

ERIM REP

ERIM Repor
Publication
Number of p
Email addres
Address

Bibliogra
A New Dantzig-Wolfe Reformulation And Branch-And-
Price Algorithm For The Capacitated Lot Sizing Problem

With Set Up Times

Zeger Degraeve, Raf Jans

ORT SERIES RESEARCH IN MANAGEMENT
t Series reference number ERS-2003-010-LIS

February 2003
ages 37
s corresponding author rjans@fbk.eur.nl

Erasmus Research Institute of Management (ERIM)
Rotterdam School of Management / Faculteit Bedrijfskunde
Rotterdam School of Economics / Faculteit Economische
Wetenschappen
Erasmus Universiteit Rotterdam
P.O. Box 1738
3000 DR Rotterdam, The Netherlands
Phone: +31 10 408 1182
Fax: +31 10 408 9640
Email: info@erim.eur.nl
Internet: www.erim.eur.nl

phic data and classifications of all the ERIM reports are also available on the ERIM website:
www.erim.eur.nl

http://www.erim.eur.nl/

ERASMUS RESEARCH INSTITUTE OF MANAGEMENT

REPORT SERIES
RESEARCH IN MANAGEMENT

BIBLIOGRAPHIC DATA AND CLASSIFICATIONS
Abstract The textbook Dantzig-Wolfe decomposition for the Capacitated Lot Sizing Problem (CLSP),

as already proposed by Manne in 1958, has an important structural deficiency. Imposing
integrality constraints on the variables in the full blown master will not necessarily give the
optimal IP solution as only production plans which satisfy the Wagner-Whitin condition can
be selected. It is well known that the optimal solution to a capacitated lot sizing problem will
not necessarily have this Wagner-Whitin property. The columns of the traditional
decomposition model include both the integer set up and continuous production quantity
decisions. Choosing a specific set up schedule implies also taking the associated Wagner-
Whitin production quantities. We propose the correct Dantzig-Wolfe decomposition
reformulation separating the set up and production decisions. This formulation gives the same
lower bound as Manne’s reformulation and allows for branch-and-price. We use the
Capacitated Lot Sizing Problem with Set Up Times to illustrate our approach. Computational
experiments are presented on data sets available from the literature. Column generation is
speeded up by a combination of simplex and subgradient optimization for finding the dual
prices. The results show that branch-and-price is computationally tractable and competitive
with other approaches. Finally, we briefly discuss how this new Dantzig-Wolfe reformulation
can be generalized to other mixed integer programming problems, whereas in the literature,
branch-and-price algorithms are almost exclusively developed for pure integer programming
problems.
5001-6182 Business
5201-5982 Business Science

Library of Congress
Classification
(LCC) QA 1-939 Mathematics

M Business Administration and Business Economics
M 11
R 4

Production Management
Transportation Systems

Journal of Economic
Literature
(JEL)

C 61 Programming models
85 A Business General
260 K
240 B

Logistics
Information Systems Management

European Business Schools
Library Group
(EBSLG)

250 A Mathematics
Gemeenschappelijke Onderwerpsontsluiting (GOO)

85.00 Bedrijfskunde, Organisatiekunde: algemeen
85.34
85.20

Logistiek management
Bestuurlijke informatie, informatieverzorging

Classification GOO

31.80 Toepassingen van de wiskunde
Bedrijfskunde / Bedrijfseconomie
Bedrijfsprocessen, logistiek, management informatiesystemen

Keywords GOO

Series, Integer programming, algoritmen
Free keywords Lot Sizing, Dantzig-Wolfe Decomposition, Branch-and-Price, Lagrange

Relaxation, Mixed-Integer Programming

 1

A NEW DANTZIG-WOLFE REFORMULATION AND BRANCH-AND-PRICE ALGORITHM

FOR THE CAPACITATED LOT SIZING PROBLEM WITH SET UP TIMES

Zeger Degraeve

London Business School
Regent’s Park, London NW1 4SA, UK

Email: zdegraeve@london.edu

Raf Jans*

Rotterdam School of Management, Erasmus University
PO Box 1738, 3000 DR Rotterdam, The Netherlands

Email: rjans@fbk.eur.nl

Abstract

The textbook Dantzig-Wolfe decomposition for the Capacitated Lot Sizing Problem (CLSP),

as already proposed by Manne in 1958, has an important structural deficiency. Imposing

integrality constraints on the variables in the full blown master will not necessarily give the

optimal IP solution as only production plans which satisfy the Wagner-Whitin condition can

be selected. It is well known that the optimal solution to a capacitated lot sizing problem will

not necessarily have this Wagner-Whitin property. The columns of the traditional

decomposition model include both the integer set up and continuous production quantity

decisions. Choosing a specific set up schedule implies also taking the associated Wagner-

Whitin production quantities. We propose the correct Dantzig-Wolfe decomposition

reformulation separating the set up and production decisions. This formulation gives the same

lower bound as Manne’s reformulation and allows for branch-and-price. We use the

Capacitated Lot Sizing Problem with Set Up Times to illustrate our approach. Computational

experiments are presented on data sets available from the literature. Column generation is

speeded up by a combination of simplex and subgradient optimization for finding the dual

prices. The results show that branch-and-price is computationally tractable and competitive

with other approaches. Finally, we briefly discuss how this new Dantzig-Wolfe reformulation

can be generalized to other mixed integer programming problems, whereas in the literature,

branch-and-price algorithms are almost exclusively developed for pure integer programming

problems.

* Corresponding author

 2

1. Problem description

We consider an extension of the basic dynamic lot sizing problem. The planning horizon is

split up in discrete time periods and the dema nd for several items over this planning horizon is

given. All the items use the same production facility which has a limited capacity in each

period. Before an item can be produced in any period, a set up must be performed and the set

up time decreases the available capacity. The problem is to find a production plan for all the

items that satisfies demand, does not exceed the capacity limit and minimizes the sum of the

set up, production and inventory holding costs. This problem is known as the Capacitated Lot

Sizing Problem with Set Up Times (CLST). Define the following sets, parameters and

variables:

Sets:

 P : set of products, = {1,…,n},
 T : set of time periods, = {1,…,m}.

Parameters:

 itd : demand of product i in period t, ∀ i ∈ P, ∀ t ∈ T

 itksd : sum of demand of product i, from period t until

period k,

 ∀ i ∈ P,

∀ t,k ∈ T : k ≥ t

 ithc : holding cost for product i in period t, ∀ i ∈ P, ∀ t ∈ T

 itsc : set up cost for product i in period t, ∀ i ∈ P, ∀ t ∈ T

 itvc : variable production cost for product i in period t, ∀ i ∈ P, ∀ t ∈ T

 fci : unit cost for initial inventory for product i, ∀ i ∈ P

 itst : set up time for product i in period t, ∀ i ∈ P, ∀ t ∈ T

 itvt : variable production time for product i in period t, ∀ i ∈ P, ∀ t ∈ T

 tcap : capacity in period t. ∀ t ∈ T

Decision variables:

 itx : production of product i in period t, ∀ i ∈ P, ∀ t ∈ T

 ity = 1 if set up for product i in period t, = 0 otherwise, ∀ i ∈ P, ∀ t ∈ T

 sii : amount of initial inventory for item i. ∀ i ∈ P

The mathematical formulation of the CLST is then as follows:

 3

 Min ()∑ ∑∑
∈ ∈ ∈

+++
Pi Pi Tt

ititititititii shcxvcyscsifc (1)

s.t. 1,1,1, iiii sdxsi +=+ ∀ i ∈ P (2.1)

 itititti sdxs +=+−1, ∀ i ∈ P, ∀ t ∈ T\{1} (2.2)

 { } ititmitittit ysdvtstcapx ,/)(min −≤ ∀ i ∈ P, ∀ t ∈ T (3)

 () t
Pi

itititit capxvtyst ≤+∑
∈

 ∀ t ∈ T (4)

 ity ∈ {0,1}, itx ≥ 0, sit ≥ 0 ∀ i ∈ P, ∀ t ∈ T (5)

The objective function (1) minimizes the total costs, consisting of the set up cost, the variable

production cost, the inventory holding cost and initial inventory cost. Constraints (2.1) and

(2.2) are the demand constraints: inventory carried over from the previous period and

production in the current period can be used to satisfy current demand and build up inventory.

To deal with infeasible problems, we allow initial inventory which is available in the first

period at a large feasibility cost of fci (Vanderbeck 1998). There is no set up required for

initial inventory. Constraint (3) forces the set up variable to one if any production takes place

in that period. In order to make the formulation stronger, we limit the production for each

item by both the remaining demand and the maximum possible production with the available

capacity minus the set up time. Next, there is a constraint on the available capacity in each

period (4). If we have a set up, the set up time is accounted for. Finally, we have the non-

negativity and integrality constraints (5). Let CLSTv be the optimal objective value for problem

(1)-(5) and CLSTv its LP relaxation.

This paper is structured as follows. In Section 2, we give a brief literature review on

capacitated lot sizing. Section 3 discusses in more detail the traditional Dantzig-Wolfe

decomposition for CLST and the structural deficiency of Manne’s formulation. In Section 4,

we present the correct Dantzig-Wolfe decomposition reformulation. The different building

blocks of the algorithm are described in Section 5. Section 6 presents computational results on

data sets available from the literature. Before giving some concluding remarks, we also show

in Section 7 how our approach can be extended to other Mixed Integer Programming (MIP)

problems.

 4

2. Literature review

The research into dynamic lot sizing models started in 1958 with the seminal paper of Wagner

and Whitin. They consider the single item uncapacitated lot sizing model and prove that there

exists an optimal solution that satisfies the following property: 01 =− tt xs , Tt ∈∀ . This

means that in that optimal solution there will never be simultaneous production and inventory

carry-over from the previous period. This is called the Wagner-Whitin (WW) property. It also

implies that one produces to satisfy the demand for an integer number of consecutive periods.

