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Abstract:  

This paper presents a general framework based on copulas for modeling dependent multivariate 

uncertainties through the use of a decision tree. The proposed dependent decision tree model 

allows multiple dependent uncertainties with arbitrary marginal distributions to be represented in 

a decision tree with a sequence of conditional probability distributions. This general framework 

could be naturally applied in decision analysis and real options valuations, as well as in more 

general applications of dependent probability trees. While this approach to modeling 

dependencies can be based on several popular copula families as we illustrate, we focus on the 

use of the normal copula and present an efficient computational method for multivariate decision 

and risk analysis that can be standardized for convenient application. 
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1. Introduction 

Modeling uncertainties is a crucial part of decision and risk analysis. In reality, multiple 

sources of uncertainty commonly exist, and they are likely to be dependent. With the advantage 

of a visual interface and natural backward dynamics for early exercise options, the decision tree 

has become one of the fundamental tools for modeling uncertainties; however, one weakness in 

its practical use is that it is computationally difficult to incorporate dependencies among different 

uncertainties in the decision tree. Many times, these dependencies are neglected in modeling in 

order to simplify the analysis as discussed in Abbas(2006) and Bickel and Smith(2006). For 

situations where such negligence may cause significant errors, the incorporation of these 

dependencies into the decision and risk probability models becomes important (Smith, et al., 

1992).   

The most natural approach to modeling multivariate uncertainties in a decision tree is to 

specify their conditional distributions given the discrete outcomes of the preceding uncertainties. 

Despite its simple logic, this approach is limited in practical applications because conditional 

distributions are not easy to derive analytically, especially when the marginal distributions are 

from different parametric families. Additionally, the task of specifying all of the necessary 

conditional distributions grows combinatorially with the number of variables; therefore, this 

approach is information-intensive and impractical for subjective risk assessment when empirical 

knowledge is limited (Ghosh and Henderson, 2002).   

A practical alternative is to specify only the marginal distributions of the uncertainties and to 

describe the dependencies among them using measures of correlation or of tail dependence, and 

then to calculate the corresponding joint distribution using an appropriately chosen copula. A 

copula function links the univariate marginal distributions with their multivariate joint 

distribution, and the choice of a specific copula function allows flexibility in modeling different 

dependence relationships. There are many functional forms of copulas that are grouped into 

families, and among the most commonly used are those from the elliptical and Archimedean 

families (Nelsen, 1999; Trivedi and Zimmer, 2005). The popular normal copula and the t-copula 

are members of the elliptical family of copulas.  

The most commonly used measure of dependence among marginal distributions is 

correlation, and typically this dependence is measured with the familiar Pearson product moment 

correlation coefficient. While the Pearson correlation measure is convenient to use and 

appropriate in many applications, it is an estimate of the linear relationship between two marginal 
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distributions, and may therefore be inaccurate if the correlation relationship is non-linear. In such 

cases, Spearman’s rank correlation coefficient or Kendall’s tau correlation measure may be used, 

since they are based on rank data and therefore do not assume a linear relationship between the 

two marginal distributions. Copula functions exist that can be used with all three of these 

correlation measures, and therefore provide flexibility in modeling statistical relationships. 

Marginal distributions and correlation measures are all that are needed by the family of elliptical 

copulas to determine the corresponding joint distributions of the uncertain variables.  

However, there are other forms of dependence between marginal distributions that are not 

captured by correlations, and that can be important in some modeling contexts. One such 

consideration in modeling probabilistic dependency is the existence of tail dependency, where 

there may be a strong probabilistic relationship between extreme values of two marginal 

distributions. For example, there may be a stronger dependence between large losses than 

between large gains, as we have observed in stock price movements when the stock market 

experiences extreme losses (Malevergne and Sornette, 2005), or damage losses among different 

lines of insurance when catastrophes occur (Kousky and Cooke, 2009). Tail dependencies have 

also been identified in oil and gas applications (Al-Harthy et al., 2007). When such situations 

arise, Archimedean copulas that capture asymmetrical tail dependence may be used as more 

appropriate modeling tools.  

Copulas have been applied widely in risk analysis (e.g., Embrechts, et al., 1999), insurance 

(e.g., Kousky and Cooke 2009), and finance (e.g., Cherubini et al., 2004; Biller, 2009), where the 

emphasis has been on the use of Monte Carlo simulation models to implement them to generate 

multivariate joint distributions. The use of copula-based Monte Carlo simulation has also been 

suggested to support decision analysis applications in the oil and gas industry by Accioly and 

Chiyshi (2004), Armstrong, et al. (2004), and by Al-Harthy, et al. (2007). In contrast, we will 

illustrate how copulas can be used to construct probability trees composed of discrete, conditional 

probability nodes that can be used as the building blocks for decision trees. However, the 

construction of these discrete, conditional probability trees is a general process, and they could be 

used in other applications in finance or risk analysis as well.   

The application of copulas to problems in decision analysis involving discrete probability 

trees has been limited. Clemen and Reilly (1999; hereafter, C&R) developed a feasible method to 

model dependence in the decision tree using just marginal distributions and correlation 

information. They showed how to construct a normal copulas-based joint distribution model to 

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Y.%20Malevergne
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Didier%20Sornette
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calculate the conditional densities and to use the discrete approximation of these conditional 

densities to create a multivariate decision tree.  

A disadvantage of the C&R approach is that the computational requirements associated with 

these calculations are often challenging and may require customized coding for each application. 

In this paper, we propose a mathematically equivalent yet computationally more efficient 

alternative to the C&R approach that shares the benefits of this approach and reduces its practical 

limitations. When the dependency structure is modeled by the normal copulas, the dependent 

decision tree approach extends NORTA (NORmal To Anything) (Cario and Nelson 1997), a 

popular approach developed for the support of high dimensional Monte Carlo simulation models, 

to modeling dependence in decision trees (see details in the Appendix 1).  

The remainder of this paper is organized as follows: Section 2 discusses modeling 

multivariate distribution with copulas. Section 3 presents how to construct the copula based 

dependent decision trees. Section 4 discusses the computational advantage of the dependent 

decision tree approach. An airline example is presented to demonstrate the dependent decision 

tree approach and to provide a comparison with the C&R approach. Section 5 presents the 

consolidated dependent decision tree, an extension of the dependent decision tree approach for 

multivariate real options valuation. An oil industry example is used to demonstrate the 

consolidated dependent decision tree extension. Section 6 provides a summary of the work and 

discusses its limitations.    

2. Discussion of Copulas 

A copula allows a joint distribution of random variables to be expressed as a function of the 

marginal distributions. For simplicity, we consider the bivariate case.  For any real valued random 

variables 𝑋𝑋 1 and 𝑋𝑋 2 with marginal cumulative distribution functions (CDF) 𝐹𝐹1(𝑋𝑋1) and 𝐹𝐹2(𝑋𝑋2), 

respectively, Sklar (1959) showed that there always exists a function C such that  

𝐹𝐹12(𝑋𝑋1,𝑋𝑋2) = 𝐶𝐶(𝐹𝐹1(𝑋𝑋1),𝐹𝐹2(𝑋𝑋2))  (2.1) 

The function C is called a copula. It fully captures the dependence structure among the random 

variables, and is independent from the choice of the marginal distributions. Therefore, the joint 

distribution can be constructed from two independent components: the copula and the marginal 

distributions. The marginal distributions need not be from the same distribution family, and they 

are “coupled together” using a copula function. While the individual uncertainties involved in 

applications of copulas in finance and insurance often have marginal distributions from the same 

family, this may not be true in practical applications of decision and risk analysis. 
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The copula function C is itself a distribution function for uniform random variables since the 

marginal CDFs are standard uniform distributions. Suppose that continuous random variables 𝑋𝑋1 

and 𝑋𝑋2 have a joint distribution function 𝐹𝐹12(𝑋𝑋1,𝑋𝑋2) defined by (2.1), and let 𝑈𝑈1 = 𝐹𝐹1(𝑋𝑋1) and 

𝑈𝑈2 = 𝐹𝐹2(𝑋𝑋2); the joint CDF can be given by the copula  

𝐶𝐶(𝑢𝑢1,𝑢𝑢2) = 𝐹𝐹12(𝐹𝐹1−1(𝑢𝑢1),𝐹𝐹2−1(𝑢𝑢2))     (2.2) 

where 𝐹𝐹−1  denotes the inverse cumulative distribution function, and 𝑢𝑢𝑖𝑖, 𝑖𝑖 = 1,2 is an uniform 

variable defined over [0,1].  

This property suggests an effective algorithm for constructing decision trees by focusing on 

the dependence structure defined by copulas with unified standard uniform variables. Because the 

copula contains all information regarding the dependence structure, we can first construct a 

transient probability tree independent of the choice of marginal distributions for the underlying 

copula, and then combine it with the information about the marginal distributions to produce the 

desired conditional distributions in the constructed dependent decision tree.  

