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Traditional optimization models assume a central decision maker who optimizes a global system performance measure.
However, problem data is often distributed among several agents, and agents make autonomous decisions. This gives
incentives for strategic behavior of agents, possibly leading to suboptimal system performance. Furthermore, in dynamic
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decide for machines themselves. In this context, we introduce the concept of a myopic best-response equilibrium, a
concept weaker than the classical dominant strategy equilibrium, but appropriate for online problems. Our main result is
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1. Introduction
Scheduling jobs that are arriving online on a set of parallel
machines is a key issue both in business and engineering
applications. Examples can be found in service operations
management and distributed computing. The problem has
been well studied in the traditional setting where a central
decision maker strives to optimize a global system perfor-
mance measure and is assumed to have access to all rele-
vant data. However, in the environments mentioned above,
data is usually not centrally available, but is distributed
among selfish job owners, called agents. This gives incen-
tives for strategic behavior of agents, possibly leading to
suboptimal system performance. This challenge calls for
mechanism design to align the individual goals of self-
ish agents with overall system performance. On the other
hand, in dynamic environments like distributed comput-
ing, machines are locally dispersed and administratively
independent and may be dynamically added to or removed
from the system. A typical example are web servers, where
content and/or computational resources are currently dis-
tributed over the whole world and service requests need to
be allocated online. In such settings, it is indispensable to
keep communication complexity low and to design local
protocols that machines have to adopt rather than centrally

coordinating the distribution of jobs over machines. This
has been observed, for example, in the context of ana-
lyzing the price of anarchy, e.g., by Christodoulou et al.
(2004), Immorlica et al. (2005), and Azar et al. (2008). In
this paper, we define decentralized online mechanisms that
account for all mentioned requirements.
More specifically, we study the online version of the

classical parallel machine scheduling problem to minimize
the total weighted completion time—P�rj �

∑
wjCj in the

notation of Graham et al. (1979)—from a game-theoretic,
or strategic perspective. In the online version, jobs j with
processing times pj and weights wj arrive online over time
at release times rj , and at any given time the scheduler does
not know if, or what type of, jobs are still to appear in the
future. The classical goal in online optimization is to design
online algorithms that are competitive; that is, even though
faced with an online situation, such algorithms compare
reasonably well to the optimal offline solution. An online
algorithm is called �-competitive if it always achieves a
solution that is not more than a factor � away from the
optimum offline solution. We assume that each job is a self-
ish agent, and a job’s release time rj , its processing time
pj , and its weight wj is only known to the job itself, but
not to the system or any other job. Any job j is interested
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in being finished as early as possible, and the weight wj

represents j’s cost per unit of waiting time. While jobs may
strategically report false values �r̃j � p̃j � �wj	 to be scheduled
earlier, the total social welfare is maximized whenever the
weighted sum of completion times

∑
wjCj is minimized.

Next to the game-theoretic challenge due to selfishly
behaving jobs, distributed systems ask for low communica-
tion complexity and local protocols that machines have to
commit to rather than centralized coordination. Our goal is
to meet the following requirements, which we refer to as
decentralization: jobs may communicate with machines, but
jobs do not communicate with each other nor do machines
communicate with each other. In particular, there is no cen-
tral scheduling unit hosting all the data of the problem. This
leads to a setting where the jobs themselves must select the
machine to be processed on, and any machine sequences the
jobs according to a (known) local sequencing policy. Such
a model was also recently discussed by Azar et al. (2008).
Our goal is to set up an online mechanism that copes

with the strategic and decentralized setting while yielding
a reasonable overall performance with respect to the total
social welfare, that is, minimize

∑
wjCj . The mechanism

should motivate the jobs to reveal their private information
truthfully. In addition, as we require decentralization, each
machine needs to be equipped with a local sequencing pol-
icy, and jobs must be induced to select the machines in such
a way that the objective

∑
wj Cj does not deteriorate. The

online algorithm with the currently best-known competitive
ratio by Correa and Wagner (2009) crucially requires cen-
tral coordination to distribute jobs over machines. Instead,
we build upon an approach by Megow et al. (2006), devel-
oped for a setting with stochastic job durations, which turns
out to be appropriate for the decentralized setting that we
aim at.

Related Work. As far as computational complexity is
concerned, the scheduling problem P�rj �

∑
wjCj is well

understood in the nonstrategic setting with centralized coor-
dination. First, scheduling to minimize the weighted sum
of completion times with release dates is NP-hard, even in
the offline case on a single machine. For more than one
machine, the problem is NP-hard even if all release dates
are zero (Lenstra et al. 1977). In the online setting, it is
well known that no online algorithm for the single machine
problem can be better than 2-competitive (Hoogeveen and
Vestjens 1996) regardless of the question of whether or
not P = NP. On parallel machines, no online algorithm
can be better than 1.309-competitive, and this bound can
be improved for a specific number of machines (Vestjens
1997). The best-possible algorithm for the single-machine
case is 2-competitive and thus matches the lower bound
(Anderson and Potts 2004). For the parallel machine set-
ting, the currently best-known online algorithm is 2.62-
competitive (Correa and Wagner 2009), improving upon
an earlier algorithm by Megow and Schulz (2004). The
algorithm by Megow et al. (2006) is a modification of

the latter. Here, jobs are locally sequenced according to
an online variant of the well-known WSPT rule (weighted
shortest processing time first, Smith 1956), and arriving
jobs are assigned to machines to minimize an expression
that approximates the (expected) increase of the objective
value. The algorithms by Megow and Schulz (2004) and
Megow et al. (2006) both achieve a competitive ratio of
3.281.
Mechanism design in combination with the design of

approximation algorithms for scheduling problems has been
studied, e.g., by Nisan and Ronen (2001) and Archer and
Tardos (2001). The models in these papers are such that the
processing time of a job depends upon the machine that pro-
cesses the job (unrelated and related machine scheduling,
respectively). Furthermore, the machines are the selfishly
behaving parts of the system. Their private information is
the time they need to process the jobs. Among other things,
these papers present mechanisms where rational (selfish)
behavior of agents yields equilibrium solutions that are
only a constant factor away from the optimum. A schedul-
ing model that comes closer to the model that we address
has been studied by Porter (2004). He analyzes a single-
machine, online scheduling problem where the jobs are the
selfish agents of the system, and the private data of each job
consists of a release date, its processing time, its weight,
and a deadline. He, too, obtains a mechanism where selfish
behavior of agents yields competitive equilibrium solutions.
Online auctions where bidders are present only during time
windows are addressed by Hajiaghayi et al. (2004, 2005),
where they derive mechanisms for an online single-machine
model with job agents with time windows. An overview of
various aspects of online mechanisms is given by Parkes
(2007).
Decentralization for scheduling models with job agents

is considered in the papers by Christodoulou et al. (2004),
Immorlica et al. (2005), and Azar et al. (2008). Those papers
analyze the price of anarchy for different local scheduling
policies.

