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We utilise and develop Whittle’s restless bandit formulation to analyse a simple class of inventory routing problems with
direct deliveries. These routing problems arise from the practice of vendor-managed inventory replenishment and concern
the optimal replenishment of a collection of inventory holding locations controlled centrally by a decision maker who is
able to monitor inventory levels throughout the network. We develop a notion of location indexability from a Lagrangian
relaxation of the problem and show that (subject to mild conditions) the locations are indeed indexable. We thus have a
collection of location indices in closed form, namely, real-valued functions of the inventory level (one for each location),
which measure in a natural way (namely, as a fair charge for replenishment) each location’s priority for inclusion in each
day’s deliveries. We discuss how to use such location indices to construct heuristics for replenishment and assess a greedy
index heuristic in a numerical study where it performs strongly. A simpler approximate index analysis is available for the
case in which the demand at each location is Poisson. This analysis permits a more explicit characterisation of the range
of holding cost rates for which (approximate) location indexability is guaranteed.
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1. Introduction
The classical work of Gittins (1979, 1989) on multiarmed
bandit problems gave formal mathematical expression to the
natural idea that many complex dynamic stochastic opti-
mization problems have good (sometimes optimal) solutions
that use state-based calibrations (indices) of the options
facing the decision maker to assist in choosing between
them. A recent survey describing a range of developments
of Gittins’ work is due to Mahajan and Teneketzis (2008).
One particularly important extension of Gittins’ model

was described by Whittle (1988). Whittle’s restless ban-
dit problems concern the development of rules for the
optimal activation of collections of stochastic projects or
bandits. In Whittle’s model, M projects from a collec-
tion of size N (>M) are chosen for activation at each
of a sequence of decision epochs. Projects may change
state whether active or passive, though according to dif-
ferent dynamics. The innovation in Whittle’s model was
precisely the state evolution of passive projects, a phe-
nomenon he called restlessness. Each project earns a state-
dependent reward at each epoch. The goal of analysis is
the determination of a policy or rule for project activa-
tion to maximise the average reward rate earned from all
projects over an infinite horizon. Whittle’s model is almost

certainly intractable, having been shown to be PSPACE-
hard by Papadimitriou and Tsitsiklis (1999). Whittle used
a Lagrangian relaxation of his restless bandit problem
to develop an index heuristic for the subclass of prob-
lems in which each constituent project passes an index-
ability test. Whittle’s heuristic attaches an index to each
project, namely, a real-valued function on that project’s
state space, and chooses for activation at each decision
epoch the M projects with the largest index values. Ties
are broken arbitrarily. Weber and Weiss (1990, 1991) estab-
lished a form of asymptotic optimality for Whittle’s heuris-
tic under given conditions, while Niño-Mora (2001, 2002)
and Glazebrook et al. (2002) have explored the issue of
indexability. Further, Whittle’s approach has been shown
to give rise to strongly performing policies in a range of
application domains. These include the control of service
systems, investment problems, and the dynamic routing of
jobs for service and machine maintenance. See, for exam-
ple, Ansell et al. (2003), Glazebrook et al. (2005, 2006),
and Glazebrook and Kirkbride (2007).
This current paper is, to the authors’ knowledge, the

first to apply index theory to problems concerning inven-
tory routing. In §2, we describe an inventory routing prob-
lem (IRP) which arises from the developing practice of
vendor-managed inventory replenishment. The latter term
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describes situations in which a central controller monitors
inventory levels at several locations and makes decisions
regarding inventory replenishment at those locations in the
interests of the network as a whole. Surveys of research
contributions to such problems can be found in Federgruen
and Simchi-Levi (1995) and Kleywegt et al. (2002). The
latter paper explains why the inventory routing problem
with direct deliveries (IRPDD) in which the delivery trucks
under the decision maker’s control visit just a single loca-
tion on each trip from a central depot is important. In §2,
we describe a version of IRPDD in which, whenever a
decision is made to replenish a particular location, it is
replenished in full. Such a model has previously been con-
sidered by Barnes-Schuster and Bassok (1997). IRPs are
extremely challenging and the solution methods proposed
have often been complex and computationally demanding.
In sharp contrast, this paper offers something simple and
natural (albeit within a restricted class of models), namely,
inventory control policies which are constructed by attach-
ing an index to each location, a function of its current
inventory level, with large indices indicating that the loca-
tion concerned is a high priority for replenishment.
In §2, we develop and adapt Whittle’s general approach

to our IRP. We describe what it means that a location be
indexable and, if so, how its index is defined. Some pro-
posals are advanced concerning how index values can be
used to construct heuristic policies for inventory replenish-
ment. In §3, we show that in our problem, locations are
guaranteed indexable when holding costs are ignored. We
are able to infer that they remain indexable when holding
cost rates are set at realistic levels. Location indices are
given in closed form. For the important case of Poisson
demands, we develop a simpler, but approximating, index
analysis in §4. This approach allows us to formally spec-
ify a range of holding cost rates for which (approximate)
indexability is achieved. The paper concludes in §5 with
a numerical study in which index-based heuristic policies
perform strongly.

2. The Model and Methodology
In our IRPDD, each of L locations holds supplies of an
item. The inventory level of the item at each location is
recorded at regularly spaced time epochs. These epochs
will be referred to as “the beginning of each day” through-
out the paper, although nowhere do we require the day to
be our basic time unit. Once all L inventories have been
inspected, a decision is made concerning which locations
(if any) should be resupplied that day. The goal of decision
making is to minimise a combination of inventory and deliv-
ery costs for the network. Further details are as follows:
(i) The daily demand for the item at location l is

described by the probability mass function �pjl	 j � 0
,
with pjl the probability that j items will be requested at
location l in a single day. We use

�l =
�∑
j=0

jpjl

for the mean of this distribution and refer to it as the
demand rate at location l. Daily demands are assumed inde-
pendent across locations and over time.
(ii) We assume that holding costs and shortage costs are

incurred at each location with hl the holding cost rate (per
item per day) and l the cost incurred whenever a demand
cannot be met through a shortage at location l. There is no
backlogging of demand.
(iii) During each day, M identical trucks are available to

make deliveries. Each truck makes a series of round trips
between the central depot and individual locations. Resup-
plying location l incurs a fixed cost Kl together with a cost
of Cl per item supplied, takes total delivery time �l (an inte-
ger multiple of the time taken for a single round trip to l)
and results in Sl (the replenishment level) items being avail-
able to meet demand at location l the following day. We
are here making simplifying modelling assumptions which
cannot be met exactly in practice because of uncertainty
in both the inventory level at a location at each delivery
time and in the demand arising at a location in that part
of the day which follows completion of each delivery. This
could be overcome by a modelling approach which incor-
porated information on inter alia the timing of deliveries.
Such an approach would involve major additional complex-
ities and would, in our judgement, add little to the analysis.
We also assume that delivered items are not available to
meet demand at a location l until the beginning of the next
day. Put briefly, we treat delivered items as though they
arrived at the end of their day of delivery.
(iv) A set of locations will be said to be feasible if there

exists a schedule of round trips to those locations which
can be made by the trucks during a single day and which
would guarantee a completed delivery to each. To identify
a feasible set, we need to know, for each l, the time taken
for a single round trip between the depot and location l �tl�
and hence the number of visits to l to complete a delivery
(�l/tl). Expressed differently, a set of locations is feasible
if there exists an M-fold partition of the visits required to
complete a delivery to each such that the visits in each par-
tition set can be completed in one day by a single truck.
We assume that each individual location constitutes a fea-
sible set.
Please note that, throughout our numerical investiga-

tions, we take the cost parameters hl, l, and Cl to be
l-independent. However, this is not required for the theory.
We write � for a general delivery policy, namely, a rule

for choosing a feasible set of locations to be supplied each
day. Our goal is to choose � to minimise an aggregate
cost rate