The transient probability tree structure for the underlying copula models the standard uniform 

pair 𝑢𝑢1  and 𝑢𝑢2  separately. To generate the dependent uniform random variable 𝑢𝑢2  given each 

realization of 𝑢𝑢1 = Pr(𝑋𝑋1 ≤ 𝑥𝑥1) = 𝛼𝛼1, we will calculate the conditional distribution of 𝑋𝑋2 given 

𝑋𝑋1 = 𝑥𝑥1 from the partial derivative of the copula 

Pr(𝑋𝑋2 ≤ 𝑥𝑥2|𝑋𝑋1 = 𝑥𝑥1) = 𝜕𝜕𝜕𝜕
𝜕𝜕𝐹𝐹1(𝑥𝑥1) (𝐹𝐹1(𝑥𝑥1),𝐹𝐹2(𝑥𝑥2)) = 𝜕𝜕𝜕𝜕

𝜕𝜕𝑢𝑢1
(𝑢𝑢1,𝑢𝑢2)

        
Darsow et al. (1992) 

For each given conditional percentile 𝑃𝑃𝑃𝑃(𝑋𝑋2 ≤ 𝑥𝑥2|𝑋𝑋1 = 𝑥𝑥1) = 𝛼𝛼2 , the dependent uniform 

variable 𝑢𝑢2 = 𝑃𝑃𝑃𝑃(𝑋𝑋2 ≤ 𝑥𝑥2) is the inverse function of the realization of 𝑢𝑢1 = 𝛼𝛼1 and the choice of 

the percentile 𝛼𝛼2 for the conditional distribution 𝑋𝑋2 ≤ 𝑥𝑥2|𝑋𝑋1 = 𝑥𝑥1. Let 𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢1

(𝑢𝑢1,𝑢𝑢2) = 𝑐𝑐𝑢𝑢1(𝑢𝑢2) =

𝛼𝛼2 , then 𝑢𝑢2 = 𝑐𝑐𝑢𝑢1
−1(𝛼𝛼2). Therefore, the transient probability tree can be constructed with the 

unconditional percentile 𝛼𝛼1  and the choice of the conditional percentile 𝛼𝛼2. The transient tree 

structure is then transformed into the desired dependent decision tree as we will illustrate in the 

next section. The formulae for the copula, the conditional distribution via the copula, and for 𝑢𝑢2 

provide the information necessary to implement a specific copula for use in developing a 

dependent decision tree. 

The elliptical copulas and Archimedean copulas are among the most popular copula families 

in applied modeling and will be the focus of this research. The elliptical copulas and the 

Archimedean copulas differ significantly in modeling the tail dependency of distributions.  
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Tail dependency measures the probability that extreme events happen jointly. Upper tail 

dependence exists when there is a probability that positive extreme events happen jointly. Upper 

tail dependence is defined as:   

𝜆𝜆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = lim𝑢𝑢→1 Pr (𝑋𝑋2 ≥ 𝐹𝐹𝑋𝑋2
−1(𝑢𝑢)|𝑋𝑋1 ≥ 𝐹𝐹𝑋𝑋1

−1(𝑢𝑢))         (2.3) 

Lower tail dependence is defined symmetrically.
 
The tail dependency measure depends only on 

the copula and not on the marginal distributions.  

Elliptical copulas are restricted to symmetrical tail dependencies. They are simply the copulas 

of elliptical distributions, and provide useful examples of multivariate distributions because they 

share many of the tractable properties of the elliptical distributions. The normal copula and the t-

copula belong to the elliptical copulas family. The key formulae for the normal and t-copulas are 

summarized in Table 1 (Cherubini et al., 2004).  
Table 1 Key Formulae for Elliptical Copulas  

Family  Copula Description Partial derivative of the copula 2u  
normal 
copula 

𝐶𝐶𝑁𝑁(𝐹𝐹1(𝑋𝑋1),𝐹𝐹2(𝑋𝑋2))
= Φr (Φ−1(𝐹𝐹1(𝑋𝑋1)),Φ−1(𝐹𝐹2(𝑋𝑋2))) 

with Pearson product 

moment correlation r. 

𝜕𝜕𝐶𝐶
𝜕𝜕𝑢𝑢1

(𝑢𝑢1,𝑢𝑢2) = Φ(
Φ−1(𝑢𝑢2)− rΦ−1(𝑢𝑢1)

√1− 𝑃𝑃2
) 𝑢𝑢2 = Φ(𝑃𝑃Φ−1(𝛼𝛼1) + √1− 𝑃𝑃2Φ−1(𝛼𝛼2)) 

(2.4) 
 

t-copula 𝐶𝐶𝑇𝑇(𝐹𝐹1(𝑋𝑋1),𝐹𝐹2(𝑋𝑋2)) =
𝑡𝑡𝑢𝑢,ν(𝑡𝑡ν−1(𝐹𝐹1(𝑋𝑋1)), 𝑡𝑡ν−1(𝐹𝐹2(𝑋𝑋2))) 
 
where 𝑡𝑡ν 

is the univariate 
student’s t distribution 
function, with ν  degrees of 
freedom, and 𝑡𝑡𝑢𝑢,ν

 
the 

bivariate distribution 
corresponding to 𝑡𝑡ν with 
Pearson product moment 
correlations r. 

𝜕𝜕𝐶𝐶
𝜕𝜕𝑢𝑢1

(𝑢𝑢1,𝑢𝑢2)

= 𝑡𝑡𝑣𝑣+1(�
ν+ 1

ν+ [𝑡𝑡ν−1(𝑢𝑢1)]2
𝑡𝑡ν−1(𝑢𝑢2)− 𝑃𝑃𝑡𝑡ν−1(𝑢𝑢1)

√1− 𝑃𝑃2
)

 

𝑢𝑢2 = 𝑡𝑡ν(𝑃𝑃𝑡𝑡ν−1(𝛼𝛼1)

+ √1− 𝑃𝑃2 �
ν+ [𝑡𝑡ν−1(𝛼𝛼1)]2

ν+ 1 𝑡𝑡ν+1−1 (𝛼𝛼2))) 

(2.5)

 

The normal copula is the copula that underlies the multivariate normal distribution. It shares 

the same dependency structure with the multivariate normal distribution; it uses pair-wise Pearson 

product moment correlations to measure dependency and allows arbitrary marginal distributions 

for the uncertainties. The normal copula has upper and lower tail dependencies equal to zero. The 

t-copula presents symmetric and positive upper and lower tail dependence which indicates a 

tendency for the t-copula to generate joint extreme events. When the number of degrees of 

freedom increases, the t-copula converges to the normal copula. For a limited number of degrees 

of freedom, however, the behaviors of the two copulas are quite different.  

Archimedean copulas model upper tail dependency, lower tail dependency or both, so that 

they provide additional flexibility to describe the behavior of tail dependency in realistic 

situations. An Archimedean copula can be defined as follows: 



Page 7 of 33 
 

𝐶𝐶𝐴𝐴(𝑢𝑢1,𝑢𝑢2) = 𝜑𝜑[−1](𝜑𝜑(𝑢𝑢1) + 𝜑𝜑(𝑢𝑢2)) 
𝐶𝐶𝐴𝐴(𝑢𝑢1,𝑢𝑢2) is the Archimedean copula function with 1u  and 2u  as uniform variables, 𝜑𝜑 is the 

generator and 𝜑𝜑[−1]  is the inverse generator. The choice of the generator determines the 

Archimedean copula family. Frank, Clayton and Gumbel copulas are the most popular 

Archimedean copulas. The key formulae for these Archimedean copulas are summarized in Table 

2 (Cherubini et al., 2004).  
Table 2  Key Formulae for Archimedean Copulas  

Family Copula Description Partial derivative of the copula 
2u  

Clayton 
copula 

𝐶𝐶𝜕𝜕𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢1,𝑢𝑢2) 

= (𝑢𝑢1−𝜃𝜃 + 𝑢𝑢2−𝜃𝜃 − 1)−
1
𝜃𝜃

 
 

𝜕𝜕𝐶𝐶
𝜕𝜕𝑢𝑢1

(𝑢𝑢1,𝑢𝑢2) 

= 𝑢𝑢1
−𝜃𝜃−1(𝑢𝑢1

−𝜃𝜃 + 𝑢𝑢2
−𝜃𝜃 − 1)− 1𝜃𝜃−1

 

 

𝑢𝑢2 = ((𝛼𝛼2
− 𝜃𝜃
1+𝜃𝜃 − 1)𝛼𝛼1

−𝜃𝜃 + 1)− 1𝜃𝜃

 

 

(2.6) 
Gumbel 
copula 

𝐶𝐶𝐺𝐺𝑢𝑢𝐺𝐺𝐺𝐺𝑢𝑢𝐶𝐶(𝑢𝑢1,𝑢𝑢2) 

= exp {−[(−𝑙𝑙𝑙𝑙𝑢𝑢1)𝜃𝜃 + (−𝑙𝑙𝑙𝑙𝑢𝑢2)𝜃𝜃]
1
𝜃𝜃}

 
 
 
 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢1

(𝑢𝑢1,𝑢𝑢2)=𝜑𝜑−1(1)(𝑐𝑐2)
𝜑𝜑−1(1)(𝑐𝑐1)

 
with 
𝑐𝑐1 = 𝜑𝜑(𝑢𝑢1) = (−𝑙𝑙𝑙𝑙(𝑢𝑢1))𝜃𝜃 
𝑐𝑐2 = 𝜑𝜑(𝑢𝑢1) + 𝜑𝜑(𝑢𝑢2) 
= (−𝑙𝑙𝑙𝑙(𝑢𝑢1))𝜃𝜃 + (−𝑙𝑙𝑙𝑙(𝑢𝑢2))𝜃𝜃 
and 𝜑𝜑−1(1)(𝑡𝑡) = − 1

𝜃𝜃
𝑒𝑒−𝐶𝐶1/𝜃𝜃(𝑡𝑡1/𝜃𝜃)1−𝜃𝜃 

 

This equation has to be 
numerically solved with 
respect to u2.  