Our Contribution. We present a polynomial time,
decentralized online mechanism, called the Decentral-
ized Local GreedyMechanism. Thereby, we also provide
a new algorithm for the nonstrategic, centralized setting,
inspired by the MinIncrease Algorithm of Megow et al.
(2006), but improving upon the latter in terms of simplicity.
The Decentralized Local Greedy Mechanism is easy
to implement and we show that it is 3.281-competitive. This
coincides with the performance bound achieved by Megow
and Schulz (2004) for the nonstrategic, centralized setting.
The currently best-known bound for this setting, however,
is 2.62 (Correa and Wagner 2009). Giving up on decentral-
ization, it is possible to design a 2.62-competitive mech-
anism on the basis of the Correa–Wagner algorithm with
a dominant strategy equilibrium in which all agents report
truthfully. We discuss the resulting mechanism in §6.2.
As usual in mechanism design, the Decentralized

Local Greedy Mechanism defines payments that have to
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be made by the jobs for being processed. Naturally, we also
require from an online mechanism that the payments are
computed online. Hence, they can be completely settled by
the time at which a job leaves the system. We also show
that the payments result in a balanced budget. The pay-
ments induce rational jobs to truthfully report about their
private data. With respect to release dates and processing
times, we can show that truthfulness is a dominant strategy
equilibrium. With respect to the weights, however, we can
only show that truthful reports are myopic best responses
(in a sense to be made precise later). Most importantly, the
payments induce the jobs to select “the right” machines,
that is, the machines that a centralized mechanism would
select to achieve a good competitive ratio. Intuitively, the
mechanism uses the payments to mimic a corresponding
Local Greedy online algorithm in the classical (nonstrate-
gic, centralized) parallel machine setting P�rj �

∑
wj Cj . In

addition, we show that there does not exist a payment
scheme leading to the same selection of machines where
truthful reporting of all private information is a dominant
strategy equilibrium. This is even true when only the weight
wj is considered private information and pj and rj are pub-
licly known. Hence, for the decentralized online setting that
we consider, it is not clear whether a constant competi-
tive ratio can be achieved by means of a dominant strategy
equilibrium of some mechanism, even if weights are the
only private information.

Organization of This Paper. We formalize the model
and introduce notation in §2. Specifically, we define the
notion of a decentralized online scheduling mechanism and
the myopic best-response equilibrium in that section. In
§3, the Local Greedy Algorithm is defined. In §4, this
algorithm is adapted to the strategic setting and extended
by a payment scheme yielding the Decentralized Local
Greedy Mechanism. Moreover, our main results are pre-
sented in that section. We analyze the performance of the
resulting mechanism in §5. In §6, we prove the previously
mentioned negative result and reflect on mechanisms that
have dominant strategy equilibria, giving up on decentral-
ization. We conclude with a short discussion in §7.

2. Model and Notation
The problem being considered is online parallel machine
scheduling with nontrivial release dates, and our objec-
tive is to minimize the weighted sum of completion times,
P�rj �

∑
wjCj . We are given a set of jobs J = �1� � � � � n�,

where each job needs to be processed on any of the par-
allel, identical machines from the set M = �1� � � � �m�. The
processing of each job must not be preempted, and each
machine can process at most one job at a time. Each job j
is viewed as a selfish agent and has the following private
information: a release date rj � 0; a processing time pj > 0;
and an indifference cost, or weight, denoted by wj � 0. The
release date denotes the time when the job comes into exis-
tence, whereas the weight represents the cost to a job for one

additional unit of time spent waiting. Without loss of gener-
ality, we assume that the jobs are numbered in order of their
release dates, i.e., j < k⇒ rj � rk. The triple �rj � pj�wj	 is
also denoted as the type of a job, and we use the shortcut
notation tj = �rj � pj�wj	. By T =�+

0 ×�+×�+
0 , we denote

the space of possible types of each job. In the model we
analyze, a job j can report an arbitrary weight �wj �= wj , an
elongated processing time p̃j � pj (e.g., by adding unneces-
sary work), and it can artificially delay its true release time
rj to r̃j � rj . We do not allow a job to report a processing
time shorter than the true pj because this can easily be dis-
covered and punished by the system, e.g., by preempting the
job after the declared processing time p̃j before it is actually
finished. Furthermore, we assume that any job j comes into
existence only at its release time rj ; thus, it does not make
sense that a job reports a release time smaller than the true
value rj . This is a standard assumption, also made in online
auctions; see, for example, Hajiaghayi et al. (2004, 2005)
and Parkes (2007).
Next, we introduce the concept of a decentralized online

scheduling mechanism. It accounts for the various chal-
lenges mentioned in the introduction: It takes into account
that necessary information is not centrally available but has
to be communicated from jobs to machines, while keeping
the resulting communication complexity down to a mini-
mum. It does not use central coordination, but rather defines
a protocol according to which machines process jobs and
compute payments that jobs have to make. Our goal will
be to find such a mechanism, where rational jobs’ behavior
results in an equilibrium where the social welfare is not too
far from optimum.

Definition 1. A decentralized online scheduling mecha-
nism is a procedure that works as follows.
1. Each job j has a release time rj , but may pretend

to come into existence at any time r̃j � rj . At r̃j , the job
reports �wj and p̃j to every machine.
2. On the basis of that information machines commu-

nicate a tentative completion time 	Cj and a tentative pay-
ment 
�j .
3. Based on the responses of all machines at time r̃j , the

job chooses a machine to be processed on.
4. There is no communication between machines or

between jobs.
5. Machines may revise 	Cj and 
�j only if another job

chooses the same machine later, leading to an ex-post com-
pletion time Cj and an ex-post payment �j .

Hereby, we assume that jobs with equal reported release
times arrive in some given order and communicate to
machines in that order. Note that a job could even report
different values to different machines. However, we prove
the existence of equilibria where the jobs do not make use
of that option. Next, we define two important properties of
the payment scheme.

Definition 2. If for every job j payments to and from j
are only made between time r̃j and time Cj , then we call
the payment scheme an online payment scheme.
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Definition 3. A payment scheme satisfies the balanced
budget condition if the payments made by all jobs sum up
to zero, i.e.,

∑
j∈J �j = 0.

One of our goals is to design competitive online mecha-
nisms, which are defined as follows.

Definition 4. Let A be an online mechanism that seeks
to minimize a certain objective function. Let VA�I	 be the
objective value computed by A for a problem instance I
and let VOPT�I	 be the offline optimal objective value for I .
Then, A is called �-competitive if for all instances I of the
problem,

VA�I	� � ·VOPT�I	 �

The factor � is also called the performance ratio of the
mechanism.

We assume that the valuation equals vj�Cj� tj	=−wjCj ,
such that smaller completion times are preferred. We fur-
thermore assume quasi-linear utilities; that is, the utility of
job j equals uj�Cj��j� tj	= vj�Cj� tj	−�j , which is equal
to −wjCj −�j . Unlike in other mechanism design settings
where jobs always have the option not to participate in the
mechanism and to obtain zero utility, we assume that the
jobs have no such option and they have to be processed on
one of the machines.
The communication with machines and the decision to

use a particular machine are called actions of the jobs; they
constitute the strategic actions jobs can take in the nonco-
operative game induced by the mechanism. A strategy sj of
a job j maps a type tj to an action for every possible state of
the system in which the job is required to take some action.
A strategy profile is a vector �s1� � � � � sn	 of strategies, one
for each job. Given a mechanism, a strategy profile, and a
realization of types t, we denote by uj�s� t	=−wjCj −�j

the (ex-post) utility that agent j receives. Here, Cj and �j

depend on the mechanism, s and t.

