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1. Introduction
Customers arrive seeking service, which may be provided
at one of a heterogeneous collection of service stations.
At each customer arrival, queue-length information for each
station is available to inform a decision concerning whether
the customer should be admitted for service at all and,
if admitted, at which station she should best be served.
However, the customers are impatient or perishable and
have a natural lifetime of availability for useful service. For
any admitted customer, should that lifetime expire before
the customer has been served to completion (or, possibly,
before she enters service), then she is lost from the sys-
tem. Rewards are earned by successful service completions,
whereas costs are incurred when customers are either dis-
carded (not admitted) or lost from the system. The goal of
optimisation is to control admissions to the system and to
route admitted customers in a way that maximises some
measure of net reward rate earned.

Gaver and Jacobs (2000) have argued the importance
of incorporating customer impatience into service system

models. They cite examples of telephone callers placed on
hold who are prone to hang up, medical emergency patients
who may die while awaiting treatment, and military scenar-
ios in which mobile targets may move out of range while
under attack. They also argue that in such contexts a cus-
tomer’s lifetime for service will usually be unknown to the
system controller (and possibly also to the customer her-
self). This is in contrast to situations where tasks are to
be scheduled in the face of known hard deadlines. (See
Jiang et al. 1996; Lehoczky 1996, 1997a, b; Doytchinov
et al. 2001 for examples of the latter.) Consider, for exam-
ple, a military scenario in which a Blue force is defending
a region from attack by an opposing Red force. As Red
combatants enter the region and are detected, they are allo-
cated to a member of the Blue force (or, possibly, to a
combat group comprising several Blues) for engagement.
The presence of a Red in the region gives the Blue defen-
sive force a window of opportunity of unknown duration
in which to effect a kill. As soon as Red leaves the region,
the opportunity has gone. The goal for the Blue force is the
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maximisation of its kill rate or some measure of return rate
from Reds killed net of the penalties incurred when Reds
escape unharmed. The diverse nature of the Blue force may
mean, for example, that the speed with which kills can be
effected may differ considerably across force members.

Despite the pervasiveness of the phenomenon of cus-
tomer impatience, there have until recently been few pub-
lished studies whose primary goal is the optimisation of
service system performance and which have attempted to
take explicit account of it. Movaghar (1997) has estab-
lished the optimality of a form of “join the shortest queue”
(JSQ) in the context of a finite-capacity queueing system
with Markovian dynamics and identical single-server sta-
tions. Motivated by applications in call centres, Bassamboo
et al. (2005) have discussed routing and admission control
in high-volume systems. They give an asymptotic analysis
that makes use of a stochastic fluid approximation. Garnett
et al. (2002) give an account of the impact of customer
impatience on call centre design. Both Glazebrook et al.
(2004) and Harrison and Zeevi (2004) have studied the
dynamic allocation of service effort in the face of customer
losses. Ward and Glynn (2005) develop a heavy-traffic dif-
fusion limit for a GI/GI/1 queue with balking or reneging.

Even without the issue of premature customer depar-
tures, problems concerning the optimal dynamic routing
of customers for service present a formidable challenge to
analysis. Probably the strongest line of contributions have
been those seeking to establish the optimality of JSQ with
respect to a range of performance objectives in the context
of systems of identical service stations. Important contri-
butions include those of Winston (1977), Weber (1978),
Hordijk and Koole (1990), Menich and Serfozo (1991),
and Koole et al. (1999). Armony (2005) discusses the per-
formance of a simple routing rule in a heavy-traffic limit
and gives an extensive bibliography of related contribu-
tions. Additionally, Krishnan (1987), Tijms (1994), Whittle
(1996), and Ansell et al. (2003a) have developed routing
policies using dynamic programming policy improvement.

Recently, Whittle (1996) followed by Niño-Mora (2002)
have proposed the use of methodologies related to the class
of so-called restless bandit problems to solve routing prob-
lems. This proposal is not without its difficulties because
restless bandit problems are now known to be intractable;
see Papadimitriou and Tsitsiklis (1999). Whittle’s (1988,
1996) approach to the analysis of restless bandits uses a
Lagrangian relaxation of the original optimisation problem
to develop an index. The latter generalises the classical Git-
tins index (1979), which yields optimal policies for the class
of multiarmed bandit problems. Whittle proposes that his
index be used to construct a natural class of heuristics for
restless bandit problems. Weber and Weiss (1990, 1991)
have proved the asymptotic optimality of this heuristic
under given conditions, whereas Glazebrook et al. (2002),
Ansell et al. (2003b), and Glazebrook et al. (2005) have
demonstrated empirically its strong performance in a variety
of application contexts. Further, Glazebrook et al. (2002)

have discussed the development of bounds on the degree of
reward suboptimality of Whittle’s index policy.

However, the challenge to successful implementation of
Whittle’s ideas is substantial. For Whittle’s index to be
properly defined, the object to which the index attaches
(which in the case of routing problems is a service station
with a given head count) must pass an indexability test.
Determination of whether the test is passed is far from
straightforward in general. Niño-Mora (2001) has devel-
oped sufficient conditions by the use of polyhedral methods
that exploit the fact that the system concerned can be shown
to satisfy partial conservation laws. The Whittle indices
themselves emerge from the deployment of an adaptive
greedy algorithm. All of this can be viewed as a devel-
opment of the polyhedral analysis of multiarmed bandit
problems given by Bertsimas and Niño-Mora (1996). Niño-
Mora (2002) further developed these methods with a view
to their application to routing problems.

Although acknowledging the power of the polyhedral ap-
proach, it is formidably difficult and necessarily indirect.
The authors would argue that rather simpler and more direct
accounts of indexability are often available. We would fur-
ther argue, however, that polyhedral methods certainly have
an important contribution to make to the performance anal-
ysis of routing heuristics. In demonstration of these points,
we give a simple direct account of a general Markovian
model for dynamic admission control/routing to heteroge-
neous service stations in the face of customer impatience.
For these models, indexability is easily established and
is close to guaranteed. Only mild conditions on system
parameters are needed. The Whittle indices that define the
heuristic are direct products of the indexability analysis
and, in many cases of interest, can be given explicitly.
In some simple cases, the index heuristic modifies a naïve
individually optimal proposal by taking due account of the
impact of routing decisions on system congestion.

Following the indexability analysis, we use the nature
of solutions to the Lagrangian relaxation (used to develop
the indices) to gain insights regarding the strength of per-
formance of the index heuristic. Although tightness of the
Lagrangian relaxation is sufficient for strong performance
of the index heuristic, it is not necessary. Stronger perfor-
mance analyses become available when we deploy polyhe-
dral methods to develop performance bounds for the index
heuristic. This is in the spirit of Glazebrook and Niño-Mora
(2001) and Glazebrook et al. (2002). Under given condi-
tions, we are able to assert the optimality of the index
heuristic in a range of asymptotic regimes. These include
simple light and heavy-traffic limits (Examples 4 and 5,
respectively, in the paper) and a limit in which the cus-
tomer arrival rate and the station service rates grow in scale
(Example 11). The performance bounds are also able to
identify cases where the performance of the index heuristic
is relatively weak (Examples 8 and 10).

The remainder of this paper is structured as follows.
In §2, we give details of a general class of admission con-
trol/routing problems that incorporate customer impatience.
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An account of Whittle’s proposal in the form in which it will
be applied in the paper is given in §3. In §4, we show that
the indexability test is passed and give the Whittle indices
that determine our heuristic. Section 5 gives a discussion of
what insights may be gleaned from the Lagrangian relax-
ation used in §3 concerning the strength of performance of
the index policy. In §6, we present performance bounds for
the index heuristic and use them to establish its optimality
in a range of asymptotic regimes. Section 7 contains a proof
of the heavy-traffic optimality of the index policy. Numer-
ical studies are used to illustrate and support the material
in §§5–7. To improve the paper’s readability, many of the
mathematical details have been placed in an electronic com-
panion, which is part of the online version that can be found
at http://or.pubs.informs.org/.

2. The Model
Our problem of admission control/routing impatient cus-
tomers for service is modelled as a semi-Markov decision
process (SMDP) as follows:

(i) The system is observed at all times t ∈�+. Its state
at t, ��t�, is an M-vector whose mth component is �m�t�
and is the number of customers, hereafter referred to as the
head count, waiting at station m (including any in service)
at t, 1�m�M .

