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We explicitly calculate the aggregate diffusion dynamics in one-dimensional agent-based models of adoption of new prod-
ucts, without using the mean-field approximation. We then introduce a clusters-dynamics approach, and use it to derive an
analytic approximation of the aggregate diffusion dynamics in multidimensional agent-based models. The clusters-dynamics
approximation shows that the aggregate diffusion dynamics does not depend on the average distance between individuals,
but rather on the expansion rate of clusters of adopters. Therefore, the grid dimension has a large effect on the aggregate
adoption dynamics, but a small-world structure and heterogeneity among individuals have only a minor effect. Our results
suggest that the one-dimensional model and the Bass model provide a lower bound and an upper bound, respectively, for
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1. Introduction

Diffusion of new products is a fundamental problem in
marketing. This problem has been studied in diverse areas
such as retail service, industrial technology, agriculture,
and educational, pharmaceutical, and consumer-durables
markets (Mahajan et al. 1993). Typically, the diffusion pro-
cess begins when the product is introduced into the market,
and progresses through a series of adoption events.

The first quantitative model of diffusion of new products
was the Bass model (Bass 1969). This model inspired a
huge body of theoretical and empirical research, and was
selected as one of the 10 most-cited papers in the 50-year
history of Management Science (Hopp, ed., 2004). In the
Bass model, the adoption rate is given by

dn(t)
dr

= n@) p 0|, nO=0. (0

where n(r) is the number of individuals that adopted the
product by time ¢, and M is the population size. The param-
eters p and g describe the likelihood of an individual to
adopt the product due to external influences such as mass
media or commercials, and due to internal influences by
other individuals who have already adopted the product,
respectively. Because the hazard of adoption of each indi-
vidual is p 4+ g(n/M), each individual is affected by both
external and internal influences.
Equation (1) can be solved explicitly, yielding

1 — e~ (Pt

Npass (1) = MW,

or, equivalently,

1 — e~ (Pt

T @ne T @

fBass(t) =

where f(t) =n(t)/M is the fraction of adopters at time ¢.
Empirically, the Bass model was found to capture the
S-shape of the adoption curve of various products. Typical
values for the parameters were found to be p = 0.03/year
and g = 0.38/year, with p often less than 0.01/year and
q typically in the range 0.3-0.5/year (Mahajan et al. 1995).

The Bass model is an aggregate model, i.e., it describes
the diffusion in terms of the behavior of the entire popu-
lation. Therefore, a considerable research effort has been
devoted to modeling the individual adoption behavior, and
to analyzing how it affects the aggregate diffusion process.
Thus, Sinha and Chandrashekaran (1992) studied individ-
ual adoption behavior using hazard modeling on empirical
data. Subsequently, Van den Bulte and Lilien (2001) used
hazard modeling to study social contagion with social net-
work data. Bronnenberg and Mela (2004) and Bell and
Song (2007) have done this with spatial data. Beginning
with Goldenberg et al. (2000), this line of research has been
carried out by using agent-based (cellular-automata) mod-
els to compute numerically the aggregate adoption curve
from the individual-based behaviors, which are based on
external and internal effects.

In the Bass model, the rate of new adoptions due to
internal effects is equal to (¢/M)(M — n)n. This expres-
sion is based on the assumption that each of the (M — n)
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Figure 1.

The fully connected model.

Note. Each individual is able to communicate with any other individual.

nonadopters can be influenced by all n adopters. In other
words, the Bass model implicitly assumes that all indi-
viduals are connected to each other (see Figure 1). The
assumption of a full connectivity has also been used in
some of the subsequent agent-based diffusion models. For
example, Goldenberg et al. (2001) used a fully connected
agent-based model to study the effect of heterogeneity
in the values of p and ¢ among individuals. In other
agent-based diffusion models, however, individuals could
only communicate with their neighbors, and the popula-
tion had a spatial structure such as a one-dimensional grid
(e.g., Alkemade and Castaldi 2005), a two-dimensional
grid (e.g., Goldenberg et al. 2002), or a regular lattice
with some added random links (e.g., Garber et al. 2004,
Delre et al. 2007).

The goal of this study is to analytically study the effect of
the spatial structure on the diffusion process in agent-based
models. To do that, we first consider a one-dimensional
model in which each individual can only be influenced by
one or two neighbors (see Figure 2). In this case, we show
that the fractional adoption curve f;,(#) can be calculated
explicitly, without making any approximation. In particular,
as M — oo,

fip(H)=1— e~ Pra)ta((1—e")/p) 3)

We then introduce a novel analytic approach, the
clusters-dynamics method, which allows us to approximate
the adoption curve in higher dimensions when all nodes
are “positionally equivalent” to each either, with and with-
out an additional small-world structure. The key finding of
this study is that the fractional adoption curve f(¢) in an
agent-based model with “any” spatial structure is slower
than in the Bass model and faster than in the 1D model, i.e.,

fBass(t)gf(t)gle(t)‘ (4)

Figure 2. The 1D diffusion models analyzed in this

study.

S,
C

et ey,
-

Notes. Arrows show the possible flow of communication/influence.
(A): The one-sided 1D model. Each individual can be influenced by his

left neighbor. (B): The two-sided 1D model. Each individual can be influ-
enced by his two neighbors.

The paper is organized as follows. In §2 we study the dif-
fusion in the simplest-possible spatial model, the one-sided
one-dimensional model, in which a population of size M
is positioned on a circle, and each individual can only be
influenced by his left neighbor (see Figure 2A). Even for
such a simple structure, the number of possible configura-
tions of adopters and nonadopters increases exponentially
with the length of the configuration. In such cases, the com-
mon approach to analytically compute the aggregate diffu-
sion dynamics has been to calculate only the probabilities of
short configurations, and close the system using the mean-
field approximation (see, e.g., Matsuda et al. 1992). In §2.2
we show, however, that we can close the system with-
out making any approximation, by utilizing the translation
invariance property of the model. Furthermore, this system
of equations can be solved, yielding an explicit expression
of the aggregate diffusion dynamics (Proposition 1). This
expression is, however, cumbersome, and not very informa-
tive. Fortunately, it can be substantially simplified in the
limit as M — oo (Proposition 2), yielding Equation (3).
Numerical simulations show that already for M as small as
20, this limiting expression is in excellent agreement with
simulation results of agents-based models. Because typical
values of M are much larger, expression (3) provides an
excellent approximation to the aggregate diffusion process
in the one-sided one-dimensional spatial model.

In §3 we study the diffusion in a two-sided one-
dimensional model, in which a population of size M is posi-
tioned on a circle, but each individual can influence his two
neighbors (see Figure 2B). In this model, we allow for an
asymmetry of the internal influence parameters in the right
and left directions (i.e., gy is not necessarily equal to ¢,).
We again utilize the translation invariance property to com-
pute analytically the aggregate diffusion dynamics without
making any mean-field approximation (Proposition 3), and
obtain a simpler expression as M —> oo (Proposition 4).

The results of Propositions 1 and 3 show that the aggre-
gate diffusion dynamics in the one-sided 1D model is iden-
tical to that in the two-sided 1D model, provided that the
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internal influence parameter g in the one-sided model is
equal to the sum of the internal influence parameters in the
two-sided model (i.e., ¢ = g + ¢, ). Therefore, in §4 we
define the parameter g™ as the sum of the internal influ-
ences parameters on all neighbors. The results of §§2 and 3
thus show that in the one-dimensional models, the aggre-
gate diffusion dynamics depends on the values of p and

effective

q =dqr+q.

In §5 we show that as M — oo, the adoption curve
in the fully connected model (see Figure 1) is given by
the Bass formula, Equation (2). Then, in §6 we show that
the aggregate adoption level in the 1D model is signif-
icantly lower than in the Bass model. Because the Bass
model can be viewed as a mean-field approximation of the
1D model (§6.1), this shows the advantage of using the
translation invariance property over the mean-field approx-
imation in the analytic calculation of the adoption curve in
the 1D models.

The one-dimensional model and the fully connected
Bass model can be viewed as the least-connected and
most-connected spatial models, respectively. From this per-
spective, any other spatial structure “lies between” these
two cases. Therefore, in §7 we formulate Conjecture 1 that
the diffusion in any spatial structure is faster than in the
1D model, and slower than in the Bass model; see Equa-
tion (4). In other words, the explicit expressions (2) and (3)
provide an upper bound and a lower bound to the fractional
adoption curve.

In general, the aggregate adoption dynamics depends on
two independent parameters, p and g. In §8, however, we
use dimensional analysis to show that regardless of the
spatial structure, the adoption curve can be written as a
function of a single parameter—the dimensionless parame-
ter ¢ = q/p. Moreover, we show that the domain of inter-
est in diffusion models is g >> 1. This observation implies
that it is “sufficient” to prove Conjecture 1 (or to confirm
it numerically) for ¢ > 1, rather than for any p > 0 and
q>0.