Copt = inf
�

{ L∑
l=1

Cl���

}
	 (1)

where in (1), Cl��� is the average cost rate (including
the cost of deliveries to l and inventory costs) incurred
at l over an infinite horizon. By the theory of stochastic
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dynamic programming (DP) (see, for example, Puterman
1994) we may restrict attention to the class of stationary
delivery policies which make decisions on the basis of cur-
rent inventory levels only. That said, direct application of
DP for problems of realistic size (in particular, reasonable
values of L) is not computationally possible. Our search is,
therefore, for effective heuristic approaches.
We proceed in three steps, each of which involves

the development of a (further) relaxation of the problem.
In Step 1, we relax the problem by identifying actions
(choices of locations for replenishment) with subsets of the
set of locations �1	2	 � � � 	L
 and by declaring subset � to
constitute a feasible action if
∑
l∈�

�l �M� (2)

Hence, in this relaxation we regard the M trucks as a sin-
gle resource and dispense with the constraints imposed by
the discreteness of each one. In Step 2, we further relax
the problem by requiring that the resource constraints (2)
only be satisfied over the infinite horizon in a time average
sense. Hence, policy � will now be declared feasible if

L∑
l=1

�lIl����M	 (3)

where in (3), Il��� is the rate at which deliveries are made
to location l under stationary policy � over an infinite hori-
zon. We write �� for the set of stationary delivery policies
satisfying (3) and

�Copt = inf
�∈��

{ L∑
l=1

Cl���

}
(4)

for the cost rate minimised over ��. We now proceed to
Step 3 and develop a Lagrangian relaxation of the optimiza-
tion problem in (4) by incorporating terms in the objective
which penalise violations of the (time average versions of)
the resource constraints as expressed by (3). Hence, we
now write

�Copt���= inf
�

[ L∑
l=1
�Cl���+ ��lIl���
− �M

]
� (5)

In (5), the infimum is over a class of policies which, at
each decision epoch, can choose to replenish any number
of locations with no resource constraint imposed. It is plain
that �Copt���� �Copt �Copt for any � ∈�+.
However, by the nature of both the class of policies over

which the minimisation in (5) is taken and the separa-
bly additive nature of the objective, the Lagrangian relax-
ation in (5) admits an additive decomposition in which
the optimization for the L-location problem is replaced
by L single-location optimization problems. We write

�Copt���=
L∑
l=1

C
opt
l ���− �M� (6)

In (6), Copt
l ��� is the value of an optimization problem

involving location l alone. In this problem, at the start of
each day the inventory level at location l is observed and
a decision is made concerning whether to resupply it or not.
In making such decisions, the goal is to minimise a cost
rate which is an aggregate of inventory/delivery costs for l
�Cl���� and charges imposed for the resource consumed
in making deliveries (��lIl���). Here the Lagrange multi-
plier � has an economic interpretation as a charge levied
per unit of resource (delivery time) consumed. An optimal
policy for the Lagrangian relaxation in (5) will simply run
optimal policies for the individual locations in parallel.
Should there exist suitably structured optimal policies

for the above individual location problems, then location
indices may be developed which in turn will form the basis
of good heuristics for the original problem in (1). To state
the key requirement, write �l��� for some stationary opti-
mal policy for location l, achieving C

opt
l ���. We also write

P��l���
 for the passive set under �l���, namely, the col-
lection of inventory levels at location l for which �l���
does not mandate a delivery.

Definition 1. Location l is indexable if there exists a fam-
ily of stationary optimal policies ��l���	 � ∈ �
 such that
P��l���
 is increasing in �. The corresponding location l
index at inventory level J is defined by

�l�J �= inf
[
��� ∈� and J ∈ P��l���


]
� (7)

First, note that the requirement of indexability is simply
that as the resource charge � grows, then an optimal policy
for location l will choose to deliver in fewer states. This
seems reasonable. Second, the index �l�J � may be under-
stood as a fair charge (per unit of resource) for a delivery
to location l when its inventory level at the start of the day
in which the delivery is made is J .
From Definition 1 and the earlier discussion surrounding

(5) and (6), it follows that an optimal policy for the
Lagrangian relaxation in (5) is structured as follows when
all locations are indexable: at the start of each day, observe
the inventory level at each location and mandate deliveries
to all locations whose index (fair charge) is no less than �
(the prevailing charge). Before proceeding to describe how
to use these indices to develop delivery heuristics for the
original problem in (1), note that we can introduce a null
location as one which when activated consumes some
resource but which incurs no delivery or inventory costs.
This null location represents a “no delivery” option. Any
such location is trivially indexable with an index identi-
cally zero. This zero index value provides us with a suitable
cutoff point when considering locations for delivery.

Heuristic Development

We follow Whittle (1988) in using the above index-based
solution to the Lagrangian relaxation in (5) to argue for
delivery heuristics which favour locations with large indices
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for problems in which all locations are indexable. We shall
call our standard proposal the greedy index heuristic (GI)
which works as follows: at the start of each day, observe
the inventory level �Jl� at each location �l� and compute
the value of each location index ��l�Jl��. Renumber the
locations in decreasing order of their index values, such that

�1�J1�� �2�J2�� · · ·� �L�JL�� (8)

Locations are considered for delivery only if they have
a positive index. Hence, if �1�J1� � 0, no deliveries are
made. Suppose that �1�J1� > 0. In this event, GI constructs
a list of locations for delivery by first including location 1
and then considering the remaining locations with positive
indices for inclusion in numerical order. When a location is
considered, it is added to the list provided that the resulting
collection of locations is feasible and not otherwise. A nat-
ural alternative, the total index heuristic �TI�, chooses a
collection of locations for delivery which is feasible and is
such that the sum of the location indices is maximal. For
the problems discussed in §5, GI and TI coincide.
We proceed to show in the next section that, subject to

only very minor technical conditions, locations are indeed
guaranteed indexable provided that the holding cost rate h
is small enough and that the shortage cost  exceeds the
purchase price C.