(ii) New customers arrive into the system according to
a Poisson process of rate 	. Upon arrival, each customer
must be either refused admission or routed to one of the M
stations for service. Admission and routing decisions are
nonanticipative and are made in the light of the history of
the system (states occupied and actions taken) to date.

(iii) Between arrivals, the state of each station evolves
as a continuous-time Markov process. Each station m has
an associated sequence of service rates 
�m�n� n ∈�+� and
loss rates 
�m�n� n ∈�+�, 1�m�M . Hence, if the system
is currently in state �= 
�1��2� � � � ��M�, then an expo-
nentially distributed amount of time will elapse before the
next random event occurs, whether an arrival, a service
completion, or a loss from the system. In state �, the rate
of this exponential time is given by

	+
M∑
m=1

��m��m
+ �m��m

�≡�����

Further, the next random event will be an arrival, a service
completion at station m, or a loss at station m with proba-
bilities 	
�����−1, �m��m


�����−1, and �m��m

�����−1,

respectively. Should the event be a service completion at sta-
tion m, then a positive reward Rm is received, 1�m�M .
A loss (renege) from station m will incur a nonnegative
penalty Cm, 1 � m � M . Any refusal to admit to the
system (discard) incurs a nonnegative penalty D, where
D�maxm Cm.

Example 1. Suppose that station m has sm identical servers
working in parallel. Service times are independent and

identically distributed (i.i.d.) exponential with positive
rate �m. Further, each admitted customer has a natural life-
time during which she is available for service. These life-
times are i.i.d. exp��m�, where �m > 0, and are independent
of all other aspects of the system. If a customer’s lifetime
expires before her service is completed, she is lost to the
system. Otherwise, her service is completed successfully
and a reward is earned. For such a system, we have

�m�n =�m min�n� sm�� n ∈�+�

and

�m�n = n�m� n ∈�+�

Example 2. This modifies Example 1 in that now an ad-
mitted customer is lost to the system only if her natural
lifetime expires before she enters service. Otherwise, she
enters service and remains in the system for the service to
be completed successfully. We now have

�m�n =�min�n� sm�� n ∈�+�

and

�m�n = �m�n− sm�
+� n ∈�+�

Many other examples are plainly possible including
those where the renege rate depends upon position in the
queue.

(iv) The goal of analysis is to determine a policy for
admission control and routing, which will maximise the
average net reward earned by the system per unit of time
over an infinite horizon or which will come close to
doing so. Note that in the absence of losses (�m�n = 0 for
all m�n), it will never be optimal to refuse admission, and
any stable routing policy for the system (should one exist)
will earn reward rate R	 when Rm =R, 1�m�M . Should
station rewards differ, then as much use should be made of
high reward stations as possible. It is thus the presence of
losses that makes this problem challenging.

The policies of prime interest are those in the stationary
class �. These make decisions on the basis of the current
system state and may be considered as maps from the state
space (the set of possible system states) �M to the action
space 
1�2� � � � �M�∗�. In the latter, m ∈ 
1�2� � � � �M� is
a decision to route an incoming customer to station m,
whereas ∗ is a decision to refuse admission (discard). In the
course of our theoretical development in the next section,
we shall relax our problem by extending policy class �
to �′. Members of �′ are represented by maps from �M to
the set of all subsets of 
1�2� � � � �M�, denoted 2
1�2� ����M�.
Think of �′ as an expanded class of stationary policies
that at every arrival epoch may increase by one the head
count at any number of service stations. Further, � may
be thought of as the subset of �′ consisting of maps
whose range within 2
1�2� ����M� is restricted to subsets of
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1�2� � � � �M� whose cardinality is zero (the discard action)
or one (a routing action). Generic policies (of whichever
class) are denoted u.

We shall impose the following condition on the prob-
lem parameters. Note that here and throughout the paper
we shall use the terms “increasing” and “decreasing” in
their weak sense. We shall add the qualifying “strictly” as
required.

Condition (C1). The sequences 
�m�n� n ∈ �+� and

�m�n� n ∈ �+� are nonnegative and increasing such that
�m�n+�m�n is always strictly positive. Further, for each m,
there exists nm for which

�m�n + �m�n > 	� n� nm� (1)

Condition (C1) plainly guarantees stability—indeed, is
conservative in guaranteeing the stability of each station
when facing the entire arrivals stream. We have opted for
(C1) for two reasons. First, it is satisfied by most rea-
sonably modelled systems. Indeed, it is usually the case
that 
�m�n� n ∈�+� is divergent, as in Examples 1 and 2.
Second, relaxation of the problem to the policy class �′

above involves consideration of a class of admission control
problems in which each individual service station faces the
entire arrival stream. The guarantee of stability that comes
from (C1) greatly simplifies this discussion.

(v) The admission control/routing problem outlined
in (i)–(iv) could in principle be solved by the methods
of stochastic dynamic programming. See, for example,
Puterman (1994) and Tijms (1994). However, this is an
unrealistic proposition for problems of reasonable size.
Neither has it yet proved possible to provide any helpful
characterisation of optimal policies other than those that are
available from general DP theory (for example, that there
must exist an optimal policy in the stationary class �).
Hence, we follow Whittle (1996) and Niño-Mora (2002) in
proposing the development of index heuristics for admis-
sion control and routing. In the following sections, we
shall describe how a prescription of Whittle (1988) may be
deployed to construct such heuristics under quite general
conditions.

3. Indexability of Service Stations
Let u ∈� be a stationary policy for admission control and
routing. The average reward rate earned under u over an
infinite horizon may be written as

Ru =
M∑
m=1


Rm�m�u�−Cm�m�u��−D	̄�u�� (2)

where �m�u� is the rate of service completions achieved at
station m, �m�u� is the rate of losses experienced at sta-
tion m, and 	̄�u� is the rate of discards under u. However,
noting that

M∑
m=1


�m�u�+�m�u��+ 	̄�u�= 	�

we infer that (2) may be rewritten as

Ru =
M∑
m=1


�Rm +D��m�u�+ �D−Cm��m�u��−D	� (3)

We now introduce

�m�u�= �m�u�+�m�u� (4)

as the rate at which customers are admitted to station m
under u. Using (4) within (3) gives

Ru =
M∑
m=1


�Rm +Cm��m�u�+ �D−Cm��m�u��−D	� (5)

The inequalities

M∑
m=1

�m�u�� 	 ⇐⇒
M∑
m=1


	−�m�u��� �M − 1�	 (6)

express the fact that the total rate at which customers are
routed to the M stations is bounded above by the arrival
rate 	. Our optimization problem may be expressed as

Ropt = sup
u∈�

Ru� (7)

We now follow Whittle (1988) in relaxing the problem by
extending the policy class from � to �′, while incorporat-
ing constraint (6) into the objective in a Lagrangian fashion.
We write, for W ∈�,

Ropt�W�= sup
u∈�′

( M∑
m=1


�Rm +Cm��m�u�+ �D−Cm��m�u��

−D	+W

[ M∑
m=1


	−�m�u��−�M−1�	
])

� (8)

After some algebraic manipulation, (8) yields the more con-
venient form

Ropt�W�= sup
u∈�′

M∑
m=1

��Rm +Cm��m�u�

+ �W −D+Cm�
	−�m�u���

+	

{
�D−W��M − 1�−

M∑
m=1

Cm

}
� (9)

Plainly, from (5)–(8) and the fact that �⊆�′, we conclude
that

Ropt�W��Ropt� W � 0� (10)

However, by construction of the policy class �′, we have
a stationwise decomposition of Ropt�W� in (9) and write

Ropt�W�=
M∑
m=1

Ropt
m �W�

+	

{
�D−W��M − 1�−

M∑
m=1

Cm

}
� (11)
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where

Ropt
m �W�≡ sup

u∈�′
m

�Rm +Cm��m�u�+ �W −D+Cm�

· 
	−�m�u��� 1�m�M� (12)

