
OPERATIONS RESEARCH
Vol. 54, No. 4, July–August 2006, pp. 767–775
issn 0030-364X �eissn 1526-5463 �06 �5404 �0767

informs ®

doi 10.1287/opre.1060.0309
© 2006 INFORMS

Solving Nonlinear Single-Unit Commitment
Problems with Ramping Constraints

Antonio Frangioni
Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy, frangio@di.unipi.it

Claudio Gentile
Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti,” C.N.R., Viale Manzoni 30, 00185 Rome, Italy,

gentile@iasi.cnr.it

We present a dynamic programming algorithm for solving the single-unit commitment (1UC) problem with ramping
constraints and arbitrary convex cost functions. The algorithm is based on a new approach for efficiently solving the
single-unit economic dispatch (ED) problem with ramping constraints and arbitrary convex cost functions, improving on
previously known ones that were limited to piecewise-linear functions. For simple convex functions, such as the quadratic
ones typically used in applications, the solution cost of all the involved (ED) problems, consisting of finding an optimal
primal and dual solution, is O�n3�. Coupled with a special visit of the state-space graph in the dynamic programming
algorithm, this approach enables one to solve (1UC) with simple convex functions in O�n3� overall.

Subject classifications : dynamic programming; unit commitment problem; ramping constraints.
Area of review : Optimization.
History : Received July 2004; revision received March 2005; accepted May 2005.

1. Introduction
The single-unit commitment (1UC) problem requires oper-
ating one generating thermal unit optimally within a certain
discretized time horizon. The cost (or revenue) for gener-
ating power varies with each time instant. The generating
unit is subject to some technical restrictions, most notably
minimum up- and downtime constraints, as well as upper
and lower bounds over the produced power when the unit
is operational.

(1UC) is a mixed-integer nonlinear problem, hence,
in general nontrivial to solve. It is particularly relevant
because it appears as a subproblem to be repeatedly solved
within Lagrangian schemes for (multi-)unit commitment
(UC) problems, which require coordination of the opera-
tions of several generating units, within a certain discretized
time horizon, to satisfy a given power demand at mini-
mum cost. These Lagrangian schemes are among the most
efficient solution techniques for this class of difficult, large-
scale mixed-integer nonlinear problems; see, e.g., Bacaud
et al. (2001), Belloni et al. (2003), Borghetti et al. (2001),
Borghetti et al. (2003a), Madrigal and Quintana (1999),
Zhuang and Galiana (1988) among others, not least because
they are easily extended to accommodate contributions
from other types of generating units, such as hydroelectric
ones. Also, Lagrangian techniques can be relatively easily
extended to consider constraints arising from selling the
generated power on a free market as in Borghetti et al.
(2003b).

Within a Lagrangian approach, one (1UC) per each gen-
erating unit is repeatedly solved with varying objective

function, whence the need for efficient solution methods for
this problem. When no ramping constraints are imposed,
(1UC) can be solved by means of a two-stage process: First,
the optimal generated power, if the unit is committed, is
independently computed for each time period, and then the
optimal set of time periods where the unit has to be com-
mitted is computed, taking into account the results of the
previous phase, by means of a simple dynamic program-
ming procedure. The resulting algorithm has a complexity
of O�n�, n being the number of time instants in the dis-
cretized time horizon if the start-up cost of the unit is time
invariant, and O�n2� if the start-up cost of the unit is time
dependent, i.e., the cost of committing the unit at a cer-
tain time instant depends on how long the unit has been
uncommitted.

Unfortunately, this approach fails when ramping con-
straints need to be considered. Ramping constraints limit
the maximum increase or decrease of generated power from
one time instant to the next, and reflect the thermal and
mechanical inertia that has to be overcome for the unit to
increase or decrease its output. These phenomena cannot
be disregarded for large units or if the time discretization
interval is small (e.g., 15 minutes). The reason for the fail-
ure is that the variables representing the power output are
no longer independent once commitment decisions have
been made; rather, they are linked by the ramping con-
straints. Hence, it is no longer possible to determine the
optimal generated power if the unit is committed indepen-
dently for each time period. Thus, the dynamic program-
ming procedure for the case without ramping constraints

767



Frangioni and Gentile: Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints
768 Operations Research 54(4), pp. 767–775, © 2006 INFORMS

cannot be extended to determine the optimal commitment.
Discretizing the power variables space, one may keep using
a standard dynamic programming procedure (Bechert and
Kwatny 1972), but the computational burden increases con-
siderably, and the obtained solution is an approximated one.

In Fan et al. (2002), an approach is presented for effi-
ciently solving (1UC) with ramping constraints when the
cost function is piecewise linear. The approach is based on
the following idea: redefine the state space of the dynamic
programming procedure so that computation of the state
costs reduces to a convex (although harder than in the stan-
dard case) problem, the economic dispatch with ramping
constraints (ED). The efficiency is obtained by using a con-
structive dynamic programming procedure that solves (ED)
with a piecewise-linear cost function, similar to that of
Bannister and Kaye (1991) and Travers and Kaye (1998).
Thus, two nested dynamic programming procedures are
employed to obtain an overall efficient approach.

However, in most cases the cost function of the real unit
is modeled, in (1UC), with a quadratic function. Closely
approximating the quadratic function with a piecewise-
linear one may require a large number of pieces, thereby
increasing the cost of the overall solution procedure. We
propose an efficient algorithm for (ED) with general convex
cost functions that solves all the O�n2� (ED)s required to
perform the dynamic programming procedure on the com-
mitment decisions in O�n3� in the case of quadratic cost
functions. The algorithm is simple to implement and works
for a very general form of (1UC) with time-varying upper
and lower limits over the generated power, as well as time-
varying and different limits for ramp-up and ramp-down
constraints. Coupled with a special visit of the state-space
graph in the dynamic programming algorithm, this enables
one to solve (1UC) in O�n3� overall in the case of quadratic
cost functions.

