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Università di Padova, conforti@math.unipd.it

Gérard Cornuéjols ∗
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Abstract

Recently, it has been shown that minimal inequalities for a continuous relaxation of
mixed integer linear programs are associated with maximal lattice-free convex sets. In this
paper, we show how to lift these inequalities for integral nonbasic variables by considering
maximal lattice-free convex sets in a higher-dimensional space. We apply this approach
to several examples. In particular, we identify cases where the lifting is unique.

1 Introduction

A classical topic in integer programming is that of lifting, introduced by Gomory [13] in
the context of the group problem, and further elaborated by Padberg [16]: given mixed in-
teger sets Q ⊂ Rn and R ⊂ Rn+p such that Q is the restriction of R obtained by setting
the last p variables to 0, and given a valid inequality

∑n
i=1 ajxj ≤ b for Q, find coefficients

an+1, . . . , an+p such that
∑n+p

i=1 ajxj ≤ b is valid for R. Current state-of-the-art integer pro-
gramming solvers routinely use lifted knapsack covers, lifted flow covers and other liftings.
The lifting coefficients an+1, . . . , an+p may be computed sequentially, choosing the best pos-
sible value at each step. However, different orderings of the variables usually lead to different
answers. An aspect of liftings that has received attention is that of sequence-independent
lifting (Wolsey [17], Gu, Nemhauser, Savelsberg [14]). In this paper, we revisit liftings from
a geometric perspective, building on recent work relating minimal inequalities to maximal
lattice-free convex sets. Our results are best described in the context of an infinite model
which we present next.

Let S be the set of integral points in some rational polyhedron inRn such that dim(conv(S)) =
n (for example S could be the set of nonnegative integral points), and let f ∈ conv(S) \ Zn.
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We consider the following semi-infinite model.

x = f +
∑

r∈Rn

rsr +
∑

r∈Rn

ryr

x ∈ S

sr ≥ 0, r ∈ Rn (1)
yr ≥ 0, yr ∈ Z, r ∈ Rn

s, y have finite support.

The infinite vectors s and y having finite support means that they are nonzero only in a
finite number of entries. Model (1) is a natural abstraction of the simplex tableau. Indeed,
setting all but a finite number of the sr and yr variables to zero reduces (1) to a problem
in tableau form with right-hand-side f , where x are the basic variables, and the sr and
yr variables not set to zero are the nonbasic ones. Since S is a set of integral point in
a polyhedron, the condition x ∈ S enforces the integrality of the basic variables. When
S = Zn, model (1) is the infinite group problem of Gomory.

Given two functions ψ and π from Rn to R, the inequality
∑

r∈Rn

ψ(r)sr +
∑

r∈Rn

π(r)yr ≥ 1 (2)

is valid for (1) if it holds for every (x, s, y) satisfying (1). If (2) is valid, we say that the
function (ψ, π) is valid for (1). A valid function (ψ, π) is minimal if there is no valid function
(ψ′, π′) distinct from (ψ, π) such that ψ′(r) ≤ ψ(r), π′(r) ≤ π(r) for all r ∈ Rn. Note that,
since all components of s and y are nonnegative, one is only interested in studying minimal
valid functions.

Information about valid inequalities for (1) automatically transfers to the problem of
cutting-off a fractional basic solution of the linear programming relaxation. Most cutting
planes used in practice (Gomory mixed integer cuts, Mixed Integer Rounding inequalities,
knapsack covers, flow covers, lift-and-project cuts and many other) are valid for Gomory’s
corner polyhedron, which is the convex hull of solutions to (1) where S = Zn and all but a
finite number of the variables sr and yr are set to 0.

One of the most effective classes of cutting planes used in solvers is that of Gomory
Mixed Integer cuts, which correspond to valid functions for (1) when n = 1 and S = Z. It
is well known that, among all cutting planes derived from a single equation, Gomory Mixed
Integer cuts have the best possible coefficients (i.e. the smallest) on the nonbasic continuous
variables. To transfer this notion to the general setting of (1), Dey and Wolsey [11] proposed
to study the following simpler model, where the integer variables yr are all set to zero.

x = f +
∑

r∈Rn

rsr

x ∈ S

sr ≥ 0, r ∈ Rn (3)
s has finite support.
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We refer to this model as the continuous semi-infinite relaxation relative to f . Given a
valid function ψ for (3), the function π is a lifting of ψ if (ψ, π) is valid for (1). If ψ is a
minimal valid function for (3) and π is a lifting of ψ such that (ψ, π) is minimal, we say that
π is a minimal lifting of ψ.

We remark that, given any valid function ψ for (3) and a lifting π of ψ, the function π′

defined by π′(r) = min{ψ(r), π(r)} is also a lifting of ψ. Indeed, given (s̄, ȳ) satisfying (1),
we show that

∑
r∈Rn ψ(r)s̄r +

∑
r∈Rn π′(r)ȳr ≥ 1. Let (s̃, ỹ) be defined by s̃r = s̄r, ỹr = ȳr for

every r ∈ Rn such that π(r) ≤ ψ(r), and s̃r = s̄r+ȳr, ỹr = 0 for every r ∈ Rn such that ψ(r) <
π(r). One can readily verify that (s̃, ỹ) satisfies (1), hence

∑
r∈Rn ψ(r)s̃r +

∑
r∈Rn π(r)ỹr ≥ 1.

Furthermore,
∑

r∈Rn ψ(r)s̄r +
∑

r∈Rn π′(r)ȳr =
∑

r∈Rn ψ(r)s̃r +
∑

r∈Rn π(r)ỹr ≥ 1

In particular, if ψ is a minimal valid function for (3) and π is a minimal lifting of ψ, then
π ≤ ψ.

We first concentrate on deriving the best possible lifting coefficient of one single integer
variable. Namely, given d ∈ Rn, we consider the model

x = f +
∑

r∈Rn

rsr + dz

x ∈ S

sr ≥ 0, r ∈ Rn (4)
z ≥ 0, z ∈ Z,

s has finite support.