In (12), Ropt
m �W� is the value of an optimisation problem

defined in terms of service station m alone, 1 � m � M .
Imagine station m facing the entire incoming stream of
arriving customers (with rate 	). The class �′

m contains
stationary policies for determining whether to admit each
incoming customer to service at station m (accept) or not
(discard). The goal in (12) is to maximise an economic
objective with two components. The first, �Rm+Cm��m�u�,
is a reward rate earned from customers served to completion
where an income Rm + Cm is generated by each. The sec-
ond, �W −D+Cm�
	− �m�u��, is a reward rate obtained
from payment of an amount W − D + Cm (where W is
the Lagrange multiplier) whenever an arriving customer is
rejected. Note that Condition (C1) guarantees that the head
count at station m remains finite under all policies in �′

m.
Denote the admission control problem for station m out-

lined in the previous paragraph by P�m�W�, 1 �m�M ,
W ∈�. As is often the case with Markov and semi-Markov
decision processes under the average reward criterion, there
may be a significant issue regarding the nonuniqueness of
optimal policies for P�m�W�, even within the stationary
class. We shall resolve this nonuniqueness in two steps.
Firstly, we shall argue that there always exists an optimal
policy in the class of monotone policies. Hence, in consid-
eration of the P�m�W�, W ∈ �, we may without loss of
generality restrict to the monotone class. A monotone pol-
icy is such that rejection of incoming customers when the
number of customers at the station (head count) is n, say,
implies rejection for all greater values of the head count.
For the subsequent discussion, we shall use a for the action
“accept incoming customer” and b for “discard incoming
customer.” We use B�u� for the rejection threshold for sta-
tionary policy u, namely,

B�u�= inf
n�u�n�= b�� (13)

where B�u�=� for any policy that accepts all incoming
customers. In (13) and throughout, we use u�n� for the ac-
tion taken by stationary policy u when the head count is n.

Restriction to the monotone class does not quite resolve
the nonuniqueness issue. For any m, there may be a (possi-
bly countably infinite) set of isolated values of W for which
there is more than one monotone policy that is optimal for
P�m�W�. When this is the case, we shall choose the one
with the smallest rejection threshold. If we use �m�W� for
the set of optimal monotone policies for P�m�W�, we write

�m�W�= min
u∈�m�W�

B�u� (14)

for this minimal threshold and um�W� for the correspond-
ing monotone policy. We shall also use u�W� for the policy

in �′ that operates um�W� at each m, 1 � m � M , and
which thus achieves Ropt�W�.

The question now arises as to whether we can utilise
the structure of these policies to develop heuristics for the
original routing problem in (7), which is our main con-
cern. To pursue this, we shall require each policy um�W�,
1 � m �M , to have the following plausible property: As
the Lagrange multiplier W increases (along with the pay-
ment for rejection W − D + Cm), the collection of states
in which um�W� chooses the discard action b for P�m�W�
also increases. Whittle (1988) calls this property indexabil-
ity. It is formalised in Definition 1.

Definition 1. Station m is indexable if the rejection
threshold �m�·�# �→�∪ 
�� is decreasing, namely,

W >W ′ ⇒ �m�W���m�W
′�� 1�m�M�

Should we have indexability for station m, the idea of
an index for state (i.e., head count) n as the minimum W
such that the optimal rejection threshold falls below n is a
natural one.

Definition 2. When station m is indexable, the Whittle
index for station m in state n is given by

Wm�n�= inf
W�n��m�W��� 1�m�M�

Hence, the Whittle index for station m is the smallest
Lagrange multiplier W such that arrivals are rejected
when n customers are there. It is natural to interpret
Wm�n�−D+Cm as a fair charge on station m for admitting
(equivalently, a fair compensation for rejecting) an arriving
customer when its current head count is n. If all M service
stations are indexable, then the relaxation in (8)–(10) will
be solved by policy u�W� such that, if a customer arrives
at the system at some time t, (copies of) the customer are
routed to each station m for which Wm
�m�t�� >W , but not
to any station for which Wm
�m�t�� � W . Note that if all
the stations have nonpositive indices and W � 0, then u�W�
will not route the incoming customer to any station. In these
circumstances, u�W� refuses the customer admission.

We now follow Whittle (1988) in arguing that the index-
like nature of solutions to the Lagrangian relaxation of
(8)–(10) makes it reasonable to propose an index heuris-
tic for our original problem in (7), when all stations are
indexable. In the event of an arrival at the system at time t,
this index heuristic will route the incoming customer to
whichever of the stations has the largest index (and to any
of the index-maximising stations in the event of a tie), pro-
vided this index is positive. If all index values are nonpos-
itive, the arriving customer is refused admission.

We now proceed to study the single-station problems
P�m�W�, 1 � m �M , W ∈ �, and are able to show that
the stations are guaranteed to be indexable. We describe
how indices may be computed and give the station indices
in closed form in particular cases.
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4. Indices for Service Stations
Following §3, we study the single-station admission con-
trol problems P�m�W�, 1�m�M , W ∈�. In doing so, it
will be notationally convenient to drop the station identifier
m and refer to the problem P�W�, W ∈ �. Recall that the
problem of interest concerns a single service station that is
free to admit arriving customers or not. Customers admit-
ted to the station may go on to earn a reward �R+C� upon
service completion, should they not be lost from the sys-
tem before that. A compensating reward �W −D + C� is
earned whenever a customer is not admitted to the station.
The immediate goal of analysis is to determine when cus-
tomers should be admitted to the station to maximise the
average overall reward rate earned by the system over an
infinite horizon. This problem is formulated as an SMDP
as follows:

(i) The state of the system at time t ∈ �+ is � �t�, the
number of customers at the station. New customers arrive
at the station according to a Poisson process of rate 	 (set
equal to the system arrival rate of §2). If � �t� = n, then
at t the station is subject to a service rate �n and loss
rate �n. The sequences 
�n� n ∈�+� and 
�n� n ∈�+� sat-
isfy (C1). Hence, if � �t� = n, the first event following t
will occur at time t + A, where A ∼ exp�	 + �n + �n�.
With probabilities 	�	 + �n + �n�

−1, �n�	 + �n + �n�
−1,

and �n�	+�n + �n�
−1 the event concerned will be, respec-

tively, an arrival, a service completion, and a loss to the
system. At every service completion, a reward R + C is
earned. Losses from the system earn nothing.

(ii) The decision epochs are the times of customer
arrivals at the station. Each incoming customer will either
be admitted to the system (action a, accept) or not
(action b, reject). In the latter case, a compensating reward
W −D+C is received. A stationary policy u is a rule for
choosing between a and b at each decision epoch in the
light of the current state. The immediate goal of analysis
will be the determination of a stationary policy to max-
imise the overall average reward rate earned over an infinite
horizon.

Find in the appendix a proof of the fact that there exists
a monotone policy that is optimal for P�W�. Henceforth,
we restrict to the monotone class. In what follows, use of
N ∈ �∪ 
�� as a policy identifier is taken to indicate the
monotone policy u with B�u� = N . By standard results,
the stationary distribution of the system state (head count)
under N , written 
&N

x �0� x�N�, is given by

&N
x = 	x
M�x��−1&N

0 � 0� x�N� (15)

where

M�x�=
x∏

y=1

��y + �y�

and

&N
0 =

[ N∑
x=0

	x
M�x��−1

]−1

� (16)

We now write the average reward rate earned under mono-
tone policy N as

RN�W�= �R+C��N + �W −D+C�	&N
N � (17)

where

�N =
N∑
x=1

�x&
N
x � (18)

Please note that it is trivial to show that under Condi-
tion (C1) the sequence 
&N

N � N ∈�� is strictly decreasing,
whereas 
�N � N ∈�� is increasing and bounded above by
	.

If we write �Ropt�W� for the optimal value of P�W�, then
from (17) we have

�Ropt�W�= max
N∈�∪
��


�R+C��N +�W −D+C�	&N
N �� (19)

Recalling (14), we use ��W� for the smallest N -value
achieving the maximum in (19).

Theorem 1. The station is indexable.

Proof. From (19), the function �Ropt�W� is the upper enve-
lope of a collection of functions that are linear and increas-
ing in W . It follows that �Ropt�W� is convex and increasing.
It is easy to show that there exist W -values, denoted W1

and W�, satisfying

��W�=
{

0� W �W1�

�� W <W��
(20)

Further, it is straightforward that 	&��W�

��W� is the right gra-
dient of �Ropt�W� for every W ∈ �. It now follows from
the convexity of �Ropt�W� and the fact that 
&N

N � N ∈ ��
is strictly decreasing that ��W� must be decreasing in W .
We conclude that the station is indexable. �

Having established that the station is indexable, we now
proceed to identify index values. There are two cases. One
possibility is that ��W� takes on a finite number of dis-
tinct values only as W ranges through �. It then follows
that �Ropt�W� is a piecewise-linear function with a finite
number of linear pieces. The W -values of the hinges (the
points of nondifferentiability of �Ropt�W� at which the lin-
ear pieces meet) correspond to index values. Alternatively,
��W� may take on a countably infinite number of distinct
values. In this case, the W -values of the hinges that con-
nect linear pieces of �Ropt�W� of positive gradient are index
values. These will have a limit point that is the value W�
in (20). We now describe the general index structure before
proceeding to special cases. Mathematical details are given
in the appendix.