The structure of this paper is as follows. In §2, a formu-
lation of (1UC) is briefly presented. In §3, the dynamic pro-
gramming procedure, similar to that of Fan et al. (2002) for
solving (1UC) is recalled, the corresponding (ED) problems
are discussed, and the special visit is described that allows
one to solve the problem in O�n3� once all the node costs
have been computed. Then, in §4, the algorithm for solving
(ED) is presented and analyzed. Finally, in §5, some com-
putational results, obtained in the context of a Lagrangian
approach to (UC), are presented for showing the efficiency
of the proposed approach, and in §6 conclusions are drawn.

2. Formulation
The single-unit commitment problem (1UC) is as follows.
A thermal generating unit burning some type of fuel (oil,
gas, coal� � � �) is given. The unit is characterized by a max-
imum and minimum power output, lt and ut , respectively,
for each time instant (e.g., hour or half-hour) in a set
T = �1� � � � � n�, covering some time horizon (e.g., a day
or a week). If the unit is committed (actively generating

power) at time instant t, it is subject to a convex power-
generating cost function f t�pt�, where pt is the amount
of power produced. In the following we will only assume
that f t is closed convex and that f t�0� = 0 (any constant
term in f t can be associated with commitment variables,
as discussed next). The operation of the unit must satisfy
a number of technical constraints, typically the minimum
up- and downtime ones: Whenever the unit is turned on
it must remain committed for at least �+ consecutive time
instants, and, analogously, whenever the unit is turned off
it must remain uncommitted for at least �− consecutive
time instants. It is therefore useful to introduce binary vari-
ables xt indicating (if 1) the commitment of the unit at
time instant t. We then define X as the set of schedules
respecting minimum up- and downtime constraints; also,
for any x ∈ X, we define c�x� as the cost of the sched-
ule: This may comprise fixed generating cost and time-
dependent or time-invariant start-up cost. Note that because
costs are usually modified by Lagrangian multipliers, the
cost functions c�x� and f t�pt� may also take negative val-
ues. Other combinatorial constraints and costs could also
be included, as discussed in §6, as long as they are consis-
tent with the dynamic programming procedure discussed in
the next section.

The last set of technical requirements are the ramping
constraints. These require that the maximum increase of
generated power from time instant t to the next be lim-
ited to �t

+ > 0, and, analogously, the maximum decrease of
generated power from time instant t to the next be limited
to �t

− > 0. Note that this definition can be applied only if
the unit is committed both in time periods t and t+ 1. We
therefore consider a general form of ramping constraints
where both an upper bound l̄t , lt � l̄t � ut , on the maxi-
mum amount of power that can be generated if the unit is
turned on in time period t (that is, it was uncommitted in
t − 1) and, analogously, an upper bound ūt , lt � ūt � ut ,
on the maximum amount of power that can be generated if
the unit is turned off at the end of time period t (that is, it
will be uncommitted in t+ 1) are known.

A formulation of (1UC) is

min c�x�+∑
t∈T

f t�pt� (1)

s.t.
ltxt � pt � utxt� t ∈ T � (2)

pt+1 � pt + xt�
t
+ + �1− xt�l̄

t+1� t = 0� � � � � n− 1� (3)

pt � pt+1 + xt+1�
t
− + �1− xt+1�ū

t� t = 0� � � � � n− 1� (4)

x ∈X� (5)

Constraints (3) are ramp-up constraints, i.e., they limit
the maximum increase in power attainable at time instant t
(assuming that the unit is committed in t). Note that we
assume that we know the state of the unit at the time instant
prior to the beginning of the operation, i.e., its commit-
ment x0 and the generated power p0. Also, for the sake of



Frangioni and Gentile: Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints
Operations Research 54(4), pp. 767–775, © 2006 INFORMS 769

minimum up- and downtime constraints, we assume that
we know how long the unit has been on (if x0 = 1) or off
(if x0 = 0). Constraints (4) are ramp-down constraints, i.e.,
they limit the maximum decrease in power attainable at
time instant t. We remark that this formulation is more gen-
eral than those usually considered (cf. Bannister and Kaye
1991, Fan et al. 2002, Travers and Kaye 1998), not only
because the cost functions need not be piecewise linear,
but also because we allow different limits �t

+ and �t
− for

ramp-up and ramp-down constraints, and we allow them to
depend on the time instant t.

It is well known that if constraints (3) and (4) are not
present, (1UC) is easily solvable by a two-stage procedure.
First, the unconstrained optimum of each f t ,

p̃t = argmin�f t�p�� p ∈�� (6)

(assumed to be unique for simplicity) is computed, and
used to find the optimal power production level if the unit
is committed:

p∗
t =min�ut�max�p̃t� l

t��

= argmin�f t�p�� lt � p� ut�� (7)

by simply projecting p̃t over the feasible set �lt� ut�. The
value zt = f t�p∗

t � is the contribution of variable pt to the
objective function value if the unit is committed at time
instant t �xt = 1�, while 0 is the contribution if the unit
is uncommitted �xt = 0�. Thus, zt is the cost (or rev-
enue) of committing the unit, to be considered together
with fixed costs and start-up costs, effectively eliminating
the pt variables from the problem. The remaining combi-
natorial problem in the xt variables alone can be easily
solved by dynamic programming. In a dynamic program-
ming approach, the first step is the identification of the
state space of all the possible solutions and partial solu-
tions. When this space is composed of a finite number of
elements, it is possible to represent it as a directed acyclic
graph where the nodes are the states and the arcs identify
the transitions among the states; it is then possible to find an
optimal solution by computing a shortest path on this graph.