Definition 5. A strategy profile s = �s1� � � � � sn	 is called
a dominant strategy equilibrium if for all jobs j ∈ J , all
types t of the jobs, all strategies s̃−j of the other jobs, and
all strategies s̃j that j could play instead of sj ,

uj��sj � s̃−j 	� t	� uj��s̃j � s̃−j 	� t	 �

The dominant strategy equilibrium is a very sound, yet
strong concept, and in many cases dominant strategy equi-
libria do not exist; see, for example, the discussion by
Nisan (2007). Several alternatives have been studied in the
literature that weaken the definition of rational agent behav-
ior, e.g., ex-post Nash equilibria, Bayes–Nash equilibria,
or myopic best responses. The latter has, for example,
been used in auction theory in the context of combinato-
rial auctions; see, e.g., Parkes (1999) and Parkes and Ungar
(2000). There, the Vickrey-Clarke-Groves (VCG) mecha-
nism (where truthful revelation of private information is a

dominant strategy equilibrium) suffers from severe compu-
tational difficulties. Instead, an iterative auction with sev-
eral rounds is proposed that results in a welfare-maximizing
allocation of goods if bidders are myopic. Myopic bid-
ders aim to maximize their utility with respect to current
price and allocation information, rather than taking a game-
theoretic look-ahead to future rounds. Similarly, myopic
bidders are assumed by Demange et al. (1986) for multi-
item auctions, by Bein and Wein (2003) and Gallien and
Wein (2005) for procurement auctions, and by Wellman
et al. (2001) for the allocation of time slots. We find the
concept of myopic agents appropriate and natural also for
our setting. We assume that rational agents maximize their
tentative utility, that is, the utility that a job is commu-
nicated upon arrival at the system. Note that the concept
shares with the dominant strategy equilibrium the property
that it does not require any reasoning about other agents’
valuations. In that sense it is prior-free, which is a desirable
property.

Definition 6. Given a decentralized, online scheduling
mechanism as in Definition 1, a strategy profile s, and
type profile t, let 	Cj and 
�j denote the tentative comple-
tion time and the tentative payment of job j at time r̃j .
Then, ûj �s� t	 �=−wj

	Cj − 
�j denotes j’s tentative utility at
time r̃j .

Note that, like Cj and �j , also 	Cj and 
�j depend on the
mechanism, s and t. If s and t are clear from the context,
we will use ûj as short notation.

Definition 7. A strategy profile �s1� � � � � sn	 is called a
myopic best-response equilibrium, if for all jobs j ∈ J , all
types t of the jobs, all strategies s̃−j of the other jobs, and
all strategies s̃j that j could play instead of sj ,

ûj ��sj � s̃−j 	� t	� ûj ��s̃j � s̃−j 	� t	�

The only difference in the definitions of the two equi-
libria is the utility that agents are concerned with: in the
dominant strategy equilibrium, it is the ex-post utility that
drives an agent, while in the weaker myopic best-response
equilibrium, it is the immediate utility that is observable at
the moment in time when the agent chooses an action.

Proposition 1. For any decentralized online scheduling
mechanism with an online payment scheme, every dominant
strategy equilibrium is a myopic best-response equilibrium.

Proof. In a dominant strategy equilibrium, job j’s strategy
maximizes j’s ex-post utility for all possible strategies of the
other jobs. In a decentralized online scheduling mechanism
with an online payment scheme, there is always a strategy
of the other jobs s−j such that j’s tentative utility equals j’s
ex-post utility, e.g., jobs arriving later than j can choose to
delay their arrival behind j’s completion time. Then, none
of these jobs can change j’s completion time, and if the pay-
ment scheme is online, neither can they influence j’s pay-
ment. (If m> 1, it is not necessary to require the payment
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scheme to be online. The tentative utility equals the ex-post
utility, e.g., if later jobs choose a different machine than j .)
Consequently, j’s tentative utility must be maximized in any
dominant strategy equilibrium also. �

Hence, the class of myopic best-response equilibria is a
larger class of equilibria than dominant strategy equilibria,
and we will see later that it is indeed a strictly larger class.
Finally, notice that jobs will also have to select a machine

according to Definition 1. This additional action of jobs
has been introduced to distinguish between decentralized
and centralized scheduling mechanisms. One might argue
that one can nevertheless make use of the revelation princi-
ple, which asserts that an arbitrary mechanism that has an
equilibrium, for example, a dominant strategy equilibrium,
always induces a direct revelation mechanism with an equi-
librium of the same strength. Thus, questions with respect
to the existence of mechanisms with a particular equilib-
rium can be answered by restricting ourselves to direct
revelation mechanisms. However, not all direct revelation
mechanisms can be decentralized in the sense of Defini-
tion 1. For example, we cannot decentralize the algorithm
in Correa and Wagner (2009) because it crucially requires
a central queue for the jobs. Hence, given that we aim at
decentralized mechanisms, we cannot make use of the reve-
lation principle. Equilibria of decentralized online schedul-
ing mechanisms, however, give rise to a particular form of
revelation mechanisms, namely, mechanisms in which jobs
report their types to so-called proxy agents, each of them
representing exactly one job and behaving on behalf of the
jobs as prescribed by the equilibrium strategy. But intro-
ducing proxy agents requires a trustworthy mediator which
can be seen as a hidden form of centralization.

2.1. Critical Jobs

For convenience of presentation, we make the following
simplifying assumption for the main part of the paper. For
some constant 0 < � � 1 (� will be discussed later), we
call job j critical if rj < �pj . Intuitively, a job is critical
if it is long and appears comparably early in the system.
The assumption we make is that critical jobs do not exist,
that is,

rj � �pj for all jobs j ∈ J �

This assumption is made to ensure that long jobs are not
scheduled too early, which is necessary to achieve constant
performance ratios; see also Anderson and Potts (2004) and
Megow and Schulz (2004). Later in §5.1, we show that this
assumption can be completely removed without harming
any of our results.

3. The Local Greedy Algorithm
For the time being, we assume that the job characteristics,
namely, release date rj , processing time pj , and indifference
cost wj , are given.

The idea of the MinIncrease Algorithm of Megow et al.
(2006) is that each machine uses (the online version of) the
well-known WSPT rule (Smith 1956) locally; an idea that
we also adopt here. More precisely, each machine imple-
ments a priority queue containing the not yet scheduled
jobs that have been assigned to the machine. The queue is
organized according to WSPT; that is, jobs with a higher
ratio wj/pj have higher priority. In case of ties, jobs with
a lower index have higher priority. As soon as the machine
falls idle, the current first job (if any) in this priority queue
is scheduled. Given this local scheduling policy on each of
the machines, any arriving job is assigned to that machine
where the increase in the objective

∑
wjCj is minimal.