Index values are computed by the following algorithm:
Step 1. Set

W1 =D−C + �R+C�	−1 sup
n�1


�n�1−&n
n�

−1�� (21)

with N1 defined to be the largest maximiser in (21) or � if
the supremum is achieved in the limit n→�. The value
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W1 is also characterised in (20). It is the index value when
the head count at the station is less than N1. We write

W�n�=W1� n < N1� (22)

If N1 =�, stop. Otherwise, go to Step 2.
Step k. For k� 2, set

Wk =D−C + �R+C�	−1

· sup
n�Nk−1+1


��n −�Nk−1��&
Nk−1
Nk−1

−&n
n�

−1�� (23)

with Nk defined to be the largest maximiser in (23) or � if
the supremum is achieved in the limit n→�. The value
Wk is the index value when the head count at the station is
in the range Nk−1 � n<Nk. We write

W�n�=Wk� Nk−1 � n<Nk� (24)

If Nk =�, stop. Otherwise, go to Step k+ 1.
Please note that it is always the case that the index is

decreasing in the head count. We now proceed to discuss an
important special case.

Theorem 2. If the sequence 
��n+1 −�n��&n
n −&n+1

n+1�
−1�

n ∈�� is decreasing, then the Whittle index, W�·�# �→�,
is given as follows#

W �n�=D−C + �R+C�	−1��n+1 −�n��&n
n −&n+1

n+1�
−1

=D−C + �R+C�

·
[
�n+1 +

n∑
x=1

	x
M�x��−1��n+1 −�x�

]

×
[
�n+1 + �n+1 +

n∑
x=1

	x
M�x��−1

· ��n+1 + �n+1 −�x − �x�

]−1

� n ∈�� (25)

Proof. We use the values Nk, k� 1, that arise in (22)–(24)
above when computing index values. For convenience, we
also write N0 = 0. Under the conditions outlined in the
statement of the theorem, it follows that if Nk−1 <�, then
the maximisations in (21) and (23) are achieved by all n in
the range Nk−1 + 1� n� Nk when k� 1. It follows easily
that

Wk =D−C + �R+C�	−1��n+1 −�n��&n
n −&n+1

n+1�
−1�

Nk−1 � n<Nk� k� 1� (26)

The result now follows from the assertions in (22) and
(24). Explicit formulae for �n, &n

n, which use (15), (16),
and (18), yield the alternative form of the index in (25).
This concludes the proof. �

Theorem 2 raises the additional question of whether sim-
ply stated conditions exist that guarantee that 
��n+1−�n� ·
�&n

n − &n+1
n+1�

−1� n ∈ �� is indeed a decreasing sequence.
The following Conditions (C2) and (C3) are sufficient. A
proof of Lemma 3 may be found in the appendix.

Condition (C2). If �n = �n+1 for any n � 1, then
�n =�n′ for all n

′ � n.

Condition (C3). The quantity ��n+1−�n���n+1−�n�
−1 is

increasing over the range of n for which the denominator
is positive.

Lemma 3. Under Conditions (C2) and (C3), the sequence

��n+1 −�n��&n

n −&n+1
n+1�

−1� n ∈�� is decreasing.

Conditions (C2) and (C3) hold in a large number of
important cases. In particular, they will be satisfied for any
situation in which the sequence 
�n� n ∈ �� is increasing
concave with the sequence 
�n� n ∈ �� increasing convex.
They are certainly satisfied in the examples described in §2.
We now present the form of the index for these cases.

Example 1. If �n = �min�n� s� and �n = �n, then from
Theorem 2 and Lemma 3, the Whittle index is given by

W�n�=




D−C + �R+C����+ ��−1� n < s�

D−C + �R+C��

{s−1∑
x=0

�&x
0�

−1

}

·
{
�

s−1∑
x=0

�&x
0�

−1 + �
n∑

x=0

�&x
0�

−1

}−1

� n� s�

In the single-server case s = 1, this becomes

W�n�=D−C+�R+C��

[
�+��n+1�+

n∑
x=1

�	x�n−x+1�

·
{ x∏
y=1

��+ �y�

}−1]−1

� n ∈�� (27)

Example 2. If �n = �min�n� s� and �n = ��n− s�+, then
from Theorem 2, the Whittle index is given by

W�n�=




D+R� n< s�

D−C + �R+C��

{s−1∑
x=0

�&x
0�

−1

}

·
{
�

s−1∑
x=0

�&x
0�

−1 + �
n∑

x=s
�&x

0�
−1

}−1

� n� s�

In the single-server case s = 1, this becomes

W�n�=D−C + �R+C��

[
�+ �n+

n∑
x=1

�	x�n− x+ 1�

·
{ x∏
y=1

��+ �y�

}−1]−1

� n ∈�� (28)

Comment

To further understand the Whittle indices that emerge from
the above analysis, focus on Example 1 and the index
for the single-server case given in (27). First, note that
if an incoming customer is routed to a station with these
dynamics when n customers are already present and service
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is according to FCFS, then the probability that a cus-
tomer will be served to completion is easily shown to
be �
�+ ��n+ 1��−1. Recall from the discussion follow-
ing Definition 2 that in the context of problem P�W�,
W�n�−D+C may be understood as a fair charge on the
station for admitting the customer. A naïve proposal would
be that this fair charge should simply be the expected return
from the admitted customer. The resulting index �W�n�
would satisfy

�W�n�−D+C = �R+C��
�+ ��n+ 1��−1�

and hence

�W�n�=D−C+�R+C��
�+��n+1��−1� n ∈�� (29)

The indices in (27) and (29) are in agreement when n= 0
and the arriving customer is able to proceed directly to
service. However, in general, the charge in (29) has failed to
take account of the negative impact of increased congestion
resulting from the decision to admit. The quantity in (29) is
thus larger than the fair charge in (27) when n � 1. The
two indices coincide in a light-traffic limit (i.e., as 	→0) in
which the negative impact of a decision to admit on future
customers may be safely neglected. A heuristic based on
the index in (29) (and constructed as in the concluding
paragraph of §3) is called the individually optimal policy.
This discussion is easily extended to Example 2 and to
cases with multiple servers.

5. The Performance of the Index
Policy I—Insights from the
Lagrangian Relaxation

We have seen from the preceding sections that the
Lagrangian relaxation of our admission control/routing
problem given in (8) and (9) is easily solved. Recall that
when W � 0, Ropt�W� is achieved by any policy in �′,
which routes each incoming arrival to those stations whose
Whittle index is no less than W . We shall refer to the value
of the minimisation problem

min
W�0

Ropt�W� (30)

as REL (short for relaxation) in what follows. From (10),
we conclude that REL �Ropt. In this section, we shall dis-
cuss what insights can be derived from solutions to the
Lagrangian relaxation regarding the quality of performance
for the original problem in (7) of the proposed index heuris-
tic, which routes incoming customers to whichever of the
stations has the largest index (if positive, and discards if all
indices are negative).

We first note from the development in §3 that, should
either

(a) Ropt�0� be achieved by a policy in �, or
(b) there exists a positive W -value for which Ropt�W� is

achieved by a policy in � that never discards,

then it must follow that REL =Ropt and an index policy is
optimal for our admission control/routing problem in (7).
In Example 3, we give an instance of (b). In Examples 4–7,
we describe a range of asymptotic regimes for our model,
where we either have (a) (Examples 5 and 6) or (b) (Exam-
ples 4 and 7) in the limit considered, suggesting forms of
asymptotic optimality for the index policy. In all examples,
we shall suppose that station 1 has the largest Whittle index
when empty and that W1�0� > 0.

