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Abstract 

 

The textbook Dantzig-Wolfe decomposition for the Capacitated Lot Sizing Problem (CLSP), 

as already proposed by Manne in 1958, has an important structural deficiency. Imposing 

integrality constraints on the variables in the full blown master will not necessarily give the 

optimal IP solution as only production plans which satisfy the Wagner-Whitin condition can 

be selected. It is well known that the optimal solution to a capacitated lot sizing problem will 

not necessarily have this Wagner-Whitin property. The columns of the traditional 

decomposition model include both the integer set up and continuous production quantity 

decisions. Choosing a specific set up schedule implies also taking the associated Wagner-

Whitin production quantities. We propose the correct Dantzig-Wolfe decomposition 

reformulation separating the set up and production decisions. This formulation gives the same 

lower bound as Manne’s reformulation and allows for branch-and-price. We use the 

Capacitated Lot Sizing Problem with Set Up Times to illustrate our approach. Computational 

experiments are presented on data sets available from the literature. Column generation is 

speeded up by a combination of simplex and subgradient optimization for finding the dual 

prices. The results show that branch-and-price is computationally tractable and competitive 

with other approaches. Finally, we briefly discuss how this new Dantzig-Wolfe reformulation 

can be generalized to other mixed integer programming problems, whereas in the literature, 

branch-and-price algorithms are almost exclusively developed for pure integer programming 

problems. 

                                                             
* Corresponding author 
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1. Problem description 

 

We consider an extension of the basic dynamic lot sizing problem. The planning horizon is 

split up in discrete time periods and the dema nd for several items over this planning horizon is 

given. All the items use the same production facility which has a limited capacity in each 

period. Before an item can be produced in any period, a set up must be performed and the set 

up time decreases the available capacity. The problem is to find a production plan for all the 

items that satisfies demand, does not exceed the capacity limit and minimizes the sum of the 

set up, production and inventory holding costs. This problem is known as the Capacitated Lot 

Sizing Problem with Set Up Times (CLST). Define the following sets, parameters and 

variables: 

Sets: 

 P : set of products, = {1,…,n},   
 T : set of time periods, = {1,…,m}.   

Parameters: 

 itd  : demand of product i in period t,  ∀ i ∈ P, ∀ t ∈ T 

 itksd  : sum of demand of product i, from period t until 

period k, 

 ∀ i ∈ P,  

∀ t,k ∈ T : k ≥ t 

 ithc  : holding cost for product i in period t,  ∀ i ∈ P, ∀ t ∈ T 

 itsc  : set up cost for product i in period t,  ∀ i ∈ P, ∀ t ∈ T 

 itvc  : variable production cost for product i in period t,  ∀ i ∈ P, ∀ t ∈ T 

 fci : unit cost for initial inventory for product i,  ∀ i ∈ P 

 itst  : set up time for product i in period t,  ∀ i ∈ P, ∀ t ∈ T 

 itvt  : variable production time for product i in period t,  ∀ i ∈ P, ∀ t ∈ T 

 tcap  : capacity in period t.  ∀ t ∈ T 

Decision variables: 

 itx  : production of product i in period t,  ∀ i ∈ P, ∀ t ∈ T 

 ity      = 1 if set up for product i in period t, = 0 otherwise,  ∀ i ∈ P, ∀ t ∈ T 

 sii : amount of initial inventory for item i.  ∀ i ∈ P 

 

The mathematical formulation of the CLST is then as follows: 
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 Min   ( )∑ ∑∑
∈ ∈ ∈

+++
Pi Pi Tt

ititititititii shcxvcyscsifc   (1) 

s.t. 1,1,1, iiii sdxsi +=+  ∀ i ∈ P (2.1) 

 itititti sdxs +=+−1,  ∀ i ∈ P, ∀ t ∈ T\{1} (2.2) 

 { } ititmitittit ysdvtstcapx ,/)(min −≤  ∀ i ∈ P, ∀ t ∈ T (3) 

 ( ) t
Pi

itititit capxvtyst ≤+∑
∈

 ∀ t ∈ T (4) 

 ity ∈ {0,1}, itx  ≥ 0, sit ≥ 0 ∀ i ∈ P, ∀ t ∈ T (5) 

 

The objective function (1) minimizes the total costs, consisting of the set up cost, the variable 

production cost, the inventory holding cost and initial inventory cost. Constraints (2.1) and 

(2.2) are the demand constraints: inventory carried over from the previous period and 

production in the current period can be used to satisfy current demand and build up inventory. 

To deal with infeasible problems, we allow initial inventory which is available in the first 

period at a large feasibility cost of fci (Vanderbeck 1998). There is no set up required for 

initial inventory. Constraint (3) forces the set up variable to one if any production takes place 

in that period. In order to make the formulation stronger, we limit the production for each 

item by both the remaining demand and the maximum possible production with the available 

capacity minus the set up time. Next, there is a constraint on the available capacity in each 

period (4). If we have a set up, the set up time is accounted for. Finally, we have the non-

negativity and integrality constraints (5). Let CLSTv  be the optimal objective value for problem 

(1)-(5) and CLSTv  its LP relaxation.  

 

This paper is structured as follows. In Section 2, we give a brief literature review on 

capacitated lot sizing. Section 3 discusses in more detail the traditional Dantzig-Wolfe 

decomposition for CLST and the structural deficiency of Manne’s formulation. In Section 4, 

we present the correct Dantzig-Wolfe decomposition reformulation. The different building 

blocks of the algorithm are described in Section 5. Section 6 presents computational results on 

data sets available from the literature. Before giving some concluding remarks, we also show 

in Section 7 how our approach can be extended to other Mixed Integer Programming (MIP) 

problems.  
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2. Literature review 

 

The research into dynamic lot sizing models started in 1958 with the seminal paper of Wagner 

and Whitin. They consider the single item uncapacitated lot sizing model and prove that there 

exists an optimal solution that satisfies the following property: 01 =− tt xs , Tt ∈∀ . This 

means that in that optimal solution there will never be simultaneous production and inventory 

carry-over from the previous period. This is called the Wagner-Whitin (WW) property. It also 

implies that one produces to satisfy the demand for an integer number of consecutive periods. 

Based on these special properties of the optimal solution, Wagner and Whitin formulate a 

dynamic programming recursion for solving this problem.  

The regular CLST formulation, given by the model (1)-(5), usually has a large integrality gap. 

Much research is devoted to finding better formulations with a smaller gap. The model can be 

extended with valid inequalities for the single item uncapacitated lot sizing problem (Barany 

et al. 1984), which are generally known as the (l, S) inequalities. Adding these cutting planes 

leads to a formulation which describes the convex hull for the single item uncapacitated lot 

sizing polytope. Pochet (1988), Leung, Magnanti and Vachani (1989) and Miller, Nemhauser 

and Savelsbergh (2000) derive several other valid inequalities for the capacitated problem. 

Belvaux and Wolsey (2000, 2001) report on an efficient branch-and-cut system that includes 

preprocessing and inequalities for a variety of lot sizing problems. Eppen and Martin (1987) 

propose another approach for tightening the formulation by using variable redefinition. For 

the single item uncapacitated problem, this is actually the network formulation of the dynamic 

programming recursion proposed by Wagner and Whitin (1958) and it gives an integer 

solution. This network formulation can also be used to tighten more complex problems such 

as the CLST. Manne (1958) proposes an innovative linear programming formulation for the 

capacitated multi-item lot sizing problem. He explicitly models all the possible schedules with 

different set up sequences. For a problem with a planning horizon of m periods, there are 2m 

different set up schedules for each product, because for each period we either have a set up or 

not. Manne only considers ‘dominant’ schedules, which have the property that for each period 

demand will be met by production in that period if there is a set up or otherwise from the 

nearest preceding period with a set up. Dzielinski and Gomory (1965) explicitly describe the 

link between Manne’s formulation and the Wagner-Whitin problem. They propose to use 

column generation to deal with the difficulty of the huge amount of variables in Manne’s 

formulation. Indeed, the model that Manne proposes is the full blown master for the Dantzig-

Wolfe decomposition (Dantzig and Wolfe 1960) with the capacity constraints as the linking 

constraints and the subproblem is the Wagner-Whitin single item uncapacitated lot size 
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problem. Hence, Manne’s dominant schedules are in fact all the Wagner-Whitin schedules. 