Given a minimal valid function ψ for (3), let π`(d) be the minimum scalar λ such that
the inequality ∑

r∈Rn

ψ(r)sr + λz ≥ 1

is valid for (4).
Note that, if π is a lifting of ψ, then

∑
r∈Rn ψ(r)sr + π(d)z ≥ 1 is valid for (4). Thus,

by definition of π`, we have that π` ≤ π for every lifting π of ψ. In general, the function
(ψ, π`) is not valid for (1). However, when (ψ, π`) is valid, π` can be viewed as a trivial
sequence-independent lifting of ψ:

Proposition 1. Let ψ be a minimal valid function for (3). When (ψ, π`) is valid for (1), π`

is the unique minimal lifting of ψ.

In this paper we give a geometric characterization of the function π`, and use this char-
acterization to analyze specific minimal valid functions ψ for which π` is the unique minimal
lifting.

A valid function (ψ, π) is extreme for (1) if there do not exist distinct valid functions
(ψ1, π1), (ψ2, π2) such that (ψ, π) = 1

2(ψ1, π1) + 1
2(ψ2, π2). Note that if ψ is extreme for (3),

then ψ is minimal.

Remark 2. If ψ is extreme for (3) and (ψ, π`) is valid for (1), then (ψ, π`) is extreme for (1).

Indeed, given valid functions (ψ1, π1), (ψ2, π2) such that (ψ, π) = 1
2(ψ1, π1) + 1

2(ψ2, π2),
then ψ1 = ψ2 = ψ, since ψ is extreme for (3), and π1 = π2 = π` since π1 ≥ π` and π2 ≥ π`.
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2 Lifting and S-free convex sets

Minimal valid inequalities for (3) are well understood in terms of maximal S-free convex sets.
We are interested in exploiting such characterization to provide a geometric interpretation of
minimal liftings.

We observe that (4) is equivalent to the following
(

x
xn+1

)
=

(
f
0

)
+

∑

r∈Rn

(
r
0

)
sr +

(
d
1

)
z

(x, xn+1) ∈ S × Z+

sr ≥ 0, r ∈ Rn (5)
z ≥ 0,

s has finite support.

Indeed (x, s, z) is a solution for (4) if and only if (x, xn+1, s, z) is a solution to (5) by set-
ting xn+1 = z. Note that the above is obtained from the continuous semi-infinite relaxation
relative to

(
f
0

)
by setting to 0 all variables relative to rays with nonzero (n + 1)-th compo-

nent, except for
(
d
1

)
. Therefore, given any valid function ψ̄ for the continuous semi-infinite

relaxation relative to
(
f
0

)
, then if we let ψ(r) = ψ̄

(
r
0

)
for r ∈ Rn and λ = ψ̄

(
d
1

)
, the inequality∑

r∈Rn ψ(r)sr + λz ≥ 1 is valid for (5) and for (4).

A convex set is S-free if it does not contain any point of S in its interior. Maximal S-free
convex sets were characterized in [6], where it was also shown that there is a one-to-one
correspondence between minimal valid functions for (3) and maximal S-free convex sets with
f in their interior.

Theorem 3. [6] A full-dimensional convex set B is a maximal S-free convex set if and only
if it is a polyhedron such that B does not contain any point of S in its interior and each facet
of B contains a point of S in its relative interior. Furthermore if B ∩ conv(S) has nonempty
interior, lin(B) contains rec(B ∩ conv(S)).

We explain how minimal valid inequalities for (3) arise from maximal S-free convex sets.
Let B a polyhedron with f in its interior, and let a1, . . . , at ∈ Rq such that B = {x ∈
Rn | ai(x− f) ≤ 1, i = 1 . . . , t}. We define the function ψB : Rn → R by

ψB(r) = max
i=1,...,t

air.

Note that the function ψB is convex, subadditive, i.e. ψB(r) + ψB(r′) ≥ ψB(r + r′), and
positively homogeneous, i.e. ψB(λr) = λψB(r) for every λ ≥ 0.

We claim that, if B is a maximal S-free convex set, then
∑

r∈Rn

ψB(r)sr ≥ 1 is valid for (3). (6)

Indeed, let (x, s) be a solution of (3). Note that x ∈ S, thus x is not in the interior of B.
Then ∑

r∈Rn

ψB(r)sr =
∑

r∈Rn

ψB(rsr) ≥ ψB(
∑

r∈Rn

rsr) = ψB(x− f) ≥ 1,
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where the first equation follows from positive homogeneity, the first inequality follows from
subadditivity of ψB and the last one follows from the fact that x is not in the interior of B.

The above functions are minimal [6],[11]. It was proved in [6] that the converse is also
true, namely that every minimal function valid for (3) is of the form ψB where B is a maximal
S-free convex set with f in its interior.

Example. We consider problem (1) when n = 1, 0 < f < 1 and S = Z. In this case the
only maximal S-free convex set containing f is the interval B = [0, 1]. Thus B = {x ∈
R | − f−1(x− f) ≤ 1, (1− f)−1(x− f) ≤ 1} and ψB(r) = max{−f−1r, (1− f)−1r}.

Let ψ be a minimal valid function for (3), and let B = {x ∈ Rn | ai(x−f) ≤ 1, i = 1, . . . , t}
be a maximal S-free convex set with f in its interior such that ψ = ψB. We define the set
B(λ) ⊂ Rn+1 as follows

B(λ) = {(x, xn+1

) ∈ Rn+1 | ai(x− f) + (λ− aid)xn+1 ≤ 1, i = 1, . . . , t}. (7)

Theorem 4. The inequality
∑

r∈Rn ψ(r)sr + λz ≥ 1 is valid for (4) if and only if B(λ) is
(S × Z+)-free.