3. Indexability Analysis
In this section, we focus on a single location and are
thus able to drop the location identifier from the notation.
Hence, the key inventory cost parameters are K, h, C,
and  , the distribution of daily demand is �pj	 j � 0
 with
mean (rate) �, the replenishment level is S, and the delivery
time is � . From §2, the single-location problem generated
by the Lagrangian relaxation in (5) and fundamental to the
study of indexability is as follows: determine a policy �
for replenishing the location to minimise a combination
of inventory costs incurred per unit of time �C���� and
the delivery penalty rate ���I����. We focus initially on
the no holding costs case �h = 0� and make the details
of the resulting single-location problem with multiplier �
explicit as follows:
(a) At the start of each day n ∈ �, observe inventory

level i�n� and choose between action a (make a delivery)
and action b (do not make a delivery). We introduce indi-
cator I which takes the value one when action a is taken,
and zero otherwise.
(b) If i�n�= j � 0 and a demand of k is experienced on

day n, then the cost incurred on day n is

�K+ ���I +Ck

if 0� k� j and is

�K+ ���I +Cj +�k− j�

if j + 1 � k. If i�n� = j < 0 (namely, that the location
has already experienced j demands which it cannot meet)

and a demand of k is experienced on day n, then the cost
incurred on day n is

�K+ ���I +k�

(c) If action a is taken on day n, then i�n+ 1�= S. If
action b is taken on day n when i�n�= j , then i�n+ 1�=
j − k, where k is the demand experienced on day n.
An optimal policy is a rule for taking actions which

minimizes the average cost rate incurred over an infinite
horizon. By standard theory (see, for example, Puterman
1994), we may restrict our search to stationary policies.
Further, it is clear from the structure of (a)–(c) above that
there will always be a single choice of optimal action for
all nonpositive inventory levels. Indeed, the state space for
the single-location problem can effectively be reduced to
�0	1	 � � � 	 S
 in an obvious way. Hence, in our search for
an optimal policy, we may restrict to maps from state space
�0	1	 � � � 	 S
 to the action space �a	 b
. However, we can
say more. The following is a straightforward consequence
of Theorem 8.11.3 of Puterman (1994):

Lemma 1 (Optimality of Monotone Policies). If h= 0
and  >C, then ∀� ∈�	 ∃J� ∈ �−�
∪ �0	1	 � � � 	 S
 such
that the policy

��j�= a ⇐⇒ j � J� (9)

is optimal for the single-location problem with multiplier �.

Comment

Please note that the choice J� =−� in (9) corresponds to
the policy which never makes a delivery.
In the following discussion, we restrict to the case h= 0,

 > C. In Lemma 1, in the event that there are several
thresholds J� achieving the optimum for some �, we write
J̃� for the smallest. From Definition 1 in §2, we have index-
ability for the location if J̃� is decreasing in �. To describe
the resulting index, we introduce the function $% �→ �,
given by

$�j�=



� −C�

�∑
k=j+1

�k− j�pk	 j � 0	

$�0�− � −C�j	 j < 0�

(10)

It is easy to show that $ is positive, decreasing, and
convex.
Consider now the monotone policy for the single-location

problem with threshold J ∈ �0	1	 � � � 	 S
, namely, that
which mandates a delivery (at the start of the day) as soon as
the inventory level is at or below J . Plainly, the inventory-
level process under policy J (as we shall call it) regenerates
upon every entry into state S. We refer to the period between
successive entries into S as a single cycle of the process. At
present use, � �Pj�J �	 j ∈ �−�	 J &
 for the probability distri-
bution of the inventory level when a delivery is mandated



Archibald et al.: Indexability and Index Heuristics for a Simple Class of IRPs
318 Operations Research 57(2), pp. 314–326, © 2009 INFORMS

under policy J , with a negative inventory level represent-
ing a shortage. This may be thought of as the point of first
entry into the set �−�	 J & for the inventory-level process
when measured at the end of each day. The expected inven-
tory/delivery costs incurred in a single cycle of the process
under policy J may now be written as

�C�J �=
J∑

j=0
�Pj�J ��C�S− j�+'�j�


+
�∑
j=1

�P−j �J ��CS+'�0�+j
+K	 (11)

where

'�j�=
�∑

k=j+1
�k− j�pk +

j∑
k=0

Ckpk +Cj
�∑

k=j+1
pk	 j ∈��

The quantity '�j� may be understood as the expected
inventory cost experienced on the day of delivery when the
inventory level at the start of the day is j .
A formula for the expected cycle time may now be

inferred from the martingale stopping theorem. If we write
i�n� for the inventory level at the start of day n, then under
a policy of no replenishment, the process �i�n�+�n	n� 0

is plainly a martingale. Suppose now that i�0�= S > J , and
write

n�J �=min�n� 0� i�n�� J 
�

We take n�S�= 0. By the martingale stopping theorem, we
have

E�i)n�J �&
= S−�E�n�J �
� (12)

But we have that

E�i)n�J �&
=
J∑

j=0
j �Pj�J �+

�∑
j=1

�−j� �P−j �J �	

and hence from (12) that the mean length of a delivery
cycle under policy J is given by
�T �J �= 1+E�n�J �


= 1+�−1
{ J∑
j=0

�S−j� �Pj�J �+
�∑
j=1

�S+j� �P−j �J �
}
� (13)

We can now use (11) and (13) to write the total of the
inventory costs and the penalty costs incurred under pol-
icy J per unit of time as

+�J 	 ��= � �C�J �+ ��
��T �J �
−1 (14)

=
( J∑
j=0

�Pj�J ��C�S− j�+'�j�


+
�∑
j=1

�P−j �J ��CS+'�0�+j
+K+ ��

)

·
(
1+�−1

{ J∑
j=0

�S− j� �Pj�J �+
�∑
j=1

�S+ j� �P−j �J �
})−1

=C�+�

[∑J
j=0$�j� �Pj�J�+

∑�
j=1$�−j� �P−j �J�+K+��

�+∑J
j=0�S−j� �Pj�J�+

∑�
j=1�S+j� �P−j �J �

]
�

(15)

It is plain from the definitions of the quantities concerned
that

�T �J − 1�� �T �J �	 1� J � S�

If this inequality is strict, then for J in the range 1� J � S
there is a unique �-solution to the equation

+�J 	 ��= +�J − 1	 ��	

which we shall call ��J �. From (14), if �T �J − 1� > �T �J �,
we have that

��J �= �−1� �C�J − 1��T �J �− �C�J ��T �J − 1�


· ��T �J − 1�− �T �J �
−1	 1� J � S�

Additionally, we write ��0� for the unique �-solution to the
equation

+�0	 ��= �	 (16)

where trivially � is the cost rate incurred under the mono-
tone policy with threshold −� which never mandates a
delivery.

Theorem 1 (Indexability Criterion). If
(i) �T �J − 1� > �T �J �	1� J � S, and
(ii) ��J − 1� > ��J �	1� J � S,

then the location is indexable with ��J � the index for inven-
tory level J .