In the simple case where start-up costs are time invari-
ant, that is, the cost of starting up the unit at a certain
time instant does not depend on how long the unit has
been uncommitted (but it may depend on the specific time
instant), the state space of the dynamic programming is
made of 2n nodes, say �t�1� and �t�0� for t ∈ T , repre-
senting, respectively, the unit being committed �xt = 1� or
not (xt = 0) at time instant t, plus a source s and a sink d.
There are arcs between nodes �t�1� and �t + 1�1� for all
t < n, representing the fact that the unit, which has already
passed the �+ periods of mandatory commitment, is kept
on in time instant t, labeled with the sum of the corre-
sponding zt and fixed cost (if any). Analogously, there are
arcs between nodes �t�0� and �t+ 1�0� for all t < n, rep-
resenting the fact that the unit, which has already passed

the �− periods of mandatory uncommitment, is kept off
in time instant t, labeled with zero cost. Then, there are
arcs for state switches, i.e., arcs from �t�1� to �t+ �−�0�,
with zero cost, indicating the shutdown of the unit at time
instant t+1 and its remaining uncommitted for the follow-
ing �− periods, and arcs �t�0� to �t+�+�1�, indicating the
start-up of the unit at time instant t + 1 and its remaining
committed for the following �+ periods, with the proper
start-up cost plus all the generating and fixed costs for the
interval. When t+ �+ (�−) is larger than n, the arcs go to
the sink d, and the cost is properly modified. Then, there
are arcs from the source s to the nodes compatible with
the initial state of the unit. That is, if the unit is initially
uncommitted since �0 time periods, there is an arc from s to
�max��−−�0�1��0�; if �− > �0, this indicates that the unit
has to remain uncommitted for the first �− − �0 time peri-
ods. Analogously, if the unit is initially committed since �0

time periods, there is an arc from s to �max��+−�0�1��1�;
if �0 < �+, this indicates that the unit has to remain com-
mitted for the first �+ − �0 time periods, with appropriate
cost. Finally, there are zero-cost arcs from �n�1� and �n�0�
to the sink d.

Clearly, every s−d path on this graph represents a fea-
sible solution to (1UC), and the cost of the path is equal
to the cost of the solution. Hence, (1UC) is reduced to a
shortest-path problem on an acyclic graph, which can be
solved in linear time on the number of arcs, i.e., in O�n�.

If time-dependent start-up costs have to be considered,
the graph has to be expanded somewhat, introducing nodes
�t�−k� indicating that the unit has remained uncommitted
for the last k consecutive time instants, and properly mod-
ifying the arcs. The maximum value of k that has to be
considered is the number of time instants after which the
unit has completely “cooled off,” i.e., a restart has the same
cost as a cold start; in general, this value may be as large
as n, although usually it is smaller. Thus, the size of the
graph grows from O�n� to O�n2� in the worst case, and the
complexity of the procedure increases accordingly.

This procedure, however, fails if constraints (3) and (4)
are present. In fact, the pt variables are no longer indepen-
dent once the xt variables are fixed because they are linked
together by the ramping constraints; hence, it is no longer
possible to determine the optimal generated power p∗

t ,
and the corresponding contribution zt of variable pt to
the objective function value, independently for each time
period.

3. The Dynamic Programming Procedure
To solve (1UC) with constraints (3) and (4), a different
dynamic programming procedure can be used. The state
space of the dynamic programming comprises, in principle,
all pairs �h� k� for h�k ∈ T and k� h, plus a source s and
a sink d. The meaning of each state �h� k� is: The unit
is turned on at time instant h (i.e., it was uncommitted at
time instant h− 1), and it will be turned off again at time



Frangioni and Gentile: Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints
770 Operations Research 54(4), pp. 767–775, © 2006 INFORMS

instant k (i.e., it will be uncommitted at time instant k+1).
Clearly, all states such that k < h+ �+ − 1 correspond to
infeasible operations and need not be constructed.

In the state-space graph G, there is an arc between node
�h� k� and node �r� q� if r � k+ �− + 1, i.e., it is feasible
to turn on the unit at time instant r given that it has been
turned off at time instant k. Each of these arcs is labeled
with the start-up cost of the unit at time instant r ; note that
time-dependent start-up costs are easily handled within this
framework. There are also arcs from the source s to all
nodes �h� k� compatible with the initial state of the unit.
That is, if the unit is uncommitted since �0 time periods,
there is an arc from s to each node �h� k� such that h+
�0 − 1� �−; these arcs are labeled with the corresponding
start-up cost. If instead the unit is committed since �0 time
periods, there is an arc from s to each node �1� k� such
that k+ �0 � �+, labeled with zero cost. Finally, there is a
zero-cost arc from each node to the sink d.

Clearly, every s−d path on this graph represents a fea-
sible solution to (1UC). By now, the cost of the path only
represents the contribution of start-up costs to the objec-
tive function. Obviously, fixed generating costs (if any) can
also be easily included: We can associate with each node
�h� k� the sum of all fixed costs of all periods from h to k
(extremes included) as cost of the node because the unit
will be committed in that interval.

Furthermore, for each node �h� k�, the optimal contri-
bution of the variable generating costs, which depend on
the pt variables, can be computed in polynomial time by
solving the following economic dispatch with ramping con-
straints problem for the interval �h� k�:

min
k∑

t=h

f t�pt� (8)

s.t.
lt � pt � ut� h� t � k� (9)

ph � l̄h� (10)

pt+1 � pt +�t
+� t = h� � � � � k− 1� (11)

pt � pt+1 +�t
−� t = h� � � � � k− 1� (12)

pk � ūk� (13)

We will denote problem (8)–(13) as �EDhk�. As all the rele-
vant binary variables are fixed, this is an optimization prob-
lem with convex objective function and linear constraints.
Hence, its optimal objective function value z∗hk = z�EDhk�
can be computed in polynomial time. By summing z∗hk to
the weight of each node �h� k�, the cost of each s−d path
on the graph is that of the feasible solution it represents.
Hence, once again (1UC) is reduced to a shortest-path prob-
lem on an acyclic graph with O�n2� nodes and O�n4� arcs.
Thus, the problem can be solved in O�n4� once all the data
has been computed.