Example 3. Suppose that station 1 has stochastic dynam-
ics such that the supremum in (21) is achieved in the limit
n→�, and hence N1 = �. This happens, for example,
under an assumption (somewhat implausible in practice)
that ��1� n+1 − �1� n���1� n+1 − �1� n�

−1 is decreasing in n.
It will then follow from (22) together with the fact that
each station index is decreasing in its head count, that

W1�n�=W1�0��max
m� n̄


Wm�n̄��� n ∈�� (31)

where the maximisation in (31) is over 2 � m � M and
n̄ ∈�. Hence, station 1 always has a maximal index irre-
spective of its head count. It follows that there exists a
policy achieving Ropt
W1�0�� that routes each arriving cus-
tomer to station 1 only and which thus is a non-discarding
policy belonging to �. It must follow that REL =Ropt and
that the index policy solves our admission control/routing
problem in this case.

For clarity and simplicity, Examples 4–7 below will be
presented under an assumption that all stations have a sin-
gle server and a stochastic structure of the kind described in
Example 2. Note from (28) that for Example 2, the Whittle
index of an empty station is independent of the customer
arrival rate 	 and of the station’s service rate �.

Example 4 (Light Traffic). Suppose that the arrival rate
	 tends to zero, with other model parameters remaining
fixed. For very small 	, arriving customers will (under any
policy in �′) encounter an empty system with probability
close to one. There exists a policy achieving Ropt
W1�0��
that will route a customer arriving at an empty system to
one station (station 1) only. It follows that there exists a
policy in � (the index policy) that comes close to achieving
Ropt
W1�0�� and, hence, also comes close to achieving Ropt.
See (b) above. A formal analysis of the asymptotic opti-
mality of the index policy in a light-traffic limit will be
given as Theorem 6 in the next section.

Example 5 (Heavy Traffic). Suppose that the arrival
rate 	 diverges to infinity, with other model parameters
remaining fixed. For all sufficiently large 	, it is possible
to assert the existence of head count �Xm with the property
that the station m index at �Xm (and below) is positive while
that at �Xm + 1 (and above) is negative, 1 � m � M . For
very large 	, under an optimal policy for the Lagrangian
relaxation with W = 0, almost all arriving customers will
either encounter a system in which all station indices are
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negative (head counts are �Xm + 1, 1 � m �M) in which
case the new arrival will be discarded, or one in which
exactly one station has positive index (with head count �Xm

for the appropriate m) and will receive the customer. The
existence of a policy in � that comes close to achieving
Ropt�0� when 	 is large follows. It follows from (a) above
that the index policy will also come close to achieving Ropt.
A formal analysis of the asymptotic optimality of the index
policy in a heavy-traffic limit will be given in §7.

Example 6 (Slow Service). Suppose that all service
rates �m tend to zero, with other model parameters remain-
ing fixed. From the form of the indices for Example 2 given
in §4, it is easy to see that if D < Cm, 1 � m �M , then
in this limit station indices are positive if and only if the
station is empty. Now consider the system in steady state,
evolving under an optimal policy for the Lagrangian relax-
ation with W = 0. When maxm �m is very small, almost
all arriving customers will either encounter a system in
which all station indices are negative (all head counts are
one) in which case any new arrival will be discarded, or
one in which exactly one station has positive index (and is
empty). The existence of a policy in � that comes close
to achieving Ropt�0� when maxm �m is small and D <Cm,
1�m�M , follows. It follows from (a) that the index pol-
icy will come close to achieving Ropt.

Example 7 (Fast Service from Station 1). Suppose
that service rate �1 diverges to infinity, with all other param-
eters remaining fixed. For very large �1, there exists an opti-
mal policy for the Lagrangian relaxation with W =W1�0�
under which almost all arriving customers will find sta-
tion 1 empty and will be routed there (only). It follows that
the index policy comes close to achieving Ropt
W1�0�� and
hence Ropt when �1 is large.

In Table 1, find numerical results relating to some two-
station problems, with each station having a single server

Table 1. Average reward rates and measures of the tightness of the Lagrangian relaxation for
two-station problems with R1 = 1�5, �1 = 1�5, R2 = 1, �2 = 1, C = 1�0, D= 0�5.

	 � INDEX OPT REL ,2 	 � INDEX OPT REL ,2

0.5 0�1 0�6440 0�6440 0�6440 0�0047 2�0 0�1 2�0644 2�0658 2�1704 0�2742
0.5 0�2 0�5629 0�5629 0�5631 0�0134 2�0 0�2 1�7192 1�7210 1�8607 0�2803
0.5 0�3 0�4971 0�4971 0�4975 0�0483 2�0 0�3 1�4587 1�4707 1�5941 0�2658
0.5 0�4 0�4404 0�4404 0�4408 0�0427 2�0 0�4 1�2664 1�2667 1�3781 0�3060
0.5 0�5 0�3906 0�3906 0�3910 0�0380 2�0 0�5 1�0920 1�0934 1�1964 0�3137

1.0 0�1 1�2087 1�2088 1�2121 0�0885 2�5 0�1 2�2853 2�3016 2�4913 0�2888
1.0 0�2 1�0392 1�0392 1�0459 0�1490 2�5 0�2 1�8866 1�9074 2�0948 0�2674
1.0 0�3 0�9047 0�9048 0�9133 0�1343 2�5 0�3 1�6097 1�6157 1�8063 0�2686
1.0 0�4 0�7913 0�7913 0�7997 0�1216 2�5 0�4 1�3730 1�3793 1�5805 0�2786
1.0 0�5 0�6933 0�6933 0�7010 0�1109 2�5 0�5 1�1774 1�1793 1�3750 0�2877

1.5 0�1 1�6850 1�6851 1�7096 0�2451 3�0 0�1 2�2961 2�3446 2�5402 0�2883
1.5 0�2 1�4284 1�4284 1�4712 0�2274 3�0 0�2 1�9315 1�9512 2�1787 0�2883
1.5 0�3 1�2268 1�2268 1�2715 0�2110 3�0 0�3 1�6309 1�6482 1�8575 0�2802
1.5 0�4 1�0599 1�0642 1�1014 0�1956 3�0 0�4 1�3760 1�3982 1�5998 0�2624
1.5 0�5 0�9280 0�9280 0�9643 0�3184 3�0 0�5 1�1759 1�1842 1�3889 0�2647

and stochastic structure of the kind described in Example 1.
In all cases, the two stations have common loss rate per cus-
tomer and common loss penalty, denoted � and C, respec-
tively. The values of all model parameters may be found in
the table. The table gives values of the reward rate from the
index policy (column headed INDEX) along with the values
of Ropt (column headed OPT) and REL. From the above
discussion, it is unsurprising that for those cases in which
Ropt is close to REL, the index policy is close to optimal.
However, please note that the converse is not true. There
are cases in which REL is considerably larger than Ropt,
and hence the Lagrangian relaxation is not tight, and yet
the index policy remains close to optimal. We explore this
general issue further in Example 8, which is discussed in
the next section. In the final column of Table 1 (headed ,2),
find values, estimated by simulation, of the steady-state
probability that the policy achieving REL admits (inadmis-
sibly for the original problem) an incoming customer to
both stations. As can be seen from the table, the value of
this probability is positively associated with the difference
REL−Ropt and is a natural measure of the (lack of) tight-
ness of the Lagrangian relaxation. Moreover, such proba-
bilities are easily estimated from simulations of the relaxed
system. This remains true for large problems (i.e., many
stations) where direct calculation of Ropt, and hence of
REL−Ropt, is not possible.

6. The Performance of the Index
Policy II—Suboptimality Bounds

We have seen in §5 that examination of the tightness of
the Lagrangian relaxation in (8) and (9) can shed light on
the quality of performance of the index heuristic. How-
ever, the numerical results in Table 1 have demonstrated
the limitations of this approach. See also Example 8 below.
The index heuristic may perform strongly even when the
Lagrangian relaxation is far from tight. We now describe a
stronger approach to the evaluation of the index heuristic
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for cases in which Theorem 2 holds. This comes in the
form of performance guarantees, bounds on Ropt − Rindex,
the reward rate lost when implementing the index heuristic
rather than an optimal policy.

In what follows, we shall use the pair �m�x� to denote
“station m with head count x,” with Wm�x� for the corre-
sponding index, 1 �m�M , x ∈ �, and ∗ for the discard
option with index zero. We shall say that a policy in �
makes �m�x� (respectively, ∗) active when it routes an
arriving customer to station m when its head count is x
(respectively, discards). The bounds we develop will cap-
ture the natural idea that a policy for admission con-
trol/routing will perform well if the rate at which it activates
low-index states is small in comparison with competitor
policies.