Based on these special properties of the optimal solution, Wagner and Whitin formulate a

dynamic programming recursion for solving this problem.

The regular CLST formulation, given by the model (1)-(5), usually has a large integrality gap.

Much research is devoted to finding better formulations with a smaller gap. The model can be

extended with valid inequalities for the single item uncapacitated lot sizing problem (Barany

et al. 1984), which are generally known as the (l, S) inequalities. Adding these cutting planes

leads to a formulation which describes the convex hull for the single item uncapacitated lot

sizing polytope. Pochet (1988), Leung, Magnanti and Vachani (1989) and Miller, Nemhauser

and Savelsbergh (2000) derive several other valid inequalities for the capacitated problem.

Belvaux and Wolsey (2000, 2001) report on an efficient branch-and-cut system that includes

preprocessing and inequalities for a variety of lot sizing problems. Eppen and Martin (1987)

propose another approach for tightening the formulation by using variable redefinition. For

the single item uncapacitated problem, this is actually the network formulation of the dynamic

programming recursion proposed by Wagner and Whitin (1958) and it gives an integer

solution. This network formulation can also be used to tighten more complex problems such

as the CLST. Manne (1958) proposes an innovative linear programming formulation for the

capacitated multi-item lot sizing problem. He explicitly models all the possible schedules with

different set up sequences. For a problem with a planning horizon of m periods, there are 2m

different set up schedules for each product, because for each period we either have a set up or

not. Manne only considers ‘dominant’ schedules, which have the property that for each period

demand will be met by production in that period if there is a set up or otherwise from the

nearest preceding period with a set up. Dzielinski and Gomory (1965) explicitly describe the

link between Manne’s formulation and the Wagner-Whitin problem. They propose to use

column generation to deal with the difficulty of the huge amount of variables in Manne’s

formulation. Indeed, the model that Manne proposes is the full blown master for the Dantzig-

Wolfe decomposition (Dantzig and Wolfe 1960) with the capacity constraints as the linking

constraints and the subproblem is the Wagner-Whitin single item uncapacitated lot size

 5

problem. Hence, Manne’s dominant schedules are in fact all the Wagner-Whitin schedules.

Kleindorfer and Newson (1975) discuss the Lagrange relaxation for the capacitated lot sizing

problem. The capacity constraint is now dualized and the problem decomposes into

subproblems per item. This lower bound will theoretically be the same as the bound obtained

by Dantzig-Wolfe decomposition (Geoffrion 1974). Thizy and Van Wassenhove (1985)

implement a Lagrange based heuristic for the capacitated problem. Dual prices are updated by

the subgradient method. Trigeiro et al. (1989) also use Lagrange relaxation to solve the

capacitated lot sizing problem with set up times. Upper bounds are found by smoothing the

capacity profile for the solution of the subproblems at each iteration.

3. Dantzig-Wolfe Decomposition for Capacitated Lot Sizing

In this section we explain Manne’s approach for the Dantzig-Wolfe decomposition of the

capacitated lot sizing problem and its deficiency in more detail. Manne explicitly models all

the possible set up schedules. Let Qi be the set of all the set up schedules for product i. A set

up schedule j for each product i is defined by the set up parameter ijtss in each period t:

 ijtss = 1 if there is a set up for product i in set up schedule j in period t, 0 otherwise.

Observe that m
iQ 2= . With each set up schedule corresponds exactly one Wagner-Whitin

(WW) production plan in which production is zero if there is no set up or equals cumulative

demand from the current period up to, but not including, the next set up period otherwise. The

Wagner-Whitin production plan for item i according to set up schedule j is defined by the

production quantities in each period t (6) and the initial inventory (7) and is further referred to

as the Wagner-Whitin production plan j. Let ijtps be the WW production in period t for

product i in setup schedule j:

 ijtps = 0 if ijtss = 0, = 1, −kitsd otherwise, with ()11:min
1

+===
+≤<

mlorsslk ijlmlt
. (6)

We also define 0ijps as the initial inventory used for product i in setup schedule j:

 0ijps = 0 if 1ijss = 1, = 1,1 −kisd otherwise, with ()11:min
11

+===
+≤<

mlorsslk ijlml
. (7)

Next we define the parameters for the total costs and capacity requirement for each schedule:

 cij : total cost of initial inventory, set up, production and inventory holding for

production of product i according to set up schedule j,

 = ∑ ∑
∈ =















−+++

Tt
ti

t

l
ijlitijtitijtitiji sdpshcpsvcssscpsfc 1

0
0 . (8)

 6

 rijt : capacity required for set up and variable production time to produce

product i according to set up schedule j in period t,

= ijtitijtit psvtssst + .

(9)

The decision variable is:

 zij : fraction of schedule j for product i that will be produced.

Manne’s formulation is then as follows:

 Min ∑ ∑
∈ ∈Pi Qj

ijij
i

zc (10)

s.t. ∑
∈

=
iQj

ijz 1 pi ∀ i ∈ P (11)

 tij
Pi Qj

ijt capzr
i

≤∑ ∑
∈ ∈

 µt ∀ t ∈ T (12)

 0≥ijz ∀ i ∈ P, ∀ j ∈ Qi (13)

The objective function (10) minimizes the total cost. The first constraint is the convexity

constraint (11): choose a convex combination of schedules for each item. The combination of

the chosen schedules must satisfy the capacity constraint (12). pi and µt are the dual prices on

the convexity and capacity constraint. We define Mv as the optimal value of the LP relaxation

of formulation (10)-(13) and Mv is the optimal objective value when we impose that the

columns ijz must be binary. This formulation has a large number of variables, but this can be

resolved by column generation. Column generation starts with a feasible restricted master

with only a few columns and we add new columns iteratively as they are needed. At each

iteration of the column generation procedure, we solve a separate single item uncapacitated

subproblem for each item i, where the objective function is to minimize the reduced cost:

 Min ()∑ ∑
∈ ∈

++−+++
Tt Tt

tititititiititititititii xvtystshcxvcyscsifc µπ)((14)

This subproblem can be solved efficiently with the Wagner-Whitin (1958) dynamic

programming algorithm. All the columns that are generated as such will have the Wagner-

Whitin property. If we find columns with a strictly negative reduced cost, we add them to the

master. Next we solve the master again as a linear program and try to find new columns that

price out with the new dual prices in a new iteration. If we cannot find any new column with a

negative reduced cost, we have solved the master’s LP relaxation with an objective value of

Mv . Suppose),,,(****
iititit sisyx is an optimal solution to the subproblem for item i with a

negative reduced cost. The new column j for item i then has the following parameters:

 7

 ssijt = *
ity ; psijt = *

itx ; rijt= **
itititit xvtyst + ∀ t ∈ T (15)

 psij0 = *
isi (16)

 cij = ()∑
∈

+++
Tt

ititititititii shcxvcyscsifc **** (17)

Manne proves that the LP solution of the formulation (10)-(13) will naturally have most

variables at zero or one if the number of items is much larger than the number of time periods

in the planning horizon. The lower bound Mv resulting from this decomposition will be equal

to or better than the LP relaxation of the original formulation CLSTv . This decomposition

formulation, however, has a major structural drawback. Although it can be used to calculate

the lower bound Mv , it is not an equivalent formulation for the IP problem as formulated by

(1)-(5). If integrality constraints are imposed on the ijz variables, i.e. imposing that exactly

one schedule must be selected for each item through the convexity constraints (11), we obtain

Mv , which is normally not equal to CLSTv , the optimal IP value of the original problem. If the

capacity constraint is binding in some periods, the optimal solution will not consist of pure

Wagner-Whitin schedules. This was already observed by Florian and Klein (1971) for the

single item capacitated lot sizing problem. Lambrecht and Vanderveken (1979) and Bitran

and Matsuo (1986) also notice that the set of feasible solutions for the decomposition model

with integrality constraints is only a subset of the feasible solutions for the original integer

problem and hence CLSTM vv ≥ . The main reason for this problem is that there is no separation

of the integer set up and the continuous production quantity decision. A solution for the

subproblem, i.e. a new column, consists of both a set up and production quantity decision.

The set up decision automatically determines the production decision according to the

Wagner-Whitin property (6 and 7).

4. The New Dantzig-Wolfe Reformulation

In this section we present the new Dantzig-Wolfe extreme point reformulation for CLST. We

overcome the problem of Manne’s formulation by separating the integer set up and the

continuous production quantity decisions. We first discuss some key insights into the single

item uncapacitated problem and use these to set up the new formulation. For each set up

schedule iQj ∈ , we define a subset of set up schedules as follows: only if there is a set up in

 8

schedule j in a specific period, a set up is possible, but not required, for that period in a

schedule in the subset. Define:

 Qij : subset of set up schedule j for item i, iij QQ ⊆ , = { }TtssssQj ijttiji ∈∀≤∈ ,:' '

If there are s set ups in schedule j, the subset consists of 2s schedules. A demand feasible

production plan for a specific set up schedule j satisfies two properties: 1) production in

period t is only possible if there is a set up in period t and 2) the production quantities satisfy

the demand constraints (2.1) and (2.2). The optimal solution to the capacitated lot sizing

problem will not necessarily have the WW property. How can we generate these production

plans, which are optimal for the capacitated problem but do not have the WW property? The

answer is given by Proposition 1:

Proposition 1:

Every demand feasible production plan for a specific set up schedule j for item i can be

written as a convex combination of the Wagner-Whitin production plans according to the set

up schedules in Qij.

Proof:

The Wagner-Whitin schedules constitute the extreme points of the convex hull of the single

item uncapacitated subproblem (Wagner and Whitin 1958). Every point in the convex hull

can be written as a convex combination of the extreme points. Hence, every demand feasible

production plan is a convex combination of the extreme points of the single item

uncapacitated lot size polytope. Q.E.D.