Proof. By Lemma 1, the search for optimal delivery poli-
cies may be restricted to the monotone class with thresh-
olds chosen from the collection �−�
∪ �0	1	 � � � 	 S
. It is
trivial from (16) that

+�0	 �� > � ⇐⇒ � > ��0�� (17)

Further, simple algebra serves to show that, under condi-
tion (i), for any J in the range 0� J � S− 1,

� > ��J + 1� =⇒ +�J + 1	 �� > +�J 	 ��� (18)

But by condition (ii) and (18), for any J in the range 0�
J � S− 1,

� > ��J + 1� =⇒ � > ��j�

=⇒ +�j	 �� > +�j − 1	 ��	

J + 1� j � S� (19)

We also have that, under condition (i), for any J in the
range 1� J � S,

� < ��J � =⇒ +�J 	 �� < +�J − 1	 ��� (20)
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But by condition (ii) and (20), for any J in the range 1�
J � S,

� < ��J � =⇒ � < ��j�

=⇒ +�j	 �� < +�j − 1	 ��	 1� j � J � (21)

From (17), (19), and (21), it is trivial to infer that

+�J 	 �� <min
[{

min
0�j �=J�S

+�j	 ��
}
	�

]
	

and hence that monotone policy J is strictly optimal for
the single-location problem with penalty � for the range
��J + 1� < � < ��J �, 0� J � S − 1. In this range of J , if
� = ��J +1�, then both monotone policies J and J + 1 are
optimal. Further, if � > ��0�, then monotone policy −�
(never deliver) is strictly optimal. If � = ��0�, then both
monotone policies −� and zero are optimal. Finally, if
� < ��S�, monotone policy S (deliver every day) is strictly
optimal. If � = ��S�, then both monotone policies S − 1
and S are optimal.
It follows from the above characterisation of optimal

policies that the requirements of indexability in Definition 1
are met. Further, for all J in the range 0� J � S, the quan-
tity ��J � is indeed the infimum of all �-values for which
inventory level J is in the passive (do not deliver) set. It
then follows from Definition 1 that ��J � is the index for J .
This concludes the proof. �

To develop things further, suppose that the inventory
level at the beginning of day 0 is S and use Xn for the
demand experienced on day n− 1	 n� 1. Write

p�n��j� %= P�X1 +X2 + · · ·+Xn = j�	 j ∈�

for the n-fold convolution of the daily demand distribution.
We now have, utilising the assumption that demands on
different days are independent, that

�Pj�J �= P�X1 = S− j�+
�∑
n=1

S−J−1∑
r=0

P�X1 + · · ·+Xn = r�

·P�Xn+1 = S− j − r�

= pS−j+
�∑
n=1

S−J−1∑
r=0

p�n��r�pS−j−r 	 j ∈�−�	 J &� (22)

It will simplify matters in what follows if we write

Pj�J �= �PJ−j �J �	 j ∈�� (23)

Hence, we have from (22) that

Pj�J �= pS−J+j +
�∑
n=1

S−J−1∑
r=0

p�n��r�pS−J+j−r 	 j ∈�� (24)

We now state our main result.

Theorem 2 (Indexability and Location Index). If
h= 0,  > C, and the demand distribution �pj	 j � 0
 is
such that
�∑
n=1

p�n��S− J � > 0	 0� J � S	 (25)

then the location is indexable and the index at inventory
level J is given by

��J �=−K���−1 + ����−1
[{ �∑

j=1
pj)$�J − j�−$�J �&

}

·
{
�+ S− J +

�∑
j=0

jPj�J �

}]

− ���−1
�∑
j=0

$�J − j�Pj�J �	 0� J � S� (26)

To establish Theorem 2, we first observe from (15) and
(23) that the cost rate +�J 	 �� may be re-expressed as

+�J 	 ��=C�+�

{∑�
j=0$�J − j�Pj�J �+K+ ��

�+ S− J +∑�
j=0 jPj�J �

}
	

0� J � S	 (27)

with Pj�J � given by (24). Note that it is trivial to establish
from (24) that

Pj−1�J − 1�−Pj�J �= pj

�∑
n=1

p�n��S− J �	

j ∈�+	 0� J � S	 (28)

and it will be convenient to write
�∑
n=1

p�n��S− J �= .�S− J �	 0� J � S	 (29)

in what follows. Note from (25) and (29) that the condition
in Theorem 2 may be expressed as

.�S− J � > 0	 0� J � S�

We easily deduce from (28) and (29) that, for any 0� J � S,

�∑
j=0

jPj�J − 1�−
�∑
j=0

jPj�J �= �.�S− J �− 1	

and hence from (13) and (23) that

��T �J �= �+ S− J +
�∑
j=0

jPj�J �

= �+ S− J + 1+
�∑
j=0

jPj�J − 1�−�.�S− J �

= ��T �J − 1�−�.�S− J �	 1� J � S� (30)

Hence, the requirement of Theorem 1(i) is met under the
condition on the demand distribution �pj	 j � 0
 given in
Theorem 2. We shall state as much in the following result.



Archibald et al.: Indexability and Index Heuristics for a Simple Class of IRPs
320 Operations Research 57(2), pp. 314–326, © 2009 INFORMS

Lemma 2. If the demand distribution satisfies condi-
tion (25), then

�T �J − 1� > �T �J �	 1� J � S�

From Theorem 1, to establish Theorem 2 it remains to
prove that

��J − 1� > ��J �	 1� J � S	

where for the range 1 � J � S, ��J � is the �-value for
which

+�J 	 ��= +�J − 1	 ���

From (27)–(30), we infer that for any 1� J � S,

+�J − 1	 ��

=C�+�

{∑�
j=1$�J−j�Pj�J �+.�S−J �

∑�
j=1$�J−j�pj+K+��

�+S−J+∑�
j=0 jPj�J �+�.�S−J �

}
�

(31)
If we equate the expressions in (27) and (31) and solve
for �, then it is straightforward to show that for the range
1� J � S, we obtain the expression for ��J � given in (26).
It is also straightforward to show that ��0� is given by the
appropriate form of expression (26). If we now use (26),
(28), and (30), we recover the expression

��J − 1�

=−K���−1+����−1
[{ �∑

j=1
pj)$�J−1−j�−$�J−1�&

}

×
{
�+S−J+

�∑
j=0

jPj�J �+�.�S−J �

}]

− ���−1
{ �∑
j=1

$�J − j�)Pj�J �+pj.�S− J �&

}

=−K���−1 + ����−1
[{ �∑

j=1
pj)$�J − 1− j�−$�J − 1�&

}

×
{
�+ S− J +

�∑
j=0

jPj�J �

}]

− ���−1
�∑
j=0

$�J − j�Pj�J �+ ���−1$�J �P0�J �

+ ���−1.�S− J �

{ �∑
j=1

pj)$�J − 1− j�−$�J − 1�&
}

− ���−1.�S− J �
�∑
j=1

pj$�J − j�	 1� J � S� (32)

However, we have from (24) that

P0�J �= pS−J +
�∑
n=1

S−J−1∑
r=0

p�n��r�pS−J−r 	

and hence that

P0�J ��.�S− J �
−1 +p0

=
{
pS−j +

�∑
n=1

S−J∑
r=0

p�n��r�pS−J−r

}
�.�S− J �
−1 = 1�

It then follows that

P0�J �= �1−p0�.�S− J �	 (33)

and so from (25), (26), (32), (33) and the strict convexity
of $ over the range )−1	��, we deduce that

��J−1�>−K���−1+����−1
[{ �∑

j=1
pj)$�J−j�−$�J �&

}

·
{
�+S−J+

�∑
j=0

jPj�J �

}]

−���−1
�∑
j=0

$�J−j�Pj�J �+���−1.�S−J �

·
[ �∑
j=1

pj
{
)$�J−1−j�−$�J−1�&

−)$�J−j�−$�J �&
}]

>��J �	

1�J �S� (34)

Theorem 2 now follows from Theorem 1, Lemma 2, and
inequality (34).