Kleindorfer and Newson (1975) discuss the Lagrange relaxation for the capacitated lot sizing 

problem. The capacity constraint is now dualized and the problem decomposes into 

subproblems per item. This lower bound will theoretically be the same as the bound obtained 

by Dantzig-Wolfe decomposition (Geoffrion 1974). Thizy and Van Wassenhove (1985) 

implement a Lagrange based heuristic for the capacitated problem. Dual prices are updated by 

the subgradient method. Trigeiro et al. (1989) also use Lagrange relaxation to solve the 

capacitated lot sizing problem with set up times. Upper bounds are found by smoothing the 

capacity profile for the solution of the subproblems at each iteration.  

 

3. Dantzig-Wolfe Decomposition for Capacitated Lot Sizing 

 

In this section we explain Manne’s approach for the Dantzig-Wolfe decomposition of the 

capacitated lot sizing problem and its deficiency in more detail. Manne explicitly models all 

the possible set up schedules. Let Qi be the set of all the set up schedules for product i. A set 

up schedule j for each product i is defined by the set up parameter ijtss  in each period t: 

 ijtss   = 1 if there is a set up for product i in set up schedule j in period t, 0 otherwise. 

Observe that m
iQ 2= . With each set up schedule corresponds exactly one Wagner-Whitin 

(WW) production plan in which production is zero if there is no set up or equals cumulative 

demand from the current period up to, but not including, the next set up period otherwise. The 

Wagner-Whitin production plan for item i according to set up schedule j is defined by the 

production quantities in each period t (6) and the initial inventory (7) and is further referred to 

as the Wagner-Whitin production plan j. Let ijtps  be the WW production in period t for 

product i in setup schedule j: 

 ijtps   = 0 if ijtss  = 0, = 1, −kitsd  otherwise, with ( )11:min
1

+===
+≤<

mlorsslk ijlmlt
. (6) 

We also define 0ijps  as the initial inventory used for product i in setup schedule j: 

 0ijps   = 0 if 1ijss  = 1, = 1,1 −kisd  otherwise, with ( )11:min
11

+===
+≤<

mlorsslk ijlml
. (7) 

Next we define the parameters for the total costs and capacity requirement for each schedule: 

 cij : total cost of initial inventory, set up, production and inventory holding for 

production of product i according to set up schedule j, 

 

   = ∑ ∑
∈ =















−+++

Tt
ti

t

l
ijlitijtitijtitiji sdpshcpsvcssscpsfc 1

0
0 . (8) 
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 rijt : capacity required for set up and variable production time to produce 

product i according to set up schedule j in period t, 

= ijtitijtit psvtssst + . 

 

 

(9) 

The decision variable is: 

 zij : fraction of schedule j for product i that will be produced. 

 

Manne’s formulation is then as follows: 

 Min ∑ ∑
∈ ∈Pi Qj

ijij
i

zc    (10) 

s.t. ∑
∈

=
iQj

ijz 1  pi ∀ i ∈ P (11) 

 tij
Pi Qj

ijt capzr
i

≤∑ ∑
∈ ∈

 µt ∀ t ∈ T (12) 

 0≥ijz   ∀ i ∈ P, ∀ j ∈ Qi (13) 

 

The objective function (10) minimizes the total cost. The first constraint is the convexity 

constraint (11): choose a convex combination of schedules for each item. The combination of 

the chosen schedules must satisfy the capacity constraint (12). pi and µt are the dual prices on 

the convexity and capacity constraint. We define Mv  as the optimal value of the LP relaxation 

of formulation (10)-(13) and Mv  is the optimal objective value when we impose that the 

columns ijz  must be binary. This formulation has a large number of variables, but this can be 

resolved by column generation. Column generation starts with a feasible restricted master 

with only a few columns and we add new columns iteratively as they are needed. At each 

iteration of the column generation procedure, we solve a separate single item uncapacitated 

subproblem for each item i, where the objective function is to minimize the reduced cost:  

 Min  ( )∑ ∑
∈ ∈

++−+++
Tt Tt

tititititiititititititii xvtystshcxvcyscsifc µπ )(  (14) 

This subproblem can be solved efficiently with the Wagner-Whitin (1958) dynamic 

programming algorithm. All the columns that are generated as such will have the Wagner-

Whitin property. If we find columns with a strictly negative reduced cost, we add them to the 

master. Next we solve the master again as a linear program and try to find new columns that 

price out with the new dual prices in a new iteration. If we cannot find any new column with a 

negative reduced cost, we have solved the master’s LP relaxation with an objective value of 

Mv . Suppose ),,,( ****
iititit sisyx  is an optimal solution to the subproblem for item i with a 

negative reduced cost. The new column j for item i then has the following parameters:  
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 ssijt = *
ity ;   psijt = *

itx ;   rijt= **
itititit xvtyst +  ∀ t ∈ T (15) 

 psij0 = *
isi   (16) 

 cij = ( )∑
∈

+++
Tt

ititititititii shcxvcyscsifc ****   (17) 

 

Manne proves that the LP solution of the formulation (10)-(13) will naturally have most 

variables at zero or one if the number of items is much larger than the number of time periods 

in the planning horizon. The lower bound Mv  resulting from this decomposition will be equal 

to or better than the LP relaxation of the original formulation CLSTv . This decomposition 

formulation, however, has a major structural drawback. Although it can be used to calculate 

the lower bound Mv , it is not an equivalent formulation for the IP problem as formulated by 

(1)-(5). If integrality constraints are imposed on the ijz  variables, i.e. imposing that exactly 

one schedule must be selected for each item through the convexity constraints (11), we obtain 

Mv , which is normally not equal to CLSTv , the optimal IP value of the original problem. If the 

capacity constraint is binding in some periods, the optimal solution will not consist of pure 

Wagner-Whitin schedules. This was already observed by Florian and Klein (1971) for the 

single item capacitated lot sizing problem. Lambrecht and Vanderveken (1979) and Bitran 

and Matsuo (1986) also notice that the set of feasible solutions for the decomposition model 

with integrality constraints is only a subset of the feasible solutions for the original integer 

problem and hence CLSTM vv ≥ . The main reason for this problem is that there is no separation 

of the integer set up and the continuous production quantity decision. A solution for the 

subproblem, i.e. a new column, consists of both a set up and production quantity decision. 

The set up decision automatically determines the production decision according to the 

Wagner-Whitin property (6 and 7). 

 

4. The New Dantzig-Wolfe Reformulation 

 

In this section we present the new Dantzig-Wolfe extreme point reformulation for CLST. We 

overcome the problem of Manne’s formulation by separating the integer set up and the 

continuous production quantity decisions. We first discuss some key insights into the single 

item uncapacitated problem and use these to set up the new formulation. For each set up 

schedule iQj ∈ , we define a subset of set up schedules as follows: only if there is a set up in 
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schedule j in a specific period, a set up is possible, but not required, for that period in a 

schedule in the subset. Define: 

 Qij : subset of set up schedule j for item i, iij QQ ⊆ , = { }TtssssQj ijttiji ∈∀≤∈ ,:' '  

If there are s set ups in schedule j, the subset consists of 2s schedules. A demand feasible 

production plan for a specific set up schedule j satisfies two properties: 1) production in 

period t is only possible if there is a set up in period t and 2) the production quantities satisfy 

the demand constraints (2.1) and (2.2). The optimal solution to the capacitated lot sizing 

problem will not necessarily have the WW property. How can we generate these production 

plans, which are optimal for the capacitated problem but do not have the WW property? The 

answer is given by Proposition 1: 

 

Proposition 1: 

Every demand feasible production plan for a specific set up schedule j for item i can be 

written as a convex combination of the Wagner-Whitin production plans according to the set 

up schedules in Qij. 