However, the complexity of the visit can be reduced
by exploiting some structural properties of the state-space

graph G. Consider the set of nodes �h� k� in G partitioned
into levels Vk = ��h� k�� 1� h� k� for k� 1 (level V0 con-
tains only the starting node s). From the definition of G, it
immediately follows that:
• all nodes in Vk have the same set of adjacent nodes;

and
• the cost of the arc between �h� k� and �r� q� depends

only on k and r .
Therefore, it is possible to visit G in ascending order of

level k, avoiding having to explicitly explore the forward
star of all but one node for each level.

In more detail, the procedure works as follows. For each
k = 1� � � � � n, we keep a list Sk ⊆ Vk of the reached nodes
�h� k� ∈ Vk with the label dhk corresponding to the length
of the shortest path found so far. S0 contains s with label 0.
For k= 0�1� � � � � n, we repeat the following steps:
• evaluate z∗hk = �EDhk� for all nodes in Sk (for k = 0

the result is zero, if Sk =� skip to next value of k);
• find the node �h� k� in Sk with smallest value of z∗hk+

dhk; and
• visit all the adjacent nodes �r� q� of �h� k� computing

the new value drq as the sum of z∗hk+dhk and the cost of the
arc between �h� k� and �r� q�; if the node �r� q� is visited
for the first time it is inserted in Sq , otherwise its label is
updated if the new value is smaller than its old value.

Clearly, the chosen order is a valid one, and the visit
terminates, having determined a shortest s − d path. In
principle, all the O�n2� nodes of G are visited, and there-
fore the computation of all the corresponding z∗hk values is
required. However, for each k, we consider only the node
�h� k� associated with the shortest path from s, so that we
need only check its O��n− k�2� outgoing arcs. Therefore,
the complexity of the visit is reduced to O�n3� plus the
cost of solving the O�n2� convex problems �EDhk�, with
up to n variables.

Despite the relatively small size of the problem, this may
turn out to be a heavy task, especially considering that sev-
eral (1UC) problems are typically solved at each one of the
many iterations of Lagrangian approaches to more com-
plex (UC) problems (cf., e.g., Bacaud et al. 2001; Belloni
et al. 2003; Borghetti et al. 2001; Borghetti et al. 2003a, b;
Madrigal and Quintana 1999; Zhuang and Galiana 1988).
Hence, solving �EDhk� efficiently—or, more to the point,
solving all the O�n2� of them efficiently—is crucial. In the
next section, we develop an efficient dynamic programming
algorithm for the solution of (sequences of) �EDhk�.

The approach is inspired by that of Fan et al. (2002),
where a similar state-space graph is defined. However, that
paper was limited to (1UC) problems with piecewise-linear
cost functions, and strongly used the (piecewise) linearity
of the objective function to solve the economic dispatch
problems; the idea was to trace, using linear duality, how
the breakpoints and the slopes of the cost function change
when moving from �EDhk� to �EDh�k+1��. Moreover, in
that approach, ramp-up and ramp-down constraints were
not allowed to depend on the time instant, and initial and
final upper bounds l̄t and ūt are not handled.



Frangioni and Gentile: Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints
Operations Research 54(4), pp. 767–775, © 2006 INFORMS 771

4. Solving the Economic Dispatch
Problem

We will devise an algorithm for efficiently solving
sequences of �EDhk� problems for k = h� � � � � n. To solve
�EDh�k+1�� by exploiting the solution of �EDhk�, it is nec-
essary to introduce the parametric problem �EDhk�p̄��, i.e.,
the restriction to �EDhk� corresponding to fixing the last
variable pk to the fixed value p̄ (equivalently, imposing the
extra constraint pk = p̄). We then study the properties of the
optimal objective function value of �EDhk�p̄�� as a function
of the parameter p̄. To simplify matters somewhat, how-
ever, it is convenient to give a slightly different definition
of the function under examination:

zhk�p̄�=





min�f h�ph�� �9�� �10�� ph= p̄� if h=k�

min�
∑k

t=hf
t�pt�� �9�� �10�� �11�� �12�� pk= p̄�

otherwise�

That is, we allow p̄ to assume any value in the interval
�lk� uk�, even those values such that fixing pk = p̄ in formu-
lation (8)–(13) would result in an infeasible problem due to
the stricter upper bound imposed by constraint (13). This
is done because we will use zhk to compute zh�k+1�; in the
latter problem, constraint (13) corresponds to variable pk+1,
and therefore it is no longer binding for pk.

We first state some general properties of the function:

Proposition 1. The function zhk is convex. Moreover, it
has a piecewise nature, that is, it is finite valued only
in v+ 1 intervals �m0�m1�� �m1�m2�� � � � � �mv�mv+1�, with
lk �m0, mv+1 � uk, and v� 2�k−h�, in which

zhk�p̄�= zi�p̄� if p̄ ∈ �mi�mi+1� for i= 0�1� � � � � v�

where each function zi is the sum of at most k − h + 1
functions f t for t ∈ �h�h + 1� � � � � k� (and therefore it is
convex).

Proof. Convexity of zhk is a consequence of well-known
general properties that need not be discussed here beyond
noting that zhk is the value function (Hiriart-Urruty and
Lemaréchal 1993) of the convex program �EDhk�p̄k�� with
respect to the right-hand side p̄k of its constraint pk = p̄k.
Its piecewise nature, and the more specific properties, will
be demonstrated next by outlining the steps for efficiently
constructing the piecewise representation of zhk.