Comments and Examples

1. Condition (25) is trivially satisfied for any demand
distribution such that min�p0	 p1� > 0.
2. We specialise to the important case in which demand

arises at the location according to a Poisson process with
rate � per day by taking

pj =
�j

j! e
−�	 j ∈�	

and

Pj�J �=
�S−J+j

�S−J+j�!e
−�
[
1+

S−J−1∑
k=0

(
S−J+j

k

) �∑
n=0

nke−n�
]
	

j ∈��

These may be substituted into (26) to obtain the index in
this case.
3. One very simple case to analyse is that in which the

daily demand has a geometric distribution with mean �.
Hence, we have

pj = �j�1+��−j−1	 j ∈�� (35)
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It is clear from the memoryless property of the geometric
distribution that the distribution of the inventory level upon
the first entry in �−�	 J & from above must also have a
geometric form, namely,

�Pj�J �= �J−j �1+��j−J+1	 j ∈ �−�	 J &�

These facts hugely simplify the calculations for this case.
The index at inventory level J is given by

��J �=−K���−1 + ����−1� −C���/1+�
J+1

· �S�+ �S− J ��J + 1�
� (36)

4. From inequality (34), the index ��J � is strictly
decreasing in the inventory level J . This fact is fundamen-
tal to the application of Theorem 1. It is clear that for
any reasonable approach to the modelling of holding costs,
the decreasing nature of the index must remain the case if
holding costs are introduced provided only that the hold-
ing cost parameter h is small enough. We consider now the
important case of Poisson demand. For h small enough, we
obtain a new index �h�J � by incorporating holding costs
into the above calculations. The new index is as follows:

�h�J �= ��J �+ ����−1�H�J − 1�−H�J �


− ���−1H�J �.�S− J �	 0� j � S	 (37)

where

H�J �=h
�∑
n=1

S∑
j ′=J+1

[ J∑
j=0

P�n	j ′	j�
{
�S+j ′��n−1�

2
+ �j+j ′�

2
+1�j�

}

+ ∑
j�−1

P�n	j ′	j�
{
�S+j ′��n−1�

2
+ j ′�j ′ +1�
2�j ′ −j+1�

}]
�

(38)

In (38), the quantities P�n	 j ′	 j� and 1�j� are given by

P�n	 j ′	 j�= �S−je−�n�n− 1�S−j ′

�S− j ′�!�j ′ − j�! 	

n� 1	 S � j ′ � J + 1	 J � j	

and

1�j�=
j∑

k=0

(
j − k

2

)
�k

k! e
−� +

�∑
k=j+1

j�j + 1�
2�k+ 1�

�k

k! e
−�	

J � j � 1�

In practice, we need that the index function �h�J � be
decreasing in J for the range of J for which it is positive.
Recall that making no delivery is preferable to making one
to a negative index location. We have found that this more
limited requirement for the index function is satisfied for
problems in which the holding cost parameter h takes prac-
tically realistic values.

Table 1. Values of the index �h�J � for a single location
(details in text).

J 0 1 2 3 4
�h�J � 398�62 398�62 398�62 398�62 398�61

J 5 6 7 8 9
�h�J � 398�55 398�35 397�82 396�58 394�01

J 10 11 12 13 14
�h�J � 389�25 381�24 368�85 351�05 327�11

J 15 16 17 18 19
�h�J � 296�72 260�04 217�67 170�54 119�80

J 20 21 22 23 24
�h�J � 66�65 12�31 −42�12 −95�61 −147�28

As an illustration of the above, find in Table 1 values of
the index �h�J � over the range 0 � J � 24 for a location
facing Poisson demand with rate � = 15 and for which
S = 90. The inventory cost parameters are  = 20, C = 10,
and h= 0�01. Note that if the time unit is taken as one day,
then a standard approach to the setting of h would be to
take

h= 2C/365

with 2 a suitably chosen (annualised) interest rate. The
above choices would correspond to a value of 2 equal to
36.5% per annum and hence this choice of h is actually
larger than may be required in practice. We take the deliv-
ery time � to be one and the fixed delivery cost to be 500.
Note that it is clear from Table 1 that the quantity �h�J �

comfortably meets the indexability requirement that it be
decreasing in J over the range for which it is positive. The
cut off for deliveries (i.e., the inventory level at which a
delivery would certainly not be mandated) is 22, which is
a little more than 1.8 standard deviations above the mean
for a single day’s demand.
5. Two issues arise when computing location indices for

general demand distributions. First, note from (26) that
computation of ��J � requires the values of Pj�J �	 j ∈ �.
In the case of deterministic (zero variance) demand, this
is trivial. If the variance of daily demand is nonzero, then
appeal to the central limit theorem and to (24) means that
we have

Pj�J �= pS−J+j +
N∑
n=1

S−J−1∑
r=0

p�n��r�pS−J+j−r +Aj�N�	

where Aj�N� → 0, N → � at a geometric rate. Hence,
Pj�J � may be well approximated by small partial sums.
The same applies to the computation of the quantities �T �J �
and .�S− J �.
Second, as in comment 4 above, holding costs need to be

incorporated into the index. Write H�S ′	 J �, J +1� S ′ � S,
for the expected holding cost incurred during a single cycle
of the process under policy J , with replenishment level S ′

and under an approximating assumption that each day’s
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demand occurs uniformly. Conditioning upon the first day’s
demand following replenishment, we have the recursion

H�S ′	 J �=
{S′−J−1∑

k=1
pkH�S ′ − k	 J �+

S′∑
k=0

pkh

(
S ′ − k

2

)

+
�∑

k=S′+1
pkh

�S ′�2

2k

}
�1−p0�

−1	 J+1�S ′
�S	

and this enables the computation of H�S	 J � for any
J ∈ �0	1	 � � � 	 S
. The appropriate form of index is then
given by

�h�J �= ��J �+ ��.�S− J �
−1�H�S	 J − 1�−H�S	 J �


− ���−1H�S	 J ��

The above comments regarding indexability for realistic
values of h continue to apply.

