumptions 1 and 2, it is easy to check that the
dimension of % is 2n+ 1.

PROPOSITION 12. Inequality (1) is facet defining for & if
and only if

1. if l <n, then S # @,

2. uy>d .y, where s =min{t € S},

3. d,; >0 for some t €S and if d,, =0 for t <, then

tes,
4. u;_y>d;_y), where s =min{t € [s, [+ 1]\S}, and
5. if L <n, then uy > dy )41y, where s’ =max{z € S}.

PROOF (Necessity). 1. Because for I < n, d; (1 —x,,,) <1,
and x,,; < 1 dominate inequality (1) with S = @, we must
have S # @.

2. Assume for contradiction that u; < dy-
Then, adding the (/,S\{s}) inequality, > sy <
D ies\s) duX; + i, and the capacity inequality y, <
(d; + u,)x, gives an inequality at least as strong as (1)
because d, 4 u, < d,;. Therefore, from Assumption 3, we
must have u, > d( ), for all t € [s,[ —1].

3. If d, =0 for some ¢ € [s, []\S, then the (I, S U {t})
inequality dominates (1). If d,, =0 for all ¢ € S, then
inequality (1) is implied by the aggregated demand con-
straint i, + > cps Ve = i

4. If u,_y < d;_,), then there exists a period j € [s +1,
§ — 1] such that u;_, < d,;. Then, the cut-set inequality

dox =1 (36)

1€s, j]

is valid. Now, inequality (1),

Z » < Z dtjxt+ij’

t€ls. j] t€ls, j]
and the flow balance inequality

i+

Ve Sdjy i

teSN[j+1,1]
imply
ny < Z d,jx, + d(j+l)/ + i]
tes tels, j]
< Z dzjxt + Z d(j+l)lxt + il < Zdtlxt + il’
tels, j] tels, j] tesS

where the second-to-last inequality follows from inequal-
ity (36).

On the other hand, if u, ; = d,;_;), then summing
inequality (3),

is—l + Zyt < us—l + Zmin{dsl - us—l’ dtl}xt + il’

teS teS

inequality (1)

Z Y S Z dt(ifl)xt"'if—lv

tels, §—1] tels, s—1]

and the balance equality

iy tdoy =1+ > v

tels, §—1]

we obtain

Zyt S Zdt['xt +il'

tesS teS§

5. Because the facet induced by (1) is different from
x4, =1, it contains a point (x, y, i) such that x,,, =0 and,
by feasibility, i, > d,,,. Because this point satisfies (1) at
equality, y; = d;(y for some j € S, which, by feasibility,
implies that uy 2> dy1)41)-

(Sufficiency). To prove sufficiency, we exhibit 2n + 1
affinely independent points on the face defined by (1).
For simplicity, we represent the points in the variable
space (i, (y,x),i,). (The values of the variables i, for
t €[1, n—1] can be obtained via the flow balance equali-
ties.) Let e, and r, be the unit vectors corresponding to x,
and y, for t € [1, n], respectively, and r, and v, be the unit
vectors for i, and i,. If § </, then consider the point

wo= )y, (dr,+e)+ di_1y-1)ls—1 T €y
te[l, s—2]

+dyri+e+ Y (diri+e);

te[l+1, n]
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otherwise, consider the point

Wy = Z (dtrt+et)+d(s71)(§—|)rs—l+€s—1

tell, s—2]
+ Y (diri+e)
tell+1, n]

on the face defined by (1). First, we exhibit 2|S| affinely
independent points. For each j € S, consider the points
if j<§<U,

wi=ywo—d; i tdyrte; if j<S=1+1,

wO_dj(§—l)rsfl +djlrj+ej_d§lr§_e§

wy—d;r;+d,r;+e; otherwise,
W; =W, +€r;+€v,.

Next, consider the following 2({ — s+ 1 —|S]|) points. For
Jj=s5<1, let

w;=w,+e and w;=w,—€r;+ern,.
For each j € [§+ 1,I]\S, consider the two points
w;=wy+e; and  w;=w;+dyr;—dyr;.

Finally, for each je[l,s—1]U[l+ 1, n], let

wy—e;,—d;ri+dry, ifj=1+1,
w=1" J it J J ‘ and

w,—e; — djrj + aljrj,I otherwise,

wyt+er;t+ev, ifj=l+1,

>
w, + €r; — €r; if j<s—1ands</,

if j=s—1land s=1+1,
if j<s—2and s=1+1.