In §9 we derive an approximation for f(¢) by visu-
alizing the diffusion process as a random creation and
subsequent expansion of clusters of adopters. Unlike the
explicit calculation of f(¢) in the 1D models, which utilized
the translation invariance property, the clusters-dynamics
approach only provides an approximation for f(¢). Nev-
ertheless, it has the advantages that it is intuitive, and
that it can be applied in any dimension. Indeed, using the
clusters-dynamics approach, we show analytically that the
aggregate adoption level in multidimensional Cartesian grids
increases with the grid dimension, but remains below that
of the Bass model (§10). A priori, one could argue that
these results are not surprising, because as the dimension
increases, the average distance between adopters decreases,
thereby resulting in a faster diffusion. If this explanation is
correct, then the addition of a small-world structure should
result in a considerable speedup of the adoption process.
In §11 we show, however, that a small-world structure has

a small effect on the diffusion of new products. Indeed, a
small-world structure has a large effect when diffusion starts
from a single external adopter and progresses only through
internal adoptions. This may be the case in diffusion of epi-
demics such as AIDS or SARS, but not in diffusion of new
products. In §12 we use the clusters-dynamics approach and
agent-based simulations to show that heterogeneity among
individuals has a minor effect on the aggregate diffusion
process.

The results of §§10—12 show, in particular, that Conjec-
ture 1 holds for Cartesian grids of any dimension, with
or without a small-world structure, with either homoge-
neous or heterogeneous individuals. The role of the spatial
structure in the diffusion process is discussed in §13. The
main conclusion of this discussion is that the spatial struc-
ture can have a large effect on the diffusion process. This
effect is not related to the effect of the spatial structure
on the average distance between individuals, but rather to
its effect on the expansion rate of clusters of adopters. We
conclude with some final remarks in §14.

Although the focus of this study is on agent-based
modeling in marketing, we note that agent-based mod-
els have been used in studies of social, economical, and
biological models (see, e.g., Samuelson and Macal 2006,
Gilbert and Troitzsch 2005, Grimm and Railsback 2005,
Bonabeau 2002, Epstein and Axtell 1996, Kim et al.
2007). From a mathematical perspective, the key nov-
elty of this study, compared with the existing literature
on agent-based models, is the analytic calculation of the
aggregate diffusion dynamics in a grid with a spatial
structure, both exactly for the 1D case, and approximately
(using the clusters-dynamics approach) in any dimension.
In contrast, most previous agent-based studies computed
the aggregate diffusion dynamics only numerically. The
studies that did calculate the aggregate dynamics analyti-
cally either employed some type of a mean-field approxima-
tion, or obtained analytical results for steady-state solutions,
such as the fraction of the population that will become
infected by an epidemic at equilibria (Lépez-Pintado 2008,
Jackson and Rogers 2007, Jackson 2006, Vega-Redondo
2006, Pastor-Satorrds and Vespignani 2001). Note that in
all the agent-based models considered in this study, once
an individual becomes an adopter, he remains so at all
later times. This assumption is reasonable in the product-
innovation context, where diffusion models try to forecast
first-purchase sales of innovations, such as fax machines,
Skype, Ipod, and Facebook. In such models, one is only
interested in the adoption dynamics, because the steady-state
equilibria is for the entire population to become adopters.

2. One-Sided 1D Model

We begin with the simplest one-dimensional model, in
which a population of size M is positioned on a circle,
such that each individual can only be influenced by his
left neighbor (see Figure 2A). We assume that at time
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t =0 no individual has adopted the product, and that once
an individual adopts, he remains an adopter at all later
times.

Assume that at time ¢ individual j has not yet adopted.
Let p be his adoption rate due to external influences, let
g be his adoption rate due to internal influence from his
left neighbor (provided that his left neighbor has already
adopted), and let the probability that he adopts between
times ¢ and ¢ + At be given by:

Prob{;j adopts in (¢,71+At)}
PyAt+o(At), j—1 did not adopt by time ¢,

— (52)
P, At+o0(At), otherwise,

as At — 0, where

Py=p, Pi=p+gq. (5b)

Here and elsewhere we use the convention that when j =1,
then j — 1“="M.

Let us denote the number of adopters by n(t). Then, we
can calculate explicitly the expected fraction of adopters

f(t) =E[n(n)]/M:

PROPOSITION 1. The expected fraction of adopters in the
one-sided 1D model is given by

- )
f=1- kX::l Tk = 1)1
(_q)M_l —Mpt

e .

5 Gp—a)

(—kp—q)t

+cy (6a)

Here, the constants {c,}", are the solutions of the linear
system

1
dYavi=|:1. (6b)
B 1
where
(=) /(P (k=1)Y)
(=) /(P2 (k—2)!)
v, = a)ip k=1, M—1;
1
0
0

1453
M—1
(—g)"! H (jr—q)
M-2
"2/ T1Gr—a
j=1

Vy = ) . (6¢)

(=9)*/(p—q9)2p—q)
(=9)/(p—9q)
1

PrOOF. See §2.2.

Although we obtained an explicit expression for the
expected fraction of adopters, this expression is cumber-
some and not very informative. Fortunately, as M — oo,
this explicit expression becomes considerably simpler:

PROPOSITION 2. The expected fraction of adopters in the
one-sided 1D model as M — oo is

A/lli—rgof(t) = 1 — g~ (Pr@)i+a((1=e""")/p) (7

Proor. See §2.3.

This expression for the expected fraction of adopters
is different from the one obtained from the Bass model,
see §6.

2.1. Simulations

In Figure 3 we show the average number of adopters, cal-
culated from 10,000 agent-based simulations of the one-
sided 1D model. For both M =10 and M = 20, the average
fraction of adopters is well approximated by the explicit
expression (6) for a finite M. When M = 10, the aver-
age fraction of adopters is below the M — oo limit, Equa-
tion (7). However, already for M = 20, the average fraction
of adopters is very close to the M — oo limit. This shows
that even for rather small populations, the M — oo limit
describes the adoption in the one-sided 1D model extremely
well.

The results shown in Figure 3 are the average of 10,000
agents-based simulations. Note, however, that as M —> oo,
the normalized variance of the adoption process goes to
zero. Hence, the M —> oo limit, Equation (7), will match
any simulation result and not just the average over many
simulations. To illustrate this, in Figure 4 we compare
the M —> oo limit with a single agent-based simulation.
When M = 100, there is a considerable difference between
the two cases. When M = 10°, however, the two cases are
indistinguishable.

2.2. Proof of Proposition 1

We denote the state of individual j by the random vari-
able X;(t), where X,(¢) =0 if j has not adopted by time ¢,
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Figure 3. Fraction of adopters as a function of time Figure 4. Fraction of adopters as a function of time in
in the one-sided 1D model, as calculated the one-sided 1D model, as calculated from
from agent-based simulations that are aver- a single agent-based simulation (dashes).
aged over 10,000 runs (dashes).
(A) 1.0 - —
1.0 —
* - 0.8 .
4 ' g
0.8 / /
0.6 /
0.6 = J
< 0.4
0.4 /
0.2
0.2
0
0 , , , , 0 10 20 30 40
0 20 40 60 80 100 t
t
(B) 1.0
1.0
(B) 0.8
0.8
0.6
06 <
= 0.4
g
0.4
0.2
0.2
0
0 10 20 30 40 50
0 t
0 20 40 60 80

t

Notes. Also shown are the explicit expression (6) for a finite M
(dots), and the explicit expression (7) for an infinite population (solid).
Here, p=0.01, ¢ = 0.6, and At = 0.05. (A) M = 10. Dashed and
dotted lines are indistinguishable. (B) M = 20. All three lines are
indistinguishable.

and X,(r) = 1 if j has adopted by time t. Because at
time # =0 no one has adopted,
X;(0)=0, j=1,....,M. ®)

Recall that once X;(¢) changes to 1, it remains so at all
later times.

Using the adoption probabilities in Equation (5a), we
calculate the following conditional probabilities:

Prob{X;(t+A)=1|X;(t) =1} =1,
Prob{X;(t+At) =1]X,_,(t) =0, X,;(1) =0}
= Py)At + o(Ar), 9)
Prob{X;(r+ A1) =1]X,_,(t) =1, X;(1) =0}
= P, At + o(At).
Therefore,
Prob{X (1 + At) = 1}
= Prob{X;(t) =1} - 1 +Prob{X,_,(t) =0, X,(t) = 0}
- (PyAt + o(At)) +Prob{X; (1) =1, X,(1) = 0}
- (P,At 4 o(At)).

Notes. Also shown is the explicit expression (7) for an infinite population
(solid). Here, p =0.01, ¢ = 0.6, and At =0.05. (A) M =100, (B) M =
10°. In B, the two lines are indistinguishable.