Proof. Let ψ̄ = ψB(λ). By construction, ψ̄
(
r
0

)
= ψ(r) for all r ∈ Rn, while ψ̄

(
d
1

)
= λ.

We show the “if” part of the statement. Given λ such that B(λ) is (S × Z+)-free, it
follows by claim (6) that the function ψ̄ is valid for the continuous semi-infinite relaxation
relative to

(
f
0

)
. This implies that

∑
r∈Rn ψ(r)sr + λz ≥ 1 is valid for (4).

We now prove the “only if” part. Let λ be such that
∑

r∈Rn ψ(r)sr + λz ≥ 1 is valid
for (4). Given a point

(
x̄

x̄n+1

) ∈ S × Z+, we show that such point is not in the interior of
B(λ). Indeed, let r̄ = x̄− x̄n+1d− f , z̄ = x̄n+1, and (s̄r)r∈Rn be defined by

s̄r =
{

1 if r = r̄,
0 otherwise .

Note that f +
∑

r∈Rn rs̄r + dz̄ = f + r̄ + x̄n+1d = x̄. Since x̄ ∈ S and
∑

r∈Rn ψ(r)sr + λz ≥ 1
is valid for (4), we have

1 ≤
∑

r∈Rn

ψ(r)s̄r + λz̄ = ψ(r̄) + λx̄n+1 = max
i=1,...,t

air̄ + λx̄n+1

= max
i=1,...,t

[ai(x̄− f) + (λ− aid)x̄n+1].

Thus there exists i ∈ {1, . . . , t} such that ai(x̄ − f) + (λ − aid)x̄n+1 ≥ 1. This shows that(
x̄

x̄n+1

)
is not in the interior of B(λ).

Theorem 4 implies that π`(d) is the minimum value of λ such that B(λ) is (S ×Z+)-free.

Example (continued). In the previous example, let d ∈ R and λ ∈ R. If λ 6= 0, then the
set B(λ) is the 2-dimensional polyhedron with two facets, containing the points

(
0
0

)
and

(
1
0

)

respectively and with one vertex, namely
(
f
0

)
+ λ−1

(
d
1

)
. If λ = 0, then B(λ) is the split set

[0, 1] + 〈(d
1

)〉. It is immediate to verify that, for λ < 0, the interior of B(λ) contains one of
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the integral points
(bdc

1

)
or

(dde
1

)
.

For example, let f = 1
4 . For d = 3

2 , ψB(d) = 2. One can readily verify that B(λ) is Z×Z+-free
if and only if λ ≥ 2

3 , otherwise it contains the point
(
2
1

)
. Hence π`(d) = 2

3 .
For d = 1, ψB(d) = 4

3 . It is immediate that B(λ) is Z × Z+-free if and only if λ ≥ 0, hence
π`(d) = 0.

Figure 1: Example: f = 1
4 . Left: d = 3

2 . Right: d = 1.

Theorem 5. Let ψ be a minimal valid function for (3) and π be a minimal lifting of ψ.
Then there exists ε > 0 such that ψ, π and π` coincide on the ball of radius ε centered at the
origin.

Proof. Since ψ is a minimal valid function for (3), there exists a maximal S-free convex set
B = {x ∈ Rn | ai(x− f) ≤ 1, i = 1, . . . , t} such that ψ = ψB.

Let
α = max

1≤i,j≤t
max
‖r‖=1

(ai − aj)r

Since B is a maximal S-free convex set, every facet of B contains a point of S in its
relative interior. Hence, for i = 1, . . . , t, there exists xi ∈ S such that ai(xi − f) = 1 and
aj(xi − f) ≤ 1− γi, j 6= i, for some positive γi. Let ε > 0 such that εα ≤ γi for i = 1, . . . , t.

Let d ∈ Rn such that ‖d‖ ≤ ε. We will show that, for every λ < ψ(d), B(λ) contains
a point of S × Z+ in its interior. By Theorem 4, this implies that π`(d) ≥ ψ(d). Since
π` ≤ π ≤ ψ, this implies π`(d) = π(d) = ψ(d).

Let i, 1 ≤ i ≤ t, such that ψ(d) = aid. Let λ = ψ(d) − δ for some δ > 0. We show that
B(λ) contains the point

(
xi

1

)
in its interior. Indeed, by (7), B(λ) is the set of points in Rn+1

satisfying the inequalities

aj(x− f) + [(ai − aj)d− δ]xn+1 ≤ 1, j = 1, . . . , t.

Substituting
(
xi

1

)
we obtain

ai(xi − f) − δ < 1,
aj(xi − f) + (ai − aj)d− δ < 1, j = 1, . . . , t, j 6= i,
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where the first inequality follows from ai(xi−f) = 1, while the second follows from aj(xi−f) ≤
1− γi, ‖d‖ ≤ ε, and (ai − aj)(d/‖d‖) ≤ α by our choice of α.

Thus
(
xi

1

)
is in the interior of B(λ).

Example (continued). From the previous example where n = 1, 0 < f < 1 and S = Z, note
that π`(d) = ψB(d) for every d ∈ [−f, 1 − f ]. Indeed, if d < 0, then B(λ) contains

(
0
1

)
for

all λ < ψB(d), while if d ≥ 0 then B(λ) contains
(
1
1

)
for all λ < ψB(d). Furthermore, for

λ = ψB(d), if d < 0 the facet of B(λ) containing
(
0
0

)
is vertical and contains the point

(
0
1

)
, if

d ≥ 0 then the facet of B(λ) containing
(
1
0

)
is vertical and contains the point

(
1
1

)
.

Theorem 5 implies that, for every minimal valid function ψ for (3), there exists a region
Rψ ⊆ Rn containing the origin in its interior such that ψ and π coincide in Rψ for every
minimal lifting π of ψ for (1). Since ψ is piecewise linear, it follows that π is piecewise linear
around the origin. This is in contrast with extreme functions π for the pure integer semi-
infinite relaxation (i.e. the set (1) where all the sr are set to 0) which need not be piecewise
linear [4].