Based on the insight that we can separate the integer set up decision and the continuous

production quantity decision, we formulate the new decomposition model mathematically.

We define separate decision variables and cost parameters for the integer set up decision and

for the continuous production decision:

Variables:

 ijzs = 1 if for product i setup schedule j is selected, 0 otherwise,

 ijkzp : fraction used of WW production plan k which is in the subset of

setup schedule j for product i.

Parameters:

 ijcs : set up cost of schedule j for product i, = ∑
∈Tt

ijtit sssc ,

(18)

 9

 ijcp : cost of initial inventory, production and holding for the WW

production schedule j for product i,

= ∑ ∑
∈ =















−++

Tt
ti

t

l
ijlitijtitiji sdpshcpsvcpsfc 1

0
0 .

(19)

The new extreme point formulation is then as follows:

 Min ∑ ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈ ∈

+
Pi Qj Pi Qj Qk

ijkikijij
i i ij

zpcpzscs (20)

s.t. ∑
∈

=
iQj

ijzs 1 ∀ i ∈ P (21)

 ∑
∈

=
ijQk

ijkij zpzs ∀ i ∈ P, ∀ j ∈ Qi (22)

 ∑ ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈ ∈

≤+
Pi Qj Pi Qj Qk

tijkiktitijijtit
i i ij

capzppsvtzsssst ∀ t ∈ T (23)

 { }1,0∈ijzs ∀ i ∈ P, ∀ j ∈ Qi (24)

 0≥ijkzp ∀ i ∈ P, ∀ j ∈ Qi, ∀ k ∈ Qi j (25)

The objective function (20) minimizes the total cost, which is split up in the set up cost and

the other costs. The convexity constraint (21) imposes that we must select exactly one set up

schedule for each item. Constraint (22) defines the relationship between the set up and the

production variables: the production plan must be a convex combination of the production

plans in the subset of the chosen set up schedule. Finally, constraint (23) is the capacity

constraint, taking into account both the set up times and variable production times. We put

binary constraints on the variables for the set up schedule (24), but not on the convex

multipliers for the production plans (25). This is the correct Dantzig-Wolfe reformulation of

CLST. The optimal value of this formulation, DWCLv , will be equal to the optimal value of the

original formulation, CLSTv . When we compare this with the regular formulation (1)-(5), we

observe the following relationship between the original set up and production variables and

the new variables:

 ∑
∈

=
iQj

ijijtit zsssy ; ∑ ∑
∈ ∈

=
i ijQj Qk

ijkiktit zppsx ∀ i ∈ P, ∀ t ∈ T (26)

In the LP relaxation we can substitute ijzs out by constraint (22) and we obtain the following

formulation with only the production variables ijkzp :

 10

 Min ()∑ ∑ ∑
∈ ∈ ∈

+
Pi Qj Qk

ijkikij
i ij

zpcpcs (27)

s.t. ∑ ∑
∈ ∈

=
i ijQj Qk

ijkzp 1 ∀ i ∈ P (28)

 ()∑ ∑ ∑
∈ ∈ ∈

≤+
Pi Qj Qk

tijkiktitijtit
i ij

capzppsvtssst ∀ t ∈ T (29)

 0≥ijkzp ∀ i ∈ P, ∀ j ∈ Qi, ∀ k ∈ Qi j (30)

After the substitution only the convexity (28) and capacity (29) constraints are left. The

optimal LP solution is DWCLv . This formulation is equivalent to Manne’s LP formulation (10)-

(13) and they both have the same optimal solution.

Proposition 2: DWCLv = Mv .

Proof:

For a specific item i and schedule k, the variables kjzpijk ≠: are dominated by ikkzp in the

LP relaxation (27)-(30). The variable ikkzp has an equal or lower total cost (31) (equality

holds only if the set up cost is zero), and an equal or lower capacity utilization (32) compared

to any other kjzpijk ≠: , while they have the same production quantities (33).

kjandQkQjQkPi ijii ≠∈∈∀∈∀∈∀ :,, :

 ikkzp ijkzp

 ikik cpcs + ≤ ikij cpcs + (31)

 iktitiktit psvtssst + ≤ iktitijtit psvtssst + Tt ∈∀ (32)

 iktps = iktps }0{∪∈∀ Tt (33)

The reason is that, according to the definition of Qij, schedule ijQk ∈ has strictly fewer set

ups than schedule j if kj ≠ . Hence ijik cscs ≤ according to definition (18), which proves (31),

and ijtikt ssss ≤ , Tt ∈∀ , which proves (32). There exists hence an optimal solution with

0=ijkzp , kjandQkQjQkPi ijii ≠∈∈∀∈∀∈∀ :,, . The only variables left are the ikkzp

variables, which are equivalent to the ikz variables in formulation (10)-(13). Formulation

(27)-(30) is now equivalent to formulation (10)-(13) and hence they have the same optimal

objective value. Q.E.D.

 11

This decomposition model (27)-(30) contains n convexity constraints and m capacity

constraints. The problem has a huge number of ijkzp variables:

 n* =














∑
=

m

t

t

t
m

0

2* n*3m (34)

with:









t
m

 : the number of set up schedules with t set ups out of m,

 t2 : the number of set up schedules in the subset of a schedule with exactly t set

ups.

The equality in (34) follows from the binomial formula i
n

i

inn ba
i
n

ba ∑
=

−








=+

0

)(. The

existence of such a huge number of variables makes the problem well suited for column

generation. When we embed such a column generation algorithm within a branch-and-bound

enumeration tree, we obtain a branch-and-price algorithm.

5. The Branch-and-Price Algorithm

In this section we describe the most important building blocks of the algorithm. We start with

an initial heuristic that gives a good upper bound. Next we do column generation to find the

LP optimum, which is a lower bound for the IP optimum. We speed up the column generation

process by using a combination of simplex and subgradient optimization. At each iteration we

also try to construct feasible upper bounds. Finally, we combine column generation and

branch-and-bound in a branch-and-price algorithm.

5.1. Initial Heuristic

The first step in the algorithm is finding a heuristic upper bound. We use the efficient

algorithm proposed by Trigeiro, Thomas and McClain (1989) (TTM). This heuristic consists

of Lagrange relaxation and a smoothing heuristic to create feasible production plans. We

improve the upper bounds found by TTM in two ways. First, we fix all the set up variables yit

to one or zero according to the solution proposed by the TTM heuristic. If there is any

production in period t for item i we fix the set up variable yit to one, otherwise to zero. Next

we solve the remaining problem to find the optimal production quantities. It is well known

that the resulting problem after fixing the set up variables, is a network problem (e.g. Thizy

and Van Wassenhove 1985), for which efficient algorithms exist. This procedure is referred to

 12

as the network heuristic (NH). A second improvement is a lot elimination heuristic (LEH).

Starting again from the set up solution given by TTM, we try to improve this solution by

checking if we can eliminate a set up. We first check the items with the highest set up cost,

starting with the set up at the end of the time horizon and moving to the beginning. If the set

up variable equals one, we fix it to zero and solve a new network problem to find the optimal

production quantities. If the upper bound improves, we keep that set up variable at zero,

otherwise we set it back to one.

5.2. Column generation at the root node

Next we start the column generation procedure (CG). We first add some initial columns to the

master. For each item we add the Wagner-Whitin solution. Columns where all the demand is

met from initial inventory are also added. The subproblem is solved using an efficient

implementation of the WW algorithm. At each iteration, we also calculate a lower bound on

DWCLv , the optimal LP solution (Martin 1999). Let r
DWCLv be the objective value of the

restricted master at pricing step r and let r
irc be the reduced costs of the columns that we

generate at iteration r. If no column was added for an item, the reduced cost equals zero. A

lower bound on the master can be calculated as follows:

 LB = ∑
∈

+
Pi

r
i

r
DWCL rcv (35)

If the current restricted master solution, r
DWCLv , is equal to the lower bound (35), then no

column prices out favorably and we stop the column generation process.

5.3. Hybrid simplex / subgradient optimization

In the Lagrange problem, the complicating constraint is dualized into the objective function

(36) with a specific set of positive multipliers u = {u1, u2, …, um}. In this case the

complicating constraint is the capacity constraint (4).

 ()

∑ ∑

∑ ∑∑

∈ ∈

∈ ∈ ∈







+−−

+++=

Tt Pi
itititittt

Pi Pi Tt
ititititititiiLRCL

xvtystcapu

shcxvcyscsifcMinuv

)(

)(

(36)

The Lagrange problem decomposes into single item uncapacitated lot sizing problems. For

each item i we have the following objective function:

 () ∑∑
∈∈

+++++=
Tt

titititit
Tt

ititititititiiiLRCL uxvtystshcxvcyscsifcMinuv)()(, (37)

 13

At every iteration in the Lagrange procedure, we solve the subproblems, given an estimate of

the dual prices u. The Lagrange relaxation always gives a lower bound,)(uvLRCL , on the

optimal IP value CLSTv . In subsequent iterations, the dual prices u are updated and we solve a

new Lagrange problem with these updated dual prices. The most widely used method for

updating the dual prices is the subgradient optimization method (Fisher 1985). The Lagrange

Dual problem (38) consist of finding the maximum lower bound, LDCLv .