Proof: 

The Wagner-Whitin schedules constitute the extreme points of the convex hull of the single 

item uncapacitated subproblem (Wagner and Whitin 1958). Every point in the convex hull 

can be written as a convex combination of the extreme points. Hence, every demand feasible 

production plan is a convex combination of the extreme points of the single item 

uncapacitated lot size polytope. Q.E.D. 

 

Based on the insight that we can separate the integer set up decision and the continuous 

production quantity decision, we formulate the new decomposition model mathematically. 

We define separate decision variables and cost parameters for the integer set up decision and 

for the continuous production decision: 

Variables:    

 ijzs    = 1 if for product i setup schedule j is selected, 0 otherwise,  

 ijkzp  : fraction used of WW production plan k which is in the subset of 

setup schedule j for product i. 

 

Parameters:    

 ijcs  : set up cost of schedule j for product i, = ∑
∈Tt

ijtit sssc , 

 

(18) 
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 ijcp  : cost of initial inventory, production and holding for the WW 

production schedule j for product i, 

= ∑ ∑
∈ =















−++

Tt
ti

t

l
ijlitijtitiji sdpshcpsvcpsfc 1

0
0 . 

 

 
(19) 

The new extreme point formulation is then as follows: 

 Min ∑ ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈ ∈

+
Pi Qj Pi Qj Qk

ijkikijij
i i ij

zpcpzscs   (20) 

s.t. ∑
∈

=
iQj

ijzs 1  ∀ i ∈ P (21) 

 ∑
∈

=
ijQk

ijkij zpzs  ∀ i ∈ P, ∀ j ∈ Qi (22) 

 ∑ ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈ ∈

≤+
Pi Qj Pi Qj Qk

tijkiktitijijtit
i i ij

capzppsvtzsssst  ∀ t ∈ T (23) 

 { }1,0∈ijzs  ∀ i ∈ P, ∀ j ∈ Qi (24) 

 0≥ijkzp  ∀ i ∈ P, ∀ j ∈ Qi, ∀ k ∈ Qi j (25) 

 

The objective function (20) minimizes the total cost, which is split up in the set up cost and 

the other costs. The convexity constraint (21) imposes that we must select exactly one set up 

schedule for each item. Constraint (22) defines the relationship between the set up and the 

production variables: the production plan must be a convex combination of the production 

plans in the subset of the chosen set up schedule. Finally, constraint (23) is the capacity 

constraint, taking into account both the set up times and variable production times. We put 

binary constraints on the variables for the set up schedule (24), but not on the convex 

multipliers for the production plans (25). This is the correct Dantzig-Wolfe reformulation of 

CLST. The optimal value of this formulation, DWCLv , will be equal to the optimal value of the 

original formulation, CLSTv . When we compare this with the regular formulation (1)-(5), we 

observe the following relationship between the original set up and production variables and 

the new variables:  

 ∑
∈

=
iQj

ijijtit zsssy ;   ∑ ∑
∈ ∈

=
i ijQj Qk

ijkiktit zppsx  ∀ i ∈ P, ∀ t ∈ T (26) 

 

In the LP relaxation we can substitute ijzs  out by constraint (22) and we obtain the following 

formulation with only the production variables ijkzp : 
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 Min  ( )∑ ∑ ∑
∈ ∈ ∈

+
Pi Qj Qk

ijkikij
i ij

zpcpcs   (27) 

s.t. ∑ ∑
∈ ∈

=
i ijQj Qk

ijkzp 1 ∀ i ∈ P (28) 

 ( )∑ ∑ ∑
∈ ∈ ∈

≤+
Pi Qj Qk

tijkiktitijtit
i ij

capzppsvtssst  ∀ t ∈ T (29) 

 0≥ijkzp  ∀ i ∈ P, ∀ j ∈ Qi, ∀ k ∈ Qi j (30) 

After the substitution only the convexity (28) and capacity (29) constraints are left. The 

optimal LP solution is DWCLv . This formulation is equivalent to Manne’s LP formulation (10)-

(13) and they both have the same optimal solution.  

 

Proposition 2: DWCLv  = Mv . 

Proof: 

For a specific item i and schedule k, the variables kjzpijk ≠:  are dominated by ikkzp  in the 

LP relaxation (27)-(30). The variable ikkzp  has an equal or lower total cost (31) (equality 

holds only if the set up cost is zero), and an equal or lower capacity utilization (32) compared 

to any other kjzpijk ≠: , while they have the same production quantities (33).  

kjandQkQjQkPi ijii ≠∈∈∀∈∀∈∀ :,, : 

 ikkzp   ijkzp    

 ikik cpcs +  ≤  ikij cpcs +   (31) 

 iktitiktit psvtssst +  ≤  iktitijtit psvtssst +  Tt ∈∀  (32) 

 iktps  =  iktps  }0{∪∈∀ Tt  (33) 

The reason is that, according to the definition of Qij, schedule ijQk ∈  has strictly fewer set 

ups than schedule j if kj ≠ . Hence ijik cscs ≤  according to definition (18), which proves (31), 

and ijtikt ssss ≤  , Tt ∈∀ , which proves (32). There exists hence an optimal solution with 

0=ijkzp , kjandQkQjQkPi ijii ≠∈∈∀∈∀∈∀ :,, . The only variables left are the ikkzp  

variables, which are equivalent to the ikz  variables in formulation (10)-(13). Formulation 

(27)-(30) is now equivalent to formulation (10)-(13) and hence they have the same optimal 

objective value. Q.E.D. 
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This decomposition model (27)-(30) contains n convexity constraints and m capacity 

constraints. The problem has a huge number of ijkzp  variables:  

 n* =














∑
=

m

t

t

t
m

0

2* n*3m  (34) 

with: 

 








t
m

 : the number of set up schedules with t set ups out of m, 
 

 t2  : the number of set up schedules in the subset of a schedule with exactly t set 

ups. 

The equality in (34) follows from the binomial formula i
n

i

inn ba
i
n

ba ∑
=

−








=+

0

)( . The 

existence of such a huge number of variables makes the problem well suited for column 

generation. When we embed such a column generation algorithm within a branch-and-bound 

enumeration tree, we obtain a branch-and-price algorithm.  

 

5. The Branch-and-Price Algorithm 

 

In this section we describe the most important building blocks of the algorithm. We start with 

an initial heuristic that gives a good upper bound. Next we do column generation to find the 

LP optimum, which is a lower bound for the IP optimum. We speed up the column generation 

process by using a combination of simplex and subgradient optimization. At each iteration we 

also try to construct feasible upper bounds. Finally, we combine column generation and 

branch-and-bound in a branch-and-price algorithm. 

 

5.1. Initial Heuristic 

The first step in the algorithm is finding a heuristic upper bound. We use the efficient 

algorithm proposed by Trigeiro, Thomas and McClain (1989) (TTM). This heuristic consists 

of Lagrange relaxation and a smoothing heuristic to create feasible production plans. We 

improve the upper bounds found by TTM in two ways. First, we fix all the set up variables yit 

to one or zero according to the solution proposed by the TTM heuristic. If there is any 

production in period t for item i we fix the set up variable yit to one, otherwise to zero. Next 

we solve the remaining problem to find the optimal production quantities. It is well known 

that the resulting problem after fixing the set up variables, is a network problem (e.g. Thizy 

and Van Wassenhove 1985), for which efficient algorithms exist. This procedure is referred to 
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as the network heuristic (NH). A second improvement is a lot elimination heuristic (LEH). 

Starting again from the set up solution given by TTM, we try to improve this solution by 

checking if we can eliminate a set up. We first check the items with the highest set up cost, 

starting with the set up at the end of the time horizon and moving to the beginning. If the set 

up variable equals one, we fix it to zero and solve a new network problem to find the optimal 

production quantities. If the upper bound improves, we keep that set up variable at zero, 

otherwise we set it back to one. 

 

5.2. Column generation at the root node 

Next we start the column generation procedure (CG). We first add some initial columns to the 

master. For each item we add the Wagner-Whitin solution. Columns where all the demand is 

met from initial inventory are also added. The subproblem is solved using an efficient 

implementation of the WW algorithm. At each iteration, we also calculate a lower bound on 

DWCLv , the optimal LP solution (Martin 1999). Let r
DWCLv  be the objective value of the 

restricted master at pricing step r and let r
irc  be the reduced costs of the columns that we 

generate at iteration r. If no column was added for an item, the reduced cost equals zero. A 

lower bound on the master can be calculated as follows: 

 LB = ∑
∈

+
Pi

r
i

r
DWCL rcv  (35) 

If the current restricted master solution, r
DWCLv , is equal to the lower bound (35), then no 

column prices out favorably and we stop the column generation process.  