In the formulation of the algorithm, we utilize some
shortcut notation. We let j → i denote the fact that job j is
assigned to machine i. Let Sj be the time when job j even-
tually starts being processed. For any job j , H�j	 denotes
the set of jobs that have higher priority than j , H�j	 =
�k ∈ J � wkpj > wjpk� ∪ �k � j � wkpj = wjpk�. Note that
H�j	 includes j , also. Similarly, L�j	 = J\H�j	 denotes
the set of jobs with lower priority. At a given point % in
time, machine i might be busy processing a job. We let
bi�%	 denote the remaining processing time of that job at
time % , i.e., at time % machine i will be blocked during
bi�%	 units of time for new jobs. If machine i is idle at time
% , we let bi�%	= 0. With these definitions, if job j arrives
at time rj and is assigned to machine i, the increase of the
objective

∑
wjCj is

z�j� i	 �=wj

[
rj + bi�rj	+

∑
k∈H�j	
k→i
k<j
Sk�rj

pk +pj

]
+pj

∑
k∈L�j	
k→i
k<j
Sk>rj

wk �

Algorithm 1 (Local Greedy Algorithm)
Local Sequencing Policy. When a machine falls idle, it

nonpreemptively processes the job with the highest (WSPT)
priority among all jobs assigned to it.
Assignment. If job j arrives at time rj , it is assigned to

machine ij ∈ argmini∈M z�j� i	 with minimum index.

Clearly, the Local Greedy Algorithm still makes use of
central coordination. On the other hand, the WSPT rule can
be run locally on every machine and does not require com-
munication between the machines. Therefore, the Local
Greedy Algorithm qualifies for decentralization, which
will be done in the next section.

4. Payments for Myopic Rational Jobs
The payments we introduce can be motivated as follows.
A job j pays at the moment of its placement on one of
the machines an amount that compensates for the decrease
in utility of the other jobs. The final payment of each
job j resulting from this mechanism will then consist of
the immediate payment j has to make when selecting a
machine and of the payments j gets when being displaced
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by other jobs. Furthermore, the WSPT rule is run locally on
every machine and jobs select a machine themselves. We
will prove that utility-maximizing jobs have an incentive to
report truthfully and to choose the machine that the Local
Greedy Algorithm would have selected also. We will see
in the next section that this yields a constant competitive
ratio, given that the jobs behave rationally. The algorithm
including the payments is displayed below. Here, let the
indices of the jobs be defined according to the reported
release dates, i.e., j < k ⇒ r̃j � r̃k. Let �H�j	 and L̃�j	
be defined analogously to H�j	 and L�j	 on the basis of
the reported weights and processing times. Then for job j ,
arriving at time r̃j , the tentative completion time and pay-
ment, respectively, at machine i are

	Cj�i	= r̃j+bi�r̃j 	+
∑

k∈ �H�j	
k→i
k<j
Sk�r̃j

p̃k+p̃j and 
�j�i	= p̃j

∑
k∈L̃�j	
k→i
k<j
Sk>r̃j

�wk�

Algorithm 2 (Decentralized Local Greedy Mechanism)

Local Sequencing Policy. When a machine falls idle,
it nonpreemptively processes the job with the highest
(WSPT) priority among all available jobs queuing at this
machine.
Assignment.
1. At time r̃j job j arrives and reports weight �wj and

processing time p̃j to all machines.
2. Every machine i informs j about both 	Cj�i	 and


�j�i	.
3. Job j chooses a machine ij ∈M . Its tentative utility

for being queued at machine i is ûj �i	 �=−wj
	Cj�i	− 
�j�i	.

4. The job is queued at ij according to WSPT among
all currently available jobs on ij whose processing has not
started yet. The payment 
�j�ij	 has to be paid by j .
5. The (tentative) completion time for every job k ∈

L̃�j	, k → ij , k < j , Sk > r̃j increases by p̃j due to j’s
presence. As compensation, k receives a payment of �wkp̃j .

Notice that the payments result in a balanced budget for
the scheduler. That is, the payments paid and received by
the jobs sum up to zero because every arriving job imme-
diately makes its payment to the jobs that are displaced by
it. Also notice that the payments are online in the sense of
Definition 2.

Theorem 1. Regard any type vector t, any strategy pro-
file s, and any job j with report �r̃j � p̃j � �wj	, and machine
choice ĩ ∈M . Then, changing the report to �r̃j � p̃j �wj	 and
choosing a machine that maximizes tentative utility at time
r̃j does not decrease j’s tentative utility.

Proof. We first discuss the single-machine case, i.e.,
m= 1. Suppose, at the arrival time r̃j of job j jobs
k1� k2� � � � � kr with corresponding reported processing times
p̃1� p̃2� � � � � p̃r and reported weights �w1� �w2� � � � � �wr are
queueing to be processed on the machine, but none of them

has started being processed yet. Without loss of generality,
let �w1/p̃1 � �w2/p̃2 � · · · � �wr/p̃r . Given the reported pro-
cessing time p̃j , job j could receive any position in front of,
between, or behind the already present jobs in the priority
queue by choosing its weight appropriately. Therefore, it has
to decide for every job ks , s ∈ �1� � � � � r�, whether it wants to
be placed in front of ks or not. Displacing ks would increase

�j�1	 by �wsp̃j , whereas 	Cj�1	 is decreased by p̃s . Thus,
j ’s tentative utility changes by wjp̃s − �wsp̃j if j displaces
ks compared to not displacing ks . Therefore, it is rational
for j to displace ks if and only if wjp̃s − �wsp̃j > 0, which
is equivalent to wj/p̃j > �ws/p̃s . As the machine schedules
according to WSPT, j is placed at the position that maxi-
mizes its tentative utility when reporting wj .
For m > 1, recall that j can select a machine itself.

Because reporting the truth maximizes its tentative utility
on every single machine, and because j can then choose
the machine that maximizes its tentative utility among all
machines, truth-telling and choosing a machine maximizing
ûj will maximize j’s tentative utility. �

Lemma 1. Consider any job j ∈ J . Then, for all reports of
all other agents as well as all choices of machines of the
other agents, the following is true:
(a) If j reports �wj = wj , then the tentative utility when

queued at any of the machines will be preserved over time,
i.e., it equals j’s ex-post utility.
(b) If j reports �wj =wj , then selecting the machine that

the Local Greedy Algorithm would have selected maxi-
mizes j’s ex-post utility.

Proof. To see (a), note that whenever j’s tentative comple-
tion time changes, j is immediately compensated for that
by a payment. If �wj =wj , then the payment exactly equals
the loss in utility. Claim (b) follows from (a) and the fact
that the machine chosen by the Local Greedy Algorithm
maximizes j’s tentative utility. �

Theorem 1 implies that a myopic agent should report
its true weight. Lemma 1 implies that such an agent is
guaranteed to receive an ex-post utility as high as its ten-
tative utility. The alternative is gambling: Recall that we
defined a restricted communication paradigm where jobs,
upon arrival, are only informed about (tentative) comple-
tion times and (tentative) payments. In particular, jobs do
not get to know which jobs are already queuing at the
machines and what reports the already present jobs have
made. One can construct simple examples that demonstrate
that overstating or understating the weight bears the risk
of arbitrarily high utility losses in comparison to truthful
reporting. More specifically, if a job j overstates its weight,
this can result in a position in front of a job already present
on the chosen machine whose weight-over-processing-time
ratio is smaller than j’s true ratio. The payment j has to
make in this case can be arbitrarily higher than the valu-
ation j gains. Understating the weight can lead to a later
job displacing j , but paying to j arbitrarily less than j’s
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actual loss in valuation. On the other hand, one can sim-
ilarly show that agents also have the chance of arbitrary
high utility gains by overstating their weight. In this light,
reporting truthfully becomes particularly attractive for risk-
averse agents.