(2.7) 

 

Frank 
copula 

𝐶𝐶𝐹𝐹𝑢𝑢𝐶𝐶𝐶𝐶𝐹𝐹(𝑢𝑢1,𝑢𝑢2) 
=− 1

𝜃𝜃
ln(1+(𝑢𝑢−𝜃𝜃𝑢𝑢1−1)(𝑢𝑢−𝜃𝜃𝑢𝑢2−1)

𝑢𝑢−𝜃𝜃−1
) 

 

𝜕𝜕𝐶𝐶
𝜕𝜕𝑢𝑢1

(𝑢𝑢1,𝑢𝑢2) 

= (𝑢𝑢−𝜃𝜃𝑢𝑢2−1)𝑢𝑢−𝜃𝜃𝑢𝑢1

(𝑢𝑢−𝜃𝜃−1）+（𝑢𝑢−𝜃𝜃𝑢𝑢1−1)(𝑢𝑢−𝜃𝜃𝑢𝑢2−1）
 

 

𝑢𝑢2 = − 1
𝜃𝜃
𝑙𝑙 𝑙𝑙 � �𝑢𝑢−𝜃𝜃−1�𝛼𝛼2

𝑢𝑢−𝜃𝜃𝛼𝛼1−(𝑢𝑢−𝜃𝜃𝛼𝛼1−1)𝛼𝛼2
+ 1�

 (2.8) 

The Clayton copula (Clayton 1978) exhibits asymmetric lower tail dependence and is best 

suited for applications in which two outcomes are likely to experience low values together. For 

instance, Accioly and Chiyoshi (2004) explored the relationship between the drilling duration and 

the measured depth of the oil reservoir development, which shows clear lower tail dependence. 

They suggested the use of the Clayton copula to model the dependency between these two 

uncertainties. The Gumbel copula (Gumbel 1960) exhibits asymmetric upper tail dependence and 

is best suited for applications in which two outcomes are likely to experience high values together 

such as the performance of stock returns during a market jump. The Frank copula (Frank 1979) 

exhibits symmetric dependence in both tails. However, compared to the normal copula, the 

dependence in the Frank copula is weaker in both tails, and stronger in the center of the 

distribution. This suggests that the Frank copula is best suited for applications in which tail 

dependence is relatively weak. Yi and Bier (1998) discussed an example of the use of the Frank 

copula for accident frequencies and accident precursor in precursor analysis. Other examples 

include the use of Archimedean copulas models for aggregating expert opinions (Jouini and 

Clemen, 1996). A good introduction and summary of copulas can be found in Nelsen (1999). 
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3. The Dependent Decision Tree Approach 

We now describe a general procedure for creating a dependent decision tree using any of the 

copula families listed above.  There are four steps in the dependent decision tree approach.  

Step 1. Assessment of marginals, dependence and copula. We start with the input information 

assessments: marginal distributions, measures of dependency, and the choice of a copula. 

Different techniques have been proposed in the literature for choosing the appropriate copula 

based on an analysis of historical data, as discussed by Yi and Bier (1998), Nelson (1999), 

Cherubini et al. (2004), Accioly and Chiyoshi (2004),  Kotz and van Dorp (2010) and others. 

When these approaches are used in the context of decision analysis, the choice of the copula may 

also reflect subjective judgments regarding the existence of tail dependence between the 

uncertainties, and these judgments may guide the selection of an appropriate Archimedean copula 

as discussed by Armstrong, et al. (2004) and by Jouini and Clemen (1996). 

If an elliptical copula is used, we can estimate the Spearman or Kendall’s rank order 

correlations or the Pearson product moment correlations as the input correlation structure. These 

correlations may be determined from paired data sets using statistical approaches. However, in 

traditional decision analysis problems, these dependence measures may have to be assessed 

subjectively. C&R (1999) and Clemen et al. (2000) discuss subjective correlation assessment 

methods including estimating the probability of concordance and conditional fractile estimates. 

Based on our own experiences, we have found that subjects may be able to provide more accurate 

estimates of correlations than of conditional probabilities, where subjects making the latter 

assessments may confuse the notions of causation and correlation (Wright, et al., 1994). We refer 

the interested readers to these references for a detailed discussion of practical correlation 

assessment methods.  

Step 2. Specification of parameters for the underlying copula. Since we are modeling the 

dependency structure through the use of a copula, we need to estimate the parameters for the 

specified copula. For the elliptical copulas, this is based on an estimate of the correlation between 

the original uncertainties. 

The normal copula is parameterized in terms of the product moment correlation 𝑃𝑃∗ . We 

distinguish the correlation for the copula with the superscript *, and write the correlation 

determined in Step 1 for the original random variables with no superscript. Intuitively, because 

the copula uniquely determines the dependency structure, there is a one to one relationship 
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between the product moment correlation 𝑃𝑃∗ for the normal copula function and the correlation for 

the original variables.  

       The relationship between the product moment correlation 𝑃𝑃∗ for the normal copula and the 

Spearman’s rank order correlation 𝜌𝜌  or Kendall’s rank order correlation 𝜏𝜏  for the original 

uncertainties may be determined from a simple formula. For a specified Spearman’s rank order 

correlation 𝜌𝜌, the formula is 

𝑃𝑃∗ = 2𝑠𝑠𝑖𝑖𝑙𝑙 �𝜋𝜋𝜋𝜋
6
�     (3.1) 

for a specified Kendall’s rank order correlation 𝜏𝜏, the formula is  

𝑃𝑃∗ = 𝑠𝑠𝑖𝑖𝑙𝑙(𝜋𝜋𝜋𝜋
2

)      (3.2)  (Kruskal 1958).  

The Pearson product moment correlation r between the original uncertainties may also be 

used to determine the normal copula correlation through a correlation matching technique 

developed by Cario and Nelson (1997), and discussed in the Appendix 1. The analytical relation 

(3.2) between the Kendall’s rank order correlation 𝜏𝜏 and the product moment correlation 𝑃𝑃∗ holds 

more generally for the t-copulas (Hult and Lindskog 2002).  

For Archimedean copulas, the correlations of the copulas are determined by the parameter 𝜃𝜃. 

Nelson (1999) documented the relationships between the types of Archimedean copulas and 

Kendall’s tau, and he showed that the value of 𝜃𝜃  can be easily determined through these 

relationships. These relationships are summarized in the Table 3 (Cherubini et al., 2004). For 

example, for the Clayton family of copulas, we would have the expression 𝜏𝜏 = 𝜃𝜃
𝜃𝜃+2

 which is 

easily solved for the value of  𝜃𝜃 given the value of Kendall’s 𝜏𝜏. 

Table 3 Archimedean copulas parameter calculation 
Family Range of 𝜃𝜃 Kendall’s 𝜏𝜏 
Clayton 
copula 

(0,∞)  𝜃𝜃
𝜃𝜃+2

  

Gumbel 
copula 

(1,∞)  1 − 1
𝜃𝜃

   

Frank 
copula  

(−∞,∞)  1 +
4
θ

(𝐷𝐷 1(𝜃𝜃)− 1) 
with 
 𝐷𝐷 1 = 1

𝜃𝜃 ∫
𝐶𝐶

𝑢𝑢𝑡𝑡−1
𝑑𝑑𝑡𝑡𝜃𝜃

0    

Step 3. Construction of the transient tree structure for the underlying copula. With the 

specified parameters, the underlying copula is modeled as a probability tree with discrete 

approximations to the conditional probability distributions at the endpoints of each branch of the 

predecessor chance node. C&R (1999) used the extended Pearson Tukey method (Keefer and 
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Bodily, 1983) for the discrete approximation to the probability distributions, and we will do the 

same. The extended Pearson Tukey (EP-T) Method approximates a continuous distribution by a 

three-point discrete distribution with probabilities 0.185, 0.630, and 0.185 assigned to the 5th, 50th, 

and 95th percentiles of the continuous distribution. The robust performance of the EP-T method is 

discussed by Keefer and Bodily (1983) and Keefer (1994). However, it is important to note that 

other methods could be used to develop these discrete approximations in a straightforward 

manner. 