We will proceed by induction to prove that the
claimed properties are true; equivalently, we will (effi-
ciently) construct piecewise representations of the func-
tions zhh� zh�h+1�� � � � � zhk, in this order. At each step, we
will exploit the previously computed representation to con-
struct that of the next problem. During the process, for each
step k, we will also (efficiently) compute and exploit

p∗
hk = argmin�zhk�p�� p ∈ �lk� uk���

that is, the kth (last) component of the optimal solution of
�EDhk� where constraint (13) is relaxed.

At the basis of the induction process, the case k = h is
straightforward because

zhh�p̄�= f h�p̄�

for all p̄ ∈ �lh� l̄h�. Hence, there are v + 1 = 1 intervals
and v+ 1 = 1 functions with the required properties (i.e.,
0 = v� 2�h− h�= 0). In this case, p∗

hk is just p∗
h as com-

puted with formulae (6) and (7), but with the upper bound
equal to l̄h. When h= 1 and the unit was already commit-
ted, the set in which z11�p̄� is defined is slightly different:
Constraint (10) is not present, while p0 and the ramping
constraints must be considered, therefore p̄ ∈ �max�l1� p0−
�1

−��min�u1� p0 +�1
+��.

Now we assume the claim proved for some value of k—
and the corresponding set of intervals and functions to have
already been explicitly computed—and proceed in proving
that Proposition 1 holds for k+ 1, too. We will denote �mi

the extremes of the intervals for zh�k+1�, z̄
i the correspond-

ing functions, and v̄+ 1 their number.
Consider any fixed value p̄ ∈ �lk+1� uk+1�. Constraints

(11) and (12), written for pk+1 = p̄ and pk, result in

p̄−�k
+ � pk � p̄+�k

−�

As zhk is infinite valued for pk outside �m0�mv+1�,
one has to set �m0 = max�lk+1�m0 − �k

−� and �mv̄+1 =
min�uk+1�mv+1+�k

+�; in fact, zh�k+1� is clearly infinite val-
ued outside this interval, and finite valued inside it. Note
that if �m0 > �mv̄+1, infeasibility of the (1UC) problem has
been detected.

Now consider how the optimal solution to �EDh�k+1��p̄��
can be computed, exploiting the (already computed) piece-
wise representation of zhk. The problem can clearly be
rewritten as

zh�k+1��p̄�= f k+1�p̄�+min�zhk�pk�� m0 � pk �mv+1�

p̄−�k
+ � pk � p̄+�k

−��

In other words, the optimal solution to �EDh�k+1��p̄��—
at least, its kth component—is just the constrained mini-
mum of zhk in the intersection of the intervals �p̄ − �k

+�
p̄+�k

−� and �m0�mv+1�; we will denote that minimum as
p∗
k�p̄�. To trace the function zh�k+1��p̄�, it is only necessary

to understand how p∗
k�p̄� behaves as p̄ changes. This is,

however, very simple to picture.
Consider the constrained minimum p∗

hk of zhk over
�m0�mv+1� (or, equivalently, �lk� uk�), that we assume to
have already computed: Because zhk is convex, p∗

k�p̄� is
just its projection over the feasible interval

�p̄−�k
+� p̄+�k

−� (14)

(cf. (7)), that is,

p∗
k�p̄�=min�p̄+�k

−�max�p∗
hk� p̄−�k

+��� (15)



Frangioni and Gentile: Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints
772 Operations Research 54(4), pp. 767–775, © 2006 INFORMS

Figure 1. Evolution of p∗
k�p̄� as p̄ varies.

(b)

mv+1mvm2m1
...

=

pk

m0

phk
*pk(p)*

_

p
_ ∆k-∆k

+

pk+1

m0

_
mv+1

_
-

(a)

mv+1mvm2m1
...

pk

m0

phk
*pk(p)*

_

p
_ ∆k-∆k

+

pk+1

m0

_
mv+1

_
-

(c)

mv+1mvm2m1
...

pk

m0

phk
* pk(p)*

_

p
_ ∆k-∆k

+

pk+1

m0

_
mv+1

_
-

Note that we are assuming p∗
hk to be unique; however,

the following arguments can be easily extended to cases
where zhk has a (known) nonpointed interval as the set of
optimal solutions.

We can pictorially describe the process as follows, with
the help of Figure 1. Basically, as p̄ varies from �m0 to �mv̄+1,
three different cases can arise:

(a) When p̄ is on the leftmost part of the interval
��m0� �mv̄+1] where zh�k+1� is finite valued, e.g., p̄= �m0, p

∗
hk

is “on the right” of the feasible interval (14) (i.e., p∗
hk >

p̄+�k
−), p∗

k�p̄�= p̄+�k
−, that is, p∗

k�p̄� is a linear function
of p̄.

(b) As p̄ increases, eventually p∗
hk falls inside the fea-

sible interval (14): Then, p∗
k�p̄� is equal to p∗

hk, remaining
fixed until p̄ becomes too large.

(c) Finally, p̄ becomes larger than p∗
hk + �k

+, that is,
p∗
hk no longer falls inside of the feasible interval (14), this

time remaining “on the left;” then p∗
k�p̄� = p̄ − �k

+, so,
again, p∗

k�p̄� increases linearly as p̄ does.
Of course, all three cases (a), (b), and (c) need not neces-

sarily happen. For instance, p∗
hk may already belong to (14)

for p̄= �m0, or it may never leave it even if p̄= �mv̄+1, and
so on. However, the above three cases cover all that can
possibly happen.