 

5.3. Hybrid simplex / subgradient optimization 

In the Lagrange problem, the complicating constraint is dualized into the objective function 

(36) with a specific set of positive multipliers u = {u1, u2, …, um}. In this case the 

complicating constraint is the capacity constraint (4).  
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(36) 

The Lagrange problem decomposes into single item uncapacitated lot sizing problems. For 

each item i we have the following objective function: 

 ( ) ∑∑
∈∈

+++++=
Tt

titititit
Tt

ititititititiiiLRCL uxvtystshcxvcyscsifcMinuv )()(,  (37) 
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At every iteration in the Lagrange procedure, we solve the subproblems, given an estimate of 

the dual prices u. The Lagrange relaxation always gives a lower bound, )(uvLRCL , on the 

optimal IP value CLSTv . In subsequent iterations, the dual prices u are updated and we solve a 

new Lagrange problem with these updated dual prices. The most widely used method for 

updating the dual prices is the subgradient optimization method (Fisher 1985). The Lagrange 

Dual problem (38) consist of finding the maximum lower bound, LDCLv . 

 )(max
0

uvv LRCLuLDCL ≥
=   (38) 

Lagrange Relaxation and Dantzig-Wolfe decomposition are alternative methods of calculating 

tighter LP values. It is well known that the optimal values of the relaxed Dantzig-Wolfe 

reformulation, DWCLv , and the Lagrange Dual, LDCLv , are the same. One formulation is the 

dual of the other (Geoffrion 1974, Fisher 1981). Also, the optimal Lagrange multipliers u = 

{u1, u2, …, um} for the complicating constraint in the objective function correspond to the 

optimal dual variables },...,,{ 21 mµµµµ =  for the linking constraints in the master. Moreover, 

the subproblem that we need to solve in the column generation procedure is the same as the 

one we have to solve for the Lagrange relaxation, except for a constant in the objective 

function. In the column generation procedure, the dual prices are provided by the master. In 

the Lagrange Relaxation, the dual prices are updated by subgradient optimization. Each 

method has advantages and disadvantages. For a minimization problem, Lagrange relaxation 

provides a lower bound on the optimal IP value CLSTv , but no primal solution is available. In 

addition, there are problems with the convergence of the subgradient algorithm. Usually the 

procedure is stopped after a fixed number of iterations, without guarantee of having found the 

optimal value LDCLv  (Fisher 1985). However, the subgradient optimization for updating the 

dual prices is computationally inexpensive and easy to implement. Column generation, on the 

other hand, provides a primal solution at every iteration. The disadvantages are: 1) the 

simplex optimization of the master, which is computationally expensive, 2) the problem of 

degeneracy, i.e. columns with a negative reduced cost are added without changing the value 

of the restricted master and 3) a tailing-off effect, i.e. slow convergence in the end towards the 

optimum is generally observed (Barnhart et al.1998, Vanderbeck and Wolsey 1996). As both 

methods have the same subproblem, we can use both to generate columns. Degraeve and 

Peeters (2003) discuss a hybrid simplex/subgradient algorithm for solving the LP relaxation 

of the Cutting Stock Problem. This algorithm combines the strengths of both methods. We 

construct a similar procedure for the capacitated lot sizing problem.  
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An overview of the basic steps of the hybrid simplex/subgradient optimization is given in 

Figure 1. The procedure iterates between column generation and Lagrange relaxation and 

exchanges information. We initialize the master with artificial columns and/or a feasible 

heuristic solution (Step 0). Next we solve the master a first time (r = 1) with the simplex 

method, giving r
DWCLv , the objective value of the current master at step r, and the dual prices 

r
tµ  on the capacity constraints and r

iπ  on the convexity constraints (Step 1). Next we switch 

to Lagrange relaxation. We set the Lagrange multipliers equal to the current dual prices and 

initialize l, the counter for the Lagrange steps (Step 2). We solve the Lagrange problem, 

resulting in the lower bound )( l
tLRCL uv  (Step 3). We update the lower bound if we improve it 

(Step 4). At this first step in the Lagrange iteration, we have actually solved the subproblems 

with the optimal simplex dual prices r
tµ . We check for each item i whether we find a strictly 

negative reduced cost, i.e. if 0)( 0
, <− r

itiLRCL uv π  (Step 5). If none of the columns price out, 

we have found the optimal solution (Step 10). Otherwise, we add the columns with a negative 

reduced cost to the master. Instead of continuing with the simplex reoptimization of the 

master, we do some iterations of the Lagrange relaxation procedure on the original problem. 

We increase the counter for the Lagrange iterations (Step 7) and check if it exceeds some 

preset maximum value (Step 8). At each step l we compute new Lagrange multipliers (Step 9) 

and solve a Lagrange problem with updated dual prices (Step 3). This provides us with new 

columns, as the Lagrange subproblem is identical to the column generation subproblem. We 

check if these columns are not yet in the master (Step 6). After a fixed number of Lagrange 

steps (Step 8), or if no new columns are added to the master (Step 6), we return to the column 

generation procedure. We reoptimize the master with the simplex algorithm with all the new 

columns added in the previous Lagrange iterations (Step 1). This gives new simplex dual 

prices and we continue with solving the Lagrange relaxation using these new dual prices. The 

procedure stops if no column prices out at the first step of a Lagrange relaxation loop (Step 5). 

 

The advantages of this combined procedure are: 

- The Lagrange lower bound can also be used as stopping criterion for the early 

termination of column generation. 

- Between two simplex steps, new columns are generated by Lagrange relaxation. This 

possibly reduces degeneracy of the master. 

- We do some steps of subgradient optimization instead of the computationally much 

more expensive simplex method. 
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5.4. Calculating upper bounds 

Calculating feasible upper bounds during column generation is done in two ways. In a first 

heuristic, we start from the optimal LP solution of the current master. We round the fractional 

set up variables according to some cut off point. Values below the cut off point are rounded to 

zero, values above to one. All the set up variables are now fixed to either one or zero. Next a 

network problem is solved to determine the optimal production quantities for this fixed setting 

of the set up variables. The total cost of this feasible production plan provides an upper bound 

on the optimal total cost. This heuristic is repeated for different values of cut off points. This 

procedure is called the Repeated Rounding Heuristic (RRH). We typically observe a U shape 

Figure 1. The hybrid simplex/subgradient optimization procedure  
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in the solution values when increasing the cut off point. Therefore, we cut this heuristic short 

when the solution starts to increase. This heuristic is done at every pricing step of the column 

generation iteration starting from the new primal solution given by the current master. 

Performing the heuristic at every pricing step of the column generation process yields better 

results than when we do it just once at termination. A second heuristic is based on the 

smoothing heuristic proposed by Trigeiro et al. (1989). We take the solutions given by the 

subproblems and do the smoothing subroutine.  

 

5.5.  Branch-and-Price 

We branch on the original set up variables yit and not directly on individual columns in the 

master. By branching on the original set up variables, we actually branch on groups of 

columns and this normally leads to a more balanced enumeration tree (Vanderbeck 2000, 

Barnhart et al. 1998). The columns consisting of initial inventory only are used to maintain 

feasibility at each node in the branch-and-price algorithm.  The branch-and-price algorithm 

consists of three major subroutines: branch, twin and backtrack (Figure 2). Our search 

strategy is depth first where branching is done on the current node. The algorithmic 

implementation of our formulation (20)-(25) is actually done starting from formulation (10)-

(13) and the branching direction is enforced by adapting or deleting columns.  