Theorem 2. Consider the restricted strategy space where
all j ∈ J report �wj = wj . Then, the strategy profile where
all jobs j truthfully report r̃j = rj , p̃j = pj and choose
a machine that maximizes ûj is a dominant strategy
equilibrium.

Proof. Let us start with m = 1. Suppose that �wj = wj ,
fix any r̃j , and consider any p̃j > pj . Let uj denote j’s
(ex-post) utility when reporting pj truthfully, and let ũj

be its (ex-post) utility for reporting p̃j . Because �wj = wj ,
in both cases the ex-post utility equals the tentative util-
ity at decision point r̃j according to Lemma 1(a). There-
fore, let us consider the latter utilities. Clearly, according
to the WSPT-priorities, j’s position in the queue at the
machine for report pj will not be behind its position for
report p̃j . Let us divide the jobs already queuing at the
machine upon j’s arrival into three sets: let J1 = �k ∈ J �
k < j� Sk > r̃j � �wk/p̃k � wj/pj�, J2 = �k ∈ J �k < j�
Sk > r̃j � wj/pj > �wk/p̃k � wj/p̃j�, and J3 = �k ∈ J �
k < j� Sk > r̃j � wj/p̃j > �wk/p̃k�. That is, J1 comprises the
jobs that are in front of j in the queue for both reports, J2
consists of the jobs that are only in front of j when report-
ing p̃j , and J3 includes only jobs that queue behind j for
both reports. Because ũj =−∑

k∈J1∪J2 wjp̃k −
∑

k∈J3 p̃j �wk −
wjp̃j and uj =−∑

k∈J1 wjp̃k−
∑

k∈J2∪J3 pj �wk−wjpj , we get

ũj−uj =
∑
k∈J2

�pj �wk−wjp̃k	−
∑
k∈J3

�p̃j−pj	 �wk−wj�p̃j−pj	�

According to the definition of J2, the first term is nonposi-
tive. Because p̃j > pj , the second and third terms are non-
positive also. Therefore, ũj � uj ; i.e., truthfully reporting
pj maximizes j’s ex-post utility on a single machine.
Let us now fix �wj =wj and any p̃j � pj and regard any

r̃j > rj . There are two effects that can occur when arriv-
ing later than rj . First, jobs queued at the machine already
at time rj may have been processed or may have started
receiving service by time r̃j . But either j would have had
to wait for those jobs anyway or it would have increased
its utility at decision point rj by displacing a job and pay-
ing compensation. So, j cannot gain from this effect by
lying. The second effect is that new jobs have arrived at
the machine between rj and r̃j . Those jobs either delay j’s
completion time and j looses the payment it could have
received by arriving earlier, or the jobs do not delay j’s
completion time, but j has to pay the jobs for displacing
them when arriving at r̃j . If j arrived at time rj , it would
not have to pay for displacing such a job. Hence, j can-
not gain from this effect either. Thus, the tentative utility at
time rj will be at least as large as the one at time r̃j . There-
fore, j maximizes its tentative utility by choosing r̃j = rj .

Because �wj = wj , it follows from Lemma 1(a) that choos-
ing r̃j = rj also maximizes the job’s ex-post utility on a
single machine.
For m> 1, note that on every machine the tentative util-

ity of job j at decision point r̃j is equal to its ex-post utility
and that j can select a machine itself that maximizes its
tentative utility and therefore its ex-post utility. Therefore,
given that �wj =wj , a job’s ex-post utility is maximized by
choosing r̃j = rj , p̃j = pj and, according to Lemma 1(b), by
choosing the machine that the Local Greedy Algorithm
would have chosen. �

Theorem 3. Given the types of all jobs, the strategy pro-
file where each job j reports �r̃j � p̃j � �wj	= �rj � pj�wj	 and
chooses a machine maximizing its tentative utility ûj is a
myopic best-response equilibrium.

Proof. Consider job j . According to the proof of The-
orem 1, ûj on any machine is maximized by reporting
�wj = wj for any r̃j and p̃j . According to Theorem 2 and
Lemma 1(b), p̃j = pj , r̃j = rj and choosing a machine
that maximizes j’s tentative utility at time r̃j will maxi-
mize j’s ex-post utility if j reports �wj = wj . According to
Lemma 1(a), this ex-post utility is equal to ûj if j reports
�wj = wj . Therefore, any job j maximizes ûj by truthful
reports and choosing the machine as claimed. �

To obtain the myopic best-response equilibrium, pay-
ments paid by an arriving job j need not necessarily be
given to the jobs delayed by j . We formulate this fact as
Corollary 1 and add an extra proof because the proof of
Theorem 3 uses the detour via ex-post utilities, which is
not possible if jobs are not compensated for delays.

Corollary 1. If the Decentralized Local Greedy
Mechanism is modified such that payments are collected
from jobs, but not given to the other jobs, then truth-telling
and choosing a machine that maximizes the tentative utility
ûj is a myopic best-response equilibrium.

Proof. According to Theorem 1, truthfully reporting wj

maximizes j’s tentative utility for any p̃j and r̃j . Further-
more, exactly the same arguments as in the proof of Theo-
rem 2 yield that reporting p̃j = pj maximizes j’s tentative
utility for any r̃j , given �wj = wj . Concerning the release
date, arriving late at time r̃j instead of rj does not increase
the tentative utility for the following reasons. Jobs that were
present at rj are already finished or have started receiv-
ing service or are still waiting at time r̃j . For those jobs,
j either would have had to wait anyway or j could have
increased its utility by displacing such a job and paying the
compensation. Jobs that have arrived between time rj and
r̃j can only delay j or increase the amount that j has to
pay. In any case, j cannot benefit from arriving late. There-
fore, arriving at r̃j = rj maximizes j’s tentative utility. This
proves the claim. �

Although paying jobs when being displaced is not nec-
essary to obtain the equilibrium, it is desirable for other
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reasons. First of all, the resulting ex-post payments yield a
balanced budget and, in equilibrium, the tentative utility at
arrival is preserved and equals the ex-post utility of every
job (Lemma 1). Furthermore, paying jobs for their delay
results in a dominant strategy equilibrium in a restricted
type space (Theorem 2).

5. Performance of the Mechanism
As shown in §4, jobs have a motivation to report truthfully
about their data. Therefore, we will call a job rational if
it truthfully reports wj , pj , and rj and chooses a machine
maximizing its tentative utility ûj . In this section, we will
show that if all jobs are rational, then the Decentralized
Local Greedy Mechanism is 3.281-competitive.