To develop these ideas further, we renumber the states

{ M⋃
m=1

⋃
x∈�

�m�x�

}
∪ 
∗� (32)

in decreasing order of their index values and use �W�n� for
the nth-highest index. If �m�x� and �m�y� have the same
index and x < y, then �m�x� must come before �m�y� in
this ordering. In what follows, each state in (32) may be
referred to by the number corresponding to its position in
the index ordering. Plainly,

�W�1�=max
{

max
1�m�M

Wm�0��0
}
�

For all u ∈�� n ∈ �, we shall write ,�n�u� for the long-
run proportion of time for which state n (the nth state in
the index ordering) is active under policy u.

We further introduce a matrix � ≡ 
	�n�n′�� �n�n′�
∈�2� n� n′� of constants, each element lying in the range
0�	�n�n′�� 1, such that

��n�u�=
�∑

n′=n
	�n�n′�,�n′� u�� n ∈�� u ∈�� (33)

furnishes us with an appropriate measure of the rate at
which policy u activates states in position n or higher in the
index ordering, and whose index is �W�n� or less. The con-
stants 	�n�n′� are as follows: if n′ (the n′th-highest index
state) is some station m pair �m�x�, say, then

	�n�n′�= 1−	�1−&z
m�z���m�x+1 + �m�x+1�

−1�

where z is such that Wm�z�� �W�n� <Wm�z− 1�. Here we
use the convention that Wm�−1�=�. If n′ is the discard
action ∗, then for all n,

	�n�n′�= 1�

It is easy to show that for all u ∈�, ��n�u� is decreasing
in n such that 0� ��n�u�� 1, n ∈�.

The quantities in (33) have been carefully designed such
that they, together with the index values �W�n�, n ∈�, yield
a simple expression for the reward rate Ru, u ∈�, namely,

Ru = 	

[
�W�1�−D−

�∑
n=2


 �W�n−1�− �W�n����n�u�

]
(34)

=−	D+	
�∑
n=1

�W�n�
��n�u�−��n+ 1� u��� (35)

The mathematical ideas underlying the formula in (34) are
explained in the online appendix. If we think of the positive
quantity ��n�u�−��n+1� u� somewhat crudely as a mea-
sure of the usage made by policy u of the nth-highest index
state, then the second term in (35) is an expectation-like
quantity that weights these usage measures by the corre-
sponding index values. It is intuitive and suggested by this
expression that good policies should attempt to make as
much use as possible of high-index states. It seems natural
to develop performance guarantees for the index policy that
measure its ability to do precisely that.

In what follows, we write ��n� index� and ��n�opt� for
the values of ��n�u� when policy u is an index heuristic
and an optimal policy, respectively. Further, we use n�∗� for
the position in the index ordering of the discard option. Our
performance guarantees for the index heuristic are given
in Theorem 4.

Theorem 4 (Performance Guarantees for the Index
Policy). If the hypothesis of Theorem 2 holds, then

Ropt −Rindex = 	
�∑
n=2


 �W�n− 1�− �W�n��

· 
��n� index�−��n�opt�� (36)

� 	
�∑
n=2


 �W�n− 1�− �W�n��

· 
��n� index�− inf
v
��n� v�� (37)

= 	
n�∗�∑
n=2


 �W�n− 1�− �W�n��

· 
��n� index�− inf
v
��n� v��� (38)

Proof. Equation (36) follows immediately from (34),
whereas (37) follows from the observations that, for all
n� 2,

�W�n− 1�� �W�n�� ��n�opt�� inf
v
��n� v��

Finally, because no index heuristic makes use of states n�
n�∗�+ 1, we have that

��n� index�= inf
v
��n� v�= 0� n� n�∗�+ 1�

which yields (38). This concludes the proof. �
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The reader will find a range of comments on the per-
formance guarantees given in Theorem 4 in the online ap-
pendix. In practice, the quantities (36)–(38) will often be
dominated by a few initial terms in the summations con-
cerned. In such cases, the bounds are looking for poor
usage by the index policy of states that are low (i.e., close
to one) in the index ordering.

Example 8 illustrates a range of phenomena related to
the narrative of this section and the preceding one. These
include (I) relatively poor performance of the index pol-
icy related to poor usage of high-index states, (II) cases in
which the bounds in (37) and (38) are exact, and (III) strong
performance of the index policy, notwithstanding a lack of
tightness in the Lagrangian relaxation given in (8) and (9).

Example 8 (High Levels of Impatience). Consider an
instance of Example 2 with two single-server stations and
a loss rate per waiting customer of �, which is common to
the stations and large enough to guarantee that

Wm�n� < 0� n� 1� m= 1�2�

If we further suppose that R1 = R2 = R, say, then we con-
clude that

W1�0�=W2�0�=D+R�

In the terminology established in this section prior to The-
orem 4, we have n�∗�= 3,

�W�1�= �W�2�=D+R� �W�3�= 0�

zero being the index of the discard option.

Utilising the above index values, we conclude that all
index heuristics for admission control/routing will discard
an arriving customer when both stations are busy (i.e.,
nonempty) and will route a customer to the unoccupied
station when exactly one is busy. There are two index poli-
cies that are stationary and deterministic. These make dif-
ferent choices of station for customers who arrive when
the system is empty. Call these policies 1→2 and 2→1 to
denote the preference exercised in this latter case. If we
write ,1→2

d and ,2→1
d for the long-run proportion of cus-

tomers discarded under 1→2 and 2→1, respectively, then
it is straightforward to show that ,2→1

d > ,1→2
d if and only

if �1 > �2. The reward rate achieved by policy 1→2 is
given by

R1→2 = 	R−	�R+D�,1→2
d (39)

and similarly for R2→1.
In illustration of (I) above, note that the discard proba-

bilities ,1→2
d and ,2→1

d may differ significantly, resulting
in a substantial difference in the reward rates associated
with the two index policies. For example, for the choices
�1 = 1�737	, �2 = 0�263	, R = 2D, the reward rate for
1→2 exceeds that of 2→1 by 10.82%. Moreover, policy

1→2 can be shown to be optimal. The poor performance
of the index policy 2→1 is related to the fact that it makes
poor usage (in comparison with 1→2) of the two highest
index states while making excessive use of the third-highest
index state, the discard option.

Concerning the application of the performance bounds
of Theorem 4 to this example, suppose that �1 >�2, with
1→2 optimal and 2→1 the index policy for evaluation. It is
straightforward that

��3� index�=,2→1
d � ��3�opt�= inf

v
��3� v�=,1→2

d �

Hence, the bound on the quantity

Ropt −Rindex =R1→2 −R2→1

in (37) is given in this case by

	
 �W�2�− �W�3��
��3� index�− inf
v
��3� v��

= 	�D+R��,2→1
d −,1→2

d �

and from (39) is exact. This illustrates (II) above.
In illustration of (III) above, now consider the

Lagrangian relaxation for the current setup. Under the con-
dition 	2 > �1�2, the minimisation in (30) can be shown
to be achieved at W = 0. The policy that achieves REL
admits an arriving customer to both stations when the sys-
tem is empty and otherwise makes decisions in line with
an index policy. The long-run proportion of customers who
are routed to both stations is given by

,2 =�1�2�2	+�1 +�2�

· 
�	+�1��	+�2��	+�1 +�2��
−1� (40)

See the discussion of the results in Table 1 at the conclusion
of §5. If we set �1 =�2 = 	�1− 0� for some small 0 > 0,
it will then follow that ,1→2

d and ,2→1
d are equal and that

both index policies are optimal. However, the fact that ,2 is
close to 1/3 indicates that the Lagrangian relaxation is far
from tight.

If for much of the time the index heuristic activates a
state whose index is close to �W�1�, then it must indeed be
close to optimal. This insight relates to Examples 4 and 7
in the preceding section. It is formalised in Corollary 5.