Taking the limit as At goes to zero gives

%Prob{Xj(t) =1}
=Py-Prob{X; ,(1)=0, X;(t)=0}
+P;-Prob{X;_(1)=1, X;(t)=0}. (10)

In order to proceed, we adopt the following notations.
We denote the probability of an individual j to be in
state “I” (infected) at time ¢ by [I]. We denote the proba-
bility of individual j to be in state ‘S’ (susceptible) at time ¢
by [S]. The position of individual j (the “anchor”) in these
configurations is underlined. The probability of a larger
configuration that includes individual j at time ¢ is denoted
accordingly. For example, the probability of j — 1 and j to
be in state “SS” at time ¢ is [S.S], etc. We denote a config-
uration with parentheses, so that (S.S) is the configuration
and [SS] is the probability of that configuration.

Using this notation, Equation (10) can be rewritten as

[1]=P,[SS]+P,[I5]. (11)

where the dot stands for time differentiation. This equa-
tion is referred to as the master equation for [I], and it
describes the time evolution of [[] given the probabili-
ties [SS] and [1S].
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2.2.1. Translation Invariance. Equation (11) is not
closed, because it is a single equation with three unknown
state variables. In order to have a closed system of equa-
tions, we need to derive the master equations for [SS]
and [IS]. These equations, however, depend on the prob-
abilities of various configurations of length 3, whose mas-
ter equations depend on configurations of length 4, etc.
Because the number of configurations increases exponen-
tially with the length of the configurations, it seems that
even writing down the entire system of equations is a
formidable task. In such cases, a common approach is
to calculate only the probabilities of short configurations
and close the system using some mean-field approximation
(see, e.g., Matsuda et al. 1992). We now show that in the
one-sided 1D model it is possible to close the system with-
out making any approximation, by utilizing the translation
invariance property of the diffusion process.

LEMMA 1. The adoption process in the one-sided 1D model
is translation invariant, i.e., the probability of each config-
uration does not depend on its position. In other words, for
any k,

Prob{X(t)=0;,..., X, (1) =0,}
= Prob{X, 1 (1) = 00 X, (D) = 0, ), (12)
where each o, is either O or 1.

PrOOF. The initial condition (8) is the same for all j, and
the adoption rate (5) does not depend on the position of the
individual. 0O

Therefore,

COROLLARY 1. The position of the “anchor” in the config-
uration does not affect the probability of that configuration.

Thus, for example, [ SIS] =[S 1S]=[SIS]. In particular,
[1]=1[1].
LEMMA 2.
=71 (13)

PrOOF. The number of adopters at time ¢ is n(t) =
Zj.”: 1 X;(t). Therefore, the expected number of adopters at
time ¢ is

E[n(t)]= [ZX (t)] ZE[Xj(t)]=ZProb{Xj(t)=1}.
From translation invariance, we have [I]

Prob{X(#) = 1} for all j, which gives (13). O

2.2.2. Larger Configurations. Let us denote by (S,)
a configuration that consists of a sequence of k adjacent
nonadopters, i.e.,

(S)=(5...9).
k times

We have the following result:

LEMMA 3.

[ISk] = [Sk] - [Sk+1]- (14)

ProOF. The configuration (S,) = (S,_,S) may be written
as a union of two disjoint configurations:

(Sk—1§) = (SSk—1§) U (ISk—1§)-

Therefore, its probability is the sum of the probabilities of
the disjoint configurations:

[Sd=[Sen]+ 18] O

We now derive the master equation of any (S,)
configuration:

LEMMA 4. The master equation for [S,] is

[Si]=(=kp = @[S ]+ aqlSi], k=1,....M—1. (15)
PRrOOF. A configuration (S,_; S) cannot be created, because
the only possible transformation is an “S” becoming an “.”

A configuration (S,_,S) is destroyed on the k + 1
occasions:

1. When any of the rightmost k — 1 “S”s in a con-
figuration (S,_,S) turns into an “I,” which happens at a
rate of P,.

2. When a configuration (SSS,_,S) transforms into the
configuration (SIS,_,S), which happens at a rate of P,.

3. When a configuration (ISS,_,S) transforms into the
configuration (11S,_,S), which happens at a rate of P,.

The master equation for [S,] is therefore
P[IS,]-

[Se] = —(k = DP[S,] = PolSis] —

Substituting (5b) and (14) gives (15). O

LEMMA 5. The master equation for [S,,] is:

[Sy]=—Mp[Sy]. (16)

PrOOF. A configuration (S,,) cannot be created, because
the only possible transformation is an “S” becoming an “I.”
A configuration (S,,) is destroyed when any of the M “S”’s
turns into an “/,” which happens at a rate of P, = p. The
master equation for [S,,] is therefore given by (16). O

Combining Equations (15) and (16) shows that the time
evolution of {[S]}¥L, is given by

[S]=A[S], (17a)
together with the initial condition

1

Sloo=1: 1. (17b)
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where
[S1] [$:]
[S]= . 181= :
[Sw] [Sy]
-P—q q 0 0 0
0 -2p—q ¢ 0
0 0 —3p—q ¢q
A= 0 0
0 —kp—q q O
q
0 0 0 —Mp

Equation (17) is a system of linear, constant-coefficients
ordinary differential equations, which can be explicitly
solved as follows. The eigenvalues of A are its diagonal
elements, i.e.,

—kp —q, k=1,...,M—1,
A=

—Mp, k=M.

The corresponding eigenvectors {v, }/2, are given by Equa-
tion (6¢). Therefore, the solution of Equation (17) is
given by

M
[S] = Z Ckae)”‘[.
k=1

The coefficients {c,}}", are determined from the initial
condition (17b), and hence are given in Equation (6b).
Because E[f(¢)]=[I]=1—[S,], this concludes the proof
of Proposition 1.

2.3. Proof of Proposition 2

We first note that when M = oo, the solution of the infinite
system of ODEs (17) is given by

[Si]=e"“"7s ],

Indeed, substituting (18) in (15) yields

(=(k=1)p)e D[S, + ¢S]
= (—kp — @)e” " [S ]+ ge 7[5, ],

k=1,2,.... (18)

or after some rearranging,

[S)]=—(p+LS]+ge "[S,].

The solution of this equation with the initial condition
[S1]j—o =1 is given by Equation (7). O

REMARK. A system of differential equations similar to
Equations (17) was derived by Alfrey and Lloyd (1963) in a
model of the accumulation of gas or liquid molecules on the
surface of a solid, as they form long molecular films. Our
solution for M = oo is similar to the one found by Keller
(1963) for that problem.

3. Two-Sided 1D Model

In this section we analyze a 1D model in which a popula-
tion of size M is positioned on a circle, and each member
of the population can communicate with his two neighbors
(see Figure 2B). Let p be his adoption rate due to exter-
nal influences, let g; be his adoption rate due to internal
influence from his left neighbor if he has already adopted,
let g, be his adoption rate due to internal influence from
his right neighbor if he has already adopted, and let the
overall adoption probability be given by:

Prob{; adopts in (z,7+ A1)}

PyAt+o(Atr),
j—1 and j+1 did not adopt by time ¢,
P, At+o0(At),
j—1 has adopted by time ¢ and
j—+1 has not,
= (192)
PrAtr+o0(At),
j—+1 has adopted by time ¢, and
j—1 has not,
P,At+o0(At),
both j—1 and j+ 1 have adopted by time ¢,
as At — 0, where!
Po=p, P.=p+gq,
0 L L (19b)
Pr=p+ar, Pr=p+qr+q..

We now show that the expected fraction of adopters in
the two-sided 1D model is the same as in the one-sided
1D model with g =gz +¢q;:

PROPOSITION 3. The expected fraction of adopters in the
two-sided 1D model is given by Equation (6) with q =
qrt+4;.

Proor. See §3.2.
Therefore, it immediately follows that:

PROPOSITION 4. The expected fraction of adopters in the
two-sided 1D model as M — oo is given by Equation (7)
with g =qgr +q;.

The implications of this result will be discussed in §4.

3.1. Simulations

In Figure 5 we show the average of 10,000 agent-based
simulations of the two-sided 1D model. For both M =10
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Figure 5. Comparison of agent-based simulations
of the two-sided 1D model, averaged
over 10,000 runs (dashes) with the explicit
expression (6) for a finite M (dots), and with
the explicit expression (7) for an infinite
population (solid).

(A) 1.0 =
e
ks
.
0.8 i
!
0.6 4
" 04
0.2
0
0 20 40 60 80
t
(B) 1.0
0.8
0.6
" 04
0.2
0
0 10 20 30 40

t

Notes. Here, p=0.01, ¢ =1.2, and Ar =0.05. (A) M = 10. Dashed and
dotted lines are indistinguishable. (B) M =40. The three lines are nearly
indistinguishable.

and M = 40, the average fraction of adopters is well
approximated by the explicit expression (6) for a finite M.
When M = 10, the average fraction of adopters is below
the M — oo limit, Equation (7). However, already for
M =40, the average fraction of adopters is very close to
the M — oo limit. This shows that even for rather small
populations, expression (7) describes the growth of the two-
sided 1D model very well. As in the one-sided case, as
M — oo, the normalized variance of the process vanishes,
and the M — oo limit, Equation (7), will match any simula-
tion result, and not just the average over many simulations.

3.2. Proof of Proposition 3

The proof is similar to the one-sided case. The two-sided
1D model is also translation invariant, so the position of the
anchor has no effect. We first note the following relations:

LEMMA 6.
(78] = [Si] — [Sisi]- (20a)
[SiI]=[Si] = [Sisa]- (20b)

PrOOF. The configuration (S,) = (S,_,;S) may be writ-
ten as a union of two disjoint configurations (or events)
(Se1S) = (IS, S) U (SS,_,S). Hence, its probability
is the sum of the probabilities of the disjoint events:
[Se] = [ISe] + [Sis1], which gives Equation (20a). The
configuration (S,) can also be written as (S,_,S) =
(821 SHU(S,_1 8S), ie., [S] = [SeI]+[Si41], which gives
Equation (20b). O

LEMMA 7.
S ] = [S] = 2[ Sk ] + [Siso]- (21)

ProofF. The configuration (IS,) = (IS,_,S) may be writ-
ten as a union of two disjoint configurations (or events)
(IS,_,8) = (IS,_;SS) U (IS,_,SI). Hence, its probabil-
ity is the sum of the probabilities of the disjoint events:
[1S;] = [1Si;1] + [IS I]. Equation (21) then follows from
Lemma 6. O

Using these lemmas, we can write the master equations
for [S,]:

LEMMA 8. The master equation for [S,] is:

[Sd=(—kp— D[S +qlSe]. k=1,...,

Proor. We first consider the case k = 1. A configura-
tion (§) cannot be created. It is destroyed on the following
occasions:

1. When (SSS) turns into (S1S) (with rate P).

2. When (1S8S) turns into (1 1S) (with rate P;).

3. When (SSI) turns into (S I1S) (with rate Py).

4. When (ISI) turns into (I 1I) (with rate P,).

The master equation for [S] is then

[S]= —P,[SSS] — P,[ISS] — Pg[SSI] — P,[ISI].

M—1. (22)

Using Equation (19b) and Lemmas 3, 6, and 7, we get
Equation (22) for k = 1.
We now consider the case k > 1. A configuration (S,_,S)
cannot be created. It is destroyed on the following occasions:
1. When (SS,_,S) turns into (SS,IS,S) (with rate P,,
where [=0,1,2,...,k—3 and r=k—-3-1).
2. When (SS,_,S) turns into (SIS,_,S) (with rate P,).
3. When (S,_,SS) turns into (S,_, IS) (with rate P).
4. When (IS,_,S) turns into (I1S,_,S) (with rate P,).
5. When (S,_,SI) turns into (S,_, IT) (with rate Py).
The master equation for [S,] is therefore

[Sk] =—(k=2)P[S]— 2P0[Sk+1] — PL[18,] — Pg[SiI]-
Using Equation (19b) and Lemmas 3, 6, and 7, we get
Equation (22) for any £k > 1. O

LEMMA 9. The master equation for [S,,] is:
[Si]=—~Mp[Sy]. (23)
PrROOF. Same as for Lemma 5. [

Equation (22) and (23) show that the time evolution of
{[Sc]}22, is given by Equation (17), i.e., the same system of
equations as in the one-sided 1D model. As we have seen,
the solution of these equations is given by Equation (6).
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4. Effective g

From Proposition 3 it follows, in particular, that:

COROLLARY 2. For any given p and M, if ¢ = qx + q,,
then the expected fraction of adopters in the one-sided and
in the two-sided 1D models are identical.

Because in the one-sided model each individual influ-
ences a single “neighbor” with parameter g, whereas in
the two-sided model he influences two “neighbors” with
parameters g, and gy, this suggests that the overall diffu-
sion rate depends on the “sum” of the internal influences
of each adopter on all its “neighbors.”

In order to motivate this finding, we note that for any
cluster of adopters, only the two adopters at the two ends
of the cluster can influence individuals who have not yet
adopted (see 8§89 and 13 for further discussion of the
clusters-dynamics approach). Therefore, the expected adop-
tion at the time interval (¢, £+ At) due to internal influences
is k(t)(g, + qr)At, where k(t) is the number of clus-
ters. Hence, diffusion due to internal influences depends
on g, + g

The result of Corollary 2 leads to the following definition
(which is also valid for diffusion in models with a more
complex spatial structure):

DEFINITION 1. Let K ; be the number of neighbors of j,
and let ¢; ; (1 <i< K;) be the influence parameter of j on
its neighbor i. Then, the effective g of individual j is

Kj
effective __
q; =) 4q;,i-
i=1

A typical case of an effective g is depicted in Figure 6.

Thus, Corollary 2 shows that when the values of M, p,
and g°™ti¥e are the same in the one-sided and two-sided
1D models, the aggregate adoption dynamics is identical in
the two models.

effective __

The effective g of individual j is g
g1t 4q;2+4;3% G

Figure 6.

5. The Fully Connected Model

So far, we have considered 1D models in which each indi-
vidual is connected to his two nearest neighbors. We now
consider the other extreme, the fully connected model; see
Figure 1, in which each individual can communicate with
all the other M — 1 individuals. We assume that the adoption
probability of individual j, which has not yet adopted, is

Prob{; adopts in (7, + At)}
-n(1)]At + o(Ar) (24)

=l

as At — 0, where n(t) is the number of adopters. Note
that the internal influence parameter g has been divided
by M — 1, the total number of neighbors, in order to have
the same ¢*™™ as in the 1D models.

Let us denote by f(¢) the solution of the deterministic
equation
df (1) ; ; 7

o U fOllp+af0l. f(0)=0, (25)
which is the Bass model (1) rewritten for the fraction of
adopters. In this case, it follows from Niu (2002) that

Jim () =F(). (26)

Therefore,

COROLLARY 3. The Bass model can be viewed as the
M — oo limit of the fully connected model.

To illustrate this result, in Figure 7 we compare the
solution of the Bass model (25) with a single agent-based
simulation of the fully connected model with M = 10°.
As expected, the two lines are nearly indistinguishable.

6. Comparison of the 1D Models with
the Bass Model

In §4 we saw that the adoption curve in the 1D models
depends only on the values of p and g°™i"°, Therefore, it is

Figure 7. Comparison of a single agent-based simu-
lation of the fully connected model with
M =10° (dashes), with the solution of the
Bass model (solid).
1.0
0.8f
0.6
T 04l
0.2t
0 . . . .
0 5 10 15 20 25

t

Notes. Here, p=0.01, ¢ =0.6, and Ar =0.05. The two lines are nearly
indistinguishable.
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natural to ask whether the Bass model with the same values
of p and g™ would yield the same adoption curve. To
answer this, we first note that when g =0,

le(t) EfBass(t) =1- eipt,

i.e., the adoption curve in the two models in identical.
Indeed, the difference between the two models is due to
internal influences, which do not exist when ¢ = 0. Once
we allow for internal influences, however, the adoption lev-
els in the two models increase. Therefore,

fin(H)>1—e, Jpass () > 1=,

t>0,¢g>0. (27)

Moreover, for any ¢ > 0, the adoption level in the Bass
model is higher than in the 1D model:

LeEmMA 10. For any p>0, ¢ >0, and t > 0,

le(t) <fBass(t)' (28)

PrOOF. See online Appendix A, which is available in the
electronic companion as part of the online version at http://
or.pubs.journal.informs.org/. O

The role of the spatial structure in diffusion models is of
most interest for products that are predominantly adopted
through internal influences, i.e., when p <« g (see §8).
In this case, one can quantify the aggregate adoption rate
in the 1D model and in the Bass model as follows:

Lemma 11. Let Ty and Ty, denote the time for half of
the population to adopt in the 1D model and in the Bass
model, respectively. If p < g, then
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ProoF. Let 0 <t <« 1/p. Then, a Taylor expansion of rela-
tion (3) gives

2 2
fip~1—e PL=PA/2 L _ ,—Pat/2, (29)

Therefore, T\, ~ +/2log2/./pq. Note that because
T\p < 1/p, the validity of the Taylor expansion is a poste-

riori justified.
In the Bass model, the time for half of the population to
adopt can be calculated directly from relation (2), yielding

_log(2+4/p)
Bass — .
P+q

Therefore, the result follows. O

Lemma 11 shows that the adoption level in the Bass
model is considerably higher than in the 1D model, and
that the difference between the two models increases

with ¢/p:

COROLLARY 4. If p K q, then

1' TlD >> TBass'

2. The ratio T\p/Ty, is monotonically increasing in
q/p. In particular,

T,

. 1D

lim =00
a/p—>o0 T

Proofr. From Lemma 11 we have that

T, Vi
D 2log?2 q/p

TBass log(q/p) '
Therefore, the results follow. [

Figure 8 shows a comparison of the adoption curves in the
Bass model and in the 1D model with the same values of p
and ¢. In accordance with Lemma 10, the adoption level in
the Bass model is higher than in the 1D model. In addition,
in accordance with Corollary 4, the difference between the
Bass model and the 1D model increases with ¢g/p.

Fractional adoption in the Bass model (Equation (1), solid) and in the 1D model (Equation (7), dashes), for

= (C) 1.0 =
/ 0.8 /

0.6 /
= /

0.4 /

0.2 !

7. ¥2log2 __log(q/p)
1D m ’ Bass q
Figure 8.
g=0.6 and (A) p=0.01, (B) p=0.001, (C) p=0.0001.
(A) 1.0 = (B) 1.0
0.8 0.8
0.6 0.6
b 0.4 - 0.4
0.2 02
0 0

40

50

100 150 0 200 400
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6.1. Mean-Field Approximation

In many cellular-automata models, it is not easy to solve,
or even just to write explicitly, the master equations for all
the possible configurations. Indeed, this is the reason why
we did not extend the analysis of diffusion in the 1D mod-
els (see §§2.2 and 3.2) to multidimensional grids. In such
cases, a common approach is to write the master equa-
tions only for the small configurations, and close the system
using the mean-field approximation, i.e., the assumption
that the state of each individual is independent of the state
of its neighbors.

For example, under the mean-field approximation, we
can approximate the probabilities in Equation (11) of the
1D model as

[SST~[SI[S].  [IS]~[1][S].

Under these approximations, the master Equation (11) can
be replaced with

(11~ Fo[SI[S1+ A I]S]. [1]j= =0.
Because [I]+[S] =1, we have
[~ Py(1=[1] + P11 = 1], [1],=0=0. (30)
Substituting P, = p and P, = p + ¢ in Equation (30) yields
[~ (=D =)+ (p+ 1)

=1 =[D(p+4lI]). (1)
This equation is identical to the equation f5, (1) =

(1 = frass)(P + qfpass)» Which governs the Bass model.
Therefore, we conclude that:

LEMMA 12. The Bass model is a mean-field approximation
of the 1D model.

Because the results of these two models are very dif-
ferent (see Corollary 4 and Figure 8), this shows that
the mean-field approximation can lead to very inaccurate
results.

7. The Lower-Bound and Upper-Bound
Conjecture

The one-dimensional model and the fully connected
Bass model can be viewed as the least-connected and
most-connected spatial models, respectively. From this per-
spective, any other spatial structure “lies between” these
two cases. Therefore, the diffusion in any spatial structure
can be expected to be faster than in the 1D model and
slower than in the Bass model:

CONIECTURE 1. Let f(t) be the expected fractional adop-
tion rate in a spatial model with given p and g™ = q.
Then, f(t) can be bounded from below and from above by
Jin(1) < f(1) < frass (1) (32)
In particular, as M — oo,

1 — e~ (Pt

1 — e Pra+a(=e"/p) « (g —— =
= f( ) = 1+ (q/p)e—(P+q)t

(33)

A rigorous proof of Conjecture 1 is beyond the scope
of this study. To begin to address this problem analyti-
cally, we first show in §8 that it is “enough” to prove
Conjecture 1 for ¢g/p > 1, rather than for any p > 0
and g > 0. Then, in §9 we introduce a clusters-dynamics
approach and use it to approximate the adoption curve f(¢)
in D-dimensional Cartesian grids. The clusters-dynamics
approximation shows that as D increases, the adoption
becomes faster, but that it remains slower than in the Bass
model (§10), thereby showing that Conjecture 1 holds for
Cartesian grids of any dimension. In §11 we show that the
addition of a small-world randomness has a minor effect
of the diffusion curve. Hence, Conjecture 1 also holds for
D-dimensional Cartesian grids with a small-world structure.

Assuming that Conjecture 1 is correct, then it provides
the “maximal possible deviation” of the actual adoption
curve from that of the Bass model. Indeed, there are var-
ious empirical findings that are inconsistent with the Bass
model. For example, in the Bass model, f'(¢) is symmet-
ric with respect to its maximum; see Figure 9A. However,
empirical data shows that f’(¢) can be asymmetric Mahajan
et al. (1993). Easingwood et al. (1983) suggested that this
asymmetry may be the result of a time-varying impact of
the word-of-mouth effect. This study shows that some of
the asymmetry may be due to the spatial structure. Indeed,

Figure 9.  f'(z) as a function of ¢ for p = 0.01 and
qg=0.6.
(A)
0.15
0.10
0.05

20

0 10 20 30 40 50
t
Note. (A) The Bass model. (B) The 1D model.
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Figure 9B shows that in the 1D model, f'(¢) is highly
asymmetric with respect to its peak.

8. Parameter Reduction Using
Dimensional Analysis

Consider a spatial diffusion model with parameters p
and g™ = 4. We now use an applied mathematics tech-
nique, known as dimensional analysis, to show that the
diffusion process depends on the single nondimensional
parameter ¢/ p. For an introduction to dimensional analysis,
see, e.g., Chapter 6 in Lin and Segel (1988).

Let 7 = pt. Then, the external and internal adop-
tion parameters, measured in the 7 time-variable, are
p=p/p=1 and § = q/p. Therefore, the function f(7)
depends on the single parameter g, i.e.,

ft:p,q) =gt q),

where g is some unknown function. For example, in the
Bass model and in the 1D model,

rayo e » ~(pir-e),
gBass(t’Q)=m’ gin(:g)=1—e ;
see Equations (2) and (3), respectively.

The parameter g/p is dimensionless, and it expresses
the ratio of external and internal influences. Thus, when
q/p < 1, most adoptions occur through external adoptions,
whereas when ¢g/p > 1, most adoptions occur through
internal adoptions. Obviously, analyzing the role of the spa-
tial structure in diffusion models is of most interest in the
latter case, i.e., when g >> p. Therefore, in what follows,
we focus on this regime.

The above dimensional analysis shows that it is “enough”
to prove Conjecture 1 for g/p > 1, rather than for any
p >0 and g > 0. Another application of this observation
is as follows. In §9 we will derive a clusters-dynamics
approximation for f(z). In principle, a numerical verifi-
cation of this approximation should be carried out over
the two-dimensional parameter space p > 0 and ¢ > 0.
The above dimensional analysis implies, however, that it is
enough to test the validity of this approximation over the
one-dimensional parameter space ¢ > 0, and even just for
g>1

9. Clusters-Dynamics Analysis

In §§2 and 3 we derived an explicit expression for the
expected fractional adoption curve f(¢) in one-dimensional
grids. Unfortunately, it is not clear whether this approach
can be extended to higher dimensions. In addition, this
approach does not provide any insight as to the way in which
the diffusion process progresses. Therefore, in what fol-
lows, we present a different analytic approach to this prob-
lem. Although this method only provides an approximation
for f(t), it has the advantages that it is intuitive, and that
it can be extended to higher dimensions (§§9.2 and 9.3), as
well as to grids with a small-world structure (§11) and to
models with heterogeneous individuals (§12).

9.1. One Dimension

Let us define a cluster of adopters as a maximal group of
connected adopters. We can “visualize” the diffusion pro-
cess as follows:

1. A random creation of external adopters (seeds).

2. Each external adopter (seed) expands into a cluster of
adopters through internal influences.

3. As clusters expand, they can merge into larger
clusters.

We now construct the corresponding mathematical
model. The rate at which new seeds are created is equal
to p(M — n(z)). In the 1D model, for any cluster, only the
two individuals at its two ends can influence nonadopters.
Therefore, regardless of the cluster size, the expected
increase in the cluster size between ¢ and 1+ At is gAt.

The main issue is how to incorporate the effect of clus-
ters merging into the model. Let us first assume that the
effect of clusters merging can be neglected. Then, the frac-
tional number of adopters satisfies the equation

@O~ [ p(1= @) +at=)ar, (4

where p(1— f(7)) = p(M —n(7))/M is the fractional rate
of new external adopters at time 7, and (14 ¢(z— 7)) is the
number of adopters in a cluster that was “born” at time 7.
This integral equation can be solved explicitly (see online
Appendix B), yielding

f)~1— e"”/2<cos(yt) — g@),

y=+/pq—p*/4. (35)

In Figure 10 we compare the approximation (35) with the
exact expression given by Equation (3). As expected, this
approximation is in good agreement with the exact expres-
sion during the initial phase of the diffusion, where the
probability for clusters merging is small. As the adop-
tion level increases, the probability of clusters merging
increases; hence, the accuracy of the approximation (35)
deteriorates. At these high adoption levels the approxima-
tion (35) provides a significant overestimate, because it
neglects the reduction in the number of clusters, hence in
the number of new internal adoptions, as a result of clusters
merging.

In order to incorporate clusters merging into the model, it
is conceptually useful to allow clusters to overlap with each
other, and to allow new clusters to form both inside and
outside the existing clusters. Indeed, under this description:

1. The expected rate of new seeds (clusters) is constant,
and is equal to 1/Mp.

2. The probability P(z) =1 — f(¢) that a given person
has not adopted by time ¢ is equal to the product of the
probabilities that that person does not belong to any of the
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Figure 10. Fractional adoption in a 1D model with g = e At time t = kAt,, there are k clusters of sizes {1 +
0.6 and with (A) p =0.01 and (B) p = (k—1)qAt,, 1+ (k —2)qAt,, ..., 1}. Therefore,
0.0001.
k=1 1+ jqAt
1.0 P(t=kAt)) = 1l——7"). 36
) ( ») jl})( M ) (36)
7/
0.8 /s .
/ From Equation (36) we have that
7
0.6 ot el 14
= 7 + At
= L logP(tzkAtp)=Zlog(1 - L)
0.4 Ry j=0 M
02 ,/'/ In addition, from the definitions of Atp and t = kAtp we
have that k = Mpt. Because each cluster contains only a
0 small fraction of the population, we can use the approxi-
0 5 10 15 20

0 50 100 150 200
t

Notes. The approximation (35), which neglects clusters merging (dashed
line), is in good agreement with the exact expression (Equation (3), solid
line) during the early adoption state but provides a significant overestimate
afterwards.

existing clusters, because these probabilities are indepen-
dent. Because the probability that a given person belongs
to a cluster of size m ; is m ; /M, we have that

k() m.
PO=T](1--2L),
o=11(1-5)
where k(7) is the number of clusters.

To simplify the calculations, we assume that at each
At,=1/Mp time-step, exactly one new cluster is formed,
and that once a new cluster appears, it expands at a constant
rate of q.

We now calculate the number of adopters under the
above assumptions:

e At time ¢ = 0, there are no adopters. Therefore,
P(t=0)=1.

e At time ¢ = Atp, there is a single cluster of size 1.
Therefore, P(t =At,)=1-1/M.

e At time ¢t = 2Atp, the size of the first cluster is
1 + gAt, and the size of the second cluster is 1. Therefore,

P(t=2At,) = <1—w> . <l—i>.
M M

mation log(1 — x) ~ —x to get

L1+ jgAr k k(k—1) gAt
locP(t=kAt )~ — I A I S P
ogP(1=KAr,) z( 9 ) kKD

k  k* qAt, 5

~—— =—pt—qpt*/2.

M3 g = ptart/
Therefore, P(r) ~ e 7" ~%"/?, and
fin()=1=P(t) ~1— e P9’ (37)

The clusters-dynamics approximation (37) agrees with
the Taylor approximation of the exact expression, see Equa-
tion (29). Indeed, in Figure 11 we see that there is an
excellent agreement between the clusters-dynamics approx-
imation (37) and the exact expression (3). In particular,
unlike approximation (35), which neglects clusters merg-
ing, see Figure 10; the excellent agreement between the
clusters-dynamics approximation (37) and the exact expres-
sion (3) is maintained throughout the adoption process.

9.2. Two Dimensions

Let us consider a 2D model in which the population is laid
on a rectangular grid (with toroidal boundary conditions),
and each member of the population is able to communi-
cate with his four nearest neighbors; see Figure 12. The

Figure 11. Fractional adoption in a 1D model with g =
0.6, and with p = 0.01 (left), p = 0.001
(center), and p =0.0001 (right).
1.0 . . : .
p=0.01"p=0.001 p=0.0001
0.8}
= 06
= 04}
02}
0

0 50 100 150 200 250 300 350 400
t

Notes. Solid lines are the exact expression (3). Dashed lines are the

clusters-dynamics approximation (37). In all three cases, the solid and

dashed lines are nearly indistinguishable.
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Figure 12. The 2D model.

Note. Each individual is able to communicate with his four nearest
neighbors.

adoption probability of each individual that has not yet
adopted is

Prob{; adopts in (7,7 + At)}

_ [p+%.Aj(t)]m+o(Ar), (38)

as At — 0, where A;(t) is the number of neighbors of j
that adopted by time ¢. Note that the influence parameter
of each neighbor is g/4 in order to have the same gtV
as in the 1D models (see §4).

We now apply the clusters-dynamics approach to the 2D
case. As in the 1D case, cluster seeds are randomly gen-
erated, and then they expand (and merge) with time. The
analysis is considerably more complex, however, because
the expansion rate of a two-dimensional cluster is not con-
stant, but rather increases with its size m = Moreover, even
for a given cluster size, the expansion rate depends on its

where [ ; is the length of the cluster circumference, i.e., the
number of nonadopters that are nearest neighbors of the
cluster.

It may thus seem that in order to implement the
clusters-dynamics approach, one needs to keep track of all
possible 2D cluster configurations, which is a formidable
task. The analysis can be considerably simplified, however,
if one notes that clusters tend, on average, to expand as
squares that later turn into circles (see, e.g., Figure 13 and
also Wolf 1987, Evans 1993). Therefore, the cluster circum-
ference |/ ; scales as LT Hence, the cluster growth rate
m' (1), see Equation (39), scales as . /m;q. In other words,
the radius of the square/circle increases linearly in time.
Therefore, we can make the simplifying assumption that
the number of adopters in a cluster can be approximated
with

m (1)~ 14 (c,q(t — 1)), (40)

where t ; is the time at which the cluster was “born,” and
¢, is a constant.

Proceeding as in the 1D case, see Equation (36), we have
that

kl(l B M). (41)

P(t=kAt,)=1]] A

Jj=0

Hence,

log P(kAt,) ~ = i

j=1

ko (k—1)k(2k — 1) (c,qAt,)?

k <1 + (chqu,,y)

shape. More precisely, a cluster expands at the rate of M 6 M
k k3 (CZthp)2 2 .3
m(t) =1;(1)q/4, (39) Ny T3 - P (c29)°pt’/3.
Figure 13. Expansion of a single cluster whose seed was generated at r = 0, in an agent-based simulation of the
2D model with ¢ =0.6.
t=10 t=20 t=30 t=40
t=50 t=60 t=70 t=80

hd L
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Figure 14. Fractional adoption in a 2D model with g = Figure 15. Fractional adoption in a 3D model with g =
0.6, and with p = 0.01 (left), p = 0.001 0.6, and with either p = 0.01 (left), p =
(center), and p =0.0001 (right). 0.001 (middle), or p =0.0001 (right).
0.8
~06F
= 04
0.2
0

0 10 20 30 40 50 60 70 80

Notes. Solid lines are averages over 10 cellular automata simulations;
dashed lines are the clusters-dynamics approximation (42) with ¢, =0.8.

Therefore,

P(t) ~ e—pt—c%qut:’/S’

and

fp()=1=P(t)x~1—e P340, (42)

In Figure 14 we compare the 2D clusters-dynamics
approximation (42) with ¢, = 0.8, with the average of 10
cellular-automata simulations. The approximation is rea-
sonably accurate as the nondimensional parameter ¢ = g/p
changes over two orders of magnitude (60 < g < 6,000).
It is not, however, as accurate as in the 1D case, see Fig-
ure 11. We note that the only difference between the deriva-
tions of the 1D and 2D clusters-dynamics approximations
is that in the 1D case we used the exact expression for the
expected rate of a cluster growth, whereas in the 2D case
we used the approximation (40). Therefore, the approxima-
tion (40) is probably the main reason for the larger approx-
imation error in the 2D case.

9.3. Three and Higher Dimensions

In the 3D model the population is laid on a box grid (with
toroidal boundary conditions), each member of the popu-
lation is connected to his six nearest neighbors, and the
overall adoption rate is

Prob{; adopts in (7, + At)}
= [p+ % -Aj(t):|At+0(At) (43)

as At — 0, where A;(t) is the number of neighbors of j
that adopted by time ¢. In this case, clusters expand on
average as cubes, which later turn into spheres. Therefore,
we make the assumption that

m; (1)~ 1+ (c3q(t —1;))*. (44)
Hence, a similar derivation shows that
fip(t) 1 =P, (45)

The extension to higher dimensions is similar.

0 5 10 15 20 25 30 35 40
t

Notes. Solid lines are averages over 10 cellular automata simulations with
M = 27,000; dashed lines are the clusters-dynamics approximation (45)
with ¢; =0.635.

In Figure 15 we compare the approximation (45) with the
average of 10 cellular automata simulations. The approxi-
mation is reasonably accurate as the dimensionless param-
eter ¢ = gq/p changes over two orders of magnitude
(60 < ¢ £6,000). It is, however, not as accurate as in
the 2D case; see Figure 14. This is probably because the
error introduced by the assumption that three-dimensional
clusters expand as cubes/spheres (see Equation (44)) is
larger than the one introduced by the assumption that two-
dimensional clusters expand as squares/circles (see Equa-
tion (40)).

10. Effect of Grid Dimensionality

In §9 we used the clusters-dynamics approach to show that
when p < ¢, the adoption curve in a D-dimensional Carte-
sian grid can be approximated with

where a;, is a constant that depends on D. Therefore, we
have the following result:

LEmMMA 13. Consider the diffusion in a D-dimensional
Cartesian grid with parameters p and Qegecive = 9-
If p <K q, the time for half of the population to become
adopters scales as

1
Ip~ (qu)l/(D+1) '

Thus,

1 | 1
o~ G o™ Gy e~

Therefore, when g > p,
T1D>>TQD>>T3D>>

i.e., the adoption rate increases with the grid dimensional-
ity. In particular,

T, < Tip, D=2,3,.... (46)
In addition, from Lemmas 11 and 13 it follows that

D=1,2,3,.... (47

TD > TBass’
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Figure 16. Comparison of a single agent-based simula-
tion of the 1D model (solid), the 2D model
(dash-dots), the 3D model (dots), and the
fully connected model (dashes).

(A) 1.0 ——
/7 s
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0.8} 1/
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t
(B) 1.0
./
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1
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027y
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l:-/~
% 100 200 300 400 500

t

Note. Here, ¢ = 0.6, M = 46,656, At = 0.05, and (A) p = 0.01,
(B) p =0.0001.

The above analysis would remain unchanged if we rede-
fine T to be the time for any fraction of the population
to become adopters. Therefore, grid dimensionality affects
the entire adoption curve. Hence, relations (46) and (47)
show that Conjecture 1 holds for Cartesian grids of any
dimension. To see that, in Figure 16 we plot the adoption
dynamics in agent-based simulations of the 1D, 2D, 3D,
and fully connected models with g®™"¢ = (.6, and with
either p =0.01 or with p =0.0001. In both cases, the adop-
tion becomes faster as D increases. Thus, the adoption in
the 2D model is faster than in the 1D model, the adoption
in the 3D model is even faster, and the fully connected
model is faster than all other models.

From Lemma 13 it follows that

T 1/(D+1)(D+2)
Ao (2) . (48)
Tpy p

Therefore, we conclude that the relative increase in the
adoption rate decreases as D increases. Indeed, in Fig-
ure 16 we see that the increase in the adoption rate between

D =1 and D =2 is significantly larger than the increase
between D =2 and D = 3. Relation (48) also implies
that the relative increase in the adoption rate increases
as ¢ = q/p increases. Indeed, the effect of the increasing
dimension is more pronounced in Figure 16B where ¢g/p =
6,000, than in Figure 16A where g/p = 60.

11. Small-World Networks

So far, we have only considered populations with a deter-
ministic Cartesian structure, in which there are no connec-
tions between nonadjacent neighbors. In 1998, Watts and
Strogatz suggested that social networks have a small-world
structure in which most connections are local, but there
are also some random long-range connections between
nonadjacent neighbors (Watts and Strogatz 1998). Watts
and Strogatz showed that the addition of a small fraction
of long-range connections leads to a considerable reduc-
tion in the average distance between any two members of
the population (the “six degrees of separation” concept),
and that, as a result, diffusion progresses significantly faster
than without these random connections.

We now use the clusters-dynamics approach that was
developed in §9 to analyze the effect of a small-world
structure in the diffusion models considered in this study.
Clearly, the addition of long-range connections has no
effect on the creation of new clusters. In addition, a small
fraction of long-range connections has a minor effect on the
expansion of a cluster. For example, if 1% of the individu-
als have long-range connections, then there is a probability
of 0.99%° ~ 82% that a cluster of 20 individuals will not
feel the small-world structure. Therefore, we reach the sur-
prising conclusion that the addition of a small fraction of
long-range connections has a minor effect on the fractional
adoption curve.

Why is it, then, that the small-world structure had such
a large effect in the original 1998 paper of Watts and Stro-
gatz? The answer is that in that study, adoption always
started from a single adopter at + = O (“patient zero”),
and then progressed only through internal influences. In
that case, the key parameter is the average distance from
the first adopter, which is highly sensitive to the addition
of long-range connections. This is not the case, however,
in the models considered in this study, where diffusion
starts from numerous external adopters (which expand into
numerous clusters), and not from a single adopter.

In order to illustrate numerically the effect of a
small-world structure on the diffusion process, in Fig-
ure 17A we plot the fractional adoption curve in a two-
dimensional network with and without 1% random links,
with p =0.001, ¢ =0.6, M = 10,000, and zero adopters
at t =0. As predicted by the clusters-dynamics approach,
the two adoption curves are nearly identical. In Figure 17B
we plot the fractional adoption curve in a two-dimensional
network, using the same random grid structure as in Fig-
ure 17A with ¢ =0.6 and M = 10,000, but with a single
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Figure 17. Agent-based simulation of the adoption in a
two-dimensional network with (dashed line)

and without (solid line) 1% random links.

(A) 1.0
08| V

0.6} /
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04r

021

(B) 1.0
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02r

0 50 100 150 200
t

Note. In all simulations, ¢ = 0.6 and M = 10, 000. (A): p =0.001 and no
adopters at  =0. (B): p =0 and a single adopter at r =0.

adopter at t =0 and with no subsequent external adoptions
(i.e., p =0 for z > 0). In that case, the addition of 1% ran-
dom links indeed has a large effect on the diffusion curve,
in agreement with Watts and Strogatz (1998). Finally, we
note that we repeated the simulations of Figure 17 with
a one-dimensional network, with and without 1% random
links, and obtained similar results (data not shown).

12. Effect of Heterogeneity

So far, we only considered agent-based models in which
all individuals have the same p and . Because individuals
are more likely to be heterogeneous, an important ques-
tion is whether our results will remain “the same” if we
allow for heterogeneity in the values of p and ¢ among
individuals.

Goldenberg et al. (2001) studied numerically the effect of
heterogeneity in p and ¢ in the fully connected agent-based
model. Their simulations showed that heterogeneity has a
minor effect on the diffusion. This result can be explained
as follows. The expected rate of new external adopters
depends on the average of p among the individuals who
have not yet adopted. Therefore, heterogeneity in p should

have no effect on the rate of new external adopters. Sim-
ilarly, the expected rate of new internal adopters depends
on the cumulative effect of the internal influences of all
the adopters. Therefore, the expected rate of new internal
adopters depends on the average of g. Hence, heterogene-
ity in g should have no effect on the rate of new external
adopters.

The clusters-dynamics approach allows us to analyze
the effect of heterogeneity in p and g in agent-based
models with a spatial structure. Because external adop-
tions are independent of the spatial structure, heterogeneity
in p should have no effect on the rate of new external
adopters. Similarly, the expansion rate of a cluster depends
on the cumulative effect of the internal influences of all the
adopters on the boundary of the cluster. Therefore, hetero-
geneity in g should only have a minor effect on the rate of
new external adopters.

In order to confirm this prediction, in Figure 18 we
compare the aggregate adoption curve with homogeneous
individuals to the adoption curve with heterogeneous indi-
viduals, in 1D and 2D agent-based simulations. When the
values of p and ¢ of the heterogeneous individuals are
uniformly distributed within £20% of the corresponding
values of the homogeneous individuals, the two curves are
nearly indistinguishable. As we further increase the hetero-
geneity level to £50%, the two curves are not identical,
but are still very close. These simulations thus confirm the
clusters-dynamics prediction that heterogeneity in p and g
can only have a minor effect, if any at all, on the aggregate
diffusion dynamics.

13. Discussion—The Effect of
the Spatial Structure

The overall goal of this study has been to gain insight into
the effect of the spatial structure on the diffusion of new
products. We saw that it is useful to visualize the diffu-
sion process as the combination of two separate processes:
random creation of external adopters, followed up by the
expansion of each external adopter into a cluster of adopters
through internal influences. Because the creation of new
clusters is independent of the spatial structure, the spatial
structure affects the diffusion only through its effect on the
expansion of clusters.

The clusters-dynamics method provides a unified ap-
proach for explaining the various findings of this study:

1. In §4 we proved that in the two-sided 1D models, the
diffusion depends only on g = g, + ¢, . Indeed, this is
because the expansion rate of a 1D cluster depends on the
sum of the internal influences of the adopters at the two
sides of the cluster.

2. In §10 we saw that increasing the dimension of the
grid leads to a faster diffusion. In order to explain this
observation, we note that clusters expand via the internal
influences of the adopters located on the boundary of the
cluster, because only the “boundary adopters” can influence
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Figure 18. The aggregate adoption dynamics in agent-
based simulations: A comparison between
the cases of homogeneous and heteroge-

neous individuals.

(A) 10

0.8 2
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08} 7
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Notes. Solid line corresponds to homogeneous individuals with p = p and
q=q, where p=0.01 and ¢ =0.6. Dashed line corresponds to heteroge-
neous individuals with values of p and ¢ that are uniformly drawn from
[0.8p, 1.2p] and [0.8g, 1.2g], respectively. Dashed and solid lines are
nearly indistinguishable. Dash-dot line corresponds to heterogeneous indi-
viduals with values of p and g that are uniformly drawn from [0.5p, 1.5p]
and [0.5¢, 1.5g], respectively. In all simulations M = 1,000,000 and
At =0.05. (A): 1D simulations. (B): 2D simulations.

nonadopters. For a given cluster size, as we increase the
dimension, the average number of adopters at the cluster
boundary increases. Therefore, the expansion rate of the
cluster increases with the dimension.

3. In §11 we used the clusters-dynamics description to
predict that a small-world structure has a minor effect on
the aggregate diffusion dynamics, because it hardly affects
the expansion rate of the clusters.

4. In §12 we used the cluster-dynamics description to
explain why heterogeneity in p and ¢ has a minor effect
on the aggregate diffusion dynamics.

For a given population size, increasing the dimen-
sion reduces the average distance between individuals.
Therefore, this provides an alternative explanation to the

observation that increasing the dimension leads to a faster
diffusion. If this explanation is correct, then the addition
of a small-world structure should have a large effect on
the adoption curve. Our simulations show, however, that
this is not the case. Indeed, the average distance between
individuals is the key factor when there is a singe exter-
nal adopter (“patient zero”), and all subsequent adoptions
are internal. In product diffusion models, however, the pop-
ulation size M is large. Because the number of external
adopters is proportional to M, adoption starts from numer-
ous external adopters. Each of these external adopters then
influences its neighbors, leading to the clusters-dynamics
scenario of the diffusion process, rather than to a “patient-
zero” single-cluster scenario.’

14. Final Remarks

Agent-based models provide a powerful tool for studying
the diffusion of new products. Until now, these models were
used to compute the adoption curve numerically. In this
study we introduced several analytical approaches to this
problem: An explicit calculation of the adoption curve in
the one-dimensional case, a cluster-dynamics approxima-
tion of the adoption curve in the multidimensional case,
and a parameter reduction using dimensional analysis. The
clusters-dynamics approach allowed us to better understand
the effect of the spatial structure on the diffusion process,
and to provide analytic support to the validity of Conjec-
ture 1, that the diffusion rate is bounded from below by the
Bass model and from above by the 1D model, for Carte-
sian grids with or without a small-world structure, and for
either homogeneous or heterogeneous individuals.

This study raises several important questions that require
further research. For example, what is the effect of a
scale-free social network Barabdsi and Albert (1999), or
of other network structures, on the diffusion? Can the
clusters-dynamics approximation be made more accurate,
as well as more rigorous? Under which conditions does
Conjecture 1 hold? What is the “correct” structure of social
networks that is to be used in agent-based models of diffu-
sion of new products?

15. Electronic Companion

An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.

Endnotes

1. For simplicity, we assume here that if both neighbors
have already adopted, then their combined influence is g, +
qg- However, even if P, is different, it is possible to use
our method to calculate explicitly the expected fraction of
adopters (Gibori 2007).
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2. This conclusion is consistent with the explicit expres-
sions (2) and (3) for the fully connected and 1D mod-
els, respectively. Indeed, these expressions show that as M
increases, the fractional adoption curve f(¢) becomes inde-
pendent of M. Therefore, for example, doubling the popu-
lation size will double the number of external adopters.

Acknowledgments

The authors thank Boaz Nadler and Eitan Muller for useful
discussions.

References

Alfrey, T., W. G. Lloyd. 1963. Kinetics of high-polymer reactions: Effects
of neighboring groups. J. Chemical Phys. 38 318-321.

Alkemade, F., C. Castaldi. 2005. Strategies for the diffusion of innovations
on social networks. Comput. Econom. 25 3-23.

Barabisi, A., R. Albert. 1999. Emergence of scaling in random networks.
Science 286 509-512.

Bass, F. M. 1969. A new product growth model for consumer durables.
Management Sci. 15 215-227.

Bell, D., S. Song. 2007. Neighborhood effects and trial on the Internet:
Evidence from online grocery retailing. Quant. Marketing Econom.
5 361-400.

Bonabeau, E. 2002. Agent-based modeling: Methods and techniques for
simulating human systems. Proc. Nat. Acad. Sci. 99 7280-7287.
Bronnenberg, B. J., C. F. Mela. 2004. Market roll-out and retailer adoption

for new brands. Marketing Sci. 23 500-518.

Delre, S. A., W. Jager, T. H. A. Bijmolt, M. A. Janssen. 2007. Target-
ing and timing promotional activities: An agent-based model for the
takeoff of new products. J. Bus. Res. 60 826-835.

Easingwood, C. J., V. Mahajan, E. Muller. 1983. A nonuniform influence
innovation diffusion model of new product acceptance. Marketing
Sci. 2 273-296.

Epstein, J. M., R. Axtell. 1996. Growing Artificial Societies: Social
Science from the Bottom Up. MIT Press/Brookings Institution,
Cambridge, MA.

Evans, J. W. 1993. Random and cooperative sequential adsorption. Rev.
Modern Phys. 65 1281-1330.

Garber, T., J. Goldenberg, B. Libai, E. Muller. 2004. From density to
destiny: Using spatial dimension of sales data for early prediction of
new product success. Marketing Sci. 23 419-428.

Gibori, R. 2007. Analysis of cellular automata diffusion models in mar-
keting. M.Sc. thesis, Tel Aviv University, Tel Aviv, Israel.

Gilbert, N., K. Troitzsch. 2005. Simulation for the Social Scientist, 2nd
ed. Open University Press, Buckingham, UK.

Goldenberg, J., B. Libai, E. Muller. 2001. Using complex systems analysis
to advance marketing theory development. Acad. Marketing Sci. Rev.
Special issue on emergent and co-evolutionary processes in market-
ing. http://www.ams-web.org/.

Goldenberg, J., B. Libai, E. Muller. 2002. Riding the saddle: How cross-
market communications can create a major slump in sales. J. Mar-
keting 66 1-16.

Goldenberg, J., B. Libai, S. Solomon, N. Jan, D. Stauffer. 2000. Marketing
percolation. Physica A 284 335-347.

Grimm, V., S. F. Railsback. 2005. Individual-Based Modeling and Ecol-
ogy. Princeton University Press, Princeton, NJ.

Hopp, W. J., ed. 2004. Management Sci. 50(12, supplement) 1763—1893.

Jackson, M. O. 2006. The economics of social networks. R. Blundell,
W. Newey, T. Persson, eds. Advances in Economics and Econo-
metrics, Theory and Applications: Ninth World Congress of the
Econometric Society. Cambridge University Press, Cambridge, UK,
1-56.

Jackson, M. O., B. W. Rogers. 2007. Relating network structure to dif-
fusion properties through stochastic dominance. B.E. J. Theoret.
Econom. T Atrticle 6.

Keller, J. B. 1963. Reaction kinetics of a long-chain molecule II. Arends’
solution. J. Chemical Phys. 38 325-326.

Kim, P, P. Lee, D. Levy. 2007. Modeling imatinib-treated chronic myel-
ogenous leukemia: Reducing the complexity of agent-based models.
Bull. Math. Biol. 70 728-744.

Lin, C. C., L. A. Segel. 1988. Mathematics Applied to Deterministic Prob-
lems in the Natural Sciences. SIAM, Philadelphia.

Lépez-Pintado, D. 2008. Diffusion in complex social networks. Games
Econom. Behav. 62 573-590.

Mahajan, V., E. Muller, F. M. Bass. 1993. New-product diffusion mod-
els. J. Eliashberg, G. L. Lilien, eds. Marketing. Handbooks in Oper-
ations Research and Management Science, Vol. 5. North-Holland,
Amsterdam, 349-408.

Mahajan, V., E. Muller, F. M. Bass. 1995. Diffusion of new products:
Empirical generalizations and managerial uses. Marketing Sci. 14
G79-G88.

Matsuda, H., N. Ogita, A. Sasaki, K. Sato. 1992. Statistical mechanics
of population—The lattice Lotka-Volterra model. Progress Theoret.
Phys. 88 1035-1049.

Niu, S. C. 2002. A stochastic formulation of the Bass model of new-
product diffusion. Math. Problems Engrg. 8 249-263.

Pastor-Satorrés, R., A. Vespignani. 2001. Epidemic spreading in scale-free
networks. Phys. Rev. Lett. 86 3200-3203.

Samuelson, D. A., C. M. Macal. 2006. Agent-based modeling comes of
age. OR/MS Today 33 34-38.

Sinha, R. K., M. Chandrashekaran. 1992. A split hazard model for
analyzing the diffusion of innovations. J. Marketing Res. 29
116-127.

Van den Bulte, C., G. L. Lilien. 2001. Medical innovation revisited:
Social contagion versus marketing effort. Amer. J. Sociol. 106
1409-1435.

Vega-Redondo, F. 2006. Complex Social Networks. Econometric Society
Monographs Series. Cambridge University Press, Cambridge, UK.

Watts, D. J., S. H. Strogatz. 1998. Collective dynamics of “small-world”
networks. Nature 393 440-442.

Wolf, D. E. 1987. Wulff construction and anisotropic surface properties
of two-dimensional Eden clusters. J. Phys. A: Math. General 20
1251-1258.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