5.1. Handling Critical Jobs

Recall that from §2.1 on, we assumed that no critical jobs
exist, as we defined the Decentralized Local Greedy
Mechanism only for jobs j with rj � �pj . We will now
relax this assumption and allow jobs to have types from
the more general type space ��rj � pj�wj	 � rj � 0� pj � 0�
wj ∈ ��. Without this assumption, the Decentralized
Local Greedy Mechanism as stated above does not yet
yield a constant performance ratio; simple examples can be
constructed in the same flavor as by Megow and Schulz
(2004). In fact, it is well known that early arriving jobs
with large processing times have to be delayed (Anderson
and Potts 2004, Megow and Schulz 2004, Megow et al.
2006). To achieve a constant performance ratio, we also
adopt this idea and use the same modified release dates as
Megow and Schulz (2004) and Megow et al. (2006). To this
end, we define the modified release date of every job j ∈ J
as r ′j =max�rj ��pj�, where � ∈ �0�1( will later be chosen
appropriately. For our decentralized setting, this means that
a machine will not admit any job j to its priority queue
before time r̃ ′j = max�r̃j ��p̃j� if j arrives at time r̃j and
reports processing time p̃j . Moreover, machines provide
information about the tentative completion time and pay-
ment to a job only at time r̃ ′j also. Note that this modifica-
tion is part of the local scheduling policy of every machine
and therefore does not restrict the required decentralization.
In fact, the machines simply impose the modified release
dates upon the jobs. Truthfulness remains a myopic best-
response equilibrium also after this modification because
r̃j � rj , hence r̃ ′j � r ′j . Moreover, the aforementioned prop-
erties concerning the balanced budget, the conservation of
utility in the case of a truthfully reported weight, and the
online property of the payments still apply to the mecha-
nism with modified release dates.

5.2. Proof of the Competitive Ratio

It is not a goal in itself to have a truthful mechanism, but
to use the truthfulness to achieve a reasonable overall per-
formance in terms of the social welfare

∑
wjCj .

Theorem 4. Suppose that every job is rational in the sense
that it reports rj , pj , wj and selects a machine that maxi-
mizes its tentative utility at arrival. Then, the Decentral-
ized Local Greedy Mechanism is �-competitive, with
�= 3�281.

The proof of the theorem partly follows the lines of the
corresponding proof by Megow et al. (2006), but the dis-
tribution of jobs over machines in their algorithm differs.
Therefore, our result is not implied by the result by Megow
et al. (2006), and it is necessary to give a proof here; it is
presented in the appendix.

6. On Dominant Strategy Equilibria
We show that any mechanism that has a dominant strat-
egy equilibrium with truthful reports must necessarily dif-
fer from the Decentralized Local Greedy Mechanism
in the allocation of jobs to machines and time slots; so,
it remains unclear what the performance of such a mech-
anism might be. Giving up on decentralization, however,
we show that it is possible to define a constant competitive
mechanism on the basis of the algorithm by Correa and
Wagner (2009) such that truth-telling is a dominant strat-
egy equilibrium. Finally, notice that for the single-machine
case, decentralization is not an issue. We comment on
the Correa–Wagner Algorithm for the single-machine case
and show also that the Local Greedy Algorithm can be
made truthful with respect to the stronger dominant strat-
egy equilibrium. The payment scheme required to achieve
that, however, is different from the payment scheme of the
Decentralized Local Greedy Mechanism.

6.1. A Negative Result

Recall that in the Local Greedy Algorithm, jobs are cen-
trally assigned to machines so as to minimize the increase
in the global objective function

∑
wjCj . We can see this

algorithm as the allocation algorithm of a mechanism where
the only action of any job is to report its type. Recall that
such mechanisms are known as direct revelation mecha-
nisms. In that context, a truthful �direct revelation	 mecha-
nism denotes a mechanism where truth-telling is a dominant
strategy equilibrium. The question arises if the Local
Greedy Algorithm can be augmented by some payment
scheme to a truthful mechanism. For the case of parallel
machines, however, we have the following negative result.

Theorem 5. There does not exist a payment scheme
that extends the Local Greedy Algorithm to a truthful
mechanism.

Proof. We first derive a necessary condition for making
truthful reports a dominant strategy equilibrium, and then
we show that it is violated by the Local Greedy Algo-
rithm. Suppose that there is a payment scheme � such that
truthful reporting is a dominant strategy for each job. Fix
job j and the reports of all other jobs. Also let j’s report
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about processing time and release date be fixed. Consider
two weights of j , w�1	 and w�2	, and denote by C�1	 and
C�2	 the resulting completion times, and denote by ��1	

and ��2	 the resulting payments when j reports w�1	 and
w�2	, respectively. Because truthful reporting is a dominant
strategy, reporting w�1	 must maximize j’s ex-post utility
when j has true weight w�1	, especially, −w�1	C�1	 −��1	 �

−w�1	C�2	−��2	. Similarly,−w�2	C�2	−��2	 �−w�2	C�1	−
��1	. Adding up these two inequalities yields

�w�2	 −w�1		�C�1	 −C�2		� 0� (1)

Specifically, if w�1	 < w�2	, we must have C�1	 �C�2	. Note
that condition (1) corresponds to the notion of weak mono-
tonicity as introduced by Bikhchandani et al. (2006). Fur-
thermore, in the single-parameter setting, where only the
weights are private information, it is equivalent to the
decreasing work curves condition by Archer and Tardos
(2001).
Now consider the following example. Let ) �w/p̃( denote

a job with (reported) weight �w and (reported) processing
time p̃. Suppose that we have to schedule the following
four jobs on two machines: ) 63 (� )

5
4 (� j = ) �w/ 1

7 (� )
20
4 (, where�w is a parameter. Let all jobs have a common release date

large enough such that no job has to be delayed according
to the modified release dates (say r > 4�, with � as in
§5.1), but assume that they arrive in the given order.
The first job ) 63 ( increases the objective value on both

machines by the same amount and is therefore scheduled on
the first machine. The second job )5/4( is then assigned to
the second machine. We consider two values for the weight
of j , namely, w�1	 = 1

14 and w�2	 = 1
2 . In the first case,

the weight-over-processing-time ratio is 1
2 and therefore

smaller than the respective ratios of the two jobs already
assigned to machines. Thus, j would be scheduled last on
each of the machines according to the WSPT rule. It would
cause the following increases:

z�j�1	= (
r + 1

7 + 3
)
w�1	�

z�j�2	= (
r + 1

7 + 4
)
w�1	�

Therefore, j is assigned to the end of machine 1’s queue.
The second case for w�2	 = 1

2 yields a ratio of 7
2 , which

would place j first on both machines. The respective
increases are

z�j�1	= (
r + 1

7

)
w�2	 + 6 · 17 �

z�j�2	= (
r + 1

7

)
w�2	 + 5 · 17 �

Job j would be scheduled on machine 2.
The last job ) 204 ( has a ratio larger than all the ratios of

the present jobs. Therefore, it would be scheduled first on
both machines. In both cases, the total weight of jobs on
the first machine is larger than the total weight of jobs on
the second machine. Therefore, the increase in the objective

value caused by the last job is in both cases smaller on the
second machine. Thus, the job is scheduled on the second
machine, which increases j’s completion time only in the
second case. Thus, j is completed at time r + 3+ 1

7 when
reporting 1

14 and at time r+4+ 1
7 when reporting

1
2 . Hence,

condition (1) is violated. �

Remark 1. In the example used to prove Theorem 5, pj

and rj are public information. Hence, even if only the
weights are private and the other job characteristics are
public, the Local Greedy Algorithm cannot be augmented
to a truthful mechanism.