Lemma 6. Let ψ be a minimal valid function, and π be a minimal lifting of ψ. Then
i) For every r ∈ Rn and w ∈ Zn ∩ lin(conv(S)), π(r) = π(r + w).
ii) For every r ∈ Rn such that r + w ∈ Rψ for some w ∈ Zn ∩ lin(conv(S)), π(r) = ψ(r + w).

Proof. i) Let r̄ ∈ Rn and w ∈ Zn ∩ lin(conv(S)). Suppose π(r̄) 6= π(r̄ + w). Since −w ∈
Zn ∩ lin(conv(S)), we may assume π(r̄) > π(r̄ + w). Since w ∈ Zn ∩ lin(conv(S)), then a
point x ∈ Rn is in S if and only if x + w ∈ S. Thus a point (x̄, s̄, ȳ) satisfies (1) if and
only if (x̄ + wȳr̄, s̄, ỹ) satisfies (1), where ỹr̄ = 0, ỹr̄+w = ȳr̄+w + ȳr̄, and ỹr = ȳr for every
r ∈ Rn \{r̄, r̄+w}. This shows that the function π′ defined by π′(r̄) = π(r̄+w), π′(r) = π(r)
for every r ∈ Rn \ {r̄} is a lifting of ψ, contradicting the minimality of π.

ii) It follows from i) that π(r) = π(r +w). By definition of Rψ, π(r +w) = ψ(r +w).

This lemma is closely related to a result of Balas and Jeroslow [3]. It implies the following
property.

Theorem 7. If for every r ∈ Rn there exists wr ∈ Zn∩lin(conv(S)) such that r+w ∈ Rψ, then
there exists a unique minimal lifting of ψ, namely the function π defined by π(r) = ψ(r+wr).
Furthermore π = π`.

Note that, if for some r ∈ Rψ there exists w ∈ Zn ∩ lin(conv(S)) such that r + w ∈ Rψ,
then ψ(r + w) = ψ(r).

Example (continued). From the previous example where n = 1, 0 < f < 1 and S = Z,
we have shown that ψ(r) = π`(r) for every r ∈ [−f, 1 − f ]. Note that, for every r ∈ R,
r − br + fc ∈ [−f, 1 − f ]. Thus π`(r) = ψ(r − br + fc) for all r ∈ R, and π` is the unique
minimal lifting of ψ. Thus π`(r) = max{−f−1(r − br + fc), (1 − f)−1(r − br + fc)}. More
explicitly, if r − brc < 1− f , then π`(r) = r−brc

1−f , while if r − brc ≥ 1− f , π`(r) = dre−r
f .
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Given a tableau row x = f +
∑h

i=1 pisi +
∑k

j=1 qjyj , where si ≥ 0, i = 1, . . . , h, and yj ≥ 0
and integer, j = 1, . . . , h, the inequality

∑h
i=1 ψ(pi)si +

∑k
j=1 π`(qj)yj ≥ 1 is

h∑

i=1
pi≥0

pi

1− f
si +

h∑

i=1
pi<0

−pi

f
si +

k∑

j=1

qj−bqjc<1−f

qj − bqjc
1− f

yj +
k∑

j=1

qj−bqjc≥1−f

dqje − qj

f
yj ≥ 1,

which is the Gomory Mixed Integer Cut associated with the tableau row.

3 Applications

We illustrated in Section 2 how our geometric approach can be used to derive Gomory’s
mixed integer cuts. In this section, we give three examples of how it can be applied to the
multi-row case.

3.1 Wedge inequalities

We consider the problem (1) where n = 2 and S = Z× Z+. We focus on inequalities arising
from maximal S-free convex sets with 2 sides and one vertex. We call such sets wedges.

Figure 2: Wedges and corresponding region R + {f} shaded in gray. The inequality corre-
sponding to the wedge on the right has a unique minimal lifting.

Let B = {x ∈ R2 | ai(x− f) ≤ 1, i = 1, 2} be such a maximal S-free convex set. Since B
is S-free, its only vertex must be in the interior of conv(S), rec(B) has dimension 2 and for
every nonzero element r ∈ rec(B), r2 < 0.

Note that rec(conv(S)) = R × R+ and B has empty lineality space. By Theorem 3,
lin(B) ⊇ rec(B∩conv(S)), hence rec(B)∩conv(S) = ∅. In particular, (R×{0})∩ rec(B) = ∅,
thus by symmetry we may assume a1

(
1
0

)
< 0 and a2

(
1
0

)
> 0, that is a11 < 0 and a21 > 0.

Let r̂ be a nonzero vector such that a1r̂ = a2r̂. Clearly the second coordinate of r̂ is
nonzero. Note that any point x ∈ R2 can be uniquely written as x = f + αxr̂ + βx

(
1
0

)
where

αx, βx ∈ R. Let x̄ ∈ S be a point in the relative interior of one of the two facets of B, say
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ah(x̄−f) = 1, ak(x̄−f) < 1. Note that 0 > (ak−ah)(x̄−f) = βx̄(ak1−ah1), hence βx̄ < 0 if
h = 1 and βx̄ > 0 if h = 2. Let x1 be a point of S in the relative interior of the facet defined
by a1(x − f) ≤ 1 such that βx1

is largest possible, and x2 be a point of S in the relative
interior of the facet defined by a2(x− f) ≤ 1 such that βx2

is smallest possible. Let βi = βxi
.

Note that β1 < 0 < β2. We define the region R = [β1, β2] + 〈r̂〉. (See Figure 2.)

Lemma 8. For every d ∈ R, π`(d) = ψB(d).