W, — €r; + €r

wy + €7; — €ry_,

These points are affinely independent feasible points satis-
fying (1) at equality (Kiiciikyavuz 2004). O

PROPOSITION 13. If u; > d .y, then inequality (3) is facet
defining for & if and only if
Loue_y <dy;
2. u; > d .y, where s=max{re€S: t<p} (S=k—1
if SN[k, p]=2);
3.0 u,, < d,, then either S = [s,l] = [s,p] or
Sels, pl;
if d,; =0 for some t € [k, 1], then t € S;
if k> 1, then uy_, > d ;-1
if uy_y = dy(p_1), then s <p, else s < p;
if l<n, then ug =d g 1)11); and
8 ifu,_,=d,+uy, then k €S.

N ok

Proor. Note that, by Assumption 3, u; > d,.,, if and only
if di, +u, > d,, for all t € S. Then, inequality (3) simpli-
fies as

i+ v <+ min{dy —u, . dyx, 40 (37)

teS§ teS§

If u; < d; ), then (3) is stronger than (37).

(Necessity). 1. If u,_, = d,;, then inequality (3) is
implied by the aggregated flow balance equality

i1+ Z yi= dy+i.

Jjelk, 1]

2. If u; < d 54y, then inequality (3) is dominated by (5),

i+ Y Sy + Y (dg—w Fug)x;,

JES:j<p JESj<p

and inequality (1),

2oy ) dyxi+ip

Jjes:j>p JjeS:j>p

Therefore, we must have wu; > d(;.,,. Note that, from
Assumption 3, this condition implies that u, > d .,y for
all r €[5, 1].

3. Suppose that the condition is not true. Either § =
[s,p]and k <s<p <, or[s, p]CS. Because u,_, <d,,
it follows that

> ox =1

tels, p]

Multiplying both sides of this inequality with d,; — u,_,
and adding dy; +i; = iy + Xk, iy ¥;» We Obtain

Dovs< Y (dy—u)x, A+ (e — i)+,

telk, 1] tels, p)

which is stronger than (3) in either case.

4. Note that d,, > 0 for all ¢ € [k, p] because we must
have 0 <u;_; < d,,. If d, =0 for some ¢ € [p+1,] and
t € S, then inequality (3), where S augmented with ¢, is

stronger.
5. Because the facet defined by (3) is different from
X,_; = 1, there is a point (x, y, i) on the face with x,_, =0.

Because (3) is satisfied at equality, we have i, _| > dy_y).
As y,_; =0, this implies that u;_, > i;_, 2 d_1y—1)-

6. If s > p, then inequality (3) is obtained by adding
iy < up_, and the (/,S) inequality. Therefore, we must
have s < p. However, if u,_; = d;(,_), then dy; —u;_, =
d, and by the same argument, we need s < p. Note that
this condition implies that S # &.

7. Follows from the same argument for Item 5 of Propo-
sition 12.

8. Suppose that u,_, = d;, + u;, and k ¢ S. Then,
inequality

i+ Zyz S+ Zmin{d(k+l)l — Uy, dy}x, +i

teS te§

is stronger than (3). This can be seen by subtracting the
flow balance equality

ity =di+ip

from (3).
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(Sufficiency). We define 2n + 1 affinely independent
points on the face defined by (3). For simplicity, we rep-
resent the points in the variable space (iy, (v, x), i,). (The
values of the variables i, for # € [1, n — 1] can be obtained
via the flow balance equalities.) For consistency of notation,
let d,, be zero and ¢, be the zero vector. Consider the point
Wy = Zte[l,k72](drrt +e)+ Zte[lJrl,n](dtrr +e)+(dy +
U, )r—; + e,_,. Note that w, is not feasible because
U, <d,;. We perturb w, to define feasible points.

First, consider the following 2|S| points. For each j € S,
if j < p, then let

w; =wy+e;+ (dy —w_y)rj;
otherwise let

wy +e;+dyr; + (dygoy — )+ e if §<p,
Wy +e;+d 1+ (dygory — U)oy + e

w; = +d3,(j_1)r§+e§ if s>k, §>p,
wo+ e+ dyr+ (dyy —we )y H syt e
if s=k, s> p.