Corollary 5. If the hypothesis of Theorem 2 holds and,
further, there exists n̄ � n�∗� for which �W�1� − �W�n̄� �
1 �W�1� and ��n̄ + 1� index� � 0 for some 1 � 0� 0 > 0,
then

Ropt −Rindex � 	 �W�1��0+ 1��

Proof. Under the hypotheses of the corollary, the expres-
sion in (38) is bounded above by

	

[ n̄∑
n=2


 �W�n− 1�− �W�n����n� index�

+
n�∗�∑

n=n̄+1


 �W�n− 1�− �W�n����n� index�
]

� 	�
 �W�1�− �W�n̄��+ �W�n̄���n̄+ 1� index��

� 	 �W�1��0+ 1�� (41)
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Note that inequality (41) uses �W
n�∗�� = 0 and the fact
that ��n� index� is decreasing in n and bounded above by
one. The result now follows from Theorem 4. �

We can now expand on Example 4 above and develop a
light-traffic analysis for all models that fall within the scope
of Theorem 2. In Theorem 6, we expand the notations Ru,
Ropt, etc. to Ru�	�, Ropt�	� to emphasise 	-dependence.

Theorem 6 (Light-Traffic Optimality). If the hypothe-
sis of Theorem 2 holds and �W�1� > D, then the index
heuristic is asymptotically optimal in a light-traffic limit in
the sense that

lim
	→0


Ropt�	�−Rindex�	��
Ropt�	��−1 = 0

Proof. We take n̄= 1, 1= 0 in Corollary 5 while noting
that ��2� index� is bounded above by the long-run propor-
tion of time that the system is nonempty under the index
policy. However, it is plain that the number in the system
under an index policy in steady state may be stochasti-
cally bounded above by the number present in an M/M/1
system in steady state with arrival rate 	 and service rate
minm��m�1+�m�1�, the latter assumed to exceed 	. We thus
conclude that

	<min
m
��m�1 + �m�1�

=⇒ ��2� index�� 	
{
min
m
��m�1 + �m�1�

}−1
� (42)

It now follows from Corollary 5 that

Ropt�	�−Rindex�	�� 	2 �W�1�
{
min
m
��m�1 + �m�1�

}−1
� (43)

where from (25) we see that �W�1� is 	-independent.
If �W�1� > D, then in the limit 	→0, Ropt�	� = O�	�
and approaches zero from above. The result now follows
from (43). �

Comment

Although the condition �W�1� > D in Theorem 6 is mild
(guaranteeing that a customer entering an empty system can
earn a positive net expected return), it may be replaced by
the weaker �W�1� > 0 (a customer entering an empty system
can earn more than −D and should not be discarded). In the
latter event, the form of the result is modified to

lim
	→0


Ropt�	�−Rindex�	��
Ropt�	�+D	�−1 = 0�

The proof is little changed.

Example 7 (Revisited). We can extend Example 7 to all
models within the scope of Theorem 2. If the station achiev-
ing �W�1�, station 1 say, has associated service rate �11,
which is large, then the index policy will be close to opti-
mal. An account along the lines of the proof of Theorem 6
is straightforward.

Example 9. If the differences between the station rewards
Rm are small in comparison to the size of the discard
penalty D and, further, customer loss rates are low, then
for models within the scope of Theorem 2, it may be that
many states �m�x� have index values close to �W�1�. If, fur-
ther, service rates are sufficient to keep queue lengths small
with high probability, then even for small 1> 0, we would
expect to find an n̄ for which �W�1�− �W�n̄� < 1 �W�1� such
that ��n̄+ 1� index� is small. Corollary 5 then guarantees
the strong performance of the index policy.

Example 10. We have already seen in the discussion of
Example 8 an instance of poor performance of an index
policy being captured by the bounds in Theorem 4. It is a
feature of that example that a station achieving �W�1� has
significantly lower service rates than a competitor station.
We have found that setups of this kind are prone to gener-
ate large values of ��n� index� for small n, yielding large
values of the bounds (36)–(38) and correspondingly (rela-
tively) poor performance of the index policy, especially so
when customer loss rates are high. It is perhaps also worth
pointing out that cases in which �1 is small and �m ��1,
m �= 1, are excluded from both Examples 6 and 7 above,
where service rate configurations guaranteeing strong per-
formance for the index policy are described.

In illustration of Examples 7, 9, and 10 above, find
in Table 2 values of Ropt −Rindex expressed as a percentage
of Ropt + D	 for a range of two-station problems. In all
cases, the stations have a single server and a stochastic
structure of the kind described in Example 2 with a com-
mon loss rate per customer � and common loss penalty C.
Other details are given in and above the table. Note that in
all cases, it is station 1 that achieves �W�1�. That the index
policy should perform relatively poorly when station 1’s
service rates are low (�1 = 0�5) is consistent with Exam-
ple 10 above, as is the fact that the suboptimalities tend
to grow with the loss rate �. From Examples 7 and 9, we
would expect to see the index policy perform strongly when

Table 2. Percentage suboptimality of the index policy
for a range of two-station problems with
R1 = 1�01, R2 = 1, �2 = 1, C = 1, D= 0�5.

�1 �1

� 	 0.5 2.0 5.0 � 	 0.5 2.0 5.0

0.05 0�5 0�091 0�000 0�000 0�5 0�5 1�345 0�000 0�000
1�0 0�299 0�000 0�000 1�0 1�740 0�000 0�000
2�0 0�338 0�017 0�000 2�0 1�707 0�026 0�000
5�0 0�015 0�034 0�043 5�0 0�282 0�000 0�040

10�0 0�004 0�000 0�066 10�0 0�248 0�000 0�000

0.1 0�5 0�306 0�000 0�000 1�0 0�5 1�975 0�000 0�000
1�0 0�545 0�000 0�000 1�0 2�497 0�000 0�000
2�0 0�751 0�021 0�001 2�0 1�639 0�005 0�000
5�0 0�051 0�513 0�058 5�0 0�753 0�000 0�004

10�0 0�038 0�000 0�040 10�0 0�248 0�000 0�000
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Table 3. Percentage suboptimality of the index policy for varying levels of a common
loss rate.

(a) 	= 1, R1 = 5, �1 = 0�5

� 0�5 0�3 0�1 0�05 0�03 0�01 0�005 0�001 0�0001
Percentage suboptimality 2�946 0�576 0�350 0�440 0�037 0�023 0�024 0�001 0�000

(b) 	= 1, R1 = 5, �1 = 0�75

� 0�5 0�3 0�1 0�05 0�03 0�01 0�005 0�001 0�0001
Percentage suboptimality 0�107 0�875 0�000 0�121 0�043 0�032 0�018 0�000 0�000

Note. Other details given in text.

�1 is large, particularly for these examples in which the
rewards R1 and R2 are close together. This is indeed the
case.

Example 11 (Low Levels of Impatience). Consider a
two-station instance of Example 1 or Example 2 and sup-
pose that there is a loss rate per customer � that is common
to both stations. We consider an asymptotic regime in which
�→0 while the remaining stochastic parameters �	��1��2�
stay fixed such that 	 < s1�1 + s2�2. Note that if our
interest is in studying proportionate suboptimality measures
like �Ropt −Rindex��Ropt�−1 or �Ropt −Rindex��Ropt +D	�−1,
the above is equivalent to consideration of an asymptotic
regime in which � remains fixed while the arrival rate (	)
and the service rates ��1��2� diverge to infinity in fixed
proportion. The latter has echoes of the many-server
heavy-traffic limits considered by Halfin and Whitt (1981),
among others. An analysis based on Theorem 4 yields the
asymptotic optimality of the index policy. Find an account
in the online appendix for the Example 2 case when
W1�0� >W2�0�.

By way of illustration, find in Tables 3(a) and 3(b) values
of Ropt −Rindex expressed as a percentage of Ropt +D	 for
a range of two-station instances of Example 2 in which
sm = 1, m= 1�2 and there is a common loss rate per cus-
tomer � and common loss penalty C = 1. We also have
R2 = 1, �2 = 1, and D = 0�5. Other parameter values
are identified in and above the tables. The results illus-
trate the asymptotic optimality of the index policy in the
limit �→0.