We can generate the transient tree structure for the underlying copula in two steps. First, we 

build the discrete approximation for 𝑋𝑋1 with the 5th, 50th and 95th percentiles according to the EP-

T method, which corresponds to the realizations of 0.05, 0.5, and 0.95 for 𝑢𝑢1, the unconditional 

percentile of 𝑋𝑋1. Second, we discretize the conditional 𝑋𝑋2 given the outcome of 𝑋𝑋1 with the 5th, 

50th and 95th percentiles for the conditional distribution according to the EP-T method, which 

provides the choices of the conditional percentiles 𝛼𝛼2. These conditional percentiles 𝛼𝛼2 and the 

realizations of the unconditional percentiles 𝑢𝑢1 are then used to compute the dependent uniform 

variable 𝑢𝑢2 through the formulas listed in Tables 1 and 2. Notice that the marginal distributions of 

𝑋𝑋1 and 𝑋𝑋2 are not used; 𝑋𝑋1 and 𝑋𝑋2 are purely auxiliary in constructing the transient underlying 

copula tree. 

Figure 1  Normal copula tree 

 

Figure 1 illustrates the constructed transient normal copula tree for the bivariate uniform 

variables 𝑢𝑢1  and 𝑢𝑢2  with Kendall’s rank order correlation 0.7. This tree was constructed as 

follows: First, 𝑢𝑢1 was approximated with three discrete points 0.05, 0.5 and 0.95 according to the 

EP-T method. Second, the dependent uniform variable 𝑢𝑢2 given each realization of 𝑢𝑢1 and the 

conditional percentiles were calculated using (2.4) from Table 1. For example, if 𝑢𝑢1 is 0.05, then 

the conditional chance node for 𝑢𝑢2 is calculated as 0.013, 0.071, and 0.236 for the conditional 5th, 

50th, and 95th percentiles, respectively. The conditional relationship between the two uniform 
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uncertainties 𝑢𝑢1 and 𝑢𝑢2 is easy to see in the tree. For example, if the value of 𝑢𝑢1 is high, then the 

values of the corresponding distribution of  𝑢𝑢2 tend to be high, reflecting the positive correlation 

between these two variables. 

Similarly, we can construct the corresponding transient trees for bivariate t, Frank, Clayton 

and Gumbel copulas using formulas (2.5)-(2.8). The same Kendall’s rank order correlation of 0.7 

was used to determine the values of the parameters for these copulas. Figures 2-5 show the 

constructed trees for these underlying copulas.  
Figure 2  t-copula tree (d.f.=5) 

 
Figure 4 Frank copula tree 

 

Figure 3  Clayton copula tree 

 
Figure 5 Gumbel copula tree 

 

In contrast to the normal copula tree, the t-copula tree has a fatter tail dependence on both sides; the 

Frank copula tree has a thinner tail dependence on both sides; the Clayton copula tree has a fatter left tail 

dependence and thinner right tail dependence; the Gumbel copula tree has a fatter right tail dependence 

and thinner left tail dependence. These observations are consistent with the theory and provide different 

tail dependence structures between the uncertainties.  

Step 4. Point-to-point inverse marginal transformation. After the calculation of 𝑢𝑢1 and 𝑢𝑢2, we are 

ready to combine the marginal information and transform them to obtain the discrete approximations to 

the original uncertainties. The discrete approximations of 𝑋𝑋1 and 𝑋𝑋2 are obtained by applying the inverse 

of the target marginal distribution function for each realization of 𝑢𝑢1 and 𝑢𝑢2: 𝑥𝑥1 = 𝐹𝐹1−1(𝑢𝑢1) and 𝑥𝑥2 =
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𝐹𝐹2−1(𝑢𝑢2). In the tree structure, this is a point-to-point transformation mapping the transient probability 

tree for the underlying copula into the tree structure for the original uncertainties. This component-wise 

inverse marginal transformation ensures that the resulting probability tree structure is for the target 

marginal uncertainties that were identified in Step 1. 

We will use a bivariate case to illustrate this inverse transformation step. Let 𝑋𝑋1 and 𝑋𝑋2 be bivariate 

continuous variables with marginals 𝑋𝑋1~𝑁𝑁(8,1), 𝑋𝑋2~Gamma(6,2), respectively, and with Kendall’s rank 

order correlation 0.7. Based on the constructed underlying copula trees from Step 3, 𝑋𝑋1  and 𝑋𝑋2  are 

obtained by taking the inverse distribution for each realization of 1u  and 2u
 in the tree structures. For 

example, 𝑋𝑋1  is approximated with three discrete points 6.355, 8, and 9.645, the 5th, 50th, and 95th 

percentiles of the normal distribution with mean 8 and standard deviation 1; then, we implement the 

inverse gamma transformation for each realization of 2u  with the specified copulas calculated in Step 3. 

Consequently, for each specific copula, we model the variables 𝑋𝑋1 and the conditional 𝑋𝑋2|𝑋𝑋1 = 𝑥𝑥1 with 

separate chance nodes in a probability tree. 
 
Figure 6 Normal copula-based tree 

 

Figure 7 t-copula-based tree (d.f.=5) 

 
Figure 8 Frank copula-based tree 

 

Figure 9 Clayton copula-based tree 
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Figure 10 Gumbel copula-based tree 

 

Figures 6-10 show the constructed copulas-based tree for each of the copulas presented in Step 3. In 

each of the trees, the first uncertainty is a normal distribution and the second uncertainty is a gamma 

distribution. The uncertainties evolve in the tree structure as a sequence of dependent uncertainties. The 

conditional relationship between the two uncertainties 𝑋𝑋1 and 𝑋𝑋2  is easy to see in the trees. For example, 

if the outcome for 𝑋𝑋1 is high, then the conditional gamma probability distribution for 𝑋𝑋2 tends to have 

higher values, reflecting the positive correlation between these two variables. Since an analytical 

expression for the conditional density may not be available, the dependent decision tree approach 

provides a discrete approximation for the conditional distributions which may be very useful for decision 

and risk analysis.  

This method of constructing the bivariate copulas-based decision tree can be naturally extended to the 

multivariate copulas-based case. The formulae for the multivariate case corresponding to those in Tables 1 

and 2 are shown in Table A1 in Appendix 2. In general, to build the multivariate copula-based decision 

tree for (𝑋𝑋1, …𝑋𝑋𝐶𝐶), we first construct a discrete approximation for the unconditional uniform variable 𝑢𝑢1, 

then recursively compute the dependent uniform variables 𝑢𝑢𝐹𝐹  (𝑘𝑘 = 2, … ,𝑙𝑙), conditioning on each of the 

point realizations of the previous discrete approximations for (𝑢𝑢1, …𝑢𝑢𝐹𝐹−1). Taking the point-to-point 

inverse marginal transformation, each realization of (𝑋𝑋1, …𝑋𝑋𝐶𝐶)  is discretely approximated using the 

extended Pearson Tukey method. Throughout the tree, the point realizations of these approximations vary 

with the conditioning scenarios; the probabilities assigned for the three branches of a chance node do not 

vary with the conditioning scenarios using the logic of the EP-T approximations.  

The dependent probability trees constructed using this approach could be used for financial or risk 

analysis. Alternatively, they could be linked to other probability nodes representing independent 

uncertainties and to decision nodes to complete a dependent decision tree appropriate for the analysis of a 

decision problem. 
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4. Discussion of the C&R approach 

C&R (1999) used the multivariate normal copula to capture the dependence structure among multiple 

random variables. The most attractive features of the multivariate normal copula are its flexibility and 

analytical tractability. Many multivariate copula families are constrained regarding how much 

dependency they can capture (Conway 1979). The class of multivariate Archimedean copulas, for 

example, is limited to intra-class correlation matrices (that is, each pair of uncertainties shares the same 

correlation) and can only model positive dependency for higher dimensions (Jouini and Clemen, 1996). In 

contrast, the multivariate normal copula allows the full range [−1, 1] in pair wise correlations and is 

therefore a general and robust copula for most applications (Song 2000). Combining the multivariate 

normal copula with marginal distributions, a large variety of multivariate distributions can be produced in 

a unified fashion (C&R 1999; Avramidis et al. 2009).  

Therefore, we will focus on applications of the multivariate normal copula in the next two sections, 

and show how the dependent decision tree approach that we have described provides computational 

advantages over the implementation used by C&R.  In addition, we will introduce a novel application of 

the dependent decision tree using the multivariate normal copula to the evaluation of correlated cash 

flows in a manner that offers promise for the valuation of real options.   

The dependent decision tree provides a computationally efficient alternative to the C&R approach. 

The major differences between the C&R approach and the proposed dependent decision tree approach are 

in Steps 3 and 4. Table 4 summarizes the two approaches. 