6.2. On the Correa–Wagner Algorithm

As mentioned in the introduction, the currently best-known
performance guarantee for the online scheduling problem
being discussed is 2.62 due to Correa and Wagner (2009).
In this section, we show how this algorithm can be used
to obtain a centralized mechanism that admits a dominant
strategy equilibrium where all jobs report truthfully.
The Correa–Wagner algorithm maintains a virtual single

machine that can process jobs m times faster than the orig-
inal machines. At any point in time, the virtual machine
preemptively processes the available job with the highest
wj/pj ratio. For � ∈ )0�1(, the �-point of a job is defined
as the point in time when for the first time an �-fraction
of the job is processed on the virtual machine. Jobs enter a
FIFO-queue in the order of their �-points. Whenever one of
the m “real” machines becomes idle, it starts processing the
next job from the FIFO queue. The mentioned performance
bound is achieved by choosing �= �

√
5− 1	/2.

Theorem 6. For the parallel machine problem, consider a
fixed job j and let the reports of the other jobs be fixed
as well. For given reports p̃j and r̃j , let C0 � · · · � Ck �

· · · � CMAX be the �finitely many 	 possible values for j’s
completion time when j varies its report �wj . Furthermore,
let �* = inf�w � report w leads to C*−1� and define

+k
j =

MAX∑
*=k+1

)�* �C* −C*−1	(

to be the payment that j has to pay if j’s completion time is
Ck. Then, the Correa–Wagner Algorithm with the payment
scheme + has a dominant strategy equilibrium in which all
jobs are truthful.

Under certain conditions, the payment scheme + is
related to the VCG-payment scheme. But especially in an
online setting, this relationship does not hold; see §6.3.
For the induced single-parameter problem, where only

weights are private information, the result by Archer and
Tardos (2001) implies that a sufficient condition for the
existence of a truthful payment scheme is that the comple-
tion time of each job depends nonincreasingly on the job’s
reported weight. Indeed, for the Correa–Wagner Algorithm,
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a higher report for the weight can only improve a job’s pri-
ority on the virtual machine and therefore can only decrease
the completion time of the job. Therefore, the existence
of a payment scheme that makes truth-telling wj a domi-
nant strategy (for fixed processing time and release date) is
guaranteed by the result of Archer and Tardos (2001). The
above defined payments can be obtained using the meth-
ods by Gui et al. (2004) or by Archer and Tardos (2001).
Here, we only show that the payments +k

j indeed make
truth-telling a dominant strategy with respect to all three
job characteristics.

Proof of Theorem 6. Fix a job j and the reports of the
other jobs. For given reports p̃j and r̃j of job j , let C�wj	
denote j’s completion time as a function of the reported
weight wj . As mentioned above, C�wj	 is a nonincreasing
function, in fact, it is a nonincreasing step function. With
that in mind, it follows directly from the definition of +k

j

that if j achieves Ck =C�wk
j 	 under report w

k
j , then

+k
j =

∫ wk
j

0
�C�x	−C�wk

j 		dx�

Suppose that j has true weight wj and let �wj > wj . Then,
the corresponding incentive constraint reads as

−wjC�wj	−
∫ wj

0
�C�x	−C�wj		dx

�−wjC� �wj	−
∫ �wj

0
�C�x	−C� �wj		dx�

which is equivalent to

∫ �wj

wj

�C�x	−C� �wj		dx� 0�

The latter is true because C�·	 is nonincreasing, and thus
the integrand is nonnegative. For �wj < wj , the correspond-
ing incentive constraint can be verified similarly. For a
similar, but more intuitive proof of the induced single-
parameter problem, we refer to Lavi (2007).
From the above analysis it follows that truthfully report-

ing the weight is a dominant strategy for job j , no matter
what j reports about its processing time and release date.
Let us now turn to j’s processing time. For the true pro-
cessing time pj and fixed release date, let C�wj	, wj � 0
be the completion time for weight report wj . Define �C�wj	

analogously for p̃j > pj . Clearly, �C�wj	�C�wj	 for all wj .
The corresponding incentive constraint with respect to pro-
cessing times reads as

−wjC�wj	−
∫ wj

0
�C�x	−C�wj		dx

�−wj
�C�wj	−

∫ wj

0
� �C�x	− �C�wj		dx

⇔
∫ wj

0
� �C�x	−C�x		dx� 0�

The latter is implied by �C�x	�C�x	 for all x > 0.
It remains to show that arriving no later than the true

release date is a dominant strategy also. Assume that j’s
report is truthful in wj and pj . For fixed processing time pj

and fixed release date rj , let C�wj	, wj � 0 be the comple-
tion time for weight report wj . Define �C�wj	 analogously
for release date r̃j . Clearly, �C�wj	�C�wj	 for all wj . This
implies the incentive constraints with respect to the release
date similar to the above. �

The payments +k
j can be computed in polynomial time,

which can be seen as follows. For every job j , given the
actual reports of the other jobs and j’s report about pro-
cessing time and release date, it is sufficient to know j’s
completion time as a function of the reported weight to
determine the payments. It can be easily verified that this
function is a nonincreasing step function whose points of
discontinuity are a subset of the set of reported ratios wl/pl

for the n− 1 jobs, l �= j . Therefore, it is sufficient to deter-
mine j’s completion time for n values of j’s weight. Deter-
mining the completion time for one of these values requires
running the Correa–Wagner algorithm once again, and thus
takes polynomial time. Hence, determining the payments
for all n jobs can be done in polynomial time also.
However, the payment scheme + is not an online pay-

ment scheme, and it does not satisfy the balanced budget
condition. The mechanism described is heavily dependent
upon centralization in maintaining the fast virtual machine
and the FIFO queue. Therefore, we hardly see a chance to
turn the mechanism into a decentralized one.

6.3. The Single-Machine Case

For a single machine, the decentralization requirement is
redundant. In this case, the Correa–Wagner algorithm is
equivalent to the algorithm by Goemans et al. (2002),
which yields a performance guarantee of 2.42. This way,
we get a truthful mechanism with a performance guarantee
of 2.42.
Although this is better than the performance guarantee

of 3 for the Local Greedy Algorithm on a single machine
(Megow and Schulz 2004), we briefly comment on the lat-
ter as well. Even for a single machine, the Decentral-
ized Local Greedy Mechanism does in general not have
a dominant strategy equilibrium where all jobs report truth-
fully: Consider a job j with wj = pj = 1 arriving first and
a job k with wk = 2 and pk = 1 arriving second. Suppose
that both jobs report truthfully. Job j is displaced by k
and receives a payment of wjpk = 1. But with any report
1< �wj < 2, job j would still be displaced by k, receiving
a higher payment �wjpk > 1. Even when we give up on a
balanced budget and j does not receive the payment when
being displaced by k, j would be better off lying �wj = 3
and not being displaced at all.
However, the Local Greedy Algorithm together with

payment scheme + from §6.2 yields a mechanism in which
truth-telling becomes a dominant strategy equilibrium. This
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can be proved analogously to Theorem 6; we skip the
details. Again, in contrast to the payment scheme of the
Decentralized Local Greedy Mechanism, the payment
scheme + does not satisfy the balanced budget condition
and is not an online payment scheme.
In the offline case with trivial release dates, i.e. when

rj = 0 for all j ∈ J , the WSPT rule minimizes
∑

j∈J wjCj

and therefore maximizes the total social welfare. In this
case, the WSPT rule together with payments given by
+ coincide with the VCG mechanism: it can be verified
that the payment that job j has to make according to +

equals the product of j’s processing time and the total
weight of the jobs that are processed behind j . This is
exactly the externality that j imposes on the other jobs and
therefore equals the VCG payment. For the online case with
nontrivial release dates, however, an exact algorithm does
not exist; see Hoogeveen and Vestjens (1996). Hence, it is
not possible to set up the VCG mechanism. As a conse-
quence, neither of the previously discussed mechanisms is
the VCG mechanism.