Proof. Let d ∈ R, that is d = αr̂ + β
(
1
0

)
, for some α ∈ R and β ∈ [β1, β2]. We consider the

case β ≤ 0. The case β ≥ 0 is similar.
Note that (a1−a2)d = α(a1−a2)r̂ +β(a11−a21) ≥ 0 since (a1−a2)r̂ = 0, β ≤ 0, a11 < 0

and a21 > 0. Hence ψB(d) = max{a1d, a2d} = a1d.
We will show that, for every λ < ψB(d), the set B(λ) defined in (7) contains the point(

x1

1

)
in its interior. By Theorem 4, this will imply π`(d) ≥ ψB(d), and thus π`(d) = ψB(d).

Let λ = ψB(d)− δ for some δ > 0. Then B(λ) is the set of x ∈ R3 satisfying

a1(x− f) − δx3 ≤ 1,
a2(x− f) + (a1 − a2)dx3 − δx3 ≤ 1.

Substituting
(
x1

1

)
in the first inequality, we obtain a1(x1−f)−δ = 1−δ < 1. Substituting

in the second inequality, we obtain

a2(x1 − f) + (a1 − a2)d− δ = αx1
a2r̂ + β1a21 + α(a1 − a2)r̂ + β(a11 − a21)− δ

= αx1
a1r̂ + β1a11 + (β − β1)(a11 − a21)− δ

≤ a1(x1 − f)− δ = 1− δ < 1

where the first inequality in the last row follows from β1 ≤ β, a11 < 0, a21 > 0. Thus
(
x1

1

)
is

in the interior of B(λ).

Let y1 and y2 be the intersection of the facets defined by a1(x−f) ≤ 1 and a2(x−f) ≤ 1,
respectively, with the axis x2 = 0. That is a1(y1 − f) = 1, y1

2 = 0, and a2(y2 − f) = 1,
y2
2 = 0. Since B is S-free, y2

1 − y1
1 ≤ 1, where equality holds if and only if y1, y2 are integral.

Furthermore, it is not difficult to show that β2 − β1 ≤ y2
1 − y1

1. Thus β2 − β1 = 1 if and only
if y1, y2 are integral vectors. In this case, for every r ∈ R2 there exists wr ∈ Z × {0} such
that r + wr ∈ R. Since lin(conv(S)) = R × {0}, by Theorem 7, π`(r) is the unique minimal
lifting of ψB, and π`(r) = ψB(r + wr) for every r ∈ R2.

Dey and Wolsey [11] show that ψB is extreme for (3) if and only if B contains at least
three points of S. Thus Remark 2 implies the following:

Theorem 9. If B contains at least three points of S and B ∩ (R × {0}) is an interval of
length one, then (ψB, π`) is an extreme inequality for (1).

Example. Let f =
( 2

3
1
3

)
and S = Z× Z+. Consider the wedge

W = {x ∈ R2 | − 3(x1 − 2
3
) + 3(x2 − 1

3
) ≤ 1,

12
5

(x1 − 2
3
)− 3

5
(x2 − 1

3
) ≤ 1}.

9



Figure 3: Set W in the example and corresponding region R + {f} shaded in gray.

The set W is a maximal S-free convex set, as one may easily see from Figure 3.
The corresponding minimal function is given by

ψ(r) = max{−3r1 + 3r2 ,
12
5

r1 − 3
5
r2}.

One can easily verify that the vector r̂ =
(
2
3

)
satisfies −3r̂1 + 3r̂2 = 12

5 r̂1 − 3
5 r̂2, and that

the region R is thus given by R = [−4
9 , 5

9 ] +
(
2
3

)
. This can be written as

R = {r ∈ R2 | − 4
9
≤ r1 − 2

3
r2 ≤ 5

9
}.

For every r ∈ R2, define the integral vector wr by wr
1 = −br1 − 2

3r2 + 4
9c, wr

2 = 0. Note
that wr ∈ lin(S) ∩ Z2 and r + wr ∈ R for all r ∈ R2. The unique minimal lifting for ψ is
therefore the function π defined by π(r) = ψ(r + wr). The explicit formula is given by

π(r) = max{−3(r1 − br1 − 2
3
r2 +

4
9
c) + 3r2 ,

12
5

(r1 − br1 − 2
3
r2 +

4
9
c)− 3

5
r2}.

Suppose now we are given the following two rows of the optimal simplex tableau for the
linear relaxation of a mixed integer program.

x1 = 2
3+ x3+ x4 − x6− 4

5x7

x2 = 1
3+ 3

2x3− 2x4− 7
3x5+ x6− 4

5x7

x1, x2, x3, x4, x5, x6, x7 ≥ 0
x1, x2, x4, x6 ∈ Z

10



The lifted inequality determined by the wedge W is ψ(r1)x3+π(r2)x4+ψ(r3)x5+π(r4)x6+

ψ(r5)x7 ≥ 1, where r1 =
(

1
3
2

)
, r2 =

(
1
−2

)
, r3 =

(
0
− 7

3

)
, r4 =

(−1
1

)
, r5 =

(− 4
5

− 4
5

)
. This gives the

inequality
3
2
x3 − 6

5
x4 +

7
5
x5 +

9
5
x6 ≥ 1.

Note that the non-lifted inequality (that is, the inequality obtained from W if we ignored the
integrality conditions on x4 and x6) is

3
2
x3 +

18
5

x4 +
7
5
x5 + 6x6 ≥ 1.

3.2 Simplicial polytopes

In this section we focus on valid inequalities for (3) arising from maximal lattice-free simplicial
polytopes, in the case where S = Zn. Recall that a polytope is simplicial if each of its facets
is a simplex.