Table 4. Comparison of the C&R approach and the Dependent Decision Tree approach 
  The C&R approach The Dependent decision tree approach 

Step 1 Assessment of marginals, dependence and copula The same 

Step 2 Specification of parameters for the underlying copula The same 

Step 3 
Construct the conditional density functions for the 

original uncertainties 

Construct the transient tree structure for the 

underlying copula 

Step 4 
The continuous conditional density functions are 

discretized to construct the decision tree 
Point-to-point inverse marginal transformation 

Discussion of Step 3. The third step of the C&R approach is to construct the conditional density 

functions. With the normal copulas-based joint distribution 𝐹𝐹(𝑋𝑋1, …𝑋𝑋𝐶𝐶), C&R (1999) show the 

corresponding joint density of these random variables can be obtained from 

𝑓𝑓(𝑋𝑋1, … ,𝑋𝑋𝐶𝐶) = 𝑓𝑓1(𝑋𝑋1) × … × 𝑓𝑓𝐶𝐶(𝑋𝑋𝐶𝐶) × exp {−(Φ−1�𝐹𝐹1(𝑋𝑋1)�, … ,Φ−1�𝐹𝐹𝐶𝐶(𝑋𝑋𝐶𝐶)�) 

   × �Σ𝑍𝑍−1−𝐼𝐼�
2

× (Φ−1�𝐹𝐹1(𝑋𝑋1)�, … ,Φ−1�𝐹𝐹𝐶𝐶(𝑋𝑋𝐶𝐶)�)𝑇𝑇}/|Σ𝑍𝑍|1/2  
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Furthermore, the conditional density function is calculated as 

𝑓𝑓(𝑋𝑋𝑖𝑖|𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1) = 𝑓𝑓(𝑋𝑋1,…,𝑋𝑋𝑖𝑖)
𝑓𝑓(𝑋𝑋1,…,𝑋𝑋𝑖𝑖−1),  i=2,…,n. 

Instead of calculating the joint and conditional density functions of the original random variables, we 

construct only the discrete approximations of the underlying uniform distributions in the form of discrete 

probability distributions, using simple formulae. 

Discussion of Step 4. The C&R approach derives the conditional density functions explicitly. The 

difficulty in obtaining the conditional density functions increases with the complexity and dimension of 

the model. Additionally, because the calculated conditional density functions usually do not belong to 

familiar distribution families, the C&R approach requires the additional computational cost of numerical 

integration or Monte Carlo simulation to calculate the percentiles used by the extended Pearson Tukey 

method for the discrete approximations of the chance nodes in the decision trees.  

The C&R approach is computationally inefficient. As a discrete approximation of the probability 

model, we only need certain percentiles of the conditional density function to construct the decision trees. 

Therefore, the calculation of the complete conditional density function is unnecessary. The dependent 

decision tree approach is much more efficient because it calculates only the necessary percentiles of the 

conditional density function and established a point-to-point transformation to determine the target 

variables. This point-to-point transformation saves a significant computational cost.  

Case Example: Eagle Airlines. Clemen and Reilly (1999, 2000) described an example of a decision 

model involving multiple correlated uncertainties. In this hypothetical decision analysis problem, the 

owner of Eagle Airlines is considering the best choice between purchasing a used aircraft outright, an 

option to purchase it within a year at a specified price, and a money market alternative investment. The 

influence diagram in Figure 11 portrays the initial model. The multiple critical variables are identified 

from a sensitivity analysis to be price, hours flown, capacity and operating cost, which are correlated. As 

the profit generated from purchasing the used aircraft is driven by these four critical variables, the 

decision model must reflect the marginal distribution of each variable, the correlations among the 

variables, and the flexibility of buying it later.  
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Figure 11    The Influence Diagram for the Eagle Airlines Problem 

  
Source: Clemen and Reilly (1999) 

C&R (1999) use this hypothetical decision faced by Eagle Airlines to illustrate the decision tree 

model constructed from the C&R approach. For comparison's sake, we will use the dependent decision 

tree approach to model the same example and discuss the computational advantage of the latter.  

 Step 1. Assessment of marginals, dependence and copula. We will denote the four critical variables, 

price, hours flown, capacity, and operating cost by P, H, C, and O, respectively, and use the same 

information as described in C&R (1999) for marginals, correlation and the use of the normal copula. The 

probability tree will be constructed based on sequencing the chance nodes in this order. The marginal 

densities for the four variables are indicated in Table 5. The dependencies among the four variables are 

measured by the Spearman’s rank order correlations shown in Table 6.  

Table 5 Marginal Distributions for the Eagle Airlines Probability Model 
Variable Distribution Parameters Range 
Price Level (P) Scaled Beta α=9 β=15 [$81.94, $133.96] 

Hours Flown (H) Scaled Beta α=4 β=2 [66.91,1135.26]  
Capacity (C) Beta α=20 β=20 [0,1]  
Operating Cost (O) Normal μ=245 σ=11.72 (- ∞,+∞)  

Table 6 Spearman correlation 𝜮𝜮𝑿𝑿 

 
P H C O 

P 1 
   H -0.5 1 

  C -0.25 0.5 1 
 O 0 0 0.25 1 

Step 2. Specification of parameters for the underlying copula. To construct the dependent decision 
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tree model for Eagle Airlines, we first need to specify the product moment correlation matrix 𝛴𝛴𝑍𝑍 for the 

underlying normal copula. Since all variables are continuous and the specified correlation structure is the 

Spearman’s rank order correlation, we can apply the transforming formula (3.1) 𝑃𝑃𝑖𝑖𝑖𝑖∗ = 2𝑠𝑠𝑖𝑖𝑙𝑙(𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖
6

) for 

𝑖𝑖, 𝑗𝑗 ∈ {𝑃𝑃,𝐻𝐻,𝐶𝐶,𝑂𝑂} to calculate the corresponding product moment correlation matrix 𝛴𝛴𝑍𝑍 shown in Table 7.  

Table 7 Correlation Matrix 𝜮𝜮𝒁𝒁 

 
P H C O 

P 1 
   H -0.5176 1 

  C -0.2611 0.5176 1 
 O 0 0 0.2611 1 

Step 3. Construction of the transient tree structure for the underlying copula. The third step is to 

generate a normal copula based transient probability tree for uniform variables (𝑢𝑢𝑃𝑃 ,𝑢𝑢𝐻𝐻 ,𝑢𝑢𝜕𝜕 ,𝑢𝑢𝑂𝑂).  

To create the probability tree for the standardized uniform variables, we first generate the extended 

Pearson Tukey discretization for 𝑢𝑢𝑃𝑃. It is a three point discrete approximation for the standard normal 

distribution with probabilities 0.185, 0.630, and 0.185 assigned to the 0.05, 0.5 and 0.95. The subsequent 

discrete chance nodes are contingent on the outcomes of the precedent nodes. We apply the Cholesky 

factorization to decompose 𝛴𝛴𝑍𝑍 into the lower triangular Cholesky matrix shown in Table 8 to assist the 

calculation of the dependent uniform variables. These calculations are adapted from the NORTA approach 

developed by Cario and Nelson (1997) to support high dimensional Monte Carlo simulation and offer 

computational advantages relative to the C&R approach, as we will discuss (see details in Appendix 1 and 

Table A1 in Appendix 2).  
Table 8 Decomposed Lower Triangular Cholesky Matrix 
Cholesky P H C O 

P 1 0 0 0 

H -0.5176 0.8556 0 0 

C -0.2610 0.4470 0.8555 0 

O 0 0 0.3051 0.9523 

There are three dependent uniform variables to calculate:  

(1) The dependent uniform 𝑢𝑢𝐻𝐻 given the outcomes of 𝑢𝑢𝑃𝑃. Using formula (2.4) for the bivariate case, 

we can calculate 𝑢𝑢𝐻𝐻 as follows: 

𝑢𝑢𝐻𝐻 = Φ(−0.5176Φ−1(𝛼𝛼1) + 0.8556Φ−1(𝛼𝛼2))  
(2) The dependent uniform 𝑢𝑢𝜕𝜕 given the outcomes of 𝑢𝑢𝑃𝑃 and 𝑢𝑢𝐻𝐻. Using  multivariate version of the 

formula given in Appendix 2, 𝑢𝑢𝜕𝜕  is calculated as follows: 

 𝑢𝑢𝜕𝜕 = Φ(−0.2610Φ−1(𝛼𝛼1) + 0.4470Φ−1(𝛼𝛼2) + 0.8555Φ−1(𝛼𝛼3)) 
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(3) Similarly, the dependent uniform 𝑢𝑢𝑂𝑂 given the outcome of 𝑢𝑢𝑃𝑃, 𝑢𝑢𝐻𝐻, and 𝑢𝑢𝜕𝜕 is calculated as: 

 𝑢𝑢𝑂𝑂 = Φ(0.3051Φ−1(𝛼𝛼3) + 0.9523Φ−1(𝛼𝛼4)) 

For instance, if the outcome of  𝑢𝑢𝑃𝑃 is 0.05, then the conditional chance node for 𝑢𝑢𝐻𝐻|𝑢𝑢𝑃𝑃 = 0.05 is 

calculated for the 5th, 50th, and 95th percentiles, and the three contingent outcomes are determined to be 

0.289, 0.803, and 0.988 respectively. Similarly, we create the contingent tree for each successive node 

until we generate the complete multivariate standard decision tree for (𝑢𝑢𝑃𝑃 ,𝑢𝑢𝐻𝐻 ,𝑢𝑢𝜕𝜕 ,𝑢𝑢𝑂𝑂).  