It is now easy to see how, given the explicit descrip-
tion of zhk in terms of the v+ 1 subintervals of �m0�mv+1�
and the associated functions zi, we can efficiently construct
a piecewise representation of zh�k+1� with v̄ + 1 intervals
where v̄� v+ 2.
Step 0. Set p̄= �m0, v̄= 0, and let 0� q � v be the index

of the interval to which p∗
k�p̄� = p̄ + �k

− belongs (if it is

a break point, choose the interval on the right). Set ū =
min�uk+1�mv+1 +�k

+�.
Step 1. If case (a) is not verified, go to Step 2, otherwise,

set z̄v̄�p�= f k+1�p�+ zq�p+�k
−�. Compute the maximum

value of p̄ such that p∗
k�p̄� remains in the qth interval,

p∗
hk remains outside the feasible interval, and p̄ remains

feasible, that is, p̄=min�mq+1 −�k
−� p

∗
hk −�k

−� ū�. Set v̄=
v̄+ 1, �mv̄ = p̄, if p̄ 
= p∗

hk −�k
−, then q = q+ 1, and repeat

Step 1.
Step 2. If case (b) is not verified, go to Step 3, other-

wise set z̄v̄�p�= f k+1�p�+zq�p∗
hk�. Compute the maximum

value of p̄ such that p∗
hk remains inside the feasible interval

and p̄ remains feasible, that is, p̄ = min�p∗
hk +�k

+� ū�. Set
v̄= v̄+ 1, �mv̄ = p̄, and go to Step 3.
Step 3. If p̄ = ū, then terminate, otherwise set z̄v̄�p� =

f k+1�p�+ zq�p−�k
+�. Compute the maximum value of p̄

such that p∗
k�p̄�= p̄−�k

+ remains in the qth interval and
p̄ remains feasible, that is, p̄ = min�mq+1 + �k

+� ū�. Set
v̄= v̄+ 1, �mv̄ = p̄, q = q+ 1, and repeat Step 3.

Clearly, the total number of intervals for zh�k+1� is at most
equal to that for zhk plus the two ones corresponding to p∗

hk

“entering” and “leaving” the feasible set, that is, the former
interval q in Step 2 is replaced by at most three new inter-
vals. Note that the intervals with right extreme less than or
equal to p∗

hk − �k
−, if any, correspond to intervals for zhk

“shifted left” by �k
−, while the intervals with left extreme

greater than or equal to p∗
hk + �k

+, if any, correspond to
intervals for zhk “shifted right” by �k

+. The final number
of intervals may well be strictly less than v+ 3. Also, as
each zi is composed of the sum of at most k− h+ 1 orig-
inal functions f t , each z̄j is composed of the sum of at
most k−h+2= �k+1�−h+1 original functions f t . This
completes the proof of Proposition 1. �

During the above process, it is very easy to compute not
only p∗

h�k+1�, but also the optimal solution of

min�zh�k+1��p�� p ∈ �lk+1� ūk+1���

that is, the last component of the optimal solution of
�EDh�k+1��, where constraint (13) is imposed. Thus, the
above procedure can be used to solve �EDhk� problems.

The complexity of the procedure depends on the actual
form of the functions f t; if the functions are quadratic,
as is common in practical applications, each step of the
procedure is O�1�. Therefore, assuming that �EDh�k−1��
has already been solved (with the same method), the
complexity to solve �EDhk� is O�k − h�, and, conse-
quently, the complexity to solve all the problems �EDhh��
�EDh�h+1��� � � � � �EDhk� is O��k− h�2�. Hence, solving all
the O�n2� (ED) problems in the dynamic programming pro-
cedure of the previous paragraph has O�n3� complexity. All
in all, combining the special visit of the state-space graph G
with the above efficient procedure for solving �EDhk�, we
can solve (1UC), for the quadratic case, in O�n3�. The
same complexity bound holds for any other class of con-
vex functions closed under the sum operation and such



Frangioni and Gentile: Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints
Operations Research 54(4), pp. 767–775, © 2006 INFORMS 773

that an O�1� closed-form formula exists for computing the
unconstrained minima, such as, among others, polynomial
functions of degree at most five. The approach is, however,
likely to prove efficient even for other classes of functions
because univariate unconstrained optimization approaches
can be used to compute the required unconstrained minima.
This is likely to be much more efficient than the corre-
sponding multivariate constrained optimization approaches
required to solve �EDhk� as a whole.

Although the optimal objective function value of each
�EDhk� problem is all that is needed for solving (1UC),
the optimal solutions are then required to reconstruct a full
optimal solution—both in the commitment variables and in
the power variables—of the problem. More specifically, the
optimal solutions of all the �EDhk� problems corresponding
to all nodes in the optimal path are needed. However, those
solutions are easily found with a “backward pass,” using
the available information constructed in the “forward pass.”
In fact, consider a given problem �EDhk�. As discussed
above, the optimal value of the last variable pk, say p̄k, is
available when the problem is solved. Then, it is imme-
diate to compute the optimal value p̄k−1 of the previous
variable pk−1 (if k > h) by just computing the projection
of the available constrained minimum p∗

h�k−1� (of zh�k−1�,
over �lk−1� uk−1�) onto �p̄k−�k−1

+ � p̄k+�k−1
− �. Iterating this

procedure, the whole solution of �EDhk� can clearly be
found in O�k−h�. As only the optimal solution of the rel-
evant �EDhk� problems—those corresponding to nodes in
the optimal path—is required, and the total number of time
instants in which the unit is committed in those nodes is
at most n, the optimal solution to (1UC), in terms of the
power variables, can be found in O�n�.

It is easy to see that the dual optimal solution to each
�EDhk� can also be constructed, during the “backward
pass,” together with the optimal primal solution. In fact,
each p̄t for h � t � k is the constrained minimum of zht
subject to (9)–(13), which ultimately defines a nonempty
interval in the real line. Thus, if p̄t lies in the strict interior
of the interval, i.e., none of the constraints is active, then all
the corresponding optimal dual variables are zero. Assume
instead that exactly one constraint, say (11), is active in p̄t

and that zht is differentiable in p̄t (the argument can be
easily extended to the case of multiple active constraints).
The Karush-Kuhn-Tucker conditions require that

z′ht�p̄t�=)�

where ) is the optimal dual variable of (11). Similar for-
mulae can be easily derived for all other constraints. Hence,
optimal dual information is readily available at the only
cost of computing the derivative of zht . In the quadratic
case, where this is O�1�, the total cost of retrieving the dual
optimal solution to �EDhk� is O�k−h�. Clearly, the above
technique can be extended to a nondifferentiable zht; only
left and right derivatives are to be computed.