Let B = {x ∈ Rn | ai(x − f) ≤ 1, i = 1, . . . , t} be an n-dimensional maximal lattice-free
simplicial polytope and let v1, . . . , vp be its vertices. For i = 1, . . . , t, let Vi ⊂ {1, . . . , p} be
the set of indices of vertices of the facet defined by ai(x− f) ≤ 1, that is ai(vj − f) = 1 for
all j ∈ Vi. Let ri = vi − f , i = 1, . . . , p. Note that, since B is simplicial, {rj | j ∈ Vi} consists
of n linearly independent vectors, for i = 1, . . . , t, and air

j = 1 for all j ∈ Vi, while air
j < 1

for all j /∈ Vi.
Let x̄ be an integral point in the relative interior of the facet defined by ai(x−f) ≤ 1, that

is ai(x̄−f) = 1, aj(x̄−f) < 1, j 6= i. Then x̄ can be uniquely written as x̄ = f +
∑

j∈Vi
ᾱjr

j ,
where

∑
j∈Vi

ᾱj = 1, ᾱj ≥ 0, j ∈ Vi. Let R(x̄) = {∑j∈Vi
αjr

j | 0 ≤ αj ≤ ᾱj , j ∈ Vi}.
Let us denote by I the set of all points x̄ in Zn such that x̄ is contained in the relative

interior of some facet of B. Let R = ∪x̄∈IR(x̄).

Lemma 10. For every d ∈ R, π`(d) = ψB(d).

Proof. We only need to show that, given x̄ ∈ I and d ∈ R(x̄), π`(d) = ψB(d). By symmetry
we may assume that x̄ is in the relative interior of the facet defined by a1(x̄−f) ≤ 1, and that
V1 = {1, . . . , n}. Let ᾱ1, . . . , ᾱn nonnegative such that

∑n
j=1 ᾱj = 1 and x̄ = f +

∑n
j=1 ᾱjr

j .
Since d ∈ R(x̄), there exist α1, . . . , αn such that d =

∑n
j=1 αjr

j and 0 ≤ αj ≤ ᾱj , j = 1, . . . , n.
Note that, for i = 1, . . . , t, (a1 − ai)d =

∑n
j=1 αj(a1 − ai)rj ≥ 0. Thus ψB(d) = a1d.

We will show that, for every λ < ψB(d), the set B(λ) defined as in (7) contains the point(
x̄
1

)
in its interior. By Theorem 4, this will imply π`(d) ≥ ψB(d), and thus π`(d) = ψB(d).
Let λ = ψB(d)− δ for some δ > 0. Then B(λ) is the set of x ∈ Rn+1 satisfying

a1(x− f) − δxn+1 ≤ 1,
ai(x− f) + (a1 − ai)dxn+1 − δxn+1 ≤ 1, i = 2, . . . , t.

Substituting
(
x̄
1

)
in the first inequality, we obtain a1(x̄− f)− δ = 1− δ < 1. Substituting
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in the ith inequality, i = 2, . . . , n + 1, we obtain

ai(x̄− f) + (a1 − ai)d− δ =
n∑

j=1

ᾱjair
j +

n∑

j=1

αj(a1 − ai)rj − δ

=
n∑

j=1

ᾱj −
n∑

j=1

ᾱj(1− air
j) +

n∑

j=1

αj(1− air
j)− δ

= 1−
n∑

j=1

(ᾱj − αj)(1− air
j)− δ

≤ 1− δ < 1

where the equality in the second line follows from air
j = 1 for j = 1, . . . , n, the equality on

the third line follows from
∑n

j=1 ᾱj = 1, while the first inequality on the last line follows from
αj ≤ ᾱj and air

j ≤ 1.

In light of Theorem 7, we are interested in cases where for every r ∈ Rn there exists
wr ∈ Zn such that r + wr ∈ R, since in this case π` is the unique minimal lifting.

Dey and Wolsey [10] studied the case n = 2. In this case maximal lattice free polytopes
are either triangles or quadrilaterals [15]. Dey and Wolsey show that the above property
holds if and only if B is a triangle containing at least four integral points (see Figure 4),
while it does not hold if B is a triangle containing exactly three integral points or if B is a
quadrilateral. They also show that, when B is a triangle with at least four integral points,
(ψB, π`) is extreme for (1). This fact also follows from Remark 2 and from the fact that ψB

is extreme for (3) whenever B is a maximal lattice-free triangle [9].

Figure 4: Lattice free triangles giving inequalities with a unique minimal lifting. Region
R + {f} is shaded.

We next show that the above property holds when B is the n-dimensional simplex
conv{0, ne1, . . . , nen}, where ei denotes the ith unit vector. We assume that f is in the
interior of B. The picture on the left in Figure 4 shows the case n = 2.
Note that B = {x ∈ Rn | ∑n

i=1 xi ≤ n, xi ≥ 0, i = 1, . . . , n}. The point e − ei, where e
denotes the vector of all ones, is the unique integral point in the relative interior of the facet
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of B defined by xi ≥ 0 and e is the unique integral point in the relative interior of the facet
of B defined by

∑n
i=1 xi ≤ n. Thus I = {e, e− e1, . . . , e− en}.

Let d1, . . . , dn+1 be defined as follows: di = ei − 1
nf , i = 1, . . . , n and dn+1 = − 1

nf .
Then R(e) = {∑n

j=1 αjd
j | 0 ≤ αi ≤ 1, i = 1, . . . , n} and R(e − ei) = {∑n+1

j=1 αjd
j | 0 ≤ αk ≤

1, k = 1, . . . , n + 1, αi = 0}. Therefore R = {∑n+1
j=1 αjd

j | 0 ≤ αi ≤ 1, i = 1, . . . , n + 1, αi =
0 for some i, 1 ≤ i ≤ n + 1}
Lemma 11. Let B = conv{0, ne1, . . . , nen}. For every r ∈ Rn, there exists w ∈ Zn such that
r + w ∈ R.