Step 4. Point-to-point inverse marginal transformation. The last step is the use of the inverse 

marginal transformations to transform the discrete approximation for the multivariate standard uniform 

random vector (𝑢𝑢𝑃𝑃 ,𝑢𝑢𝐻𝐻 ,𝑢𝑢𝜕𝜕 ,𝑢𝑢𝑂𝑂) into the corresponding discrete approximation for the original random 

vector X.  

𝑋𝑋 = (𝑃𝑃,𝐻𝐻,𝐶𝐶,𝑂𝑂) = (𝐹𝐹𝑃𝑃−1[𝑢𝑢𝑃𝑃],𝐹𝐹𝐻𝐻−1[𝑢𝑢𝐻𝐻],𝐹𝐹𝜕𝜕−1[𝑢𝑢𝜕𝜕],𝐹𝐹𝑂𝑂−1[𝑢𝑢𝑂𝑂]) 

where 𝐹𝐹𝑃𝑃, 𝐹𝐹𝐻𝐻, 𝐹𝐹𝜕𝜕, 𝐹𝐹𝑂𝑂 are the marginal distribution functions of the variables P, H, C, O respectively. For 

example, the three outcomes of the chance node representing P are 𝐹𝐹𝑃𝑃−1[0.05] = 93.469, 𝐹𝐹𝑃𝑃−1[0.5] =

101.264, and 𝐹𝐹𝑃𝑃−1[0.95] = 110.055. Given the three calculated conditional outcomes of 𝑢𝑢𝐻𝐻|𝑢𝑢𝑃𝑃 = 0.05, 

0.289, 0.803, and 0.988 in the transient normal copula tree, the corresponding conditional outcomes of H 

given 𝑃𝑃 = 93.469 are 𝐹𝐹𝐻𝐻−1[0.289] = 677.220,  𝐹𝐹𝐻𝐻−1[0.803] = 956.638, and  𝐹𝐹𝐻𝐻−1[0.988] = 1096.970 . 

These results are identical to those obtained for the Eagle airlines problem by using the C&R approach. 

Since the inverse functions of beta and normal distributions are available in Excel, the multivariate 

probability tree can be easily constructed in the Excel spreadsheet. The constructed dependent probability 

tree can be augmented with appropriate decision nodes to create a dependent decision tree to be used for 

the analysis of the decision problem.  

The construction of the dependent decision tree adapted from the NORTA approach for the normal 

copula requires only simple calculations that can be implemented in Excel with spreadsheet formulas. As 

a comparison, the C&R approach requires the calculation of the conditional density functions and their 

percentiles for discretization. Let 𝑓𝑓𝐻𝐻(ℎ) ,  𝑓𝑓𝜕𝜕(𝑐𝑐) ,  𝑓𝑓𝑂𝑂(𝑜𝑜) denote the marginal density function of the 

variables H, C, O respectively. The C&R approach calculates the conditional density functions for H, C, 

and O as follows (C&R, 1999):  

𝑓𝑓(ℎ|𝑝𝑝) = 𝑓𝑓𝐻𝐻(ℎ)𝑒𝑒𝑥𝑥𝑝𝑝{−0.5[Φ
−1

[𝐹𝐹𝐻𝐻(ℎ)] + 0.518Φ
−1

[𝐹𝐹𝑃𝑃(𝑝𝑝)]2/0.732− (Φ
−1

[𝐹𝐹𝐻𝐻(ℎ)]2}/0.7321 2⁄  

𝑓𝑓(𝑐𝑐|𝑝𝑝, ℎ) = 𝑓𝑓𝜕𝜕(𝑐𝑐)𝑒𝑒𝑥𝑥𝑝𝑝{−0.5[Φ
−1

[𝐹𝐹𝜕𝜕(𝑐𝑐)] − 0.009Φ
−1

[𝐹𝐹𝑃𝑃(𝑝𝑝)] − 0.523Φ
−1

[𝐹𝐹𝐻𝐻(ℎ)]2/0.732

− (Φ
−1

[𝐹𝐹𝜕𝜕(𝑐𝑐)]2}/0.7321 2⁄  
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𝑓𝑓(𝑜𝑜|𝑝𝑝,ℎ, 𝑐𝑐) = 𝑓𝑓𝑂𝑂(𝑜𝑜)𝑒𝑒𝑥𝑥𝑝𝑝{−0.5[Φ
−1

[𝐹𝐹𝑂𝑂(𝑜𝑜)] + 0.003Φ
−1

[𝐹𝐹𝑃𝑃(𝑝𝑝)] + 0.186Φ
−1

[𝐹𝐹𝐻𝐻(ℎ)]

− 0.357(Φ
−1

[𝐹𝐹𝜕𝜕(𝑐𝑐)]2)/0.907− (Φ
−1

[𝐹𝐹𝑂𝑂(𝑜𝑜)]2}/0.9071 2⁄  

The computational complexity required to obtain these conditional density functions is significant and 

the procedure is difficult to standardize. Additionally, because none of these conditional density functions 

are familiar distributions, assessment methods such as Monte Carlo simulations have to be used to 

calculate the 5th, 50th, and 95th percentiles for each conditional distribution required by the extended 

Pearson Tukey method for the branch level of each factor.  

5. Extension: The Consolidated Dependent Decision Tree  

In the previous example, the dependent decision tree included multiple uncertainties from the same 

time period. However, this dependent decision tree framework can be naturally extended in a multivariate 

time series context to construct a probability tree for sequential, correlated uncertainties.  A sequential 

probability tree is appropriate with information evolves dynamically and when decisions are made 

sequentially.  

Suppose we have a problem with n correlated random variables in each time period 1,…,T that 

determine a payoff or cash flow in each of these periods. Such a problem can be modeled with nT 

correlated uncertainties in a decision tree. While there could be situations in which this is advantageous 

(for instance, multi-asset path-dependent options), it will increase the dimension of the problem and 

require more computational cost due to the corresponding tree size. When the payoff is a function of the 

realization of multiple uncertainties in each period, we can use Monte Carlo simulation to consolidate the 

multiple uncertainties into one single uncertainty in each period in order to reduce the size of the 

constructed decision tree.  

In this section, we will discuss the integration of the dependent decision tree approach and Monte 

Carlo simulation to construct a consolidated dependent decision tree for the multivariate time series. The 

consolidated dependent decision tree handles multiple factors of uncertainty simultaneously in the 

simulation of the project cash flow to estimate the marginal and the autocorrelation structure for the 

project value, and then applies a dependent decision tree approximation to the consolidated project cash 

flow. This allows the decision nodes introduced into the dependent decision tree to conveniently model 

sequential decisions that represent managerial flexibility and that may impact this cash flow, such as a 

decision to abandon the project before the last time period. 

We now address the implementation of this extension.  
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Step 0. Consolidation of uncertainties. As a prerequisite step, the consolidated extension uses Monte 

Carlo simulation to aggregate a multivariate time series process into a consolidated single-factor auto-

correlated time series process based on the project cash flow. This simulation may be implemented in a 

spreadsheet with a standard add-in such as @Risk or Crystal Ball. 

Step 1. Assessment of marginals, dependencies and copula. With the simulated data for the 

consolidated project cash flow, we can assess the auto-correlation structure, the marginal distributions and 

appropriate copula for the project cash flow in each period. We can either fit the simulated project cash 

flow with some standard parametric family of distributions, or with a more flexible alternative, the 

Johnson translation system that matches the first four moments of the simulated data (Swain et al. 1988). 

When there is no familiar parametric distribution associated with the simulated project cash flow, the use 

of the Johnson translation system to characterize the marginal distributions of the simulated data provides 

standardization and more flexibility in modeling uncertainties. Moreover, it offers additional 

computational convenience for generating dependent decision trees, as we discuss in Step 4.  

The Johnson translation system for a random variable X is defined by a distribution function of the 

form  

𝐹𝐹𝑋𝑋(𝑥𝑥) = Φ�𝛾𝛾 + 𝛿𝛿𝑓𝑓 �𝑥𝑥−𝜉𝜉
𝜆𝜆
��, 

where 𝛾𝛾 and 𝛿𝛿 are shape parameters, 𝜉𝜉 is a location parameter, 𝜆𝜆 is a scale parameter, and 𝑓𝑓(∙) is one of 

the following transformations:  

𝑓𝑓(𝑦𝑦) =

⎩
⎪
⎨

⎪
⎧

log  (𝑦𝑦) ,                             for the SL(lognormal) family
log  �𝑦𝑦 + �𝑦𝑦2 + 1� ,          for the SU(unbounded) family

log �
𝑦𝑦

1 − 𝑦𝑦
� ,                    for the SB(bounded) family

𝑦𝑦,                                     for the SN(normal) family

 

There is a unique family (choice of f ) for each feasible combination of the skewness and the kurtosis 

that determine the parameters 𝛾𝛾 and 𝛿𝛿. Any mean and variance can be attained by any one of the families 

by the manipulation of the parameters 𝜆𝜆 and 𝜉𝜉. Within each family, a distribution is completely specified 

by the values of the parameters [𝛾𝛾, 𝛿𝛿, 𝜆𝜆, 𝜉𝜉] and the range of X depends on the family of interest. A robust 

and computationally efficient procedure for identifying the type of transformation and estimating 

Johnson-type marginals is suggested by Swain et al. (1988) and implemented in software called FITTR1. 