Also, for j € S, let

if j >5,
J

_ {wj—l—erj—i—ev,,
w. =

w; + €r; —€r,_; otherwise.
For j=k—1and k > 1, let

w; =wy— ey — (dy_y +w_)r_y
+dy_1)s-1y—2tdyr,+e, and

w_fzwg—erk_l—i—erg.
For j € [k, []\S consider
w;=w,+e; and
Wy + (dyy — w1 +e;

if je[s,plorj=s—1,5§>p,
if je[p+1,1\{5},
if je[k,s—1] and § < p,
W= w,_,+er;+e; —er,_; if jelk,s—2]and 5> p,
Wy + (dy_1y — U 1)Tsy T e Hdgrs +e;

if j=§>pand s>k,

Wy + (diory — o) oy T dyrs + e
if j=§>pand s=k.

w; +-€r;+e; —€r;

w; +-€r;+e; —€r;

For je[l+1,n] and I < n, consider

wy —e;—d;r;+d;ry  if j=1+1,
w; = o and
wy —e; —d;r;+d;r;_ if je[l+2,n],

w; =wy +€r; +€v,.

For je[l,k—2] and k > 2, let
w,=wy—e;—d;r;+d;r;_; and w;=w, +€r; —€r,_,.
Finally, let

_ w,+erg—er_, ifk>1,
Wo = .
w; —€r_, +er; ifk=1.

The 2n 4 1 points given above are affinely independent
points on the face (3) (Kiigikkyavuz 2004). O

PROPOSITION 14. Let S C [k, ] for | <k <I<n Ifu,>
d(s1y + U, then inequality (S) is facet defining for & if
and only if

Loue_y <dy+uy;

2. SCk,ql;

3. ifu,_y <d,, then S #[s, ql;

4. if k> 1, then uy_, 2 dy_yy_y) If S # D and uy_, >
di_+u_, if S=9; and

5. ifu,_,=d,+u, then ke S.

ProOF. Note that by Assumption 3, u, > d ), +u, if and
only if di, +u, = d;,; +u, for all ¢ € S. Then, inequality (3)
simplifies as

B+ 2y <+ (dy —uyy +up)x,. (38)

teS teS

If u; < d;;1) + u;, then (5) is stronger than (38).

(Necessity). 1. From Assumption 3, u,_; < dy; +u,. If
u,_,; = dy, +u,, then inequality (5) is implied by the aggre-
gated flow balance equality

i+ Y y=dy+i<dy+u.
telk, 1]

2. The statement holds trivially if g = /. Otherwise, from
the definition of g, we have dy; —uy_ +u; > d 1y +u, 2
d,+u, for all r € [g+1,1]. Then, if r€e SN[g+1,1],
the inequality is dominated by the one with S’ = S\{¢} and
Yo < (d, +u)x,.

3. Suppose that u,_ <d,, and S = s, q]. Then,

Z x, 21

1€[s, q]

is valid. Multiplying both sides of this inequality with
dy, — Uiy +u,, and adding i, <u, and i,y + 3 gV =
dy, +1i,, gives

b+ Y v S<u 4+ Y (dyy —up +u,)x,. (39)
telk, q] tels, q]
However, from Condition 2 and Assumption 3, we have

u, = d 1y +u;. Thus, (39) equals

P Z YeSup + Z (dy — wyy +uy)x,.

telk, q] t€ls. q]
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4. If S # @, the proof is the same as for Condition 5
of Proposition 13. If S =@ and u,_, < d,_, + u,_,, then
ir_; < u,_, is dominated by the valid inequality (u;,_, +
di oy =) (X=X y) + iy Sy

5. If uy_, =d;, +u, and k ¢ S, then adding inequal-
ity (5),

i+ Doy S+ (dgry — we +up)x,,

teS teS

and the flow balance equality i,_, +y, =
a stronger inequality.

(Sufficiency). By Assumption 3, we have u, =d ) +
u,;, and by Condition 2 we have S C [k, g] where g < [.
Therefore, we assume below that [ = g. We give 2n + 1
affinely independent points on the face (5). For simplicity,
we represent the points in the variable space (i, (v, x), i,,).
(The values of the variables i, for r € [1,n — 1] can
be obtained via the flow balance equalities.) Let w, =
2 et i-11(€; +djrj_) + 2 e e+ dir) + e+ (diy +
Uy_)7—1, Where d; is the remaining demand for period j
when i, = i, and there is no production in [, j], i.e., d_j =
d;— (u; —d1y-1)) " (Let dy be zero and e, be the zero
vector for k = 1.) Note that w, is not feasible because
Ug_y < dy +u,. Similarly, let d’; be the remaining demand
for period j when i, , = u,_, and there is no production
in [k, j], ie., d; =d; — (u_, — dy;_1))". Let [ =k and
s =k —1if S = @. Consider the following feasible point
of &:

d, +i,, we obtain

w0+(dkl_ukfl)r§+e§+2je[l+l,nj(dj_d_j)rj

if S£ o and § <1,
Lt e i e n(d; — d))r
iftS#£a, s>k, s>1,
ifS#£0,s=k, §>1,
if S=2.