Proof. Note that, for 1 ≤ i, j ≤ n + 1, di − dj ∈ Zn.
Let Ci = cone{dj | j 6= i, 1 ≤ j ≤ n + 1}, i = 1, . . . , n + 1. Note that ∪n+1

i=1 Ci = Rn and
Ci ∩ Ck = cone{dj | j 6= i, k, 1 ≤ j ≤ n + 1}. Furthermore, −di ∈ Ci for i = 1, . . . , n + 1.

Claim: Let r ∈ Rn and let i such that r ∈ Ci. There exists a unique α ∈ Rn+1 such that
r =

∑n+1
j=1 αjd

j and αi = 0. Furthermore, α is nonnegative and αj ≤ α′j for every nonnegative
α′ ∈ Rn+1 such that r =

∑n+1
j=1 α′jd

j .

We prove the claim. Since Ci is generated by n linearly independent vectors, r can be
uniquely written as r =

∑n+1
j=1 αjd

j such that αi = 0, and α must be nonnegative since r ∈ Ci.
Given a nonnegative α′ ∈ Rn+1 such that r =

∑n+1
j=1 α′jd

j distinct from α, then α′i > 0. Hence

−di = (α′i)
−1

n+1∑

j=1

j 6=i

(α′j − αj)dj

thus α′j − αj ≥ 0 since −di ∈ Ci, hence by the above argument −di can be uniquely written
as a linear combination of the extreme rays of Ci, and such combination is nonnegative. This
proves the claim.

Let us now consider r ∈ Rn. Let i be such that r ∈ Ci, 1 ≤ i ≤ n + 1. Let α ∈ Rn+1

such that r =
∑n+1

j=1 αjd
j and αi = 0. By the above claim α is nonnegative. Let ᾱ =

maxj=1,...,n+1 αj . If ᾱ ≤ 1, then r ∈ R. If not, αk = ᾱ > 1 for some 1 ≤ k ≤ n + 1.
Let r′ = r + (ei − ek) = r + (di − dk). Then r′ =

∑
j 6=i,k αjd

j + di + (αk − 1)dk. Let
h be such that r′ ∈ Ch, 1 ≤ h ≤ n + 1 and let α′ ∈ Rn+1 be the unique vector such that
r′ =

∑n+1
j=1 α′jd

j and α′h = 0. By the previous claim, α′ satisfies the following properties
¦ r′ − r ∈ Zn and α′h = 0,
¦ 0 ≤ α′j ≤ αj , j 6= i, 1 ≤ j ≤ n + 1,
¦ 0 ≤ α′i ≤ 1, 0 ≤ α′k ≤ αk − 1.

Thus, either maxj=1,...,n+1 α′j ≤ ᾱ − 1, or the number of indices j such that α′j = ᾱ is
smaller than the number of indices j such that αj = ᾱ. This implies the statement of the
lemma.

It can be shown that, in this case, R is a polytope with
(
n+1

2

)
pairs of parallel facets, and

that R has volume 1. Thus, by Lemma 11, all possible translations of R by integral vectors
form a tiling of Rn. Therefore for every d ∈ Rn, there exists wd ∈ Zn such that d + wd ∈ R.
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By Theorem 7, the function π` defined by π`(d) = ψB(d + wd) is the unique minimal lifting
of ψB.

Whenever B is a maximal lattice-free simplex, ψB is extreme for (3). Indeed, if v1, . . . , vn+1

are the vertices of B and we define rj = vj − f , j = 1, . . . , n + 1, ψB is extreme for (3) if and
only if

∑n+1
j=1 ψB(rj)sj ≥ 1 is extreme for the convex hull of the set Rf (r1, . . . , rn+1) defined

as the set of all s ∈ Rn+1 such that f +
∑n+1

j=1 rjsj ∈ Zn and s ≥ 0 (see [11]). In this case, since
each facet of B contains an integral point, for i = 1, . . . , n + 1 there exists si ∈ Rn+1 such
that si

j > 0 for all j 6= i, 1 ≤ j ≤ n + 1, si
i = 0 and

∑n+1
j=1 si

jr
j ∈ Zn. Hence s1, . . . , sn+1 are

linearly independent points of Rf (r1, . . . , rn+1), and
∑n+1

j=1 ψB(rj)si
j = 1 for i = 1, . . . , n + 1.

This shows that
∑n+1

j=1 ψB(rj)sj ≥ 1 defines a facet of conv(Rf (r1, . . . , rn+1)), and thus it is
extreme for conv(Rf (r1, . . . , rn+1)). Therefore ψB is extreme for (3).

The above statement and Remark 2 imply the following.

Theorem 12. If B = conv(0, ne1, . . . , nen), (ψB, π`) is extreme for (1) with S = Zn.

The above theorem holds up to unimodular transformations and integer translations of
the set B. We recall that an integral square matrix is unimodular if it has determinant ±1.
Given any unimodular n × n-matrix U and vector v ∈ Zn such that f is in the interior of
the set B′ = conv(v, n(Ue1) + v, . . . , n(Uen) + v) (which is lattice-free by construction), then
(ψB′ , π`) is extreme for (1) when S = Zn. Note that, given a vector f /∈ Zn, one may always
find an appropriate unimodular matrix U and integral vector v so that f is in the interior of
the corresponding set B′.

Recent computational work has focused mostly on inequalities valid for two-row problems
(i.e. n = 2). The function ψB′ and the corresponding minimal lifting provide inequalities for
many rows, and can be computed efficiently. This type of lifted inequalities have been used
in computational experiments by Espinoza [12] (using values of n up to 10), and the results
indicate that such cuts might be useful in practice.

3.3 Simple cones

We consider the case were S = Zn−1 × Z+ and the maximal S-free convex set B is the
translation of a simple cone. That is, B has a unique vertex v, and B − v is a simple cone.
Recall that a polyhedral cone in Rn is simple if it is generated by n linearly independent
vectors, and therefore it has n facets. This case extends the wedge inequalities of Section 3.1.