 

Figure  2.  Building blocks of the branch-and-price algorithm 

 
 

When we branch on the set up variable yit at level l in the tree, we store the following 

information: 
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1) il refers to the item of the set up variable on which we branch at level l, 

2) tl refers to the time period of the set up variable on which we branch at level l, 

3) the branch direction: up (U) to one, i.e. yit = 1, or down (D) to zero, i.e. yit = 0, 

4) l
il

F , the set of columns for item il which are set to zero at level l, 

5) l
il

C , the set of columns for item il which are modified at level l. 

 

Let '
iQ  be the set of set up schedules generated for item i so far. Further we define the 

available columns for item il at level l as the columns which are not set to zero at a previous 

level. The set of available columns is then defined as follows: 









∈=
−

=
U

1

1

' \:
l

k

k
ii

l
i kll

FQjjA  

When we branch, we can fix the set up variable either to one or zero. If we branch up at level 

l, then we impose a set up for item il in period tl. We enforce this set up in the master (10)-

(13) by adjusting all the available columns for item il which do not have a set up in period tl. 

The set of columns for item il which will be modified at this level is defined as follows:  
l
il

C  = { 0: =∈
lll jti

l
i ssAj } 

We modify these columns so that they have a set up item il in period tl: 

 
ll jtiss  = 1 l

i l
Cj ∈∀   

Due to this extra set up, these columns obtain an extra set up cost in their objective coefficient 

(8) and an extra set up time in the capacity requireme nt for period tl (9): 

 jil
c  

lll tiji scc +←  l
i l

Cj ∈∀   

 
ll jtir  

llll tijti str +←  l
i l

Cj ∈∀   

In that way we ensure that the set up cost and set up time is properly accounted for in all the 

available columns according to the branching decision, even if there is no production in 

period tl. By adapting the columns with no set up, we avoid deleting a column at the current 

step which we may have to generate again later on. In the subproblem for item il, we enforce a 

set up by fixing 
ll tiy  to one, 1=

ll tiy , but this does not necessarily imply that there must be 

some positive production.  

 

If we branch down, i.e. fix a set up variable 
ll tiy  to zero, then all the available columns for 

item il which have a set up in period tl must be fixed at zero. The set of variables that must be 

fixed to zero is defined as follows:  
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l
i l

F  = { 1: =∈
lll jti

l
i ssAj } 

This is done by imposing a simple upper bound of zero on these columns in the master: 

 0≤ji l
z   l

i l
Fj ∈∀   

In the subproblem, we set a high cost for that 
ll tiy  variable, so that a set up is always avoided.  

 

Define r
lDWCLv ,  as the value of the master at the current level l at pricing step r. After we have 

imposed the branching adjustments at level l, we solve the master, giving 0
,lDWCLv . If the 

current objective value, 0
,lDWCLv , is larger than or equal to UBv , our best upper bound, then we 

do column generation in order to see if the objective value can drop under this upper bound 

by generating more columns. We stop column generation at a node if no column prices out. 

We don’t have to investigate a node further if during column generation the lower bound on 

the master (35) exceeds the current upper bound UBv . At each step of the column generation 

process, we also do the network and smoothing heuristic to obtain better upper bounds.  

 

In the twin procedure at level l we have to undo the settings from the branching constraints 

and impose the specific adaptations for the twin for each column. There are two cases. For the 

twin up, we first have to undo the adaptations which we made in the branch down. We 

remove the simple upper bound of zero on all the columns which were adapted in the branch 

down at level l. These columns are in the set l
i l

F . 

 1≤ji l
z  ←   0≤ji l

z  l
i l

Fj ∈∀   

We also set the set up cost back to the original set up cost in the subproblem. After having 

done this, we empty the set l
i l

F . Next we impose the specific twin up constraint, where we fix 

the 
ll tiy  variable to one. This is done in the same way as for the branch up.  

For the twin down, we must first undo all the changes we have made in the branch up. For all 

the columns in which we imposed a set up for item il in period tl and hence added a set up cost 

and set up time in the branch up, we must now undo this as follows:  

 
ll jtiss  = 0 l

i l
Cj ∈∀   

This also implies that we have to subtract the set up cost again in the column cost (8) and 

subtract the set up time in the capacity usage (9):  

 jil
c  

lll tiji scc −←  l
i l

Cj ∈∀   



 19

 
ll jtir  

llll tijti str −←  l
i l

Cj ∈∀   

In the subproblem, 
ll tiy  is no longer fixed at one, but it is binary again. The set l

il
C  is emptied. 

In the second step we impose the specific twin down constraint, where we fix the 
ll tiy  

variable to zero. The modifications are the same as for the branch down case. 

 

In the backtrack procedure, we must undo the adjustments that we have made in the columns 

at that level. There are again two cases that we have to consider. In the first case, we proceed 

from a twin down, so for all the columns in l
i l

F  a simple upper bound of zero was imposed at 

that level. We must undo this and set the set up cost back to the original set up cost in the 

subproblem. After that we empty the set l
i l

F . In the second case, we proceed from a twin up, 

where we imposed an extra set up for all the columns in the set l
il

C . We undo this in the same 

way as in the twin down case and reset the set up variable back to binary in the subproblem. 

In the final step we empty the set l
il

C . At the end of the backtrack procedure, we go back to 

the previous level: 1−← ll . 

 

6. Computational Results 

 

We report here on the set of 540 test instances used by Trigeiro et al. (1989). All the instances 

have a time horizon of 20 periods and the total set consists of three subsets with 180 problems 

for each case of 10, 20 or 30 products. We report the averages for each class of 10, 20 and 30 

products. Our algorithms were coded in Fortran using the WATCOM Fortran compiler 10.6 

and linked with the LINDO library version 5.3 (Schrage 1995). The tests were done on a 

Pentium III 750 MHz computer under the Windows 2000 operating system. CPU times are 

given in seconds and the gap is calculated as the percentage difference between the best upper 

bound and lower bound compared to the best lower bound. 

 

6.1. Initial Heuristics 

The first heuristic (TTM) is the Trigeiro et al. (1989) algorithm, using their original code. We 

experiment with different Lagrange iteration limits of 150, 200, 250, 300, 350, 400 and 450. 

In Table 1 we report on the average gap between the Lagrange lower bound and best feasible 

solution and the CPU time. No improvements are made after 350 iterations. For further 

experiments, we choose to do 300 iterations, as not much improvement is made beyond this 

point. In their paper, Trigeiro et al. performed 150 steps of the Lagrange iteration. We will 
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include this result TTM-150 in some of the next tables, so that we can see the consecutive 

improvements that we have made. 

 

Table 1.  Lagrange Heuristic (Trigeiro et al. 1989) 
 10 Prod. 20 Prod. 30 Prod. 

 Gap  Time  Gap  Time  Gap  Time  

TTM–150 3.81 0.24 1.57 0.43 1.09 0.57 

TTM–200 3.76 0.31 1.54 0.55 1.06 0.75 

TTM–250 3.72 0.37 1.53 0.66 1.06 0.90 

TTM–300 3.71 0.43 1.50 0.79 1.05 1.07 

TTM–350 3.68 0.49 1.49 0.90 1.05 1.23 

TTM–400 3.68 0.56 1.49 1.03 1.05 1.40 

TTM–450 3.68 0.62 1.49 1.14 1.05 1.56 

 

Table 2 summarizes the gap and CPU time for the improvement heuristics performed after 

TTM. We use the network solver subroutine available in the LINDO library. The network 

heuristic (NH) reduces the gap further with a relatively small extra amount of CPU time. 

After the network heuristic, we do the lot elimination heuristic (LEH). We tested three 

versions. In the first version we do a full search over all the set up variables that are set at one 

(LEH1). In the second (LEH2) and third (LEH3) version, we do only a limited search over the 

first 0.3*n*m and 0.2*n*m set up variables that are at one. We always start with the items 

with the highest set up cost. The lot elimination heuristic reduces the gap further, but also 

requires a significant amount of CPU time. In the remainder of the tests, we use the second 

implementation (LEH2) because it gives a good trade-off between solution quality and CPU 

time. 