A detailed illustration for the Johnson-type probability density function can be found in Biller and Nelson 

(2005).  
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Steps 2 and 3 are identical to the corresponding steps in the dependent decision tree approach. 

Step 4. Point-to-point inverse transformation. The Johnson system may be used to give the 

approximated continuous marginal density for the inverse marginal transformation.  

With the Johnson system, the evaluation of the composite function 𝐹𝐹𝑋𝑋−1(u) is simplified significantly 

because 𝐹𝐹𝑋𝑋−1(u) = 𝜉𝜉 + 𝜆𝜆𝑓𝑓−1 �Φ
−1(𝑢𝑢)−𝛾𝛾
𝛿𝛿

�, where 

𝑓𝑓−1[𝑎𝑎] =

⎩
⎪⎪
⎨

⎪⎪
⎧

exp(𝑎𝑎),                               for the SL(lognormal) family
exp(𝑎𝑎) − exp(−𝑎𝑎)

2
,           𝑓𝑓or the SU(unbounded) family

1
1 + exp(−𝑎𝑎)

,                 for the SB(bounded) family

𝑎𝑎,                                     for the SN(normal) family

 

Case Example: Oil Production Example. We use the hypothetical oil production project discussed by 

Brandão et al. (2005a, 2005b) and Smith (2005) to illustrate the consolidated dependent decision tree 

extension. In each year t (t=1,…,10), the two relevant sources of uncertainty are the oil price, and the 

variable operation cost. The oil price process follows a Geometric Brownian Motion process with mean 

drift (rate of change) of 0% and volatility of 15% and the variable cost process follows a Geometric 

Brownian Motion process with mean drift of 2% and volatility of 10% under the fully risk neutral 

approach (Smith, 2005). The initial variable operating cost is $10 per barrel and the initial oil price is $25 

per barrel. There is also a $5 million per year fixed cost. The risk free interest rate is 5%. Table 9 presents 

the expected values of the future cash flow. All values are in millions of dollars. The present value of the 

expected cash flow is $392 million. 

Table 9  Base Case Expected Cash Flow for the Project 
Year 1  2  3  4  5  6  7  8  9  10  

Remaining Reserves 90.0  81.0  73.4  66.8  61.3  56.6  52.6  49.2  46.3  43.9  
Production Level 9.0  7.7  6.5  5.5  4.7  4.0  3.4  2.9  2.5  2.1  

Variable Operating Cost Rate 10.2  10.4  10.6  10.8  11.0  11.3  11.5  11.7  12.0  12.2  
Oil Price 25.0  25.0  25.0  25.0  25.0  25.0  25.0  25.0  25.0  25.0  

Revenues 225.0  191.3  162.6  138.2  117.5  99.8  84.9  72.1  61.3  52.1  
Production Cost (96.8) (84.6) (74.0) (64.8) (56.9) (50.0) (44.0) (38.8) (34.3) (30.4) 

Cash Flow 128.2  106.7  88.6  73.4  60.6  49.9  40.9  33.3  27.0  21.7  
Profit Sharing (32.1) (26.7) (22.1) (18.3) (15.1) (12.5) (10.2) (8.3) (6.8) (5.4) 

Net Cash Flow 96.2  80.0  66.4  55.0  45.4  37.4  30.7  25.0  20.3  16.3  

The net cash flow is a function of the two uncertainties: the oil price and the variable production cost. 

Instead of modeling each uncertainty as a separate chance node in each period in the decision tree, we 
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will model the net cash flow as a consolidated uncertainty 𝑋𝑋𝐶𝐶, 𝑡𝑡 = 1, … ,10, in each period. As a result, we 

reduce the 20 uncertainties into 10 uncertainties in the constructed decision tree.  The present value of the 

oil production project without options is the expectation of the total discounted net cash flow in the 

future. The net cash flow is a sequence of auto-correlated time series variables (𝑋𝑋1, … ,𝑋𝑋10). The net cash 

flow in a later time period is dependent on the outcomes of the previous net cash flows. Hence, we will 

model the project value without options as a 10-dimensional dependent decision tree. We use the 

multivariate normal copula to model the dependence structure between period to period cash flows. 

First, we simulate the time series of net cash flow associated with both uncertainties. After running a 

large number (5,000) of iterations, the Monte Carlo simulation provides approximations to the 

distributions of the net cash flow for each period. Then, we use the Johnson translation system to 

characterize the marginal distributions for (𝑋𝑋1, … ,𝑋𝑋10) and obtain the estimated distribution families and 

parameters [𝛾𝛾, 𝛿𝛿, 𝜆𝜆, 𝜉𝜉] for (𝑋𝑋1, … ,𝑋𝑋10) shown in Table 10.  

Table 10 Johnson Translation Parameters for Each Period 
Year 1 2 3 4 5 6 7 8 9 10 
Distribution SB SB SU SU SU SU SU SU SU SU 

𝛾𝛾 10.41 8.803 -3.383 -1.323 -1.569 -2.037 -3.519 -1.928 -1.395 -3.446 
𝛿𝛿 5.425 4.029 3.284 2.053 2.086 2.187 2.484 2.073 1.811 2.332 
𝜆𝜆 1264 1389 64.97 49.06 44.71 39.23 28.11 30.74 26.24 18.33 
𝜉𝜉 -67.53 -63.51 -16.82 16.97 4.141 -9.23 -28.5 -11.98 -5.747 -25.52 

 
For example, 𝑿𝑿𝟏𝟏 , the cash flow of period 1, is categorized as the Johnson bounded SB  marginal 

distribution with parameters [𝟏𝟏𝟏𝟏.𝟒𝟒𝟏𝟏,𝟓𝟓.𝟒𝟒𝟒𝟒𝟓𝟓,𝟏𝟏𝟒𝟒𝟏𝟏𝟒𝟒,−𝟏𝟏𝟔𝟔.𝟓𝟓𝟓𝟓].  

𝐹𝐹𝑋𝑋1
−1(𝑢𝑢1) = −67.53 + 1264/(1 + exp((10.41 −Φ−1(𝑢𝑢1))/5.425)) 

And 𝑋𝑋3, the cash flow of period three, is categorized as the Johnson unbounded SU marginal distribution 

with parameters [−3.383,3.284,64.97,−16.82].  

𝐹𝐹𝑋𝑋3
−1(𝑢𝑢3) = −16.82 + 64.97

exp (3.383 + Φ−1(𝑢𝑢3)
3.284 ) − exp (−3.383−Φ−1(𝑢𝑢3)

3.284 )
2

 

Notice that the net cash flow from period 3 to period 10 are all categorized as the Johnson unbounded 

(SU) marginal distribution, which has the capability of capturing the tail behavior of a wide variety of 

distributional shapes.  

Next, we need to measure the dependencies among the variables. The decision maker can choose to 

match either the Pearson product moment correlation or the Spearman rank order correlation as the 

desired correlation structure. For simplicity, we use the Spearman rank order correlations in our 

illustration. The Spearman rank order correlations of (𝑋𝑋1, … ,𝑋𝑋10) were calculated from the simulated 
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data, and the calculated corresponding product moment correlation matrix 𝛴𝛴𝑍𝑍 for the normal copula is 

reported in Table 11.  

Table 11   The Transient Correlation 𝚺𝚺𝐙𝐙  
Year 1 2 3 4 5 6 7 8 9 10 

1 1 

         
2 0.6913 1 

        
3 0.5712 0.7982 1 

       
4 0.4883 0.6828 0.8525 1 

      
5 0.4274 0.6008 0.7499 0.8805 1 

     
6 0.3781 0.5362 0.6751 0.7947 0.9022 1 

    
7 0.3427 0.4838 0.6114 0.7269 0.8230 0.9143 1 

   
8 0.3207 0.4578 0.5759 0.6831 0.7672 0.8513 0.9284 1 

  
9 0.2966 0.4245 0.5388 0.6375 0.7164 0.7925 0.8672 0.9350 1 

 
10 0.2784 0.3962 0.5050 0.5987 0.6767 0.7440 0.8154 0.8804 0.9423 1 

Figure 12 shows a portion of the resulting consolidated dependent decision tree. For example, the net 

cash flow in year 1,  𝑋𝑋1 , is modeled as a three branch discrete chance node with outcomes 56.066, 

94.243, and 142.045, and with probabilities 18.5%, 63%, and 18.5% assigned to each corresponding 

outcome as before. The net cash flow in year 2, 𝑋𝑋2 , is a conditional chance node. If the outcome of  𝑋𝑋1 is 

56.066, then the conditional net cash flow in year 2 is modeled as a three branch discrete chance node 

with outcomes 18.990, 44.411, and 76.824. The relationship between the variables reflects a positive auto-

correlation. For example, if the outcome of 𝑋𝑋1 is high the outcomes associated with 𝑋𝑋2 tend to be high, 

and vice versa.  
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Figure 12   Consolidated Dependent Decision Tree for the Oil Production Example 

 

The complete decision tree is available on request from the authors. 