)(max
0

uvv LRCLuLDCL ≥
= (38)

Lagrange Relaxation and Dantzig-Wolfe decomposition are alternative methods of calculating

tighter LP values. It is well known that the optimal values of the relaxed Dantzig-Wolfe

reformulation, DWCLv , and the Lagrange Dual, LDCLv , are the same. One formulation is the

dual of the other (Geoffrion 1974, Fisher 1981). Also, the optimal Lagrange multipliers u =

{u1, u2, …, um} for the complicating constraint in the objective function correspond to the

optimal dual variables },...,,{ 21 mµµµµ = for the linking constraints in the master. Moreover,

the subproblem that we need to solve in the column generation procedure is the same as the

one we have to solve for the Lagrange relaxation, except for a constant in the objective

function. In the column generation procedure, the dual prices are provided by the master. In

the Lagrange Relaxation, the dual prices are updated by subgradient optimization. Each

method has advantages and disadvantages. For a minimization problem, Lagrange relaxation

provides a lower bound on the optimal IP value CLSTv , but no primal solution is available. In

addition, there are problems with the convergence of the subgradient algorithm. Usually the

procedure is stopped after a fixed number of iterations, without guarantee of having found the

optimal value LDCLv (Fisher 1985). However, the subgradient optimization for updating the

dual prices is computationally inexpensive and easy to implement. Column generation, on the

other hand, provides a primal solution at every iteration. The disadvantages are: 1) the

simplex optimization of the master, which is computationally expensive, 2) the problem of

degeneracy, i.e. columns with a negative reduced cost are added without changing the value

of the restricted master and 3) a tailing-off effect, i.e. slow convergence in the end towards the

optimum is generally observed (Barnhart et al.1998, Vanderbeck and Wolsey 1996). As both

methods have the same subproblem, we can use both to generate columns. Degraeve and

Peeters (2003) discuss a hybrid simplex/subgradient algorithm for solving the LP relaxation

of the Cutting Stock Problem. This algorithm combines the strengths of both methods. We

construct a similar procedure for the capacitated lot sizing problem.

 14

An overview of the basic steps of the hybrid simplex/subgradient optimization is given in

Figure 1. The procedure iterates between column generation and Lagrange relaxation and

exchanges information. We initialize the master with artificial columns and/or a feasible

heuristic solution (Step 0). Next we solve the master a first time (r = 1) with the simplex

method, giving r
DWCLv , the objective value of the current master at step r, and the dual prices

r
tµ on the capacity constraints and r

iπ on the convexity constraints (Step 1). Next we switch

to Lagrange relaxation. We set the Lagrange multipliers equal to the current dual prices and

initialize l, the counter for the Lagrange steps (Step 2). We solve the Lagrange problem,

resulting in the lower bound)(l
tLRCL uv (Step 3). We update the lower bound if we improve it

(Step 4). At this first step in the Lagrange iteration, we have actually solved the subproblems

with the optimal simplex dual prices r
tµ . We check for each item i whether we find a strictly

negative reduced cost, i.e. if 0)(0
, <− r

itiLRCL uv π (Step 5). If none of the columns price out,

we have found the optimal solution (Step 10). Otherwise, we add the columns with a negative

reduced cost to the master. Instead of continuing with the simplex reoptimization of the

master, we do some iterations of the Lagrange relaxation procedure on the original problem.

We increase the counter for the Lagrange iterations (Step 7) and check if it exceeds some

preset maximum value (Step 8). At each step l we compute new Lagrange multipliers (Step 9)

and solve a Lagrange problem with updated dual prices (Step 3). This provides us with new

columns, as the Lagrange subproblem is identical to the column generation subproblem. We

check if these columns are not yet in the master (Step 6). After a fixed number of Lagrange

steps (Step 8), or if no new columns are added to the master (Step 6), we return to the column

generation procedure. We reoptimize the master with the simplex algorithm with all the new

columns added in the previous Lagrange iterations (Step 1). This gives new simplex dual

prices and we continue with solving the Lagrange relaxation using these new dual prices. The

procedure stops if no column prices out at the first step of a Lagrange relaxation loop (Step 5).

The advantages of this combined procedure are:

- The Lagrange lower bound can also be used as stopping criterion for the early

termination of column generation.

- Between two simplex steps, new columns are generated by Lagrange relaxation. This

possibly reduces degeneracy of the master.

- We do some steps of subgradient optimization instead of the computationally much

more expensive simplex method.

 15

5.4. Calculating upper bounds

Calculating feasible upper bounds during column generation is done in two ways. In a first

heuristic, we start from the optimal LP solution of the current master. We round the fractional

set up variables according to some cut off point. Values below the cut off point are rounded to

zero, values above to one. All the set up variables are now fixed to either one or zero. Next a

network problem is solved to determine the optimal production quantities for this fixed setting

of the set up variables. The total cost of this feasible production plan provides an upper bound

on the optimal total cost. This heuristic is repeated for different values of cut off points. This

procedure is called the Repeated Rounding Heuristic (RRH). We typically observe a U shape

Figure 1. The hybrid simplex/subgradient optimization procedure

2. Initiliaze Lagrange relaxation loop

 l = 0,
r
t

l
tu µ =

0. Initialize master, r = 0, LB = 0

1. r ← r + 1

 Solve master:
r
i

r
t

r
DWCL v π µ , ,

3. Solve Lagrange Problem: -

)(l
tLRCL uv

4. Update Lower Bound
 LB =)(l

t LRCL uv if)(l
t LRCL uv > LB

5. Check reduced cost if l = 0:

 ?, 0)(,
P iuv r

i
l
tiLRCL ∈∀≥ −π

6. Are there any new columns which are
not in t he master yet?

7. Add them to the master
 Start new Lagrange iteration: l ← l + 1

8. l > max?

9. Compute new dual price
l
t u

 with subgradient optimization

no
no

yes

yes

no

yes

10. Optimal solution:

r

DWCL DWCL vv =

 16

in the solution values when increasing the cut off point. Therefore, we cut this heuristic short

when the solution starts to increase. This heuristic is done at every pricing step of the column

generation iteration starting from the new primal solution given by the current master.

Performing the heuristic at every pricing step of the column generation process yields better

results than when we do it just once at termination. A second heuristic is based on the

smoothing heuristic proposed by Trigeiro et al. (1989). We take the solutions given by the

subproblems and do the smoothing subroutine.

5.5. Branch-and-Price

We branch on the original set up variables yit and not directly on individual columns in the

master. By branching on the original set up variables, we actually branch on groups of

columns and this normally leads to a more balanced enumeration tree (Vanderbeck 2000,

Barnhart et al. 1998). The columns consisting of initial inventory only are used to maintain

feasibility at each node in the branch-and-price algorithm. The branch-and-price algorithm

consists of three major subroutines: branch, twin and backtrack (Figure 2). Our search

strategy is depth first where branching is done on the current node. The algorithmic

implementation of our formulation (20)-(25) is actually done starting from formulation (10)-

(13) and the branching direction is enforced by adapting or deleting columns.

Figure 2. Building blocks of the branch-and-price algorithm

When we branch on the set up variable yit at level l in the tree, we store the following

information:

BRANCH

TWIN

BACKTRACK

Level 0

Level 1

Level 2

0
11

=tiy 1
11

=tiy

 17

1) il refers to the item of the set up variable on which we branch at level l,

2) tl refers to the time period of the set up variable on which we branch at level l,

3) the branch direction: up (U) to one, i.e. yit = 1, or down (D) to zero, i.e. yit = 0,

4) l
il

F , the set of columns for item il which are set to zero at level l,

5) l
il

C , the set of columns for item il which are modified at level l.

Let '
iQ be the set of set up schedules generated for item i so far. Further we define the

available columns for item il at level l as the columns which are not set to zero at a previous

level. The set of available columns is then defined as follows:









∈=
−

=
U

1

1

' \:
l

k

k
ii

l
i kll

FQjjA

When we branch, we can fix the set up variable either to one or zero. If we branch up at level

l, then we impose a set up for item il in period tl. We enforce this set up in the master (10)-

(13) by adjusting all the available columns for item il which do not have a set up in period tl.

The set of columns for item il which will be modified at this level is defined as follows:
l
il

C = { 0: =∈
lll jti

l
i ssAj }

We modify these columns so that they have a set up item il in period tl:

ll jtiss = 1 l

i l
Cj ∈∀

Due to this extra set up, these columns obtain an extra set up cost in their objective coefficient

(8) and an extra set up time in the capacity requireme nt for period tl (9):

 jil
c

lll tiji scc +← l
i l

Cj ∈∀

ll jtir

llll tijti str +← l
i l

Cj ∈∀

In that way we ensure that the set up cost and set up time is properly accounted for in all the

available columns according to the branching decision, even if there is no production in

period tl. By adapting the columns with no set up, we avoid deleting a column at the current

step which we may have to generate again later on. In the subproblem for item il, we enforce a

set up by fixing
ll tiy to one, 1=

ll tiy , but this does not necessarily imply that there must be

some positive production.

If we branch down, i.e. fix a set up variable
ll tiy to zero, then all the available columns for

item il which have a set up in period tl must be fixed at zero. The set of variables that must be

fixed to zero is defined as follows:

 18

l
i l

F = { 1: =∈
lll jti

l
i ssAj }

This is done by imposing a simple upper bound of zero on these columns in the master:

 0≤ji l
z l

i l
Fj ∈∀

In the subproblem, we set a high cost for that
ll tiy variable, so that a set up is always avoided.

Define r
lDWCLv , as the value of the master at the current level l at pricing step r. After we have

imposed the branching adjustments at level l, we solve the master, giving 0
,lDWCLv . If the

current objective value, 0
,lDWCLv , is larger than or equal to UBv , our best upper bound, then we

do column generation in order to see if the objective value can drop under this upper bound

by generating more columns. We stop column generation at a node if no column prices out.

We don’t have to investigate a node further if during column generation the lower bound on

the master (35) exceeds the current upper bound UBv . At each step of the column generation

process, we also do the network and smoothing heuristic to obtain better upper bounds.

In the twin procedure at level l we have to undo the settings from the branching constraints

and impose the specific adaptations for the twin for each column. There are two cases. For the

twin up, we first have to undo the adaptations which we made in the branch down. We

remove the simple upper bound of zero on all the columns which were adapted in the branch

down at level l. These columns are in the set l
i l

F .