 

Table 2.  Improvement Heuristics 

 10 Prod. 20 Prod. 30 Prod. 

 Gap Time  Gap  Time  Gap Time  

TTM–150 3.81 0.24 1.57 0.43 1.09 0.57 

NH 3.58 0.48 1.44 0.84 1.02 1.13 

LEH1  3.27 0.59 1.34 1.24 0.94 1.98 

LEH2 3.33 0.55 1.35 1.11 0.95 1.72 

LEH3 3.44 0.53 1.40 1.04 0.99 1.56 
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6.2. Solving the root node 

Up to now the gap is still calculated relative to the Lagrange lower bound from TTM which is 

equal to or lower than the optimal column generation based lower bound DWCLv . In the next 

step we do the column generation at the root node to obtain this exact lower bound DWCLv . 

The results are presented in Table 3. We calculate the gap for the LEH2 upper bound using 

the optimal lower bound obtained by column generation DWCLv . The results are in the row 

LEH2-CG. The improvement from TTM-300 to LEH2 is solely due to the better upper bound. 

The improvement from LEH2 to LEH2-CG on the other hand is solely due to the improved 

lower bound. During column generation, we also perform some primal heuristics. We 

implement the repeated rounding heuristic (RRH) and the smoothing heuristic (SH), as 

discussed in Section 5. We speed up the column generation process by using the hybrid 

simplex/subgradient optimization procedure. Within 2 simplex iterations, we do a maximum 

of 25 Lagrange iterations. We report the results of the best upper bound after column 

generation with the hybrid method in CGH. We also report on the algorithm where we do 

column generation at the root node with only simplex optimization (CGS). The CGS has a 

substantially larger CPU time and a slightly better gap compared to CGH. With CGH, we do 

less pricing iterations and hence perform the heuristics (RNH and SH) fewer times. Therefore, 

we have less chance of finding a good upper bound. The slightly better quality of the upper 

bound for CGS accounts for the better gap. 

 

Table 3.  Column generation at the root node 

 10 Prod. 20 Prod. 30 Prod. 

 Gap  Time  Gap  Time  Gap Time  

TTM–150 3.81 0.24 1.57 0.43 1.09 0.57 

LEH2-CG 3.13 0.91 1.22 1.83 0.78 2.90 

CGH 3.10 0.91 1.20 1.83 0.72 2.90 

CGS 3.07 1.43 1.20 2.71 0.71 4.09 

 

In Table 4 we compare our hybrid and regular implementation of the column generation 

procedure with the Eppen and Martin network reformulation (1987). In CGHLP we report the 

time difference between CGH and LEH2. This is actually the time to compute the exact LP 

lower bound with the hybrid method and do some heuristics. We compare this with the time it 

takes to find the LP relaxation for the variable redefinition reformulation as proposed by 

Eppen and Martin (EMLP), which is substantially higher. The network reformulation gives 

the same lower bound, but does not provide an upper bound. We see that the network 
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formulation takes approximately 3, 7 and 10 times as long for the 10, 20 and 30 products. 

CGSLP is the time for the column generation with simplex, where we subtracted the time to 

calculate the LEH2 heuristic from the total time for CGS. With the hybrid optimization, it 

takes less than half the time to do the column generation. Further, we compare the number of 

columns and pricing iterations. We see that the hybrid method substantially decreases the 

number of pricing iterations and adds more columns.  

 

Table 4.  Hybrid versus simplex optimization and variable redefinition 
 10 Prod. 20 Prod. 30 Prod. 

EMLP Time 1.23 5.08 12.52 

CGHLP Time 0.36 0.72 1.18 

CGSLP Time 0.88 1.60 2.37 

CGH Cols 236.60 411.60 553.90 

CGS Cols 124.40 196.20 263.30 

CGH Iterations 2.31 2.32 2.24 

CGS Iterations 14.24 11.47 10.38 

 

6.3. Branch-and-Price 

In our branch-and-price algorithm, we have tested 5 different branching strategies, depending 

on the selection of the branching variable: 

 B&P 1 : First fractional variable, order the items by input list, 

 B&P 2 : First fractional variable, order the items by decreasing set up cost, 

 B&P 3 : Fractional variable closest to 0.5, 

 B&P 4 : Fractional variable closest to 0 or 1, 

 B&P 5 : Fractional variable closest to 1. 

In a heuristic implementation of the branch-and-price algorithm, we fix some of the yit 

variables depending on their value in the primal solution at the end of CG at the root node. 

We fix all the variables below 0.05 to 0 and above 0.95 to 1. Next, we solve the smaller 

problem with the remaining variables optimally using the branch-and-price algorithm. We call 

this reduced branch-and-price (RB&P). For all the implementations reported here, we have set 

a limit of 2000 nodes. The summary results for the different branching strategies are given in 

Table 5.  
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Table 5.  Results for the branch-and-price algorithm 

 10 Prod. 20 Prod. 30 Prod. 

 Gap  Time  Gap Time  Gap Time  

TTM–150 3.81 0.24 1.57 0.43 1.09 0.57 

B&P 1 2.83 45.80 1.14 65.32 0.69 99.00 

B&P 2 2.75 51.49 1.08 75.85 0.65 111.71 

B&P 3 2.99 52.68 1.17 74.30 0.71 110.76 

B&P 4 2.74 32.86 1.09 51.63 0.65 83.36 

B&P 5 2.58 48.10 1.05 70.87 0.62 116.05 

RB&P 1 2.79 20.96 1.11 26.44 0.65 31.79 

RB&P 2 2.69 21.72 1.07 25.50 0.63 37.32 

RB&P 3 2.84 22.46 1.10 28.72 0.64 38.11 

RB&P 4 2.76 18.96 1.08 23.84 0.67 31.35 

RB&P 5 2.74 24.53 1.06 27.87 0.64 35.50 

 

On average, we obtain the smallest gaps for the fifth branching strategy, where we branch on 

the fractional variable closest to one. B&P4, where we branch on the variable closest to zero 

or one, takes on average the least CPU time, and is almost always better than B&P1, B&P2 

and B&P3. The reduced branch-and-price is roughly two to three times faster compared to the 

optimal branch-and-price implementation. The gap can be both better or worse. RB&P2 

seems to give the best gaps on average.  

 

The data set from Trigeiro et al. that we are using here is constructed according to a full 

factorial experiment with 5 factors: capacity utilization (low, medium or high), number of 

items (10, 20 or 30), time between orders (TBO) (low, medium or high), demand variability 

(medium or high) and set up time (low or medium). In Table 6 we compare the effect on the 

gap of the different factors, as calculated with three different procedures: the TTM heuristic, 

with the hybrid column generation at the root node and at the end of the branch-and-price 

algorithm. We give separate results for the problems with 10, 20 and 30 items. In Table 7 we 

give the results for the CPU time.  
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Table 6.   Gap results for the full factorial experiment 
  10 Prod. 20 Prod. 30 Prod. 
  TTM Root B&P5 TTM Root B&P5 TTM Root B&P5 
Capacity  Low 0.79 0.76 0.58 0.17 0.17 0.13 0.13 0.08 0.05 
Usage Med. 2.23 2.01 1.48 0.65 0.62 0.49 0.29 0.29 0.24 
 High 8.10 6.53 5.66 3.68 2.80 2.52 2.72 1.81 1.55 
TBO Low 1.91 1.59 1.51 0.94 0.67 0.64 0.75 0.42 0.39 
 Med. 2.54 2.28 1.77 0.99 0.89 0.76 0.62 0.50 0.43 
 High 6.67 5.45 4.45 2.58 2.02 1.74 1.77 1.25 1.03 
Demand  Med. 3.99 3.34 2.61 1.57 1.23 1.07 1.17 0.80 0.66 
Var High 3.42 2.87 2.54 1.44 1.16 1.03 0.92 0.65 0.57 
Set up  Low 3.85 3.18 2.60 1.73 1.29 1.12 1.30 0.85 0.68 
Time High 3.56 3.03 2.55 1.27 1.10 0.98 0.80 0.60 0.55 