+ (dy — w7

S
Il

Wo+ X e, (d; — d))r;
wy + Zje[lﬂ,n](d} - dj)rj

For j € S, consider

w; =wy+e;+ (dy, +u, —w_,)r; and

W; =w; +€r; — €r,_,.
For j=k—1 and k > 1 if S # &, then consider

w; = wy — ey — (dy_y +w_ )y + dg_iy-1)Ti—2
+ (M[ + dsl)rs + es’
otherwise consider

—(d it u_ )+ (dyy + ),

W =W — e,

Also, let

Wy_| =W — €r; + €1

For j € [k, I]\S, consider

w, + e; if S+,
W= - and
w0+ej+zt€[l+l,n](d;_d[) 1fS=@,

wy+e; + (dy +u—u_)r; if jels+1,1],
if je[k,s]and s<1,

w+er;+e;—er,_, if jelk,s—2]and §=1+1,

w; +€r;+e; —€r

s

W+ €r; + €v, ifj=s—land s=1+1.

For je[l,k—2] and k > 2, let

w,=w—e;—d;r;+d;r;; and w;=w+€r;—€r_,.

For j=1+41, let

w,—e; if S#g,
w;=1_ ) and
w,—e; otherwise,

w; =w+€r; +€v,.

For je[l+2,n], let w,=w—e; —d;r;+d;r;_, and w; =
W+ €r; +€v,. These 2n+1 pomts are affinely independent
points satisfying inequality (5) at equality (Kiiciikyavuz
2004). O

Under Assumptions 1 and 2, it is easy to verify that the
dimension of @ is 3n+ 2.

PROPOSITION 15. Inequality (8) is facet defining for @
under the conditions of Proposition 12 if u,_, > d;, and
either S = [k, b, = [k, 1] or [k, b,]\S # &, where b, =
min{z € [k, []: d, > 0}.

Proor. For simplicity, we represent the points in the vari-
able space (i, (v, x, 2), i,). (The values of the variables i,
for t € [1,n — 1] can be obtained via the flow balance
equalities.) Let ¢, be the unit vector corresponding to z,
for ¢t € [0, n]. For the case that k = 0, we use 2n + 1
points described in Proposition 12 with g; = 1 for all
J €10, n]. For j €[0,s—2]U[l+1, n], consider w; = w, +
Zte 0, n\{j} 91+ For j e [S -1 l] let w =w; + Zte 0, n]\{j} 41
if j=n.If j <n, then consider w; = wj+1 +Z,€0 a4
if {j+1}eS, w, —w0+2,€[0n 1 4 1f]+1—s and
U) _wj+l+2te[0n]\ 4q; if {]+1}¢S and ]+17és
These 3n+ 2 points are affinely independent.

Now for k > 0, let w; for all j € [1,n] be as
described in the sufficiency proof of Proposition 12. Let
Wy = Dsepr h-2upi+1, ) (dits +€) + dg_iyriy + ey +
Zte[k—l,l—l] g, and wk—l = IDk—l +en_ +ev, + Zte[l, n] 41+
Also, if k> L, let w,_, =W, —d,_ 1y — ey +dy_ 1 Fa +
Gi_n- If [k, D \S # @, then let § € [k, b;]\S. For j e S,
consider the points

Soiept ko, (dirte)+dyri e +3 -0
lf] bk’

Yoertk-nups,n(dirte) +dyri+e+dy gy rstes
otherwise,

w; =
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W, =w,+er;+ev,+ Y g, and
tell, n]

5 ;. +q; ifj<n,

! w; + ¢, otherwise.