Somewhat surprisingly, it does not appear that the proce-
dure can be significantly streamlined or simplified if further

assumptions are made on the data. For instance, in many
practical applications one has lt = l, ut = u, �t

− = �t
+ =

� < u− l (for if � � u− l, then ramping constraints are
redundant), l̄t = ūt = l+� for all t ∈ T , and f t�p�= ap2 +
btp (that is, only the linear part of the quadratic objec-
tive function depends on the time instant). However, it does
not appear that the worst-case complexity results can be
improved even if all the above assumptions are made.

However, it is possible to improve the performances of
the method in practice by avoiding (building and) visiting
all the state-space graph G of the dynamic programming
procedure. This can be done by observing that every arc
and node in G represents a certain number of (consecutive)
time instants in T , and each s − d path in G ultimately
represents exactly n time instants. Thus, adding to the cost
of each arc and node a quantity proportional to the number
of time instants it covers, say M times the number of time
instants, where M is the same for all arcs and nodes, the
cost of every s − d path increases by Mn, and therefore
the optimal solution does not change. Actually, one may
even define a different value Mt for each t ∈ T and add it
to each node/arc that contains t. This allows us to make
the cost of every arc and node in G nonnegative by sim-
ply choosing M large enough. In typical applications, we
do not even need to compute the actual cost of every arc
and node for being able to compute a suitable value for M ;
in fact, only the costs of the nodes can be negative, hence,
computing z∗t = min�f t�p�� p ∈ �lt� ut�� (cf. (7)) and set-
ting M =−min�min�z∗t � t ∈ T ��0�, one ensures that all the
resulting node (and arc) costs are nonnegative.

Then, knowing the objective function value of one—
hopefully, good—solution, that is, the cost of one s − d
path, it may be possible to terminate early the visit of some
part of the graph, avoiding generating some of its nodes
and the corresponding arcs. In fact, having all arc and node
costs made nonnegative, the cost of any partial s− d path
cannot be smaller than the cost of any s−d path containing
it. Thus, if a partial path is found whose cost is larger than
that of the best-known solution, the visit of the graph from
its last node can be interrupted. In a Lagrangian setting, a
reasonable choice for the initial incumbent s−d path could
be the optimal solution of the (1UC) problem correspond-
ing to the same unit at the previous Lagrangian iteration.
Of course, as soon as a better s − d path is found during
the visit, the value of the incumbent can be updated.

5. Computational Results
To test the actual efficiency of the proposed approach,
we implemented it and compared it with the CPLEX 8.0
general-purpose mixed-integer quadratic programming
solver. We remark that our code could surely be improved,
for instance, by the preprocessing techniques described at
the end of the previous paragraph; however, even this some-
what preliminary implementation has already obtained sat-
isfactory results.



Frangioni and Gentile: Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints
774 Operations Research 54(4), pp. 767–775, © 2006 INFORMS

To test the approach, we considered three (UC) prob-
lems, each with the same 100 thermal units but with differ-
ent values of n: 24, 96, and 168. We solved the problems
with the Lagrangian approach of Borghetti et al. (2003a)
that in all three cases performed 23 iterations to reach the
optimal solution of the Lagrangian dual with respect to
demand constraints and spinning-reserve constraints. We
recorded the dual prices of these constraints at four par-
ticular iterations, which can be considered a representative
sample: 1, 12, 16, and 23, that is, the first one, the last
one, and two intermediate iterations. This gave us a set of
100×3×4= 1�200 (1UC) problems, each one correspond-
ing to a specific unit, a given time horizon, and one of the
iterations of the Lagrangian approach; we solved all these
instances both with our implementation of the proposed
approach and with CPLEX 8.0 on a Pentium IV 2.5 GHz
processor with 1.5 GB of RAM under Debian Linux 3.0.
Our code was compiled with g++ version 3.0.4 and opti-
mization option -O3; CPLEX was given a maximum time
limit of 300 seconds to solve each instance.

The results of this computational experience are sum-
marized in Table 1. Each row is associated with the 100
instances of a particular Lagrangian iteration and time
horizon. In the first two columns, we report the average
solution time and the relative standard deviation obtained
with the dynamic programming approach. In the follow-
ing two columns, we report the same information for the
CPLEX 8.0 MIQP solver; because the latter was not always
able to solve the instance within its time limit, in the last
two columns we also report the average gap at termination
(zero when not shown) and the number of instances that
could not be solved by CPLEX at optimality.

The dynamic programming algorithm solves all in-
stances, on average, much faster than CPLEX (almost three
orders of magnitude faster on the largest instances), with
a negligible standard deviation. For the largest instances,
CPLEX was not able to solve a significant fraction of
the instances to optimality within the time limit; the aver-
age gap of 1% on these instances means that for some

Table 1. Computational results of the DP algorithm vs.
the CPLEX MIQP solver.