Average  3.71 3.10 2.58 1.50 1.20 1.05 1.05 0.72 0.62 
 
Table 7.   CPU times for the full factorial experiment 
  10 Prod. 20 Prod. 30 Prod. 
  TTM Root B&P5 TTM Root B&P5 TTM Root B&P5 
Capacity  Low 0.37 0.62 24.16 0.65 1.19 38.34 0.76 1.66 58.13 
Usage Med. 0.44 0.83 44.44 0.79 1.63 73.92 1.09 2.37 118.56 
 High 0.49 1.29 75.70 0.92 2.68 100.35 1.36 4.68 171.46 
TBO Low 0.34 0.85 36.82 0.58 1.68 46.96 0.71 2.46 83.31 
 Med. 0.45 0.86 50.44 0.83 1.83 77.13 1.14 2.84 118.77 
 High 0.51 1.04 57.04 0.94 1.98 88.53 1.37 3.41 146.08 
Demand  Med. 0.41 0.90 47.90 0.76 1.80 70.29 1.04 2.88 117.76 
Var High 0.45 0.93 48.30 0.81 1.86 71.46 1.11 2.93 114.34 
Set up  Low 0.43 0.94 50.03 0.80 1.92 73.64 1.08 3.02 120.05 
Time High 0.43 0.89 46.17 0.77 1.74 68.11 1.06 2.79 112.05 

Average  0.43 0.91 48.10 0.79 1.83 70.87 1.07 2.90 116.05 
 
The results here confirm the conclusions of Trigeiro et al. Demand variability and set up time 

have a minor effect on the gap and CPU times. The relative differences in gap between 

medium and high demand variability and low and high set up times seem to decrease for the 

solutions at the root node and at the end of the branch-and-price algorithm compared to the 

TTM heuristic. The capacity usage has a clear effect: if the capacity is more constrained the 

problems become more difficult to solve with respect to both the gap and CPU time. Problems 

with a higher TBO are also more difficult to solve. The effect on the gap of a low and medium 

TBO seems only minor, whereas the effect of a high TBO is more apparent. 

 

In Table 8, we compare the average gap, percentage of problems that could be solved to 

optimality and the CPU time for the TTM heuristic and the B&P5 heuristic with 2000, 4000, 

6000 and 8000 nodes. The tests reported here are performed on a 550 MHz computer. 

Allowing more nodes decreases the gap and increases the number of problems that could be 

solved to optimality, although the marginal change is decreasing. Approximately one third of 

the problems can be solved to optimality within 8000 nodes. 
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Table 8.  Overview gap and percentage optimal solutions 

 10 Prod. 20 Prod. 30 Prod. 

 Gap  % Opt. Time Gap  % Opt. Time Gap  % Opt. Time 

TTM - 300 3.71 8.33 0.68 1.50 9.44 1.50 1.05 14.44 2.43 

B&P 5 – 2000 2.58 23.33 86.44 1.05 29.44 141.73 0.62 32.78 231.30 

B&P 5 – 4000 2.52 27.22 175.64 1.03 30.00 263.14 0.61 35.56 407.97 

B&P 5 – 6000 2.48 28.89 285.83 1.02 30.00 369.20 0.60 36.11 484.81 

B&P 5 – 8000 2.46 28.89 376.99 1.02 30.56 507.48 0.60 36.11 599.52 

 

6.4. Comparison with other approaches 

Other approaches have been proposed in the literature to solve the CLST. Belvaux and 

Wolsey (2000) describe a branch-and-cut algorithm that is specifically developed to solve lot 

sizing problems. They report on six instances taken from a test set used by Trigeiro et al. 

(1989). Belvaux and Wolsey used unit variable production times itvt  = 1 for all their data sets, 

whereas for one of them, specifically G30, the original data set has fractional variable 

production times. In Table 9 we report the results for the test problems. G30b refers to the 

G30 data set with unit variable production times. Belvaux and Wolsey use a 200MHz 

computer under Windows NT and set a time limit of 900 seconds. We have a limit of 2000 

nodes. Altough we cannot make any robust conclusion based on such a limited comparison, 

the branch-and-cut system seems to perform better on the smaller problems and our algorithm 

seems to perform slightly better on the larger problems. For the smaller problems their 

branch-and-cut algorithm gives a better lower bound at the root node, whereas for the larger 

problems both procedure yield the same lower bound. The results indicate that these CLST 

problems are indeed hard to solve.  

 

Table 9.  Comparison branch-and-cut and branch-and-price 

 Branch-and-Cut 

Belvaux and Wolsey (2000) 

Branch-and-Price  

(B&P5) 

 LP IP Time Gap LP IP Time Gap 

Tr6-15 (G30) - - - - 37,103.1 37,809 33.3 1.90 

Tr6-15(G30b) 37,213.3 37,721(1) 38.4 1.09 37,201.2 38,162 29.0 2.51 

Tr6-30 (G62) 60,979.4 61,806 900 1.36 60,946.2 62,644 359 2.79 

Tr12-15 (G53) 73,858.2 74,799 900 1.27 73,847.9 75,035 66 1.61 

Tr12-30 (G69) 130,177 132,650 900 1.90 130,177.2 131,234 215 0.81 

Tr24-15 (G57) 136,366 136,872 900 0.37 136,365.7 136,860 44 0.36 

Tr24-30 (G72) 287,753 288,424 900 0.23 287,753.4 288,383 306 0.22 
(1) : indicates a proven optimal solution 
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The network formulation (Eppen and Martin 1987) was solved with the MIP solver of 

LINDO. For 10 and 20 products, we set a pivot limit of ten million, for the 30 products we set 

a pivot limit of 5 million. From Table 10 we observe that the algorithm is slower and does not 

give the same good quality solutions as our procedure.  

 

Table 10.  Variable redefinition results 
 10 Prod. 20 Prod. 30 Prod. 

 Gap  Time  Gap  Time  Gap  Time  

TTM–150 3.81 0.24 1.57 0.43 1.09 0.57 

EMIP 4.49 2,949 2.94 6,077 2.35 4,904 

 

Gapolakrishnan et al. (2001) develop a customized tabu search algorithm for the CLST. They 

test their procedure on the data set from Trigeiro et al. with the 540 problem instances and 

report an average gap of 4.01% and an average CPU time of 97 seconds on a Pentium, 550 

MHz processor. With our algorithm, we obtain an average gap of 1.67% and an average CPU 

time of 1.9 seconds at the root node (CGH). For our branch-and-price implementation 

(B&P5), we have an average gap of 1.42% and average time of 79 seconds. Our algorithm is 

clearly superior to the tabu search. 

 

6.5. Some more results 

We have also tested our procedure on other data sets from Trigeiro et al. (1989). These are 70 

instances from the F-set and 71 from the G-set. All the instances in the F set are 6 products 

and 15 period problems. The G-set consists of 46 instances with 6 products and 15 periods 

and 5 instances for each of the cases with 12 products and 15 periods, 24 products and 15 

periods, 6 products and 30 periods, 12 products and 30 periods and 24 products and 30 

periods. In Table 11, we give the gap and time for the initial heuristic, which includes TTM, 

NH and LEH2, for the column generation at the root node and for the branch-and-price 

algorithm using B&P5 with a 2000 node limit. We compare this to the Eppen and Martin 

formulation solved by LINDO with a maximum of 5 million pivots. Our branch-and-price 

algorithm performs better than the network reformulation. 
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Table 11.  Results for F and G data set from Trigeiro et al. (1989) 

 Degraeve and Jans Eppen and 

Martin 

 Init. Heur. CG Root B&P B&B 

 Gap  Time  Gap  Time  Gap  Time  Gap  Time  

F 3.69 0.17 3.55 0.28 2.87 28.45 8.99 721.63 

G6-15 4.96 0.18 4.73 0.33 3.82 29.30 5.82 770.96 

G12-15 1.11 0.34 1.07 0.56 1.00 45.21 3.69 1,994.30 

G24-15 0.36 0.75 0.36 1.10 0.33 62.11 0.45 3,754.06 

G6-30 3.22 0.68 3.22 1.06 2.86 317.13 2.16 2,871.99 

G12-30 1.15 1.49 1.15 2.12 0.87 240.32 0.86 5,690.63 

G24-30 0.24 3.43 0.24 4.66 0.20 383.49 1.00 11,596.28 

 

Finally, we have tested our algorithm on the Capacitated Lot Sizing Problem without Set Up 

Times. We do our computational experiments on the data sets from Cattrysse et al. (1990). 