4. An Approximate (Continuously
Observed) Index for the Poisson Case

We now specialise to the important case of Poisson demand
and develop a simple approximation to the index of §3
derived under an assumption that the inventory level at
each location is monitored continuously. More precisely,
the single-location problem (a)–(c) described in §3 is mod-
ified to permit continuous observation of the inventory
level. It is transparent from the Markovian nature of the
Poisson demand process that in the resulting single-location
problem decisions (deliver or not) need only to be taken
at demand epochs and so the problem becomes semi-
Markovian in nature. Under monotone policies, a delivery
is triggered as soon as the inventory hits the appropriate
threshold. To produce a process that approximates (a)–(c)
well, we suppose that each delivery arrives one time unit
after the demand epoch which triggered it. This quasi-lead
time is hereafter referred to as the delivery day. The result-
ing approximation will enable us to develop a simpler index
than that of §3 and will allow us to incorporate holding
costs directly into the calculations, thereby permitting a
direct analysis of the range of parameter values h which
yield (approximate) indexability.
We consider a location with inventory cost parameters K,

h, C, and  and Poisson demand with rate �. The expected
duration of a single delivery cycle under monotone policy
with threshold J ∈ �0	1	 � � � 	 S
 now simplifies to

�T �J �= 1+�−1�S− J � (39)

because a delivery is now triggered as soon as inven-
tory level J is reached. The expected total inventory cost
incurred during a single cycle (including holding costs)
may be written as

�C�J �= 

{ �∑
j=J+1

�j−J �
�j

j! e
−�
}
+C

{
S−

J∑
j=0

�J−j�
�j

j! e
−�
}

+h
S∑

j=J+1

j

�
+h�J �+K� (40)

The first term on the right-hand side of (40) is the expected
cost incurred through shortages experienced during the
delivery day, the second term is the expected cost of the
items delivered, and the third term is the expected holding
cost incurred during that part of the cycle which precedes
the demand epoch triggering the delivery. Further, h�J � is
the expected holding cost incurred during the delivery day
and is given by

h�J �=h
J∑

j=0

(
J− j

2

)
�j

j! e
−�+h

�∑
j=J+1

J �J+1�
2�j+1�

�j

j! e
−�� (41)

To obtain (41), we exploit standard properties of the
Poisson process. As in §3, we write the total of the inven-
tory costs and the penalty costs incurred under policy J per
unit of time as

�+�J 	 ��= � �C�J �+ ��
��T �J �
−1� (42)

Note from (39) that it is plain that �T �J − 1� > �T �J �,
1� J � S. For J in the range 1� J � S, we write ���J � for
the unique �-solution to the equation

�+�J 	 ��= �+�J − 1	 ��� (43)

Additionally, we write ���0� for the unique �-solution to the
equation

�+�0	 ��= ��

We shall have indexability for this approximate analysis
if ���J − 1� > ���J �, 1 � J � S. The key facts are sum-
marised in the next result. In the statement of Theorem 3,
)u& denotes the integer part of u.

Theorem 3 (Indexability and Location Index—
Approximate Analysis for the Poisson Case). The
quantity ���J � is given by

���J �=−K���−1+�−C����−1
{
S−

J−1∑
i=0

�S−i+��
�i

i! e
−�
}

−h�2���−1S�S+ 1�+h����−1

·
J∑
i=0

{
J �J+1�

2
− i�i−1�

2
+�S−J ��J−i�

}
�i

i! e
−�	

0� J � S	 (44)

and is strictly decreasing over the range 0� J � )�+2
√
�&

where 2> 0, provided that

 −C > h���−1�1+�+2
√
�
 exp

(
22

2
+ 2

2
√
�

)
� (45)

Proof. The form of ���J � given in (44) follows from the
expressions in (39)–(43) by means of straightforward alge-
bra. Write

5�J � %= �����J + 1�− ���J �
�
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It is easy to show from (44) that

5�J �=−� −C��S− J +��
�J

J ! e
−�

+h

{
�J

J ! e
−� + ���−1

J∑
i=0
�S− J + i�

�i

i! e
−�
}
� (46)

Suppose that J = 2�, where 2� 1. It then follows that

�i

i! e
−�

�
�J

J ! e
−�	 0� i� J 	 (47)

and hence that

J∑
i=0

�i

i! e
−�

� �J + 1�
�J

J ! e
−� (48)

and

J∑
i=0

i
�i

i! e
−�

� �J
�J

J ! e
−�� (49)

Using (47)–(49) within (46), we see that

5�J �� �S− J +��
�J

J ! e
−�
{
−� −C�+ h

�
+h2

}
� (50)

It now follows from (50) that ���J � must be strictly decreas-
ing over the range 0� J � )�+ 1& when

� −C�> h���−1�1+��� (51)

We now suppose that J = )� + 2
√
�&, where 2 > 0. It

will slightly simplify matters (although does not impact
the result) if we suppose that � ∈ �+, and hence that J =
�+ )2

√
�&. We then have that

�J

J ! e
−�

� �)2
√
�&

{)2
√
�&∏

i=1
��+ i�

}−1
��

�! e
−�

� �)2
√
�&

{)2
√
�&∏

i=1
��+i�

}−1{ J∑
i=0

�i

i! e
−�
}
�J+1�−1� (52)

Note that inequality (52) uses the fact that when � ∈�+, it
is a mode of the Poisson(�) distribution. If we now use the
fact that geometric means are bounded above by arithmetic
means, we have that

{)2
√
�&∏

i=1
��+ i�

}
�−)2√�&

�

{
1+ �1+ )2

√
�&�

2�

})2
√
�&

� exp
(
22

2
+ 2

2
√
�

)
� (53)

Using (53) within (52), we deduce that

�J

J ! e
−�

� exp
{
−
(
22

2
+ 2

2
√
�

)}{ J∑
i=0

�i

i! e
−�
}
�J + 1�−1	

and hence that

�J

J ! e
−� + ���−1

J∑
i=0
�S− J + i�

�i

i! e
−�

����−1�S−J+���J+1�
�J

J ! e
−�exp

(
22

2
+ 2

2
√
�

)
� (54)

From (46) and (54), we infer that

5�J ���S−J+��
�J

J ! e
−�

·
{
−�−C�+ h

�
�1+)�+2

√
�&�exp

(
22

2
+ 2

2
√
�

)}
	

and hence that ���J + 1� < ���J � when

 −C > h���−1�1+�+2
√
�
 exp

(
22

2
+ 2

2
√
�

)
�

The result now follows easily. �

Comments

1. As noted in §3, we in practice need the index to be
decreasing for the range of inventory levels for which it is
positive. The condition given in (45) in practice guarantees
this for realistic values of the inventory parameters  , C,
and h. As an illustration of the above, find in Table 2 val-
ues of the index ���J � for a single location with stochastic
demand and cost characteristics identical to those for the
case discussed at the end of §3 and in Table 1.
In fact, the decreasing nature of ���J � for the range 0�

J � 24 is easily inferred from Theorem 3. Note that these
indices derived from an approximation which supposes
continuous observation of the location’s inventory lie below
the corresponding exact values recorded in Table 1 imply-
ing more conservative decision making (in the sense of
mandating deliveries at higher inventory levels) in the latter.
For example, the delivery cut off is now 15 which is just the
mean daily demand. This conservatism is as to be expected
because in the model of §3, any decision not to deliver
remains in force until the next decision epoch when the
position is reviewed again. Hence, account has to be taken
of the demand likely to occur during the next period. This is
not necessary when the inventory is observed continuously.