For j € [k, b.]\S, consider

@j = Z

te[1, k—1]U[I+1, n]

(dir,+e)+dyri+e+ Y q.

telj. I1-1]

and for j € [b, + 1, []\S, consider

= >

te[1, k—1]U[I+1, n]

+ Z 4q;-

tels, j—2]Ulj, I-1]

<)

(d,r,+e,) +djlrj+ej +d§(j—1)”§+‘33

Also, for j € [k, []\S, consider
w; =w,_; +e;, and

w; =

Wi tg ifj<n,
otherwise.

w; + g
For je[1,k—2]U[l+ 1, n], consider

if j=14+1,
J

R Wy —d;rj—e;+d;ry +q
w. =
otherwise,

w,—dir;—ej+d;ri  +q;

J

{@k—l +er;—€n_ + Zte[j,k—2] g if j<k-2,

Wy_y + €7+ €V, + 3 el 4 otherwise,

W; = Wiy +q;.
Finally, for k > 1, consider the following two points:

Wo=W,_,+€ry—€r_,+ > g, and
re[0, k2]

Wy = Wy + go-

These 3n+ 2 points are affinely independent feasible points
that satisfy (8) at equality (Kiiciikyavuz 2004). O

PROPOSITION 16. Inequality (9) is facet defining for @ if
{k—1}U([k, p—1]NS) C T and the conditions of Propo-
sition 13 are satisfied.

Proor. For simplicity, we represent the points in the vari-
able space (i, (y, X, z),1i,). The values of the variables i,
for t € [1,n — 1] can be obtained via the flow balance
equalities. Consider the 2n + 1 affinely independent
points described in Proposition 13 with g, = 1 for all
t € [0, n]. For each j € [0, k —2]U[, n], consider the point
W; =W, + X cpo. () 4> Where wy is as defined in Propo-
sition 13. For each j € [p,l — 1], if § < p, then consider

@j = Zze[l,k—Z]U[lJrl,n](dtrt +e)+ (dkj — e )r; + e +
Yoiepit, -y 4 T (@it Fw Dy ey Hd iyt t
ej 1, otherwise let W, = 3,y roupsr,n(dirs + ) +
(dk(f—l) — )l e+ dijrs+ e+ iek—1 -y 4+
(dy_y +w_ )iy + €y + d ()71 + ;4. For each j €
[k =1, p— 1] with s(j) <, letting ¢(j) =max{r e T: ¢t <
Jj}, consider @j = Zte[l,k72]u[t(j)+1,s(j)fl]U[Hl,n](dtrt +
e) + Liepe-r-n\@osonaum 4+ dacnipTier T
ey + dyjyury) + ey For each j e[k —1,p— 1]
with s(j) > I, consider W; = }, 1 s_o(d,1, + €) +
die-ipTe—1 T ot + Dicper -Gy soinaogy 40+
Zte[t(j)Jrl,s(j)—l]U[lJrl,n](dlrt + ez)' These 3n + 2 pOintS
are affinely independent points on the face (9)
(Kiigiikyavuz 2004). O

PROPOSITION 17. Inequality (19) is facet defining for @ if
{k—1}U([k, p—1]NS) S T and the conditions of Propo-
sition 14 are satisfied.

Proor. For simplicity, we represent the points in the vari-
able space (iy, (v, x, 2),i,). The values of the variables i,
for t € [1,n — 1] can be obtained via the flow bal-
ance equalities. Consider the 2n + 1 affinely independent
points described in Proposition 14 with g; =1 for all
Jj €[0,n]. For each j € [0,k — 2], consider w; = w +
>0, a\(j} 4i» Where W is as defined in Proposition 14.
For each j € [1,, n], let &)\j = Zte[l,k—z]u[t,+1,n](dr"t +e)+
Ay, Tt €t 2iefiot, r—10p,+1, n)\(j) 4¢- Finally, for
jelk—1,1, — 1], letting #(j) = max{r € T: ¢ < j}, if
s(j) <1, then cons_ider w; = D relt k21041, sG)—11 (AT +
e) + Yiepriadire + €) + du_iyulior T ey t
Lrelk—1, -1\ (), sti)-1ncogy 4+ (g + w1y + ey +
Diei+1,n 9> Where d, is the effective demand in
period ¢ if iy = w,. If s(j) > [, then consider w; =
Dorer k—21ueGy+ 1, sG)—11 (it + €) + dg_pyp Tt + e +
Zte[kfl,lfl]\([t(j),s(j)—l]r‘n(TU{j})) q, + Zte[[+],n](dtrt + e).
These 3n 4 2 points are affinely independent points on the
face (19) (Kigiikyavuz 2004). O

Endnote
1. CPLEX is a trademark of ILOG, Inc.
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