 1≤ji l
z ← 0≤ji l

z l
i l

Fj ∈∀

We also set the set up cost back to the original set up cost in the subproblem. After having

done this, we empty the set l
i l

F . Next we impose the specific twin up constraint, where we fix

the
ll tiy variable to one. This is done in the same way as for the branch up.

For the twin down, we must first undo all the changes we have made in the branch up. For all

the columns in which we imposed a set up for item il in period tl and hence added a set up cost

and set up time in the branch up, we must now undo this as follows:

ll jtiss = 0 l

i l
Cj ∈∀

This also implies that we have to subtract the set up cost again in the column cost (8) and

subtract the set up time in the capacity usage (9):

 jil
c

lll tiji scc −← l
i l

Cj ∈∀

 19

ll jtir

llll tijti str −← l
i l

Cj ∈∀

In the subproblem,
ll tiy is no longer fixed at one, but it is binary again. The set l

il
C is emptied.

In the second step we impose the specific twin down constraint, where we fix the
ll tiy

variable to zero. The modifications are the same as for the branch down case.

In the backtrack procedure, we must undo the adjustments that we have made in the columns

at that level. There are again two cases that we have to consider. In the first case, we proceed

from a twin down, so for all the columns in l
i l

F a simple upper bound of zero was imposed at

that level. We must undo this and set the set up cost back to the original set up cost in the

subproblem. After that we empty the set l
i l

F . In the second case, we proceed from a twin up,

where we imposed an extra set up for all the columns in the set l
il

C . We undo this in the same

way as in the twin down case and reset the set up variable back to binary in the subproblem.

In the final step we empty the set l
il

C . At the end of the backtrack procedure, we go back to

the previous level: 1−← ll .

6. Computational Results

We report here on the set of 540 test instances used by Trigeiro et al. (1989). All the instances

have a time horizon of 20 periods and the total set consists of three subsets with 180 problems

for each case of 10, 20 or 30 products. We report the averages for each class of 10, 20 and 30

products. Our algorithms were coded in Fortran using the WATCOM Fortran compiler 10.6

and linked with the LINDO library version 5.3 (Schrage 1995). The tests were done on a

Pentium III 750 MHz computer under the Windows 2000 operating system. CPU times are

given in seconds and the gap is calculated as the percentage difference between the best upper

bound and lower bound compared to the best lower bound.

6.1. Initial Heuristics

The first heuristic (TTM) is the Trigeiro et al. (1989) algorithm, using their original code. We

experiment with different Lagrange iteration limits of 150, 200, 250, 300, 350, 400 and 450.

In Table 1 we report on the average gap between the Lagrange lower bound and best feasible

solution and the CPU time. No improvements are made after 350 iterations. For further

experiments, we choose to do 300 iterations, as not much improvement is made beyond this

point. In their paper, Trigeiro et al. performed 150 steps of the Lagrange iteration. We will

 20

include this result TTM-150 in some of the next tables, so that we can see the consecutive

improvements that we have made.

Table 1. Lagrange Heuristic (Trigeiro et al. 1989)
 10 Prod. 20 Prod. 30 Prod.

 Gap Time Gap Time Gap Time

TTM–150 3.81 0.24 1.57 0.43 1.09 0.57

TTM–200 3.76 0.31 1.54 0.55 1.06 0.75

TTM–250 3.72 0.37 1.53 0.66 1.06 0.90

TTM–300 3.71 0.43 1.50 0.79 1.05 1.07

TTM–350 3.68 0.49 1.49 0.90 1.05 1.23

TTM–400 3.68 0.56 1.49 1.03 1.05 1.40

TTM–450 3.68 0.62 1.49 1.14 1.05 1.56

Table 2 summarizes the gap and CPU time for the improvement heuristics performed after

TTM. We use the network solver subroutine available in the LINDO library. The network

heuristic (NH) reduces the gap further with a relatively small extra amount of CPU time.

After the network heuristic, we do the lot elimination heuristic (LEH). We tested three

versions. In the first version we do a full search over all the set up variables that are set at one

(LEH1). In the second (LEH2) and third (LEH3) version, we do only a limited search over the

first 0.3*n*m and 0.2*n*m set up variables that are at one. We always start with the items

with the highest set up cost. The lot elimination heuristic reduces the gap further, but also

requires a significant amount of CPU time. In the remainder of the tests, we use the second

implementation (LEH2) because it gives a good trade-off between solution quality and CPU

time.

Table 2. Improvement Heuristics

 10 Prod. 20 Prod. 30 Prod.

 Gap Time Gap Time Gap Time

TTM–150 3.81 0.24 1.57 0.43 1.09 0.57

NH 3.58 0.48 1.44 0.84 1.02 1.13

LEH1 3.27 0.59 1.34 1.24 0.94 1.98

LEH2 3.33 0.55 1.35 1.11 0.95 1.72

LEH3 3.44 0.53 1.40 1.04 0.99 1.56

 21

6.2. Solving the root node

Up to now the gap is still calculated relative to the Lagrange lower bound from TTM which is

equal to or lower than the optimal column generation based lower bound DWCLv . In the next

step we do the column generation at the root node to obtain this exact lower bound DWCLv .

The results are presented in Table 3. We calculate the gap for the LEH2 upper bound using

the optimal lower bound obtained by column generation DWCLv . The results are in the row

LEH2-CG. The improvement from TTM-300 to LEH2 is solely due to the better upper bound.

The improvement from LEH2 to LEH2-CG on the other hand is solely due to the improved

lower bound. During column generation, we also perform some primal heuristics. We

implement the repeated rounding heuristic (RRH) and the smoothing heuristic (SH), as

discussed in Section 5. We speed up the column generation process by using the hybrid

simplex/subgradient optimization procedure. Within 2 simplex iterations, we do a maximum

of 25 Lagrange iterations. We report the results of the best upper bound after column

generation with the hybrid method in CGH. We also report on the algorithm where we do

column generation at the root node with only simplex optimization (CGS). The CGS has a

substantially larger CPU time and a slightly better gap compared to CGH. With CGH, we do

less pricing iterations and hence perform the heuristics (RNH and SH) fewer times. Therefore,

we have less chance of finding a good upper bound. The slightly better quality of the upper

bound for CGS accounts for the better gap.

Table 3. Column generation at the root node

 10 Prod. 20 Prod. 30 Prod.

 Gap Time Gap Time Gap Time

TTM–150 3.81 0.24 1.57 0.43 1.09 0.57

LEH2-CG 3.13 0.91 1.22 1.83 0.78 2.90

CGH 3.10 0.91 1.20 1.83 0.72 2.90

CGS 3.07 1.43 1.20 2.71 0.71 4.09

In Table 4 we compare our hybrid and regular implementation of the column generation

procedure with the Eppen and Martin network reformulation (1987). In CGHLP we report the

time difference between CGH and LEH2. This is actually the time to compute the exact LP

lower bound with the hybrid method and do some heuristics. We compare this with the time it

takes to find the LP relaxation for the variable redefinition reformulation as proposed by

Eppen and Martin (EMLP), which is substantially higher. The network reformulation gives

the same lower bound, but does not provide an upper bound. We see that the network

 22

formulation takes approximately 3, 7 and 10 times as long for the 10, 20 and 30 products.

CGSLP is the time for the column generation with simplex, where we subtracted the time to

calculate the LEH2 heuristic from the total time for CGS. With the hybrid optimization, it

takes less than half the time to do the column generation. Further, we compare the number of

columns and pricing iterations. We see that the hybrid method substantially decreases the

number of pricing iterations and adds more columns.

Table 4. Hybrid versus simplex optimization and variable redefinition
 10 Prod. 20 Prod. 30 Prod.

EMLP Time 1.23 5.08 12.52

CGHLP Time 0.36 0.72 1.18

CGSLP Time 0.88 1.60 2.37

CGH Cols 236.60 411.60 553.90

CGS Cols 124.40 196.20 263.30

CGH Iterations 2.31 2.32 2.24

CGS Iterations 14.24 11.47 10.38

6.3. Branch-and-Price

In our branch-and-price algorithm, we have tested 5 different branching strategies, depending

on the selection of the branching variable:

 B&P 1 : First fractional variable, order the items by input list,

 B&P 2 : First fractional variable, order the items by decreasing set up cost,

 B&P 3 : Fractional variable closest to 0.5,

 B&P 4 : Fractional variable closest to 0 or 1,

 B&P 5 : Fractional variable closest to 1.

In a heuristic implementation of the branch-and-price algorithm, we fix some of the yit

variables depending on their value in the primal solution at the end of CG at the root node.

We fix all the variables below 0.05 to 0 and above 0.95 to 1. Next, we solve the smaller

problem with the remaining variables optimally using the branch-and-price algorithm. We call

this reduced branch-and-price (RB&P). For all the implementations reported here, we have set

a limit of 2000 nodes. The summary results for the different branching strategies are given in

Table 5.

 23

Table 5. Results for the branch-and-price algorithm

 10 Prod. 20 Prod. 30 Prod.

 Gap Time Gap Time Gap Time

TTM–150 3.81 0.24 1.57 0.43 1.09 0.57

B&P 1 2.83 45.80 1.14 65.32 0.69 99.00

B&P 2 2.75 51.49 1.08 75.85 0.65 111.71

B&P 3 2.99 52.68 1.17 74.30 0.71 110.76

B&P 4 2.74 32.86 1.09 51.63 0.65 83.36

B&P 5 2.58 48.10 1.05 70.87 0.62 116.05

RB&P 1 2.79 20.96 1.11 26.44 0.65 31.79

RB&P 2 2.69 21.72 1.07 25.50 0.63 37.32

RB&P 3 2.84 22.46 1.10 28.72 0.64 38.11

RB&P 4 2.76 18.96 1.08 23.84 0.67 31.35

RB&P 5 2.74 24.53 1.06 27.87 0.64 35.50

On average, we obtain the smallest gaps for the fifth branching strategy, where we branch on

the fractional variable closest to one. B&P4, where we branch on the variable closest to zero

or one, takes on average the least CPU time, and is almost always better than B&P1, B&P2

and B&P3. The reduced branch-and-price is roughly two to three times faster compared to the

optimal branch-and-price implementation. The gap can be both better or worse. RB&P2

seems to give the best gaps on average.