7. The Performance of the Index
Policy III—Heavy-Traffic Optimality

Insights from the Lagrangian relaxation expressed in Exam-
ple 5 above yielded a conjecture of heavy-traffic optimal-
ity for the index policy—i.e., optimality in an asymptotic
regime in which 	 diverges to infinity with other parameters
held fixed. To assist in our discussion of when this occurs,
we shall express dependence upon 	 by using Wm�n�	� as
an expanded notation for the Whittle index for station m
with head count n and uW �	� as a shorthand for an index
policy. We further denote by Xm�	� the largest head count

for which uW �	� admits customers to station m. Hence,

Xm�	�=



−1 if Wm�0�	� < 0�

� if Wm�n�	�� 0� n ∈�� and

max�n�Wm�n�	�� 0� otherwise�

(44)

As in §6, we shall suppose that the hypothesis of The-
orem 2 is satisfied. We shall additionally require condi-
tion (C4), which is trivially satisfied by Examples 1 and
2.

Condition 4 (C4). All loss rate sequences 
�m�n� n ∈�+�
diverge.

We introduce the heavy-traffic indices

�Wm�n�� lim
	→�

Wm�n�	�

=D−Cm + �Rm +Cm���m�n+1 −�m�n�

· ��m�n+1 −�m�n + �m�n+1 − �m�n�
−1�

n ∈�� 1�m�M� (45)

as the limiting form of the Whittle indices in the heavy-
traffic limit. The form of the limit in (45) is derived
from (25). We observe that it is straightforward to show
from (25) that, under the hypothesis of Theorem 2,

Wm�n�	�� �Wm�n�� n ∈�� 	 ∈�+� 1�m�M� (46)

The indices �Wm�n� must be decreasing in the head count n
and are bounded below by D−Cm. Hence, the limits

�Wm � lim
n→�

�Wm�n�� 1�m�M�

must exist. We shall require (C5) to hold.

Condition 5 (C5). �Wm < 0, 1�m�M .

Under (C5), the heavy-traffic indices will be negative if
the head count is large enough. Please note that this is
certainly the case for Examples 1 and 2 when D < Cm,
1�m�M . We now write �Xm for the largest head count for
which the heavy-traffic index is nonnegative. Under (C5),
we must have �Xm <�, 1�m�M . Formally, we write

�Xm =
{−1 if �Wm�0� < 0� and

max�n� �Wm�n�� 0� otherwise�
(47)
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Theorem 7 (Heavy-Traffic Optimality). If the hypoth-
esis of Theorem 2 holds along with conditions (C4) and
(C5), the index heuristic is asymptotically optimal in a
heavy-traffic limit in the sense that

lim
	→�


Ropt�	�−Rindex�	��= 0�

Proof. From (45) and (47), observe that

D−Cm + �Rm +Cm���m�n+1 −�m�n�

· ��m�n+1 −�m�n + �m�n+1 − �m�n�
−1 � 0

⇐⇒ 0� n� �Xm�1�m�M� (48)

It follows simply from (48) that the maximum

max
n

�Rm +D��m�n + �D−Cm��m�n� (49)

is achieved at n= �Xm + 1, 1�m�M . Further, from (46),
(48) and the fact that all indices are decreasing in the head
count, we infer the existence of � <� for which 	 � �
implies that

Wm�n�	�� 0 ⇐⇒ 0� n� �Xm� 1�m�M

and hence that

Xm�	�= �Xm� 	��� 1�m�M� (50)

Hence, if 	��, then index policy uW �	� will admit a cus-
tomer to the system (specifically, to the station of largest
index) and not discard her if and only if at least one sta-
tion m has queue length no greater than �Xm. If station m has
queue length �Xm + 1 (or greater), then further customers
will not be routed to it. It must then follow that in the limit
	→�, uW �	� holds the queue length at station m fixed
at �Xm + 1, 1�m�M . A fuller discussion of this is given
in the appendix.

It immediately follows from (3), (49) and the comments
following that, for any stationary policy u and arrival rate 	̄,

lim
	→�


RuW �	��	�+D	�

=
M∑
m=1

�rm +D��m� �Xm+1 +
M∑
m=1

�D−Cm��m� �Xm+1

=max
n

{ M∑
m=1

�rm +D��m�nm
+

M∑
m=1

�D−Cm��m�nm

}

�
∑
n

M∑
m=1


�rm +D��m�nm
+ �D−Cm��m�nm��,�n�u� 	̄�

(51)

=Ru�	̄�+D	̄� (52)

where in (51), �,�n�u� 	̄� is the long-run proportion of time
the system spends in state n under stationary policy u when
the arrival rate is 	̄. It follows immediately from (52) that

lim
	→�


RuW �	��	�+D	�= lim
	→�


Ropt�	�+D	�

with both limits finite. The result follows. �

Comments

1. The character of the index heuristic uW �	� changes as
the arrival rate moves from near zero (light traffic) to very
large values (heavy traffic) in precisely the way required to
keep its reward rate performance close to optimal. When
	� 0, uW �	� acts very much like an individually optimal
policy that routes each incoming customer to whichever
station yields the greatest expected net reward for that indi-
vidual and discards if all such net rewards are negative.
As is explained at the conclusion of §4, this is appropriate
in light traffic because longer-term implications of deci-
sions may be safely neglected.

As 	 diverges to infinity, the Whittle indices tend to their
heavy-traffic versions in (45). Further, the minimum val-
ues of the head counts at which the stations refuse admis-
sion, namely, Xm�	�+ 1, tend toward the values �Xm + 1.
In the limit, the index policy uW �	� holds the station head
counts fixed at �Xm + 1, 1 � m � M . From the comment
around (49), these head counts are exactly the ones at
which the maximum net reward rates are earned at each
station.

2. A pure reward version (D = 0, Cm = 0, 1 �m�M)
of Theorem 7 may be obtained under the hypothesis of
Theorem 2 along with Conditions (C2) and (C3), but with
the additional requirement that, for each station m there
exists some finite value �
m defined by

�
m =min
n��m�n =�m�n+1�� (53)

This certainly, for example, includes pure reward versions
of Examples 1 and 2. The analysis is similar in spirit to
the above proof and shows that in the limit 	→�, uW �	�
keeps at least �
m customers at station m almost surely,
1�m�M . Plainly, in such examples net reward rates
Ropt�	� and Rindex�	� remain positive for all 	.

3. To illustrate the quality of performance of the index
policy, most especially with respect to varying values of
the customer arrival rate 	, 720 two-station problems were
studied. In each case, both stations have a single server
and a stochastic structure of the kind described in Exam-
ple 2 and the requirements of Theorem 7 are met. Further,
we suppose there to be a common loss rate per cus-
tomer �, common loss penalty C (always set at 1.0) and
the discard penalty D is set to be 0.5 for all problems.
Station 2 has R2 = 1 and �2 = 1 throughout. The remain-
ing parameters are set as follows: R1 is chosen from
the set 
1�01�1�5�2�5�, �1 from the set 
0�5�1�2�3�5�,
� from the set 
0�05�0�1�0�2�0�3�0�5�1�, and 	 from the
set 
0�5�1�2�3�5�10�. The total number of parameter com-
binations is 4 × 5 × 6 × 6 = 720. Note that the station
achieving maximal index �W�1� is station 1 in every case.
For all 720 problems, the net reward rates achieved by
an optimal policy for admission control/routing and by the
index policy were computed using dynamic programming
value iteration. For each problem, the reward rate difference
Ropt −Rindex was computed and expressed as a percentage
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Table 4. Median and maximum percentage suboptimal-
ities for the index heuristic as �R1�	� varies.

R1 	 0.5 1 2 3 5 10

1.01 Median 0�000 0�000 0�016 0�023 0�042 0�000
Maximum 1�975 2�497 1�707 3�262 0�753 0�364

1.5 Median 0�000 0�000 0�035 0�041 0�030 0�001
Maximum 0�026 0�196 1�328 2�127 2�285 1�248

2.0 Median 0�000 0�000 0�039 0�034 0�062 0�007
Maximum 0�274 0�236 2�276 1�450 0�720 0�191

5.0 Median 0�000 0�000 0�013 0�030 0�094 0�020
Maximum 0�240 2�946 1�870 1�783 4�053 0�487

of Ropt +D	. The 720 problems have been grouped into
24 sets of 30, according to values of the pair �R1�	�. For
each set of 30, the median and maximum percentage sub-
optimalities for the index policy were computed. They are
presented in Table 4. As would be expected from Theorem
6 and comment 1 above, the index heuristic performs well
in light traffic, whereas as 	 increases to 10, it approaches
optimality in line with Theorem 7. The performance of the
index policy is remarkably robust, with a worst-case sub-
optimality of 4.053% in the 720 problems studied.

8. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.
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