Instance DP CPLEX

n Iter. Time Std. dev. Time Std. dev. Gap% Fail

24 1 0�001 3e−3 0�05 0�05 0
12 0�002 4e−3 0�08 0�05 0
16 0�002 4e−3 0�08 0�05 0
23 0�002 4e−3 0�08 0�05 0

96 1 0�04 2e−3 10�74 41�99 1
12 0�04 3e−3 17�57 50�93 0.06 2
16 0�04 2e−3 32�64 76�87 0.02 6
23 0�04 3e−3 32�21 76�12 0.03 6

168 1 0�20 6e−3 47�73 103�68 1.09 13
12 0�20 6e−3 117�94 142�61 1.20 35
16 0�20 5e−3 117�49 142�11 0.50 35
23 0�20 6e−3 117�46 141�87 1.23 35

unsolved instance the gap was greater than 8%. Also,
CPLEX shows a very high standard deviation, meaning that
while some instances were solved relatively fast (mainly
due to a good preprocessing phase), others took a very long
time. All in all, these results show that while implementing
a Lagrangian approach to ramp-constrained (UC) by solv-
ing the (1UC) subproblems with CPLEX is hardly feasible,
the proposed dynamic programming algorithm can solve
the subproblems efficiently enough.

6. Conclusions
We have proposed an efficient dynamic programming algo-
rithm for solving (1UC) with ramping constraints and gen-
eral convex cost functions. The algorithm requires solving
O�n2� convex programs, with up to n variables each, to
compute the data for the dynamic programming procedure;
the main contribution of this paper is precisely the proposal
of a new efficient algorithm for solving these problems.
The resulting algorithm is simple to implement and works
for a very general form of (1UC) with time-varying upper
and lower limits over the generated power, as well as time-
varying and different limits for ramp-up and ramp-down
constraints. Coupled with a special visit of the state-space
graph in the dynamic programming algorithm, this enables
one to solve (1UC) in O�n3� overall for suitable cost func-
tions, such as quadratic ones. Computational results showed
that even a preliminary implementation of the proposed
approach is indeed efficient, and it clearly outperforms the
MIQP solver of CPLEX 8.0 for solving (1UC).

It is worth noting that the proposed approach can be
extended to more general versions of (1UC) as well:
• Data dependent on the history of the unit. It is

easy to see that the approach immediately extends, with
almost no change, to problems where the data of �EDhk�—
(coefficient of the) cost functions, coefficients of the
ramping constraints, maximum and minimum production
levels—depend not only on t, but on h as well, that is, on
how long the unit has been committed. This may be useful,
e.g., to exploit better data fitting for the coefficients of the
cost functions to more accurately reflect the true operational
cost of the unit. Note that a “monolithic” integer nonlin-
ear programming model implementing this feature would
be significantly larger than (1)–(5), and therefore signifi-
cantly more difficult to solve by standard means, while our
approach handles this generalization without increasing the
computational cost.
• Different discretization intervals for commitment and

power variables. In some cases, one may want to
use different—typically, finer—discretization intervals for
power variables than for commitment decisions. This may
be due either to specific regulations of the operating context
or to the need to better reflect the operating characteristics
of the unit. It is easy to see that our approach can be easily
extended to handle this case as well; the total complexity
becomes O�m2n�, where m ��n� is the number of power
variables.



Frangioni and Gentile: Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints
Operations Research 54(4), pp. 767–775, © 2006 INFORMS 775

Acknowledgment
The authors are grateful to Fabrizio Lacalandra for useful
discussions on these topics.

References
Bacaud, L., C. Lemaréchal, A. Renaud, C. Sagastizábal. 2001. Bundle

methods in stochastic optimal power management: A disaggregated
approach using preconditioners. Comput. Optim. Appl. 20 227–244.

Bannister, C. H., R. J. Kaye. 1991. A rapid method for optimization of
linear systems with storage. Oper. Res. 39(2) 220–232.

Bechert, T. E., H. G. Kwatny. 1972. On the optimal dynamic dispatch
of real power. IEEE Trans. Power Apparatus Systems PAS-91(1)
889–898.

Belloni, A., A. Diniz, M. E. Maceira, C. Sagastizábal. 2003. Bundle
relaxation and primal recovery in unit commitment problems. The
Brazilian case. Ann. Oper. Res. 120 21–44.

Borghetti, A., A. Frangioni, F. Lacalandra, C. A. Nucci. 2003a. Lagrangian
heuristics based on disaggregated bundle methods for hydrothermal
unit commitment. IEEE Trans. Power Systems 18 313–323.

Borghetti, A., A. Frangioni, F. Lacalandra, C. A. Nucci, P. Pelacchi.

2003b. Using of a cost-based unit commitment algorithm to assist
bidding strategy decisions. A. Borghetti, C. A. Nucci, M. Paolone,
eds. Proc. IEEE 2003 Bologna Power Tech Conf. Paper 547, Bologna,
Italy.

Borghetti, A., A. Frangioni, F. Lacalandra, A. Lodi, S. Martello, C. A.
Nucci, A. Trebbi. 2001. Lagrangian relaxation and tabu search
approaches for the unit commitment problem. J. T. Saraiva, M. A.
Matos, eds. Proc. IEEE 2001 Porto Power Tech Conf. Paper PSO5-
397, Porto, Portugal.

Fan, W., X. Guan, Q. Zhai. 2002. A new method for unit commitment
with ramping constraints. Electric Power Systems Res. 62 215–224.

Hiriart-Urruty, J.-B., C. Lemaréchal. 1993. Convex Analysis and Min-
imization Algorithms II—Advanced Theory and Bundle Methods,
Vol. 306. Grundlehren Math. Wiss. Springer-Verlag, New York.

Madrigal, M., V. H. Quintana. 1999. An interior-point/cutting-plane
method to solve unit commitment problems. Proc. IEEE-PES Power
Indust. Comput. Appl. Conf. Santa Clara, CA, 179–185.

Travers, D. L., R. J. Kaye. 1998. Dynamic dispatch by constructive
dynamic programming. IEEE Trans. Power Systems 13 72–78.

Zhuang, F., F. D. Galiana. 1988. Towards a more rigorous and practi-
cal unit commitment by Lagrangian relaxation. IEEE Trans. Power
Systems 3 763–773.