The data set from Trigeiro et al. that we are using here is constructed according to a full

factorial experiment with 5 factors: capacity utilization (low, medium or high), number of

items (10, 20 or 30), time between orders (TBO) (low, medium or high), demand variability

(medium or high) and set up time (low or medium). In Table 6 we compare the effect on the

gap of the different factors, as calculated with three different procedures: the TTM heuristic,

with the hybrid column generation at the root node and at the end of the branch-and-price

algorithm. We give separate results for the problems with 10, 20 and 30 items. In Table 7 we

give the results for the CPU time.

 24

Table 6. Gap results for the full factorial experiment
 10 Prod. 20 Prod. 30 Prod.
 TTM Root B&P5 TTM Root B&P5 TTM Root B&P5
Capacity Low 0.79 0.76 0.58 0.17 0.17 0.13 0.13 0.08 0.05
Usage Med. 2.23 2.01 1.48 0.65 0.62 0.49 0.29 0.29 0.24
 High 8.10 6.53 5.66 3.68 2.80 2.52 2.72 1.81 1.55
TBO Low 1.91 1.59 1.51 0.94 0.67 0.64 0.75 0.42 0.39
 Med. 2.54 2.28 1.77 0.99 0.89 0.76 0.62 0.50 0.43
 High 6.67 5.45 4.45 2.58 2.02 1.74 1.77 1.25 1.03
Demand Med. 3.99 3.34 2.61 1.57 1.23 1.07 1.17 0.80 0.66
Var High 3.42 2.87 2.54 1.44 1.16 1.03 0.92 0.65 0.57
Set up Low 3.85 3.18 2.60 1.73 1.29 1.12 1.30 0.85 0.68
Time High 3.56 3.03 2.55 1.27 1.10 0.98 0.80 0.60 0.55

Average 3.71 3.10 2.58 1.50 1.20 1.05 1.05 0.72 0.62

Table 7. CPU times for the full factorial experiment
 10 Prod. 20 Prod. 30 Prod.
 TTM Root B&P5 TTM Root B&P5 TTM Root B&P5
Capacity Low 0.37 0.62 24.16 0.65 1.19 38.34 0.76 1.66 58.13
Usage Med. 0.44 0.83 44.44 0.79 1.63 73.92 1.09 2.37 118.56
 High 0.49 1.29 75.70 0.92 2.68 100.35 1.36 4.68 171.46
TBO Low 0.34 0.85 36.82 0.58 1.68 46.96 0.71 2.46 83.31
 Med. 0.45 0.86 50.44 0.83 1.83 77.13 1.14 2.84 118.77
 High 0.51 1.04 57.04 0.94 1.98 88.53 1.37 3.41 146.08
Demand Med. 0.41 0.90 47.90 0.76 1.80 70.29 1.04 2.88 117.76
Var High 0.45 0.93 48.30 0.81 1.86 71.46 1.11 2.93 114.34
Set up Low 0.43 0.94 50.03 0.80 1.92 73.64 1.08 3.02 120.05
Time High 0.43 0.89 46.17 0.77 1.74 68.11 1.06 2.79 112.05

Average 0.43 0.91 48.10 0.79 1.83 70.87 1.07 2.90 116.05

The results here confirm the conclusions of Trigeiro et al. Demand variability and set up time

have a minor effect on the gap and CPU times. The relative differences in gap between

medium and high demand variability and low and high set up times seem to decrease for the

solutions at the root node and at the end of the branch-and-price algorithm compared to the

TTM heuristic. The capacity usage has a clear effect: if the capacity is more constrained the

problems become more difficult to solve with respect to both the gap and CPU time. Problems

with a higher TBO are also more difficult to solve. The effect on the gap of a low and medium

TBO seems only minor, whereas the effect of a high TBO is more apparent.

In Table 8, we compare the average gap, percentage of problems that could be solved to

optimality and the CPU time for the TTM heuristic and the B&P5 heuristic with 2000, 4000,

6000 and 8000 nodes. The tests reported here are performed on a 550 MHz computer.

Allowing more nodes decreases the gap and increases the number of problems that could be

solved to optimality, although the marginal change is decreasing. Approximately one third of

the problems can be solved to optimality within 8000 nodes.

 25

Table 8. Overview gap and percentage optimal solutions

 10 Prod. 20 Prod. 30 Prod.

 Gap % Opt. Time Gap % Opt. Time Gap % Opt. Time

TTM - 300 3.71 8.33 0.68 1.50 9.44 1.50 1.05 14.44 2.43

B&P 5 – 2000 2.58 23.33 86.44 1.05 29.44 141.73 0.62 32.78 231.30

B&P 5 – 4000 2.52 27.22 175.64 1.03 30.00 263.14 0.61 35.56 407.97

B&P 5 – 6000 2.48 28.89 285.83 1.02 30.00 369.20 0.60 36.11 484.81

B&P 5 – 8000 2.46 28.89 376.99 1.02 30.56 507.48 0.60 36.11 599.52

6.4. Comparison with other approaches

Other approaches have been proposed in the literature to solve the CLST. Belvaux and

Wolsey (2000) describe a branch-and-cut algorithm that is specifically developed to solve lot

sizing problems. They report on six instances taken from a test set used by Trigeiro et al.

(1989). Belvaux and Wolsey used unit variable production times itvt = 1 for all their data sets,

whereas for one of them, specifically G30, the original data set has fractional variable

production times. In Table 9 we report the results for the test problems. G30b refers to the

G30 data set with unit variable production times. Belvaux and Wolsey use a 200MHz

computer under Windows NT and set a time limit of 900 seconds. We have a limit of 2000

nodes. Altough we cannot make any robust conclusion based on such a limited comparison,

the branch-and-cut system seems to perform better on the smaller problems and our algorithm

seems to perform slightly better on the larger problems. For the smaller problems their

branch-and-cut algorithm gives a better lower bound at the root node, whereas for the larger

problems both procedure yield the same lower bound. The results indicate that these CLST

problems are indeed hard to solve.

Table 9. Comparison branch-and-cut and branch-and-price

 Branch-and-Cut

Belvaux and Wolsey (2000)

Branch-and-Price

(B&P5)

 LP IP Time Gap LP IP Time Gap

Tr6-15 (G30) - - - - 37,103.1 37,809 33.3 1.90

Tr6-15(G30b) 37,213.3 37,721(1) 38.4 1.09 37,201.2 38,162 29.0 2.51

Tr6-30 (G62) 60,979.4 61,806 900 1.36 60,946.2 62,644 359 2.79

Tr12-15 (G53) 73,858.2 74,799 900 1.27 73,847.9 75,035 66 1.61

Tr12-30 (G69) 130,177 132,650 900 1.90 130,177.2 131,234 215 0.81

Tr24-15 (G57) 136,366 136,872 900 0.37 136,365.7 136,860 44 0.36

Tr24-30 (G72) 287,753 288,424 900 0.23 287,753.4 288,383 306 0.22
(1) : indicates a proven optimal solution

 26

The network formulation (Eppen and Martin 1987) was solved with the MIP solver of

LINDO. For 10 and 20 products, we set a pivot limit of ten million, for the 30 products we set

a pivot limit of 5 million. From Table 10 we observe that the algorithm is slower and does not

give the same good quality solutions as our procedure.

Table 10. Variable redefinition results
 10 Prod. 20 Prod. 30 Prod.

 Gap Time Gap Time Gap Time

TTM–150 3.81 0.24 1.57 0.43 1.09 0.57

EMIP 4.49 2,949 2.94 6,077 2.35 4,904

Gapolakrishnan et al. (2001) develop a customized tabu search algorithm for the CLST. They

test their procedure on the data set from Trigeiro et al. with the 540 problem instances and

report an average gap of 4.01% and an average CPU time of 97 seconds on a Pentium, 550

MHz processor. With our algorithm, we obtain an average gap of 1.67% and an average CPU

time of 1.9 seconds at the root node (CGH). For our branch-and-price implementation

(B&P5), we have an average gap of 1.42% and average time of 79 seconds. Our algorithm is

clearly superior to the tabu search.

6.5. Some more results

We have also tested our procedure on other data sets from Trigeiro et al. (1989). These are 70

instances from the F-set and 71 from the G-set. All the instances in the F set are 6 products

and 15 period problems. The G-set consists of 46 instances with 6 products and 15 periods

and 5 instances for each of the cases with 12 products and 15 periods, 24 products and 15

periods, 6 products and 30 periods, 12 products and 30 periods and 24 products and 30

periods. In Table 11, we give the gap and time for the initial heuristic, which includes TTM,

NH and LEH2, for the column generation at the root node and for the branch-and-price

algorithm using B&P5 with a 2000 node limit. We compare this to the Eppen and Martin

formulation solved by LINDO with a maximum of 5 million pivots. Our branch-and-price

algorithm performs better than the network reformulation.

 27

Table 11. Results for F and G data set from Trigeiro et al. (1989)

 Degraeve and Jans Eppen and

Martin

 Init. Heur. CG Root B&P B&B

 Gap Time Gap Time Gap Time Gap Time

F 3.69 0.17 3.55 0.28 2.87 28.45 8.99 721.63

G6-15 4.96 0.18 4.73 0.33 3.82 29.30 5.82 770.96

G12-15 1.11 0.34 1.07 0.56 1.00 45.21 3.69 1,994.30

G24-15 0.36 0.75 0.36 1.10 0.33 62.11 0.45 3,754.06

G6-30 3.22 0.68 3.22 1.06 2.86 317.13 2.16 2,871.99

G12-30 1.15 1.49 1.15 2.12 0.87 240.32 0.86 5,690.63

G24-30 0.24 3.43 0.24 4.66 0.20 383.49 1.00 11,596.28

Finally, we have tested our algorithm on the Capacitated Lot Sizing Problem without Set Up

Times. We do our computational experiments on the data sets from Cattrysse et al. (1990).