7. Discussion
We leave it as an open problem to find a decentralized, con-
stant competitive online mechanism where it is a dominant
strategy equilibrium to report truthfully. A decentralized
algorithm that mimics the Local Greedy Algorithm is not
a candidate because the latter cannot be augmented by any
payment scheme to a mechanism with a dominant strategy
equilibrium.
We have shown that the algorithm with the current best-

performance bound for the nonstrategic, centralized setting
can be turned into a truthful mechanism with a compet-
itive ratio of 2.62, but, the resulting mechanism is not
decentralized and the given payment scheme is not online.
Thus, an intriguing open question remains: Is the decen-
tralized setting actually harder than the setting with central
coordination?
Finally, we believe that it would be interesting to identify

general rules that allow for a transformation of centralized
algorithms to decentralized mechanisms—our work can be
seen as one instance of such a result.

Appendix. Proof of Theorem 4
Theorem 4. Suppose that every job is rational in the sense
that it reports rj , pj , wj and selects a machine that maxi-
mizes its tentative utility at arrival. Then the Decentral-
ized Local Greedy Mechanism is �-competitive, with
�= 3�281.

Proof. A rational job communicates to the machines at
time max�rj ��pj� and chooses a machine ij that maximizes
its utility upon arrival ûj �ij 	. That is, it selects a machine i

that minimizes

−ûj �i	=wj
	Cj�i	+ 
�j�i	

=wj

[
r ′j + bi�r

′
j 	+

∑
k∈H�j	
k→i
k<j
Sk�r ′j

pk +pj

]
+pj

∑
k∈L�j	
k→i
k<j
Sk>r ′j

wk�

This, however, exactly equals the immediate increase of the
objective value

∑
wj Cj that is due to the addition of job j

to the schedule. We now claim that we can express the
objective value Z of the resulting schedule as

Z=∑
j∈J

−ûj �ij 	�

where ij is the machine selected by job j . Here, it is impor-
tant to note that −ûj �ij 	 does not express the total (ex-post)
contribution of job j to

∑
wjCj , but only the increase upon

arrival of j on machine ij . However, further contributions
of job j to

∑
wjCj only appear when job j is displaced by

some later-arriving job with higher priority, say k. This con-
tribution by job j to

∑
wjCj , however, will be accounted

for when adding −ûk�ik	.
Next, because we assume that any job maximizes its util-

ity upon arrival, or equivalently minimizes −ûj �i	 when
selecting a machine i, we can apply an averaging argument
over the number of machines, as in Megow et al. (2006),
to obtain

Z�
∑
j∈J

1
m

m∑
i=1

−ûj �i	 �

Next, recall that upon arrival of job j on any of the
machines i (at time r ′j ), machine i is blocked for time
bi�r

′
j 	� r ′j/�. Therefore we get, for any j ,

1
m

m∑
i=1

−ûj �i	

=wjr
′
j+wj

m∑
i=1

bi�r
′
j 	

m
+wj

m∑
i=1

∑
k∈H�j	
k→i
k<j
Sk�r ′j

pk

m
+wjpj+pj

m∑
i=1

∑
k∈L�j	
k→i
k<j
Sk>r ′j

wk

m

=wjr
′
j +wj

m∑
i=1

bi�r
′
j 	

m
+wj

∑
k∈H�j	
k<j
Sk�r ′j

pk

m
+wjpj +pj

∑
k∈L�j	
k<j
Sk>r ′j

wk

m

�wjr
′
j +wj

m∑
i=1

bi�r
′
j 	

m
+wj

∑
k∈H�j	
k<j

pk

m
+wjpj +pj

∑
k∈L�j	
k<j

wk

m

�wjr
′
j +wj

r ′j
�
+wj

∑
k∈H�j	
k<j

pk

m
+wjpj +pj

∑
k∈L�j	
k<j

wk

m
�
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Thus,

Z�
∑
j∈J

wj

(
1+ 1

�

)
r ′j +

∑
j∈J

wj

∑
k∈H�j	
k<j

pk

m

+∑
j∈J

wjpj +
∑
j∈J

pj

∑
k∈L�j	
k<j

wk

m
�

The last term can be rewritten as∑
j∈J

pj

∑
k∈L�j	
k<j

wk

m
= ∑

�j�k	�
j∈H�k	
k<j

pj

wk

m
= ∑

�j�k	�
k∈H�j	
j<k

pk

wj

m

=∑
j∈J

wj

∑
k∈H�j	
k>j

pk

m
�

Therefore,

Z �
∑
j∈J

wj

(
1+ 1

�

)
r ′j +

∑
j∈J

wj

∑
k∈H�j	
k<j

pk

m

+∑
j∈J

wjpj +
∑
j∈J

wj

∑
k∈H�j	
k>j

pk

m

=∑
j∈J

wj

(
1+ 1

�

)
r ′j +

∑
j∈J

wj

∑
k∈H�j	

pk

m
+ m− 1

m

∑
j∈J

wjpj �

Now, we apply a lower bound on the optimal offline sched-
ule (by Eastman et al. 1964, Theorem 1) namely,

ZOPT
�
∑
j∈J

wj

∑
k∈H�j	

pk

m
+ m− 1

2m

∑
j∈J

wjpj �

yielding

Z � ZOPT +∑
j∈J

wj

(
1+ 1

�

)
r ′j +

m− 1
2m

∑
j∈J

wjpj

� ZOPT +∑
j∈J

wj

(
1+ 1

�

)
�rj +�pj	+

m− 1
2m

∑
j∈J

wjpj

=ZOPT +∑
j∈J

wj

[(
1+ 1

�

)
rj +

(
1+�+ m− 1

2m

)
pj

]
�

where in the second inequality rj + �pj is used as an
upper bound on r ′j . Applying the trivial lower bound∑

j∈J wj�rj +pj	�ZOPT , we get

Z � ZOPT +max
{
1+ 1

�
� 1+�+ m− 1

2m

}
ZOPT

= 2ZOPT +max
{
1
�
� �+ m− 1

2m

}
ZOPT �

Therefore, we get the performance bound

�= 2+max
{
1
�
� �+ m− 1

2m

}
�

This can now be optimized for �, which was already done
in Megow and Schulz (2004). There it was shown that �<
3�281 for �= �

√
17m2 − 2m+ 1−m+ 1	/�4m	. �
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