Table 2. Values of the index ���J � for a single location
(details in text).

J 0 1 2 3 4
�h�J � 397�27 397�27 397�27 397�23 397�05

J 5 6 7 8 9
�h�J � 396�40 394�47 389�68 379�51 360�56

J 10 11 12 13 14
�h�J � 329�55 283�38 221�08 144�04 56�10

J 15 16 17 18 19
�h�J � −37�09 −129�25 −214�68 −289�20 −350�59
J 20 21 22 23 24
�h�J � −398�48 −433�97 −459�00 −475�85 −486�68
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2. It seems reasonable to conjecture that the indices in
(26) and the zero holding cost versions of the indices in
(44) will be increased (for each J ) upon replacement of
the daily demand distribution by another which is stochas-
tically larger. This increase would reflect greater exposure
to shortage costs from any positive inventory level. While
it has not proved possible to establish this in general, it has
been found to hold in simple cases. For example, the geo-
metric demand distribution in (35) is stochastically increas-
ing in �, while the corresponding index in (36) has a
�-derivative equal to

� −C����−1��J−1�1−��−J−2J �J + 1��S− J +��
	

which is strictly positive for J > 0 and zero when J = 0.
Further, the Poisson(�) distribution is also stochastically
increasing in �. When h= 0, the �-derivative of the approx-
imating Poisson index in (44) is zero when J = 0 and is

� −C����−1�e−�
{
�S− J �

�J−1

�J − 1�! + J
�J

J !
}
> 0

otherwise. Because greater exposure to shortage costs will
generally correspond to reduced exposure to holding costs,
we would expect the above property to be compromised by
increasing the value of h above zero.

5. Numerical Examples
We now report results obtained in the course of an extensive
numerical investigation into the quality of heuristic policies
for delivery determined by the location indices presented in
the preceding two sections. In all cases reported, individ-
ual locations face Poisson demands, and all delivery times
are equal to the unit of time (one day) as is the available
resource M . Hence, a single delivery (at most) is mandated
each day. In no case studied did any location fail to be
indexable.
The following heuristics were evaluated in all problems

studied:
Greedy Index (GI). At the beginning of each day, the

inventory level at each location is observed, with Jl the
level at location l, 1 � l � L. Compute the index �hl�Jl�
(see (37)) for each l. If maxl �hl�Jl� > 0, then a deliv-
ery is mandated to the location of maximal index. If
maxl �hl�Jl�� 0, then no delivery is made.
Greedy Approximate Index (GAI). This is structured

as GI, but now the location l index used is ��l�Jl�, to be
found at (44) above.
Days Remaining (DR). During each day a delivery is

made to a location which has the smallest value of Jl/�l.
The latter quantity may be understood as the mean number
of days (in the absence of any deliveries) to a stockout at
location l.
We initially studied a range of small (two and three

location) problems for which application of conventional

Table 3. Details (demand rates and replenishment
levels) for 10 locations.

l 1 2 3 4 5 6 7 8 9 10

�l 15 15 5 17.5 7.5 15 10 12.5 5 2.5
Sl 90 90 50 175 75 150 100 125 150 75

stochastic dynamic programming (DP) methods was possi-
ble, although expensive. Hence, within accuracy, the cost
rates incurred under the application of GI, GAI, and DR
could all be obtained by DP value iteration and compared
directly to optimal. In over 150 problems studied, the cost
rate of GI was never more than 0.88% above the optimal
cost rate and in the majority of cases was indistinguish-
able from it. The equivalent worst case figure for GAI was
3.17%. In no single problem studied did GAI outperform
GI. On occasion, the cost rate under DR exceeded the opti-
mum by more than 40%.
The study of small problems was complemented by con-

sideration of larger problems for which any application of
conventional DP methodologies was impossible. For these
problems, cost rate estimates were obtained by the appli-
cation of Monte Carlo simulation. As an illustration, find
in Table 3 details (values of �l, Sl) of 10 locations. In this
early part of the discussion, we shall assume that all deliv-
ery and inventory costs for the locations are identical with
l = 20, Cl = 10, hl = 0�01, 1� l� 10.
Note that this example is “in balance” in the sense that

it is possible to design a deterministic delivery schedule
which supplies each location at the “right” rate to achieve
a balance between supply and demand—i.e., each loca-
tion l receives a delivery once in every Sl/�l time periods.
One such deterministic schedule operates on a 30-period
cycle. Within each cycle, deliveries are made as described
in Table 4.
In what follows, DET denotes repeated application of

this schedule and this policy will be evaluated, along with
GI, GAI, and DR. Note that the balance mentioned above
should assist the cost performance of the policies DR and
DET which mandate deliveries in every time period.
In Table 3, find estimates of the cost rates incurred under

our heuristic policies for a range of assumed values of a
common delivery cost K. Note that the standard errors of
the cost rate estimates have not been included in Table 5.
We performed sufficient runs of our simulation model to
guarantee that these were all very small in comparison with
the observed differences between the estimated cost rates
under the respective policies.

Table 4. A deterministic delivery schedule for the 10
locations in Table 3.

Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Location 1 2 3 4 5 6 1 2 7 8 3 4 1 2 5

Period 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Location 6 7 8 1 2 3 4 5 6 1 2 7 8 9 10
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Table 5. Cost rate estimates for four delivery heuris-
tics applied to a balanced 10 location problem
(details in text).

K GI GAI DR DET

500 1	594�13 1	608�68 1	601�78 1	626�18
550 1	635�90 1	649�00 1	651�78 1	676�18
600 1	677�87 1	690�29 1	701�78 1	726�18
650 1	718�76 1	728�30 1	751�78 1	776�18
700 1	761�50 1	769�30 1	801�78 1	826�18
750 1	799�85 1	808�13 1	851�78 1	876�18
800 1	835�77 1	841�16 1	901�78 1	926�18
850 1	869�90 1	874�98 1	951�78 1	976�18
900 1	903�06 1	907�55 2	001�78 2	026�18
950 1	923�63 1	927�91 2	051�78 2	076�18

1,000 1	943�84 1	947�75 2	101�78 2	126�18

From Table 5, observe that GI consistently outperforms
GAI, although its cost rate advantage remains modest
throughout. Policies DR and DET, assisted by the prob-
lem’s balance, are indeed competitive for modest delivery
costs but become less so as K increases.
We now render the problem unbalanced by increasing

the replenishment levels from Sl (as given in Table 3) to
)Sl + 2

√
Sl&. For example, the replenishment level at loca-

tion 1 is now two standard deviations above the mean
demand rate for six time periods. In comparison with
the previous balanced example, fewer deliveries should be
made. Heuristics GI and GAI have the capacity to make
appropriate adjustments to delivery rates, while DR and
DET do not. Hence, we should expect the cost rate advan-
tage of the former over the latter to grow in comparison
with those reported in Table 5. This is indeed the case.
The new cost rate estimates may be found in Table 6.
We see that the cost rates for DR and DET are modestly
reduced in comparison with those reported in Table 5. This
reflects the fact that the adverse effect on holding costs
from increasing the replenishment levels is more than com-
pensated by the benevolent effect on shortage penalties.
The structure of GI and GAI means that they may similarly
profit from increased replenishment levels while making
fewer deliveries.