They have three data sets with 40 instances each. The first one has instances with 50 items 

and 8 periods, the second has 20 items and 20 periods and the third has 8 items and 50 

periods. In Table 12, we report the average gap and time for the initial heuristic, the column 

generation at the root node and the branch-and-price algorithm using B&P5 with a 2000 node 

limit. We compare this with the results from Cattrysse et al. for their best implementation, 

which is called Heur4 in their paper. The gaps are calculated compared to our lower bounds. 

We also give the average time that they reported using an Olivetti M24 with 8086/8087 

processor and 8 MHz. Our gaps are substantially better, compared to the solutions obtained by 

Cattrysse et al. For the first set, the column generation and branch-and-price algorithm are 

very effective in closing the gap further compared to the Initial Heuristic. For the second and 

third set, there is less improvement, but the gaps are still much better compared to the 

Cattrysse et al. algorithm.  

 

Table 12.  Results for data sets from Cattrysse et al. (1990) 

 Degraeve and Jans Cattrysse et al. 

 Init. Heur. CG Root B&P Best Heur. 

 Gap  Time  Gap  Time  Gap  Time  Gap  Time  

Set 1 8.06 0.63 0.81 1.37 0.70 44.36 1.34 373 

Set 2 1.80 1.09 1.16 1.56 0.99 114.67 3.02 1,352 

Set 3 6.66 3.46 5.46 5.71 4.85 1,527.86 9.28 3,854 
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7. Branch-and-Price for Mixed Integer Programming Problems 

 

A key difference with most other problems that are solved by branch-and-price such as the 

cutting stock problem (Degraeve and Schrage 1999, Degraeve and Peeters 2003, Vance 1998, 

Vanderbeck 1999), the generalized assignment problem (Savelsbergh 1997), the integer 

multi-commodity flow problem (Barnhart et al. 2000), vehicle routing (Desrochers et al. 

1992, Desrosiers et al. 1995), crew scheduling (Vance et al. 1997), graph coloring (Mehrotra 

and Trick 1996) and machine scheduling problems (Van Den Akker et al. 1999, Chen and 

Powell 1999), is that lot sizing is a Mixed Integer Programming (MIP) problem. The other 

problems are all pure Integer Programming (IP) problems. Also the papers describing the 

general branch-and-price methodology (Barnhart et al. 1996, Vanderbeck and Wolsey 1996 

and Vanderbeck 2000) discuss solving pure IP problems. To the best of our knowledge, the 

only other application of branch-and-price for a MIP is found in Vanderbeck (1998). Consider 

a general MIP problem with binary variables: 

 DyCxMin +     

s.t. eByAx ≤+     

 fHyGx ≤+     

 0≥x     

 }1,0{∈y     

 

Assume that the first set of constraints are the subproblem constraints and the second set are 

the linking or complicating constraints. We will briefly discuss the possible combinations of 

continuous and binary variables in the problem and the effect on the Dantzig-Wolfe 

decomposition. The different cases that we discuss refer to the associated cells in Table 13.  
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Table 13.  Classification of MIP’s for decomposition 

 
The first case does not contain any binary variables and its decomposition is an example of 

generalized linear programming. In the second and fourth case the continuous and binary 

variables can be separated into two independent problems. The fifth case is the pure IP case. 

Examples include the cutting stock, generalized assignment and scheduling problems. For 

these problems, putting integrality restrictions on the full blown master will give the optimal 

solution. Next we have a group of models, cases 3, 6, and 9, where the subproblems contain 

both continuous and binary variables. In the sixth case, the linking constraints do not contain 

any continuous variables. An example of this structure is the ‘Continuous Set Up Lot Sizing 

Problem’, as studied by Vanderbeck (1998), where the single mode constraints, imposing that 

at most one item can be produced in each period, are the linking constraints. The production 

can vary from zero up to capacity and is therefore a continuous variable. Putting integrality 

constraints on the variables in the full blown master will give the optimal solution, as the 

continuous variables only appear in the subproblem. In the third and sixth case, the 

continuous variables appear in the linking constraints. Examples of these models are the 

Capacitated Lot Sizing Problem (case 3) and the Capacitated Lot Sizing Problem with Set Up 

Times (case 9) with the capacity constraints as the linking constraints. Here we have the 

difficulty that an extreme point of the subproblem is not necessarily an extreme point of the 

overall problem. This is also the deficiency in Manne’s formulation. In case seven and eight, 

we do not have the difficulty of having both continuous and binary variables in the 

subproblem. Case eight is discussed in Johnson (1989). 

 

Our findings for the Capacitated Lot Sizing Problem can be generalized to other MIPs as well. 

As an example we consider the Capacitated Facility Location Problem (CFL). Several 

Lagrange relaxations for this problem have been studied by Cornuejols et al. (1991) and 

 Ax     ≤  e          By ≤  e Ax + By ≤  e 
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Beasly (1993), among others. In CFL one has to decide on which plants to open and at the 

same time plan how to supply the demand for several customers from these plants. The 

objective function minimizes the total cost for opening the plants and for supplying the 

demand. For each customer, the total demand must be satisfied. Demand can only be supplied 

from an open plant, which has a limited capacity. The set up variables are binary and the 

supply variables are continuous. One possible decomposition is to leave the capacity 

constraints in the master. These constraints contain both binary and continuous variables. The 

subproblem is then the Simple Plant Location Problem. Once it is decided which plants to 

open, the solution is simple: satisfy demand for each customer from the cheapest open plant. 

We have a similar difficulty here as with the capacitated lot sizing problem. The extreme 

points generated by the subproblem will have each customer’s demand supplied from exactly 

one plant. In the optimal solution for the capacitated case, however, it is possible that demand 

for some customers will be supplied from more than one open plant. By putting integrality 

constraints on the columns generated by the subproblem, we can never attain such a split 

supply. In this case, we will need to apply a similar approach as with the CLST, namely a 

separation of the location decision, which is integer, and the supply decision, which might be 

fractional. Another example of a MIP with a similar structure is the capacitated fixed charge 

network problem. 

 

8. Conclusion and future research 

 

In this paper we present the correct Dantzig-Wolfe reformulation for the capacitated lot sizing 

problem. In this new formulation, the integer set up and the continuous production quantity 

decisions are separated. We discuss how this formulation can be used in a branch-and-price 

algorithm. A combination of simplex optimization and subgradient updating is used to speed 

up the column generation process. Computational results show that branch-and-price provides 

good results for the capacitated lot sizing problem with set up times. A limited comparison 

suggests it is competitive with a state-of-the-art branch-and-cut system. Further it is superior 

to other optimal procedures such as the network reformulation approach and to heuristics such 

as a customized tabu-search algorithm. We further generalize our approach to other MIP’s. 

 

The new reformulation and results presented in this paper lead to several new areas for 

research. We present four interesting research questions: 

1. In Section 7, we discussed briefly the generalizability of our branch-and-price approach 

for Mixed Integer Programming Problems. In future research, we want to further 
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investigate this idea for MIP’s such as location problems, fixed charge network problems 

and capacitated multi-commodity network flow problems. 

2. An alternative decomposition for the lot sizing problem can start from the network 

reformulation for the problem (Eppen and Martin 1987). The network flow constraints are 

kept in the master and the subproblem contains the set up and capacity constraints. In this 

way, the problem decomposes into subproblems per time period. The lower bound of this 

formulation is at least as good as the one obtained by the decomposition used in this 

paper. Preliminary results are discussed in Jans (2002). 

3. Many extensions of the lot sizing problem have been proposed such as the backlog case 

and multi-level production. It would be interesting to adapt our approach for these 

extensions. For the backlog case, the algorithm of Zangwill (1966) can be used for the 

subproblem. For multi-level lot sizing, reformulations with echelon stock have been used 

(Afentakis et al. 1984) to decompose the problem per level.  

4. Can the combination of simplex optimization and subgradient updating, as suggested by 

Degraeve and Peeters (2003) be used to speed up the column generation process for other 

formulations such as the generalized assignment problem or the simple plant location 

problem?  
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