They have three data sets with 40 instances each. The first one has instances with 50 items

and 8 periods, the second has 20 items and 20 periods and the third has 8 items and 50

periods. In Table 12, we report the average gap and time for the initial heuristic, the column

generation at the root node and the branch-and-price algorithm using B&P5 with a 2000 node

limit. We compare this with the results from Cattrysse et al. for their best implementation,

which is called Heur4 in their paper. The gaps are calculated compared to our lower bounds.

We also give the average time that they reported using an Olivetti M24 with 8086/8087

processor and 8 MHz. Our gaps are substantially better, compared to the solutions obtained by

Cattrysse et al. For the first set, the column generation and branch-and-price algorithm are

very effective in closing the gap further compared to the Initial Heuristic. For the second and

third set, there is less improvement, but the gaps are still much better compared to the

Cattrysse et al. algorithm.

Table 12. Results for data sets from Cattrysse et al. (1990)

 Degraeve and Jans Cattrysse et al.

 Init. Heur. CG Root B&P Best Heur.

 Gap Time Gap Time Gap Time Gap Time

Set 1 8.06 0.63 0.81 1.37 0.70 44.36 1.34 373

Set 2 1.80 1.09 1.16 1.56 0.99 114.67 3.02 1,352

Set 3 6.66 3.46 5.46 5.71 4.85 1,527.86 9.28 3,854

 28

7. Branch-and-Price for Mixed Integer Programming Problems

A key difference with most other problems that are solved by branch-and-price such as the

cutting stock problem (Degraeve and Schrage 1999, Degraeve and Peeters 2003, Vance 1998,

Vanderbeck 1999), the generalized assignment problem (Savelsbergh 1997), the integer

multi-commodity flow problem (Barnhart et al. 2000), vehicle routing (Desrochers et al.

1992, Desrosiers et al. 1995), crew scheduling (Vance et al. 1997), graph coloring (Mehrotra

and Trick 1996) and machine scheduling problems (Van Den Akker et al. 1999, Chen and

Powell 1999), is that lot sizing is a Mixed Integer Programming (MIP) problem. The other

problems are all pure Integer Programming (IP) problems. Also the papers describing the

general branch-and-price methodology (Barnhart et al. 1996, Vanderbeck and Wolsey 1996

and Vanderbeck 2000) discuss solving pure IP problems. To the best of our knowledge, the

only other application of branch-and-price for a MIP is found in Vanderbeck (1998). Consider

a general MIP problem with binary variables:

 DyCxMin +

s.t. eByAx ≤+

 fHyGx ≤+

 0≥x

 }1,0{∈y

Assume that the first set of constraints are the subproblem constraints and the second set are

the linking or complicating constraints. We will briefly discuss the possible combinations of

continuous and binary variables in the problem and the effect on the Dantzig-Wolfe

decomposition. The different cases that we discuss refer to the associated cells in Table 13.

 29

Table 13. Classification of MIP’s for decomposition

The first case does not contain any binary variables and its decomposition is an example of

generalized linear programming. In the second and fourth case the continuous and binary

variables can be separated into two independent problems. The fifth case is the pure IP case.

Examples include the cutting stock, generalized assignment and scheduling problems. For

these problems, putting integrality restrictions on the full blown master will give the optimal

solution. Next we have a group of models, cases 3, 6, and 9, where the subproblems contain

both continuous and binary variables. In the sixth case, the linking constraints do not contain

any continuous variables. An example of this structure is the ‘Continuous Set Up Lot Sizing

Problem’, as studied by Vanderbeck (1998), where the single mode constraints, imposing that

at most one item can be produced in each period, are the linking constraints. The production

can vary from zero up to capacity and is therefore a continuous variable. Putting integrality

constraints on the variables in the full blown master will give the optimal solution, as the

continuous variables only appear in the subproblem. In the third and sixth case, the

continuous variables appear in the linking constraints. Examples of these models are the

Capacitated Lot Sizing Problem (case 3) and the Capacitated Lot Sizing Problem with Set Up

Times (case 9) with the capacity constraints as the linking constraints. Here we have the

difficulty that an extreme point of the subproblem is not necessarily an extreme point of the

overall problem. This is also the deficiency in Manne’s formulation. In case seven and eight,

we do not have the difficulty of having both continuous and binary variables in the

subproblem. Case eight is discussed in Johnson (1989).

Our findings for the Capacitated Lot Sizing Problem can be generalized to other MIPs as well.

As an example we consider the Capacitated Facility Location Problem (CFL). Several

Lagrange relaxations for this problem have been studied by Cornuejols et al. (1991) and

 Ax ≤ e By ≤ e Ax + By ≤ e

Gx ≤ f

Ax ≤ e
Gx ≤ f

 By ≤ e
Gx ≤ f

Ax + By ≤ e
Gx ≤ f

Hy ≤ f

Ax ≤ e
 Hy ≤ f

 By ≤ e
 Hy ≤ f

Ax + By ≤ e
 Hy ≤ f

Gx + Hy ≤ f

Ax ≤ e
Gx + Hy ≤ f

 By ≤ e
Gx + Hy ≤ f

Ax + By ≤ e
Gx + Hy ≤ f

1

4 5 6

7 8 9

3 2

 30

Beasly (1993), among others. In CFL one has to decide on which plants to open and at the

same time plan how to supply the demand for several customers from these plants. The

objective function minimizes the total cost for opening the plants and for supplying the

demand. For each customer, the total demand must be satisfied. Demand can only be supplied

from an open plant, which has a limited capacity. The set up variables are binary and the

supply variables are continuous. One possible decomposition is to leave the capacity

constraints in the master. These constraints contain both binary and continuous variables. The

subproblem is then the Simple Plant Location Problem. Once it is decided which plants to

open, the solution is simple: satisfy demand for each customer from the cheapest open plant.

We have a similar difficulty here as with the capacitated lot sizing problem. The extreme

points generated by the subproblem will have each customer’s demand supplied from exactly

one plant. In the optimal solution for the capacitated case, however, it is possible that demand

for some customers will be supplied from more than one open plant. By putting integrality

constraints on the columns generated by the subproblem, we can never attain such a split

supply. In this case, we will need to apply a similar approach as with the CLST, namely a

separation of the location decision, which is integer, and the supply decision, which might be

fractional. Another example of a MIP with a similar structure is the capacitated fixed charge

network problem.

8. Conclusion and future research

In this paper we present the correct Dantzig-Wolfe reformulation for the capacitated lot sizing

problem. In this new formulation, the integer set up and the continuous production quantity

decisions are separated. We discuss how this formulation can be used in a branch-and-price

algorithm. A combination of simplex optimization and subgradient updating is used to speed

up the column generation process. Computational results show that branch-and-price provides

good results for the capacitated lot sizing problem with set up times. A limited comparison

suggests it is competitive with a state-of-the-art branch-and-cut system. Further it is superior

to other optimal procedures such as the network reformulation approach and to heuristics such

as a customized tabu-search algorithm. We further generalize our approach to other MIP’s.

The new reformulation and results presented in this paper lead to several new areas for

research. We present four interesting research questions:

1. In Section 7, we discussed briefly the generalizability of our branch-and-price approach

for Mixed Integer Programming Problems. In future research, we want to further

 31

investigate this idea for MIP’s such as location problems, fixed charge network problems

and capacitated multi-commodity network flow problems.

2. An alternative decomposition for the lot sizing problem can start from the network

reformulation for the problem (Eppen and Martin 1987). The network flow constraints are

kept in the master and the subproblem contains the set up and capacity constraints. In this

way, the problem decomposes into subproblems per time period. The lower bound of this

formulation is at least as good as the one obtained by the decomposition used in this

paper. Preliminary results are discussed in Jans (2002).

3. Many extensions of the lot sizing problem have been proposed such as the backlog case

and multi-level production. It would be interesting to adapt our approach for these

extensions. For the backlog case, the algorithm of Zangwill (1966) can be used for the

subproblem. For multi-level lot sizing, reformulations with echelon stock have been used

(Afentakis et al. 1984) to decompose the problem per level.

4. Can the combination of simplex optimization and subgradient updating, as suggested by

Degraeve and Peeters (2003) be used to speed up the column generation process for other

formulations such as the generalized assignment problem or the simple plant location

problem?

Acknowledgements

The authors want to thank Professor McClain for making his code and data sets available and

Professor Cattrysse for making his data test sets and results available. This research was

partially supported by the Fund for Scientific Research (F.W.O.)-Flanders, Belgium.

References

AFENTAKIS, P., B. GAVISH AND U. KARMARKAR. 1984. Computationally Efficient

Optimal Solutions to the Lot-Sizing Problem in Multistage Assembly Systems.

Management Science. Vol. 30 (2), 222-239.

BARANY, I., T.J. VAN ROY AND L.A. WOLSEY. 1984. Strong Formulations for Multi-

Item Capacitated Lot Sizing. Management Science. 30 (10), 1255-1261.

BARNHART, C., C.A. HANE AND P.H. VANCE. 2000. Using Branch-and-Price-and-Cut to

Solve Origin-Destination Integer Multicommodity Flow Problems. Operations

Research. Vol. 48 (2), 318-326.

 32

BARNHART, C., E.L. JOHNSON, G.L. NEMHAUSER, M.W.P. SAVELSBERGH, AND

P.H. VANCE. 1998. Branch-and-Price: Column generation for solving huge integer

programs. Operations Research. Vol. 46 (3), 316-329.