Table 6. Cost rate estimates for four delivery heuristics
applied to an unbalanced 10 location problem
(details in text).

K GI GAI DR DET

500 1	504�29 1	519�71 1	560�16 1	570�91
550 1	544�32 1	557�66 1	610�16 1	620�91
600 1	584�95 1	596�21 1	660�16 1	670�91
650 1	623�94 1	633�51 1	710�16 1	720�91
700 1	658�47 1	669�05 1	760�16 1	770�91
750 1	695�40 1	702�12 1	810�16 1	820�91
800 1	730�10 1	739�14 1	860�16 1	870�91
850 1	764�66 1	771�46 1	910�16 1	920�91
900 1	800�26 1	806�19 1	960�16 1	970�91
950 1	832�29 1	837�66 2	010�16 2	020�91

1,000 1	862�37 1	866�35 2	060�16 2	070�91

Table 7. A summary of cost rates incurred when four
delivery heuristics are applied to 200 balanced
10 location problems (details in text).

h GI GAI DR DET

0.0025 1	746�16 1	754�93 1	801�81 1	826�32
�0�08� �0�08� �0�08� �0�09�

0.005 1	747�57 1	756�17 1	803�29 1	827�79
�0�08� �0�08� �0�08� �0�09�

0.0075 1	748�78 1	757�29 1	804�77 1	829�25
�0�08� �0�08� �0�08� �0�09�

0.01 1	750�07 1	758�53 1	806�25 1	830�72
�0�08� �0�08� �0�08� �0�09�

To make it clear that the broad conclusions of the above
study are not dependent on the assumption of a common
delivery cost, the balanced problem of Table 5 was studied
with delivery costs for the locations now drawn indepen-
dently from a uniform distribution on the interval [500,
1,000]. Other features remained as previously, save only
the holding cost parameter h, which was set at one of the
four values �0�0025	0�005	0�0075	0�01
. Fifty problems
(i.e., determined by the associated values of Kl, 1� l� 10)
were randomly generated for each h-value. In all of the 200
problems generated in total, GI incurred the smallest cost
rate, followed by GAI then DR, with DET always incurring
the largest costs. In Table 7, find values of the average cost
rates incurred under the four heuristics for the 50 prob-
lems randomly generated for each value of h. Because of
the additional source of variability caused by the introduc-
tion of randomly chosen delivery costs, we include standard
errors (in parentheses) for the cost rate estimates in the
table.
In summary, we found throughout our investigation that

GI performed strongly, whether in comparison to an opti-
mal policy (in small problems) or competitor heuristics.
While it consistently outperformed GAI, the differences
in cost rates were usually small and the alternative index
heuristic based on an approximation positing continuous
observation of inventory levels is usually an acceptable
alternative when demands are Poisson.

Comment

We reflect further on the examples discussed above with
Poisson demand and with other details given in Table 3.
We do this by generalising their salient features and then
by considering an appropriate asymptotic regime. In this
way, we are able to develop stronger insights regarding the
relative status of the policies GI and DET.
Consider an L-location problem in which a single deliv-

ery (at most) is mandated each day. All locations experi-
ence Poisson demand. The problem is (for now assumed
to be) “in balance” and there exists a T -period cycle dur-
ing which each location l receives dl deliveries, where dl
divides T and where Sldl = �lT , 1 � l � L. In what fol-
lows, we say that a location is of type l if its demand rate
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and cost characteristics are identical to those of location l,
1 � l � L. We now scale this L-location problem up to
one involving nLT locations (with nT independent loca-
tions of each type l) serviced by nT trucks, where n ∈ �.
It is easy to show that there is a deterministic replenish-
ment policy (DET) in which each location of type l is
replenished at intervals all exactly equal to tl = T /dl. This
is accomplished by always assigning any truck numbered
rT + s, 0� r � n−1, to a location which matches the type
in position s of the T -period cycle above, 1 � s � T . It
is straightforward that the overall cost rate incurred under
DET may be written as

nT
L∑
l=1

(
Kl +ClE

[
min�Sl	Xl�tl�


]

+lE)�Xl�tl�− Sl

+&+ �Hl

)
�tl�

−1	 (55)

where u+ = max�u	0�, Xl�tl� is the demand at location l
over tl days, and where

�Hl = hl

Sl∑
j=0

(
Sl −

j

2

)
��ltl�

j

j! e−�ltl

+hl

�∑
j=Sl+1

Sl�Sl + 1�
2�j + 1�

��ltl�
j

j! e−�ltl

is the expected holding cost between successive deliveries
at each type l location, 1 � l � L. Now modify DET by
imposing the requirement that each scheduled delivery to
locations of type l is only made if the inventory level on the
day concerned is Jl or less, where 0 � Jl � Sl, 1� l � L.
We write the corresponding cost rate as

nT
L∑
l=1

Cl�Jl	 tl�	

which is equal to (55) when Jl = Sl, 1� l� L. If we write
J ∗
l , 1 � l � L, for the cost minimising threshold values,
then plainly

100
[{ L∑

l=1
Cl�Sl	 tl�

}{ L∑
l=1

Cl�J
∗
l 	 tl�

}−1
− 1

]
(56)

is the percentage cost excess of DET over its best modi-
fication based on thresholds and is a lower bound on the
cost excess of DET over an optimal delivery policy for the
nLT locations. The cost excess in (56) will become more
serious as the delivery costs Kl increase and as we render
the problem unbalanced by allowing the replenishment lev-
els Sl to increase. Consideration of the asymptotic regime
determined by the limit n→� will leave the cost excess
in (56) unchanged.
Now formally add to the nLT locations above nT null

locations of the kind described following Definition 1
above. This gives a “no delivery” option to each truck every
day. The problem of optimally serving the nLT locations

with nT trucks, each of which makes (at most) one deliv-
ery per day, may be formulated as a restless bandit with
nT �L + 1� projects (nT of them null), nT of which are
made active at each period. The asymptotic regime deter-
mined by the limit n → � in which the proportion of
projects activated remains constant is precisely that consid-
ered for restless bandits by Weber and Weiss (1990), who
demonstrated that, subject to mild conditions, the index
policy (here the greedy index heuristic) is asymptotically
optimal.
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