Let B = {x ∈ Rn | ai(x − f) ≤ 1, i = 1 . . . , n}. By Theorem 3, rec(B) ∩ rec(conv(S))
is contained in the lineality space of B, which is empty. Therefore B ∩ conv(S) is bounded.
Therefore the polytope B∩(Rn−1×{0}) is an an (n−1)-dimensional simplex P . Let v1, . . . , vn

be the vertices of P , and let rj = vj − f , j = 1, . . . , n. By symmetry, we may assume that
air

j = 1 for 1 ≤ i, j ≤ n, i 6= j, and air
i < 1. Let r̂ = v − f . Note that, for i = 1, . . . , n,

air̂ = 1.
Let x̄ be a point of S in the relative interior of one of the facets of B, say the facet defined

by ah(x − f) ≤ 1. Then x̄ can be uniquely written as x̄ = f + ᾱr̂ +
∑n

j=1 ᾱjr
j such that

0 ≤ ᾱj , j = 1, . . . , n, and ᾱh = 0. Let R(x̄) = {∑n
j=1 αjr

j | 0 ≤ αj ≤ ᾱj , j = 1, . . . , n}+ 〈r̂〉.
Let us denote by I the set of all points x̄ in S such that x̄ is contained in the relative interior
of some facet of B. Let R = ∪x̄∈IR(x̄).
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Lemma 13. For every d ∈ R, π`(d) = ψB(d).

Proof. We only need to show that, given x̄ ∈ I and d ∈ R(x̄), π`(d) = ψB(d). By symmetry
we may assume that x̄ is in the relative interior of the facet defined by a1(x − f) ≤ 1. Let
ᾱ ∈ R and ᾱ2, . . . , ᾱn nonnegative such that x̄ = f + ᾱr̂ +

∑n
j=2 ᾱjr

j . Since d ∈ R(x̄), there
exist α ∈ R and α1, . . . , αn such that d = αr̂ +

∑n
j=2 αjr

j and 0 ≤ αj ≤ ᾱj , j = 2, . . . , n.
Note that, for i = 2, . . . , t, (a1 − ai)d = α(a1 − ai)r̂ +

∑n
j=2 αj(a1 − ai)rj ≥ 0, since

(a1 − ai)r̂ = 0 and (a1 − ai)rj ≥ 0. Thus ψB(d) = a1d.
We will show that, for every λ < ψB(d), the set B(λ) defined in (7) contains the point(

x̄
1

)
in its interior. By Theorem 4, this will imply π`(d) ≥ ψB(d), and thus π`(d) = ψB(d).
Let λ = ψB(d)− δ for some δ > 0. Then B(λ) is the set of x ∈ Rn+1 satisfying

a1(x− f) − δxn+1 ≤ 1,
ai(x− f) + (a1 − ai)dxn+1 − δxn+1 ≤ 1 i = 2, . . . , t.

Substituting
(
x̄
1

)
in the first inequality, we obtain a1(x̄− f)− δ = 1− δ < 1. Substituting

in the ith inequality, i = 2, . . . , n + 1, we obtain

ai(x̄− f) + (a1 − ai)d− δ = ᾱair̂ +
n∑

j=2

ᾱjair
j + α(a1 − ai)r̂ +

n∑

j=2

αj(a1 − ai)rj − δ

= ᾱa1r̂ +
n∑

j=2

ᾱja1r
j − ᾱi(a1 − ai)ri + αi(a1 − ai)ri − δ

= a1(x̄− f)− (ᾱi − αi)(a1 − ai)ri − δ

≤ 1− δ < 1

where the equality in the second line follows from air̂ = a1r̂ and a1r
j = air

j for all 2 ≤ j ≤ n
such that i 6= j, while the first inequality on the last line follows from αi ≤ ᾱi and air

i < 1 =
a1r

i.

Note that P is an n− 1-dimensional simplex in Rn−1 × {0} and P does not contain any
point of Zn−1 × {0} in its interior. Suppose that P is maximal lattice free in Rn−1 × {0}. In
this case we can apply the results of Section 3.2 to identify cases where π` is a lifting of ψB.

Let f̄ be the intersection of the line f + 〈r̂〉 with Rn−1 × {0}, and let r̄j = vj − f̄ . For
every point x̄ ∈ Zn−1 × {0} in the relative interior of one of the facets of P , say the facet
defined by ah(x− f) ≤ 1, x̄ can be uniquely written as x̄ = f̄ +

∑n
j=1 ᾱj r̄

j such that 0 ≤ ᾱj ,
j = 1, . . . , n, and ᾱh = 0. Let R̄(x̄) = {∑n

j=1 αj r̄
j | 0 ≤ αj ≤ ᾱj , j = 1, . . . , n}. Note that

R̄(x̄) = R(x̄) ∩ (Rn−1 × {0}). Let Ī be the set of all points in x̄ ∈ Zn−1 × {0} in the relative
interior of some of the facets of P . We define R̄ = ∪x̄∈ĪR̄(x̄). Then R ⊇ R̄ + 〈r̂〉. Hence, if
for every r ∈ Rn−1 × {0} there exists w ∈ Zn−1 × {0} such that r + w ∈ R̄, it also holds that
for every r ∈ Rn there exists wr ∈ Zn−1 × {0} such that r + wr ∈ R.

Since Rn−1×{0} is the lineality space of conv(S), Theorem 7 implies that π` is the unique
minimal lifting of ψB, and π`(r) = ψ(r + wr).

The above property holds, for example, when n = 2 and P is an interval of length one
(as seen in Section 3.1), when n = 3 and P is a maximal lattice-free triangle containing at
least four points in Z2 × {0}, or for general n when P is a unimodular transformation of
conv(0, (n− 1)e1, . . . , (n− 1)en−1).
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[8] V. Borozan, G. Cornuéjols, Minimal Valid Inequalities for Integer Constraints, technical
report (July 2007), to appear in Mathematics of Operations Research.
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