BEASLEY, J.E. 1993. Lagrangean heuristics for location problems. European Journal of

Operational Research. Vol. 65, 383-399.

BELVAUX, G., AND L.A. WOLSEY. 2000. BC-PROD: A Specialized Branch-and-Cut

System for Lot-Sizing Problems. Management Science. 46 (5), 724-738.

BELVAUX, G., AND L.A. WOLSEY. 2001. Modelling Practical Lot-Sizing Problems as

Mixed Integer Programs . Management Science. 47 (7), 993-1007.

BITRAN, G.R. AND H. MATSUO. 1986. The multi-item capacitated lot size problem: error

bounds of Manne’s formulations. Management Science. Vol. 32 (3), 350-359.

CATTRYSSE, D., J. MAES AND L.N. VAN WASSENHOVE. 1990. Set partitioning and

column generation heuristics for capacitated dynamic lotsizing. European Journal of

Operational Research. 46, 38-47.

CHEN, Z.L. AND W.B. POWELL. 1999. Solving Parallel Machine Scheduling Problems by

Column Generation. INFORMS Journal on Computing. Vol. 11 (1), 78-94.

CORNUEJOLS, G., R. SRIDHARAN AND J.M. THIZY. 1991. A comparison of heuristics

and relaxations for the Capacitated Plant Location Problem. European Journal of

Operational Research. Vol. 50, 280-297.

DANTZIG, G.B. AND P. WOLFE. 1960. Decomposition Principle for Linear Programs.

Operations Research. Vol. 8, 101-111.

DEGRAEVE, Z. AND M. PEETERS. 2003. Optimal Integer Solutions to Industrial Cutting

Stock Problems: Part 2, Benchmark Results. to appear in INFORMS Journal on

Computing.

DEGRAEVE, Z. AND L. SCHRAGE. 1999. Optimal Integer Solutions to Cutting Stock

Problems. INFORMS Journal on Computing. Vol. 11 (4), 406-419.

DESROCHERS, M., J. DESROSIERS AND M. SOLOMON. 1992. A New Optimization

Algorithm for the Vehicle Routing Problem with Time Windows. Operations

Research. Vol. 40 (2), 342-354.

DESROSIERS, J., Y. DUMAS, M.M. SOLOMON AND F. SOUMIS. 1995. Time

Constrained Routing and Scheduling. In Handbook in Operations Research and

Management Science, Volume 8: Network Routing. M.O. Ball, T.L. Magnanti, C.L.

Monma and G.L. Nemhauser (eds.), Elsevier, Amsterdam, 35-140.

DZIELINSKI B.P. AND R.E. GOMORY. 1965. Optimal Programming of Lot Sizes,

Inventory and Labor Allocations. Management Science. 11 (9), 874-890.

 33

EPPEN, G.D., AND R.K. MARTIN. 1987. Solving multi-item capacitated lot-sizing

problems using variable redefinition. Operations Research. 35 (6), 832-848.

FISHER, M.L. 1981. The Lagrangian Relaxation Method for Solving Integer Programming

Problems. Management Science. Vol. 27, No. 1, 1-18.

FISHER, M.L. 1985. An applications oriented guide to Lagrangian relaxation. Interfaces.

Vol. 15 (2), 10-21.

FLORIAN, M. AND M. KLEIN. 1971. Deterministic Production Planning with Concave

Costs and Capacity Constraints. Management Science. 18 (1), 12-20.

GOPALAKRISHNAN, M., K. DING, J.-M. BOURJOLLY AND S. MOHAN. 2001. A Tabu-

Search Heuristic for the Capacitated Lot-Sizing Problem with Set-Up Carryover.

Management Science. Vol. 47 (6), 851-863.

GEOFFRION, A.M. 1974. Lagrangean Relaxation for Integer Programming. Mathematical

Programming Study. Vol. 2, 82-113.

JANS, R. 2002. Capacitated Lot Sizing Problems: New Applications, Formulations and

Algorithms. PhD Thesis, K.U.Leuven, Belgium, 205 p.

JOHNSON, E.L. 1989. Modeling and Strong Linear Programs for Mixed Integer

Programming. In Algorithms and Model Formulations in Mathematical Programming,

S.W. WALLACE (Ed.), NATO ASI Series F, Vol. 51, Springer-Verlag, 1-43..

KLEINDORFER, P.R. AND E.F.P. NEWSON. 1975. A Lower Bounding Structure for Lot-

Size Scheduling Problems. Operations Research. 23 (2), 299-311.

LAMBRECHT, M. AND H. VANDERVEKEN. 1979. Heuristic Procedures for the Single

Operation, Multi-Item Loading Problem. AIIE Transactions. Vol. 11, No. 4, 319-326.

LEUNG, J.M.Y., T.L. MAGNANTI AND R. VACHANI. 1989. Facets and Algorithms for

Capacitated Lot Sizing. Mathematical Programming. Vol. 45, 331-359.

MANNE, A.S. 1958. Programming of economic lot sizes. Management Science. 4 (2), 115-

135.

MARTIN, K. 1999. Large Scale Linear and Integer Optimization: A Unified Approach.

Kluwer Academic Publishers, p740.

MEHROTRA, A. AND M.A. TRICK. 1996. A Column Generation Approach for Graph

Coloring. Informs Journal on Computing. Vol. 8 (4), 344-354.

MILLER, A.J., G.L. NEMHAUSER AND M.W.P. SAVELSBERGH. 2000. On the

capacitated lot-sizing and continuous 0-1 knapsack polyhedra. European Journal of

Operational Research. 125, 298-315.

POCHET, Y. 1988. Valid inequalities and separation for capacitated economic lot sizing.

Operations Research Letters. Vol. 7 (3), 109-115.

 34

SAVELSBERGH, M. 1997. A Branch-and-Price Algorithm for the Generalized Assignment

Problem. Operations Research. Vol. 45 (6), 831-841.

SCHRAGE, L. 1995. LINDO: Optimization software for linear programming. Lindo Systems

Inc., Chicago, IL.

THIZY, J.M. AND L.N. VAN WASSENHOVE. 1985. Lagrangean Relaxation for the Multi-

Item Capacitated Lot-Sizing Problem: A Heuristic Implementation. IIE Transactions.

17 (4), 308-313.

TRIGEIRO, W., L.J. THOMAS, AND J.O. McCLAIN. 1989. Capacitated lot sizing with set-

up times. Management Science. 35 (3), 353-366.

VANCE, P.H. 1998. Branch-and-Price Algorithms for the One-Dimensional Cutting Stock

Problem. Computational Optimization and Applications. Vol. 9, 212-228.

VANCE, P.H., C. BARNHART, E.L. JOHNSON AND G.L. NEMHAUSER. 1997. Airline

Crew Scheduling: A New Formulation and Decomposition Algorithm. Operations

Research. Vol. 45 (2), 188-200.

VAN DEN AKKER, J.M., J.A. HOOGEVEEN AND S.L. VAN DE VELDE. 1999. Parallel

Machine Scheduling by Column Generation. Operations Research. Vol. 47 (6), 862-

872.

VANDERBECK, F. 1998. Lot-sizing with start-up times. Management Science. 44 (10),

1409-1425.

VANDERBECK, F. 1999. Computational Study of a Column Generation Algorithm for Bin

Packing and Cutting Stock Problems. Mathematical Programming. Vol. 86, Ser. A,

565-594.

VANDERBECK, F. 2000. On Dantzig-Wolfe Decomposition in Integer Programming and

Ways to Perform Branching in a Branch-and-Price Algorithm. Operations Research.

Vol. 48 (1), 111-128.

VANDERBECK, F. AND L.A. WOLSEY. 1996. An Exact Algorithm for IP Column

Generation. Operations Research Letters. Vol. 19 (4), 151-159.

WAGNER H.M. AND T.M. WHITIN. 1958. Dynamic Version of the Economic Lot Size

Model. Management Science. 5 (1), 89-96.

ZANGWILL, W.I. 1966. A Deterministic Multi-Period Production Scheduling Model with

Backlogging. Management Science. 13 (1), 105-119.

Publications in the Report Series Research∗ in Management

ERIM Research Program: “Business Processes, Logistics and Information Systems”

2003

Project Selection Directed By Intellectual Capital Scorecards
Hennie Daniels and Bram de Jonge
ERS-2003-001-LIS

Combining expert knowledge and databases for risk management
Hennie Daniels and Han van Dissel
ERS-2003-002-LIS

Recursive Approximation of the High Dimensional max Function
Ş. İI. Birbil, S.-C. Fang, J.B.G. Frenk and S. Zhang
ERS-2003-003-LIS

Auctioning Bulk Mobile Messages
S.Meij, L-F.Pau, E.van Heck
ERS-2003-006-LIS

Induction of Ordinal Decision Trees: An MCDA Approach
Jan C. Bioch, Viara Popova
ERS-2003-008-LIS

A New Dantzig-Wolfe Reformulation And Branch-And-Price Algorithm For The Capacitated Lot Sizing Problem
With Set Up Times
Zeger Degraeve, Raf Jans
ERS-2003-010-LIS

Reverse Logistics – a review of case studies
Marisa P. de Brito, Rommert Dekker, Simme D.P. Flapper
ERS-2003-012-LIS

Product Return Handling: decision-making and quantitative support
Marisa P. de Brito, M. (René) B. M. de Koster
ERS-2003-013-LIS

∗ A complete overview of the ERIM Report Series Research in Management:

http://www.ers.erim.eur.nl

 ERIM Research Programs:
 LIS Business Processes, Logistics and Information Systems
 ORG Organizing for Performance
 MKT Marketing
 F&A Finance and Accounting
 STR Strategy and Entrepreneurship

http://www.erim.eur.nl/publications:

