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Abstract

We consider an ascending auction to sell the elements of a matroid.
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ding sincerely is an equilibrium of the auction and the elements sold
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1 Introduction

This paper is concerned with the design of an ascending auction to sell off the
elements of a matroid. The setting considered involves a finite ground set E
and a set N of agents. Each agent j ∈ N is associated with a set Ej ⊆ E that
j is interested in acquiring. We assume without loss of generality that (Ej)j∈N

is a partition of E for otherwise joint elements could be replaced by parallel
elements. Denote the value of each element e ∈ E to the relevant agent by
ve ∈ N+. We assume this to be a positive integer and known only to the
relevant agent. The value to agent j of a set S ⊆ Ej is v(S) :=

∑
e∈S∩Ej

ve.
We want the ascending auction to have two features. The first is that

agents have an incentive to bid sincerely. Second, the set of elements sold
should constitute a maximum weight basis. If the valuations of the elements
of the matroid were known to the auctioneer the problem is trivial. In our
case the valuations are private information.

The setting may seem abstract at first, but contains at least two econom-
ically relevant settings as a special case. One is the sale of multiple units
of a homogenous good to agents with diminishing marginal utility. The as-
cending auction of Ausubel (2004) is a special case of the auction developed
here. The second is the sale of a minimally connected network (spanning
tree). Matroid techniques also play a role in the design of ascending auctions
in other environments, see Gul and Stacchetti (1999, 2000).

A sealed bid auction with the two features we desire is available. It is the
generalized Vickrey auction. Nevertheless, there are reasons for eschewing
the sealed bid Vickrey auction. These are described, for example by Ausubel
(2004), Cramton (1998). The goal of this paper is to describe an ascending
auction that implements the outcome of the sealed bid Vickrey auction.

In the next section we describe the sealed bid Vickrey auction and prior
work on desiging ascending auctions that implement the Vickrey auction.
Subsequently we use a particular matroid (graphic) to motivate the main
ideas. The remaining sections summarize the main facts of matroid theory
that we use and the subsequent analysis.

2 The Vickrey Auction

Consider a set of of agents N, each of whom has a (monetary) value vj(aj)
for any bundle aj received under some “allocation” of goods a ∈ A. The



RCS: 1.43, 2005/05/19 01:10:53 3

seller’s objective is to find the “efficient” allocation a∗ which solves V (N) :=
maxa∈A

∑
j∈N vj(aj).

Consider a situation in which bidder k ∈ N is absent. In this case the
seller’s objective is to find V (N \k) := maxa∈A

∑
j∈N\k vj(aj). Thus, the net

effect that k’s presence has on the other bidders equals

V (N \ k)−
∑

j∈N\k
vj(a∗j)

which is precisely bidder k’s Vickrey payment. Bidder k’s net payoff in a
Vickrey auction is therefore

vk(a∗k)−
[
V (N \ k)−

∑
j∈N\k

vj(a∗j)

]
= V (N)− V (N \ k). (1)

That is, his net payoff equals his net contribution to attainable social surplus,
which is why this amount is also called bidder k’s marginal product.

The payments in a Vickrey sealed-bid auction can be found by solving n+
1 optimization problems: one to find V (N) (and a∗), and n more to find each
V (N\j). However, in many environments the problem of finding V (N) can be
formulated as a simple linear program. Furthermore, an agent’s presence can
be reflected in the choice of constraints (rows) or variables (columns) of the
linear program. Therefore, it is tempting to think that his marginal product,
might be encoded in the optimal dual variables of the linear program—these
variables inform us of the effect of changing the right hand side of a constraint.
Whenever such a connection exists, payments for sealed-bid Vickrey auctions
could be computed with a single linear program (producing V (N) and a∗) and
its dual (producing marginal products). Since each vj(a∗j) can be computed
from the program, the payments follow immediately from (1).

A byproduct of this desireable connection between linear programming
variables and Vickrey payoffs/payments is useful for designing ascending auc-
tions. While the sealed-bid version of the Vickrey auction has the appeal of
the properties discussed above, there may, in some environments, be prac-
tical reasons to prefer a dynamic, ascending implementation of this auction
outcome.1

In de Vries et al. (2004) the duality approach is used to derive a new
ascending auction for the sale of heterogeneous goods that (under some nec-
essary conditions) results in truthinducing Vickrey payments. The authors
provide a fully combinatorial version of that auction.

1Such reasons may include the auctioneer’s credibility, perceptions of fairness, etc; see
Ausubel (2004), Cramton (1998).
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Here we consider a matroid M = (E, I) with rank function r. The
optimization problem we consider is that of finding a maximum weight basis
ofM. We will assume, that the no monopoly condition holds, that requires
that r(M) = r(M−Ej) for all j ∈ N. Notice that the no monopoly condition
is fulfilled, if no cocircuit C? ofM belongs to any bidder (that is, C? is not
contained in any Ej).

We present a combinatorial algorithm for this problem which will imple-
ment the Vickrey outcome. But before proceeding, it is useful to consider a
special case in order to develop some intuition.

3 Example: Selling a Tree from a Graph

Let G = (V, E) be a complete graph with vertex set V and edge set E.
Each edge may be owned by a given agent and assume (for the sake of easier
exposition) that an agent has the right to own only a single predetermined
edge. Therefore we may use the words edge and agent interchangeably. Let
ve be the value of edge e. Our goal is to derive an ascending Vickrey auction
to sell off a maximum weight spanning tree. Notice, as we assume G to be
complete, no one agent is a in a position to hold up the auctioneer.

Though we shall speak in terms of “selling” edges, one interpretation for
this problem involves a procurement setting, where the auctioneer wants to
purchase the right to use an edge and the bidder incurs some cost (−ve) when
it is used (e.g. constructing a complete communications network at minimal
total social cost). In order to be consistent with the rest of the paper, we
avoid procurement examples and say that the auctioneer is selling to bidders
the right to use an edge, incurring a gain of ve ≥ 0.2

An important observation to make is that, instead of selling an edge, the
auctioneer is actually selling the right to “cover” a cut in the graph. (Notice
that cuts in graphs are cocircuits of the underlying graphical matroid.) A
bidder is competing with all other bidders that can cover the same collection
of cuts that he can. This can be seen when we compute the marginal product
of an edge.

2If instead bidders incur costs (ve < 0), then we can suppose that bidders bid on the
right to supply their edges for some fixed payment M . If M can be chosen sufficiently
high to guarantee M > ve for each e, then, as all matroid bases have the same cardinality,
this setting is equivalent to the one we describe.
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Let T be a maximum weight spanning tree and suppose e ∈ T . To de-
termine agent e’s marginal product we must identify the reduction in weight
of the spanning tree when we remove agent e and replace her with a (next
best) edge. If f 6∈ T is the largest weight edge such that T ∪ f contains a
cycle through e, then the maximum weight spanning tree that excludes e is
(T \ {e}) ∪ f . Thus agent e’s marginal product is ve − vf .

There are a number of algorithms for finding a maximum weight spanning
tree, but not all lend themselves to an auction interpretation. Furthermore,
not all of them terminate in Vickrey prices. The “greedy out” algorithm does:
starting with the complete set of edges, delete edges in order of increasing
weight. An edge is deleted only if the remaining graph is connected. An edge
is spared from deletion when all smaller weight edges that could cover the
same cut have already been deleted.

This algorithm can be interpreted as an auction which begins with a price
p := 0 on each edge. Throughout the auction, this price is increased. At
each point in time, each agent announces whether he is willing to purchase
his edge at the current price.

As the price increases, agents drop out of the auction when the price ex-
ceeds their value ve for the edge, reducing the connectivity of the graph. At
some point, an agent will become critical : removing the agent from the auc-
tion would mean that no spanning tree could be formed from the remaining
edges of the other agents. At this point, the auctioneer immediately sells the
edge to the critical agent at the current price. This edge is to be part of the
final (maximum weight) spanning tree and does not drop out.

The auction then continues, with other agents dropping out or becoming
critical. The auction ends when the last critical agent is awarded an edge,
and the tree is formed.

Notice that a critical agent acquires his edge at the price where another
bidder dropped out of the auction. That price is the second-largest weighted
edge that could have covered the same cut as the critical agent. This is the
price a Vickrey auction dictates he should pay.

In what follows we will present a combinatorial algorithm for this auction.
The analysis will involve some fine points that arise because we will allow
agents to have an interest in multiple elements of the matroid.
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4 A Direct Algorithm for Computing the Vick-

rey Outcome for Matroids

We describe below Algorithm 1 due to Dawson (1980) which finds an opti-
mum basis for a matroid.

Algorithm 1 Optimum basis for a matroid

Require: Finite matroidM on ground set E with distinct values.
1: i← 0
2: whileM has cocircuits that are disjoint from {b1, . . . , bi} do
3: i← i + 1
4: Let C?

i be such a cocircuit
5: Let bi = arg max{ve : e ∈ C?

i }
6: end while
7: r ← i

Proposition 1 (Dawson, 1980, Thm. 1). The set {b1, . . . , br}, returned by an
application of Algorithm 1 to a matroidM with distinct values is an optimal
basis of M. (Consequently, the rank of M is r.)

The choice of the cocircuit C?
i in Line 4 of the Algorithm 1 is arbitrary.

Motivated by this algorithm, our Algorithm 2 below chooses cocircuits in a
particular way to generate Vickrey prices.

A sequence of cocircuit-element pairs, ((C?
1 , b1), (C

?
2 , b2), . . . , (C

?
i , bi)) that

is constructed during the execution of Algorithm 1 will be called suitable.
Therefore, a sequence ((C?

1 , b1), (C
?
2 , b2), . . . , (C

?
i , bi)) is suitable for M iff

C?
j is a cocircuit, bj = arg maxe∈C?

j
ve, and C?

j ∩ {b1, b2, . . . , bj−1} = ∅ for

1 ≤ j ≤ i. Observe that a suitable sequence of r(M) cocircuits provides a
certificate of independence and optimality for {b1, . . . , br(M)}.

First assume that the valuations on each element are distinct positive
rationals. Thus a maximum weight basis ofM (or of any of its minors) will
be unique. Recall that we have a partition E1, . . . , En of E, reflecting the
‘ownership’ of the elements, and assume the no-monopoly condition which
ensures that r(M) = r(M \ Ei) for all i. Let o(e) denote the index of the
owner of the Ei from the partition E1, . . . , En that contains e.

For any cocircuit C? of M, let bC? = arg max{ve : e ∈ C?} be its best
element and fC? = arg max{ve : e ∈ C? \ Eo(bC? )} the best element of C? \



RCS: 1.43, 2005/05/19 01:10:53 7

Eo(bC? ), i.e., the second best element of C? associated with a bidder distinct
from o(bC?). Since the no-monopoly condition holds, C? \Eo(bC? ) 6= ∅ (if not,
C? ⊆ Eo(bC? ) and r(M\ Eo(bC? )) ≤ r(M\ C?) = r(M) − 1). Hence fC? is
well defined.

Call a cocircuit C? of M feasible at p ≥ 0 if vfC? = p. For each e ∈ E
we will say that the cocircuit C? ofM feasible at p ≥ 0 for e if e = fC? and
vfC? = p.

The idea of Algorithm 2 is to select cocircuits C? by non-decreasing value
of vfC? . The resulting set of elements B := {b1, . . . , br} forms the optimum
basis. The element fC? will turn out to be a “best” alternative to bC? , if
Eo(bC? ) were removed. First we describe the algorithm, then we show how to
derive the Vickrey prices from its output.

Algorithm 2 Optimum basis for matroid with distinct rational valuation

Require: Finite no-monopoly matroid M with positive, distinct rational
valuation

1: i← 0, p← 0, r ← r(M)
2: while i < r do
3: whileM has a feasible cocircuit at p that is disjoint from {b1, . . . , bi}

do
4: i← i + 1
5: Let C?

i be such a cocircuit
6: Let bi = arg max{ve : e ∈ C?

i }
7: Let pi = p
8: end while
9: p← min{ve : e ∈ E with ve > p}

10: end while
11: r ← i
12: B ← {b1, . . . , br} is the optimum basis

Algorithm 2 is a particular realization of Algorithm 1; hence the resulting
sequence ((C?

1 , b1), (C
?
2 , b2), . . . , (C

?
r , br)) is suitable. The algorithm considers

all cocircuits that avoid previously chosen elements because every cocircuit
C? is feasible with respect to one of the possible values that p takes on. This
implies the next theorem.

Theorem 2. The set B = {b1, . . . , br} returned by Algorithm 2 applied to a
finite, no-monopoly matroid M with positive, distinct rational valuations is
the unique maximum weight basis.
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We show that the element fC? can be “second best” for at most one
cocircuit per bidder.

Lemma 3. If the sequence determined by Algorithm 2 contains two cocircuits
C?

i , C
?
j with o(bi) = o(bj) then fC?

i
6= fC?

j
.

Note that if pi < pj then Lemma 3 follows from the definition of fc and
the fact that C?

i and C?
j are feasible at different prices. Otherwise is a simple

consequence of the next lemma.

Lemma 4. If the sequence determined by Algorithm 2 contains two distinct
cocircuits C?

i , C
?
j that are feasible at the same p ≥ 0, then o(bi) 6= o(bj).

Proof. Suppose, for a contradiction that fC?
i

= fC?
j

and o(bi) = o(bj). With-

out loss of generality we may suppose that and vbi
> vbj

and o(bj) = 1.
By strong circuit elimination, there exists a cocircuit C? ⊆ (C?

i ∪C?
j )−fC?

i

that contains bi. As bi is the highest valued element of C?
i ∪ C?

j it follows
arg maxe∈C? ve = bi.

By construction, for all e ∈ C?
i \ (E1 + fC?

i
) we have ve < vfC?

i
= p and

the same for C?
j (here we use the fact that all values ve are distinct). As

fC?
i

/∈ C? and arg maxe∈C?
i \E1

ve = fC?
i

= arg maxe∈C?
j \E1

ve it follows that

for all e ∈ C? \ E1 that ve < vfC?
i
. Further, since C? ⊆ (C?

i ∪ C?
j ), no bk for

k < min(i, j) belongs to C?. Therefore, the cocircuit C? was feasible at price
max{ve : e ∈ C?\E1} < p, and was chosen as (C?

l , bl) earlier for l < min(i, j).
But then bl ∈ C?

l = C? ⊆ C?
i ∪ C?

j . Hence at least one of C?
i or C?

j contains
bl and must be infeasible, a contradiction.

Lemma 5. For all i, j, bi 6= fC?
j

from the sequence determined by Algo-
rithm 2.

Proof. The lemma is true for i < j. To see why, suppose not, i.e., bi = fC?
j
∈

C?
j . Since fC?

j
∈ C?

j but it follows that C?
j is not feasible.

For i = j the lemma follows from the fact that fC?
j

belongs to Ek where

k 6= o(bj).
For i > j notice that vfC?

i
< vbi

. Since vbi
= vfC?

j
it follows that vfC?

i
<

vfC?
j

and that i was feasible before j, implying i < j in contradiction to the

assumption.
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To relate a basis B = {b1, . . . , br} found by Algorithm 2 to the Vickrey
prices, we have to determine the optimal bases for eachM\Ej. We will show
that B−j := (B \ Ej) ∪ {fC?

i
: bi ∈ B ∩ Ej} is an optimal basis of M \ Ej;

this will be used to prove that the pi determined in Algorithm 2 are Vickrey
payments.

Let the sequence K = ((C?
1 , b1), (C

?
2 , b2), . . . , (C

?
r , br)) be given. Consider

a fixed set Ej, without loss of generality E1, and the sequence {b′1, . . . , b′r}
defined by:

b′i =

{
bi : if o(bi) 6= 1

fC?
i

: if o(bi) = 1.

If we can find cocircuits that make the sequence {b′1, . . . , b′r} = B−1 suit-
able forM\E1, then B−1 is an optimal basis ofM\E1. LetM′ :=M\E1.
Lemma 3 implies that any fC?

i
belongs to at most one chosen cocircuit C?

of the suitable sequence K with o(eC?) = 1. Furthemore, the fC?
i

for i such
that o(bi) = 1 are all distinct. By Lemma 5 no fC?

i
equals any bj for i, j.

Therefore all b′i are different.
As M′ is a deletion minor of M, it follows from Corollary 24 that for

every cocircuit C? of M, the set C? \ E1 is the union of cocircuits of M′.
Let C ′?

i ⊆ C?
i , for each i = 1, . . . , r, be the cocircuit of M′ that contains b′i.

The sequence ((C ′?
1, b

′
1), (C

′?
2, b

′
2), . . . , (C

′?
r, b

′
r)) has the property that b′i ∈ C ′?

i

and b′i = arg maxe∈C′?
i
ve by construction. As all b′i are distinct, the C ′?

i are
also distinct. However, this sequence need not be suitable, as there could be
indices i < j with b′i = fC′?

i
∈ C ′?

j .

Theorem 6. Suppose a sequence

K := ((C ′?
1, b

′
1), (C

′?
2, b

′
2), . . . , (C

′?
r, b

′
r))

of M′ such that
(1) all b′i are different,
(2) b′i = arg maxe∈C′?

i
ve for 1 ≤ i ≤ r,

(3) and the sequence ((C ′?
1, b

′
1), (C

′?
2, b

′
2) . . . , (C ′?

j , b
′
j)) is for some j be-

tween 1 and r suitable.
Then the cocircuit C ′?

j+1 can be modified so that conditions (1)–(3) hold for
j + 1.

Proof. If ((C ′?
1, b

′
1), (C

′?
2, b

′
2) . . . , (C ′?

j+1, b
′
j+1)) is suitable we are done.

Suppose not and consider the smallest i < j + 1 with b′i ∈ C ′?
j+1. Using

strong circuit elimination we can choose a cocircuit C? of M′ in (C ′?
i ∪
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C ′?
j+1)− b′i that contains b′j+1. We replace C ′?

j+1 by C?. By assumption, b′k /∈
(C ′?

i ∪ C ′?
j+1) − b′i for every k < i. Therefore, {b′1, . . . , b′i} ∩ C? = ∅, and we

can replace C ′?
j+1 by C?. Let

K′ = ((C ′?
1, b

′
1), (C

′?
2, b

′
2), . . . , (C

′?
j , b

′
j), (C

?, b′j+1), (C
′?
j+2, b

′
j+2), . . . , (C

′?
r, b

′
r)).

Now K′ fulfills (1)–(3) for j and {b′1, . . . , b′i}∩C ′?
j+1 = ∅. Either K′ fulfills (3)

for j + 1, or there exists another index i′ > i with b′i′ ∈ C ′?
j+1, in which case

we repeat the procedure until K′ fulfills (1)–(3) for j + 1.

The hypotheses of the preceding theorem are satisfied by the output of
Algorithm 2 and j = 1. Repeated application of the theorem proves that
there are cocircuits C ′?

1, C
′?
2, . . . , C

′?
r that make the sequence

((C ′?
1, b

′
1), (C

′?
2, b

′
2), . . . , (C

′?
r, b

′
r))

suitable in M \ Ei; therefore B−1 is optimal for M \ E1 (and analogously
B−i is an optimal basis ofM\ Ei for all i ∈ N).

Denote by V (N ) the value of a maximum weight basis in N . The follow-
ing summarizes what has been established so far.

Theorem 7. Suppose Algorithm 2 applied to a finite, no-monopoly matroid
M with positive, distinct rational valuation returns the set B = {b1, . . . , br}.
Then, B is the unique maximum weight basis, the sets B−i are unique maxi-
mum weight bases forM\Ei for i ∈ N. Bidder i’s Vickrey surplus (defined as
V (M)−V (M\Ei)) is

∑
j:bj∈{b1,...,br}∩Ei

(vbj
−vfC?

j
), and his Vickrey payment

is
∑

j:bj∈{b1,...,br}∩Ei
vfC?

j
=

∑
j:bj∈{b1,...,br}∩Ei

pj.

The last identity follows from the observation that at price pj the cocircuit
C?

j is feasible, implying that pj = vfC?
j
.

The theorem shows that if bidder i is awarded element bj, then his final
payment increases by pj. Therefore, he can be charged pj at the time he
is awarded element bj. We use this observation to give an auction version
of Algorithm 2 in Algorithm 3. From the previous theorem it follows that
Algorithm 3 computes the optimal basis and charges Vickrey prices.

We show that elements with value less than p are irrelevant during the
computations for p′ > p in Algorithm 2:

Lemma 8. In steps 4 and 6 of Algorithm 3, the computation can be per-
formed for any i > 0 inM\{e ∈ E \ {b1, . . . , bi} : ve < pi} without changing
the result.
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Algorithm 3 Efficient ascending auction for a matroid with distinct rational
valuations
Require: Finite matroidM with positive, distinct rational valuation

no-monopoly
1: i← 0, p← 0, r ← r(M)
2: while i < r do
3: if there exists f ∈ E with vf = p and f /∈ {b1, . . . , bi} then
4: while M has a feasible cocircuit at p for f that is disjoint from

{b1, . . . , bi} do
5: i← i + 1
6: Let C?

i be such a cocircuit
7: Let bi = arg max{ve : e ∈ C?

i }
8: Let pi = p
9: Award bi to bidder o(bi) and charge him pi.

10: end while
11: end if
12: p← min{ve : e ∈ E with ve > p}
13: end while
14: r ← i

Proof. The lemma is true for p1 = 0. Suppose it is true for some pi. We show
that it holds for pi+1. If pi = pi+1 there is nothing prove; so consider the
case where pi is increased in Line 9 to p′ = min{ve : e ∈ E with ve > pi} and
where i is later increased in Line 4 so that pi+1 = p′ and f is deleted.

There will not be another feasible cocircuit for f in a later step, as all
feasible cocircuits for f are considered during the while-loop 3–8.

Similarily, f cannot be the most valuable element of some feasible co-
circuit at some p′′ > pi, since the most valuable element of a feasible cocir-
cuit for p′′ has to have value greater than p′′. Hence, omitting the element
f ∈ E \ {b1, . . . , bi} with vf = pi (if there is any) does not influence the
output of the algorithm. As f is the only new element with vf < p′, and
all nonselected elements e with ve < p have been previously removed, the
lemma follows.3

When valuations can be arbitrary positive integers there may be two

3Notice that the matroids of type M\ {e ∈ E \ {b1, . . . , bi} : ve < pi} usually violate
the no-monopoly condition.
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different elements e, f ∈ E with ve ≤ vf and vf ≤ ve. We refer to this
situation as a tie. Below we describe how to handle such ties.

4.1 Tie Breaking

We will break ties with the following (standard) device; let 0 < δ < 1/4 and
suppose E is a set of positive integers. For each e ∈ E set εe = δe. Now we
use the perturbed valuation v′(S) := v(S)+

∑
e∈S εe. The perturbed valuation

has the property that if v′(S) ≤ v′(T ) and v is an integral valuation, then
v(S) ≤ v(T ), as δ is sufficiently small. (Clearly, for rational valuations the
same could be done with a symbolic perturbation, without assigning a value
to δ but only assuming it being small enough.)

Denote the value of a maximum basis of the matroid N with respect to
the valuation v′ by V ′(N ). The next result relates the maximum weight basis
with respect to v′ to the maximum weight basis with respect to v.

Lemma 9. Let B ⊆ E fulfill v′(B) = V ′(M) and B−i ⊆ E fulfill v′(B−i) =
V ′(M\ Ei) then v(B) = V (M) and v(B−i) = V (M\ Ei) for i ∈ N.

Proof. Consider the elements ofM ordered by nonincreasing v′ value. Clearly,
they are nonincreasing by value v. Therefore an application of the usual
greedy-algorithm on this ordering which returns B for v′ returns B also for
v. The proof for the set B−i is analogous.

We generalize Theorem 7

Lemma 10. Let B = {b1, . . . , br} be the set returned by Algorithm 3 when
applied to the perturbed valuation v′ of a finite, no-monopoly matroid M
with positive integer valuation v. Then B is the unique maximum weight
basis with respect to v′. The sets B−i are the unique maximum weight bases
with respect to v′ for M\ Ei for 1 ≤ i ≤ n. As a consequence,

1. bidder i’s marginal product with respect to v′ is
∑

j:bj∈{b1,...,br}∩Ei
(v′bj
−

v′fC?
j

), hence his Vickrey payment is
∑

j:bj∈{b1,...,br}∩Ei
v′fC?

j

.

2. bidder i’s marginal product with respect to v is
∑

j:bj∈{b1,...,br}∩Ei
(vbj
−

vfC?
j
), hence his Vickrey payment is

∑
j:bj∈{b1,...,br}∩Ei

vfC?
j

=
∑

j:bj∈{b1,...,br}∩Ei
pj.

Proof. The first part is a direct consequence of Theorem 7 applied to the
valuation v′. From the previous lemma, we know that the unique optimal
solutions to V ′(M) and V ′(M\ Ei) are optimal for V (M) and V (M\ Ei),
too, which implies the second part.
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In Algorithm 4 we modify Algorithm 3 so that it uses the perturbed order
v′ for tie breaking but charges prices that are consistent with the original
valuation v.

Algorithm 4 Efficient ascending auction algorithm

Require: Finite no-monopoly matroidM with positive integer valuation
1: i← 0, p← 0, r ← r(M)
2: Determine perturbation vector ε and perturbed valuation v′

3: while i < r do
4: F = {f1, . . . , fk} ← {f ∈ E : vf = p} \ {b1, . . . , bi} and relabel the

elements of F, so that the fj are ordered by increasing εfj
.

5: for l← 1 to k do
6: f ← fl

7: while M has a feasible cocircuit at v′f for f (with respect to the
valuation v′) that is disjoint from {b1, . . . , bi} do

8: i← i + 1
9: Let C?

i be such a cocircuit
10: Let bi = arg maxe∈C?

i
v′(e)

11: Let pi = p
12: Award bi to bidder o(bi) and charge him pi.
13: end while
14: end for
15: p← p + 1
16: end while
17: r ← i

This makes the following theorem a direct consequence of the previous
lemma.

Theorem 11. Algorithm 4 applied to a finite, no-monopoly matroidM with
positive, integer valuations determines an optimal basis, allocates it, and
charges VCG-prices.

4.2 An Ascending Auction Interpretation

The algorithm described in the previous subsection is here rewritten as Auc-
tion 5.

With Lemma 8, we see that deletion of non-chosen elements of value
strictly less than p does not change the outcome. Therefore, in Auction 5,
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Auction 5 Efficient ascending auction

Require: Finite no-monopoly matroidM with positive integer valuation
1: i← 0, p← 0, r ← r(M)
2: Determine perturbation vector ε and perturbed valuation v′

3: while i < r do
4: Ask the bidders to determine F = {f1, . . . , fk} ← {f ∈ E : vf =

p}\{b1, . . . , bi} and relabel the elements of F, so that the fj are ordered
increasingly with respect to εfj

.
5: for l← 1 to k do
6: f ← fl

7: while there exists a bidder j and a cocircuit C? of M \ f with
C? ⊆ Ej do

8: i← i + 1
9: Ask bidder j to determine arg maxe∈C? ve and let bi be the most

valuable element from this set with respect to v′.
10: Award bi to j and charge him p.
11: M←M/bi

12: end while
13: M←M\ f
14: end for
15: p← p + 1
16: end while
17: r ← i

the elements that are not awarded and that are of value less than p are
discarded by deleting them fromM.

Lemma 12. If ((C?
1 , b1), (C

?
2 , b2), . . . , (C

?
r , br)) is suitable forM, then ((C?

2 , b2),
. . . , (C?

r , br)) is suitable for M/b1. If b1 /∈ {b2, . . . , br}, and ((C?
2 , b2), . . . ,

(C?
r , br)) is suitable for M/b1, and C?

1 3 b1 is a cocircuit of M with b1 =
arg maxe∈C?

1
ve, then ((C?

1 , b1), (C
?
2 , b2), . . . , (C

?
r , br)) is suitable for M.

Proof. Notice that cocircuits of M disjoint from b1 are also cocircuits of
M/b1 (dual of Proposition 20). Cocircuits of M/b1 are cocircuits of M
(clear, by dualizing the statement). The lemma now follows.

By Lemma 12 it suffices to consider cocircuits of M/{b1, . . . , bi} instead
of all the cocircuits ofM which avoid {b1, . . . , bi}.
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Another observation is that whenever the deletion of a element f would
create a matroid violating the no-monopoly condition, then from each cocir-
cuit witnessing this, one element is contracted; hence after the contractions
and then the deletion, the no-monopoly condition holds again.

This yields the following theorem:

Theorem 13. For every finite matroid with positive integer valuation where
no bidder has a monopoly, our Auction 5 determines an efficient allocation
and charges Vickrey prices.

The proposed auction can be carried out in the following way. Start
with the price set at zero. At this price, by assumption no bidder owns a
monopoly. Increase the price. If any bidder indicates that he has an element
of this value, then consider the element f with smallest εf among them, check
whether, after removing this element, another bidder j owns a monopoly (i.e.
M\f has a cocircuit C? contained in Ej; this means it is feasible, since C? is
feasible at some p for f with vf = p if the set {e ∈ C? : ve > p} is contained
in some Ei that avoids f). If this is the case, let bidder j determine his
best elements from C? and award to him the unique element e ∈ C? with
maximum v′-value and charge him the current price. Then contract e and
check for any other bidders that might own a cocircuit. Afterwards delete
the unnecessary element f from the matroid, increase p, and continue.

4.3 Homogeneous Goods with Decreasing Marginal Val-
ues

For one application of our ascending matroid auction consider an auction
where k identical units must be auctioned off to n bidders. Denote the
(marginal) value that bidder j assigns to consuming his ith unit by vj

i . Here
we consider (as Ausubel (2004) did) the case in which bidders have decreasing
marginal valuations: vj

i ≥ vj
i+1 for each i ≤ k−1. Under this assumption, the

problem of finding an efficient allocation can be formulated as the problem
of finding a maximum weight basis.

First we recall some facts about uniform matroids. The uniform matroid
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Uk,l for k ≤ l has a ground set with l elements and has

I(Uk,l) = {X ⊆ E : |X| ≤ k}

C(Uk,l) =

{
∅ if k = l

{X ⊆ E : |X| = k + 1} if k < l.

Regarding duality we see that U?
k,l = Ul−k,l and deduce that the the cocircuits

of Uk,l are:
C?(Uk,l) = {X ⊆ E : |X| = l − k + 1}.

Let T be a t-element subset of E = E(Uk,l). Then

Uk,l/T ∼=

{
U0,l−t if l ≥ t ≥ k,

Uk−t,l−t if t < k;

Uk,l \ T ∼=

{
Ul−t,l−t if l ≥ t ≥ l − k,

Uk,l−t if t < l − k;

Now let I = N ×K with K := {1, . . . , k}. Consider two integer vectors
l ≤ u, where (initally) l = 0 and u = k1. Let m always equal

∑n
j=1(uj − lj)

(so initially m = kn). Now we consider the uniform matroid Uk,m,l,u with
ground set

E(Uk,m,l,u) = {(j, q) ∈ I : lj < q ≤ uj}
and

I(Uk,m,l,u) = {F ⊆ E(Uk,m,l,u) : |F | ≤ k}.
The value of (j, q) is vj

q ; the interpretation is, that the elements {j} × K
represent the k units that bidder j could get and their values correspond to his
marginal values for the first up to the k-th unit.4 Clearly, the optimal bases
of Uk,m,l,u corresponds to the best allocation of the k units, because bidder j
gets, by decreasing marginal values, in an optimal basis the item (j, q) only if
he is awarded the items (j, q− 1), . . . , (j, 1) that have higher marginal value.
Hence the value of the optimal basis and of the best allocation agree too.

Now we need a couple of observations to understand the steps of Auction 5
applied to matroids of type Uk,m,l,u. We will interpret elements (j, 1), . . . , (j, lj)

4In fact this construction has a deeper reason too. As a first attempt, one might start
with a uniform matroid Uk,k. But there is a problem. Different bidders want the same
element. But as we noted before, adding parallel elements to achieve disjoint sets of
interests is a way out. If this is done, a matroid isomorph to Uk,kn results.
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as already awarded elements and elements (j, uj +1), . . . , (j, k) as elements in
which the bidder j is no longer interested (since their marginal value is lower
than the current price). Therefore initializing lj = 0, uj = k is consistent
with the inital situation that bidder j is interested in all k units and has not
been awarded anything. Denote by ej the j-th unit vector of n-space. We
want to interpret the course of the matroid-auction, by keeping track of the
vectors l,u.

For tie-breaking, we set εj,q = δj∗k+q. This order ensures that the elements
(j, 1), (j, 2), . . . , (j, k) are not only nonincreasing, but additionally strictly
decreasing.

At any price p during the run of the auction, there are no elements in
the matroid with value strictly less than p. With l = |Ej ∩ F | holds (by our
particular choice of tie-breaking) that the elements of Ej ∩ F (in increasing
perturbation order) are (j, uj), (j, uj−1), . . . , (j, uj−l+1). So for the element
f = f1 holds that f = (o(f), uo(f)). In line 13 of Auction 5 , where we set
M←M\f1 this reduces to replacing the matroid Uk,m,l,u by Uk,m−1,l,u−eo(f) ;
since f = (o(f), uo(f)) belonged to the groundset of Uk,m,l,u we had that
lu(f < uo(f) it follows that l ≤ u− eo(f).

If in line 7 a cocircuit C? ⊆ Ej in Uk,m−1,l,u−eo(f) is selected then we know
that C? was not a cocircuit in Uk,m,l,u and by the no-monopoly condition
bidder o(e) possessed no cocircuit. But now he does. Notice that cocircuits
of Uk,m,l,u are arbitrary subsets of size m − k + 1 while the cocircuits of
Uk,m−1,l,u−eo(f) are of size m− k. This requires that uo(f)− lo(f) = m− k (if it
were larger, then o(f) had owned the cocircuit C? already in Uk,m,l,u; if it were
strictly smaller, than o(f) could not even own a cocircuit in Uk,m−1,l,u−eo(f)).

Given that C? = {(o(f), lo(f)+1), . . . , (o(f), uo(f))} it is clear from the
order and tie-breaking we use, that bidder j’s answer to arg maxe∈C? ve is
going to contain the element (o(f), lo(f)+1) which in turn is the highest v′

valued element of bidder o(f). Hence bi = (o(f), lo(f)+1) has to be contracted
inM resulting in a transition from Uk,m,l,u to Uk−1,m−1,l+eo(f),u.

Under the just presented specialization to uniform matroids Uk,m,l,u our
Auction 5 reduces to the ascending auction for homogeneous goods with
decreasing marginal values by Ausubel (2004).

If bidders do not have decreasing marginal valuations, then the efficient
allocation problem is not equivalent to the problem of finding a maximum
weight basis. For example, suppose that bidder 1 has a higher marginal value
for his second object than for his first: v1

1 < v1
2. In this case, (depending on

the other bidders’ valuations), a maximum weight basis may include the
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element (1, 2), but not (1, 1). However, it is not feasible to give bidder 1
his marginal valuation for a second object without giving him a first object!
The allocation problem in this case requires an additional constraint; an
agent cannot receive an i + 1st object without receiving an ith object. This
side constraint destroys the matroid structure.

5 Summary
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A Summary of Matroid Facts

We summarize here (following Oxley, 1992) terms and facts from matroid
theory that will be used.

Sven’s Comment: after convincing us, that everything is
sound, we should really weed out most of this...

A matroid M is an ordered pair (E, I) of a finite ground set E and a set
I of subsets of E satisfying the axioms:

(I1) ∅ ∈ I.

(I2) If I ∈ I and I ′ ⊆ I then I ′ ∈ I.

(I3) If I1, I2 ∈ I and |I1| < |I2|, then there is an element e of I2 − I1 such
that I1 ∪ e ∈ I.

Subsets of E that belong to I are called independent, all other sets are called
dependent. By a (slight) abuse of notation, we will refer to the ground set of
a matroidM as E(M) and to the set of independent sets as I(M); similar
abuses are to follow.

Minimal dependent sets of a matroid M are called circuits and circuits
consisting of single element are called loops; the set of all circuits of a matroid
is denoted with C. The set of circuits C(M) of a matroid is characterized by
the following properties:

(C1) ∅ /∈ C.

(C2) If C1, C2 ∈ C and C1 ⊆ C2 then C1 = C2.

(C3) If C1, C2 ∈ C, e ∈ C1 ∩C2, and f ∈ C1 \C2, then there exists a C3 ∈ C
such that f ∈ C3 ⊆ (C1 ∪ C2)− e.

The Property (C3) is called strong circuit elimination; in fact (C3) can be
replaced by the equivalent, though weaker looking, axiom (C3’):

(C3’) If C1, C2 ∈ C, C1 6= C2, and e ∈ C1 ∩ C2, then there exists a C3 ∈ C
such that C3 ⊆ (C1 ∪ C2)− e.

called weak circuit elimination.
An independent set that is maximal is called a basis of the matroid. The

set of bases B of a matroid is characterized by the following two properties:
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(B1) B is non-empty.

(B2) If B1, B2 ∈ B and x ∈ B1 − B2, then there is an element y of B2 − B1

such that (B1 − x) ∪ y ∈ B.

It is easy to see that all bases of a matroid have same cardinality.
The rank function r : 2E 7→ N0 of a matroid M, assigns to each X ⊆ E

the size of the largest independent subset of X. This is denoted r(X). The
rank function r satisfies the properties:

(R1) If X ⊆ E, then 0 ≤ r(X) ≤ |X|.

(R2) If X ⊆ Y ⊆ E, then r(X) ≤ r(Y ).

(R3) If X and Y are subsets of E, then

r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

Notice, that for a circuit C ofM, r(C) = |C| − 1.
Consider a matroid M = (E, I) and some X ⊆ E. Let I|X := {I ⊆

X : I ∈ I}. It is easy to see that M|X := (X, I|X) is a matroid, called
the restriction of M to X, or the deletion of E − X from M denoted by
M\ (E −X). AsM|X is a matroid, all of its bases are equicardinal.

Proposition 14. Let M be a matroid and B∗(M) := {E(M) − B : B ∈
B(M)}. Then B∗(M) is the set of bases of a matroid on E(M).

The matroid with ground set E(M) and bases described in the previous
proposition is called the dual matroid ofM and is denoted byM?. Indepen-
dent sets of M? are called coindependent sets of M; circuits and loops of
M? are called cocircuits and coloops ofM; etc. Notice thatM =M??.

Proposition 15 (Oxley, 1992, Prop. 2.1.9). For all subsets X of the ground
set E of a matroid M,

r?(X) = |X| − r(M) + r(E −X).

Proposition 16. If C? is a cocircuit of the matroid M then

r(M− C?) = r(M)− 1.
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Proof. Take a basis B′ of M \ C?. As it is independent in M it can be
augmented to a basis B ⊇ B′ of M. Now E − B is a cobasis; so it is
coindependent and for its intersection with C? holds: |(E−B)∩C?| ≤ |C?|−1.
Hence |B∩C?| ≥ 1 and |B|− 1 ≥ |B′|. This implies r(M)− 1 ≥ r(M−C?).

Conversely, notice that the set I? = C? − e (for any e ∈ C?) is coinde-
pendent. Hence it can be augmented to a cobasis B?; furthermore, as C? is
a cocircut and C? − e ⊆ B? it follows e /∈ B?. For B := E −B? follows that
B ∩ C? = {e} which implies, that |B − C?| = |B| − 1 = r(M) − 1. Hence
r(M)− 1 ≤ r(M− C?).

For a matroid M and a subset T of its ground set E we let M/T :=
(M? \T )? denote the contraction of T fromM.M/T has ground set E−T.

Proposition 17 (Oxley, 1992, Prop. 3.1.4). If T ⊆ E, then, for all X ⊆
E − T,

rM/T (X) = rM(X ∪ T )− rM(T ).

Any matroidM′ that can be produced by a sequence of contractions and
deletions from the matroidM is called a minor of M.

Proposition 18 (Oxley, 1992, Prop. 3.1.8). Suppose that BT is a basis for
M|T. Then I(M/T ) = {I ⊆ E − T : I ∪BT ∈ I(M)}.

Proposition 19 (Oxley, 1992, Prop. 3.1.11). The circuits of M/T consist
of the minimal non-empty members of {C − T : C ∈ C(M)}.

Proposition 20 (Oxley, 1992, 3.1.13).

C(M\ T ) = {C ⊆ E − T : C ∈ C(M)}.

Proposition 21 (Oxley, 1992, Cor. 3.1.25). M\ e =M/e if and only if e
is a loop or coloop of M.

Sven’s Comment: the following nonstandard result is used
later; please check carefully...

Proposition 22 (Oxley, 1992, Exc. 2, Sec 3.1). Let C be a circuit of the
matroid M and e ∈ E(M) :

(i) If e /∈ C then C is a union of circuits of M/e.
(ii) If e ∈ C and {e} is a not a loop of M, then C − e is a circuit of

M/e.



RCS: 1.43, 2005/05/19 01:10:53 22

Proof. For (i): If e is a loop then C is a circuit of M \ e butM\ e =M/e so
C is a circuit of M/e thereby validating the claim. So we assume now that
e is not a loop.

If C is a loop of M, then, as C ∪ {e} is dependent in M, the set C is
dependent inM/e. As it contains only one element, clearly C is a circuit of
M/e. So we assume now, that C contains at least two elements.

Now consider an element f ∈ C. Notice C \ f is independent inM; as C
is dependent inM so is C ∪ e, therefore C is dependent inM/e.

Case 1: If (C ∪ e) \ f is independent in M, then C \ f is independent
in M/e. But now we have that C is dependent and C \ f is independent in
M/e; hence there has to be a circuit inM/e contained in C thru f.

Case 2: If on the other hand (C ∪ e) \ f is dependent in M, then it
contains a circuit D thru e. As {e} is not a loop, |D| ≥ 2; let g be an
element of D \ e; notice g ∈ C. By strong circuit elimination, there is a
circuit D′ ⊆ (C ∪D)\ g containing e. So D′ ⊆ (C ∪ e)\ g and D′ \{e, g} ( C
is dependent inM/e.
But C \ f is independent, so C ∪ e \ f contains a single circuit D with g ∈ D
and (C ∪ e) \ {f, g} is independent in M. Hence C \ {f, g} is independent
in M/e. On comparing (in M/e) the independent set C \ {f, g} with the
dependent set D′ \ {e, g} ( C notice that (D′ \ {e, g}) \ (C \ {f, g}) ⊆ {f}.
This shows that the circuit D′ \ {e, g} contains f and is contained in C.

For (ii): As {e} is not a loop, {e} 6= C. As e ∪ (C − e) is dependent in
M, the set C − e 6= ∅ is dependent in M/e. As for any subset I ( (C − e)
the set I + e is independent in M, the set I is independent in M/e. So in
fact, (C − e) is minimally dependent inM/e.

SinceM?/e = (M\ e)? we deduce:

Proposition 23. Let C? be a cocircuit of the matroid M and e ∈ E(M) :
(i) If e /∈ C? then C? is a union of cocircuits of M\ e.
(ii) If e ∈ C? and {e} is a not a coloop of M, then C? − e is a cocircuit

of M\ e.

Corollary 24. Let C? be a cocircuit of the matroidM and T ⊆ E(M), then
C? − T is the union of cocircuits of M/T.
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