We compare the mean, median and standard deviation of the net cash flow in the consolidated 

dependent decision tree model with the statistics calculated from the simulated data in Table 12. They 

show that this constructed multivariate decision tree provides a close approximation to the target 

multivariate variables. 
Table 12   Statistics of the Multivariate Decision Tree and of the Simulated Data 

Cash Flow X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 
Decision Tree 

          mean 96.02  80.04  66.36  55.08  45.52  37.46  30.65  24.97  20.19  16.23  
median 94.24  76.94  62.59  50.82  41.03  32.44  26.00  20.90  16.65  12.68  

standard deviation 26.25  32.04  33.14  33.33  31.93  30.04  27.65  25.21  22.95  20.65  
Simulation 

          mean 96.15  80.09  66.49  55.12  45.59  37.53  30.75  24.98  20.16  16.21  
median 94.86  77.37  62.23  50.37  40.61  32.45  25.43  20.73  16.42  12.79  

standard deviation 26.40  32.53  34.00  33.68  32.24  30.34  28.10  25.19  22.47  20.35  

The evolution of the future project value reflects the auto-correlated cash flow and is meaningful for 

valuing managerial flexibilities associated with the underlying asset. Figure 13 shows the 10th, 50th, and 

90th percentiles of the future project values using the Monte Carlo simulation model (in heavy lines), the 
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consolidated dependent decision tree model (in dashed lines) and the multivariate decision tree model if 

we ignore the auto-correlations (with light lines). We see that the consolidated dependent decision tree 

model provides a close approximation to the project values in each time period compared to the Monte 

Carlo simulation results in the oil production example. In contrast, ignoring the correlations will greatly 

underestimate the uncertainties in the future project values: the 90th percentiles are much too low and the 

10th percentiles are much too high. Because uncertainty plays the key role in real options valuation, the 

underestimated uncertainties may lead to inaccurate real options value because of the poor approximation 

to the project values by ignoring the correlations between period to period cash flows.   

Figure 13  Approximation of the Project Value in the Oil Production Example  
 

 

At the end of year 5 in this example, there exist three alternatives for managerial flexibility: 

continuing the project, buying out the partner’s 25% share for $40 million, or selling the decision maker’s 

share for $100 million (divesting). We insert the decision nodes for the options in year 5 in the established 

decision tree as shown in Figure 14. The project value is estimated to be $420.27 million for the 

dependent decision tree. Therefore, the estimated value of the options to buy out or divest is worth 

$420.27−$392= $28.27 million which is within 2.5% of the $29 million estimate obtained with the 

Longstaff and Schwartz Monte Carlo simulation approach (Smith, 2005). In contrast, the independent 

cash flow decision tree model gives an estimate of the project with these options of $392 million, which 

implies no value at all for the buyout and divest options.  



 

Page 26 of 33 
 

Figure 14 Decision Tree for Oil Production Example 

 

Brandão et al. (2005a, 2005b) discussed the use of a binomial decision tree to solve this same 

problem. Following Copeland and Antikarov (2001), they estimated the parameters of the binomial 

decision tree by assuming that the change in the value of the oil production example over time could be 

closely approximated by a Geometric Brownian Motion process. While this assumption provided a 

reasonable approximation for this example, Smith (2005) noted that it might not be appropriate in general 

when used to model consolidated cash flow. Recently, Wang and Dyer (2010) suggested an implied 

binomial tree approach using risk-neutral probabilities inferred from the simulated cash flow information 

and solved this same example problem. While the implied binomial tree approach does provide more 

flexibility in modeling cash flow than the assumption of a Geometric Brownian Motion process, it also 

assumes that the underlying stochastic process is relatively “smooth” over time.   

In contrast, the consolidated dependent decision tree begins with empirically determined 

approximations to the marginal distributions of the cash flow in each period, and to the correlations 

among the time periods. Therefore, it is a much more general approximation method that is not subject to 

limiting assumptions regarding the underlying stochastic process.    

The Longstaff and Schwartz Monte Carlo simulation provides a close estimate of the option value for 

this case and was used as our benchmark; however, it may be difficult to implement for more complex 

real options problems. For a discussion of the relative benefits of using the simulation approach versus a 

decision tree approach for real options problems, see Brandão et al. (2005a, 2005b), Smith (2005) and 

Wang and Dyer (2010).          

6. Discussion and Conclusion 

In this paper, we proposed the dependent decision tree approach to construct decision trees for 

dependent multivariate random variables. In essence, the dependent decision tree approach constructs a 

probability tree for discrete approximations of the underlying copula with uniform variables and then 

inverse transforms it into the desired probability tree for the original multivariate random variables with 

the target marginal distributions and correlation structure. Decision nodes or other probability nodes 
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representing independent uncertainties may then be added to complete a decision tree for a specific 

application.  

This approach is a general one, and we have illustrated how it can be applied with copulas from the 

elliptical and Archimedean families. The elliptical family includes the normal and the t-copulas, and the 

latter allows the construction of dependent decision trees consistent with joint distributions that have 

“fatter tails” than those associated with the normal copula. The Archimedean family includes several 

families of copulas that allow the construction of dependent decision trees that include tail dependency, 

and that may be of critical importance for some applications of discrete approximations in risk analysis 

and insurance, for example.  

Because of its flexibility and analytical tractability, we have emphasized the use of the dependent 

decision tree with the normal copula, and contrasted this approach with the computational requirements of 

a similar method proposed by Clemen and Reilly (1999). The dependent decision tree approach and the 

C&R approach both specify separately the marginal distributions and dependencies among them, and take 

advantage of the convenience of the normal copula. The major advantages of the dependent decision tree 

approach are its simplicity and standardization. The computational cost of the C&R approach is mainly in 

the calculation of the conditional density functions and the percentiles of these conditional distributions. 

These calculations may be complex and cannot be standardized because of the need to deal with arbitrary 

marginal distributions.  

The dependent decision tree approach is adapted from the NORTA approach used for generating 

dependent multivariate random variables for Monte Carlo simulation, and transfers this problem into 

calculating the conditional structure of the underlying copula. This greatly simplifies the procedure. The 

main computational cost of the dependent decision tree approach is the correlation matching problem that 

can be skipped for rank order correlations when all marginal distributions are continuous, and that can be 

carried out with efficient numerical methods for product moment correlations. As a result, the dependent 

decision tree approach is computationally more efficient than the C&R approach and intuitively simpler 

for practical applications. The computational benefit of the dependent decision tree approach is especially 

significant when the marginal distributions of the component random variables are neither identical nor 

from the same family of distributions. Additionally, the dependent decision tree approach provides more 

flexibility in the choice of copulas in modeling the various dependence structures of the multivariate 

uncertainties, and therefore extends the scope of decision tree models available in the decision analysis 

literature. 

As with the C&R approach, the dependent decision tree approach constructs non-recombined decision 

trees, and therefore is subject to the "curse of dimensionality" problem. The number of nodes and 
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branches grows exponentially with the number of variables. For multivariate time series, we presented a 

way to reduce the dimension of the problem when the payoff is a function of multiple uncertainties in 

each period. While we used the extended Pearson Tukey method for discretization of the probability 

distributions in this study, the proposed method can be easily applied with other discretization methods to 

generate chance nodes with an arbitrary number of branches. 

Uncertainties are often dependent. The use of the dependent decision tree approach provides a 

practical alternative procedure to model dependent uncertainties in decision trees.  
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Appendix 1. When the dependency structure is modeled by the normal copulas, the dependent decision 

tree approach extends NORTA (NORmal To Anything) (Cario and Nelson 1997), a simulation algorithm 

for generating multivariate random variables, to modeling dependence in decision trees.  

With the multivariate normal copula modeling the dependence among the random variables, we can 

transform a multivariate normal random vector 𝑍𝑍 into the desired random vector 𝑋𝑋. If we define 𝑍𝑍 =

(𝑍𝑍1, …𝑍𝑍𝐶𝐶)~𝑁𝑁(0,𝛴𝛴𝑍𝑍), we have the representation 

𝑋𝑋 = (𝑋𝑋1, … ,𝑋𝑋𝐶𝐶) = (𝐹𝐹1−1�Φ(𝑍𝑍1)�, … ,𝐹𝐹𝐶𝐶−1�Φ(𝑍𝑍𝐶𝐶)�  

Note that 𝑈𝑈𝑖𝑖 = Φ(𝑍𝑍𝑖𝑖) is the uniform variable for the normal copula function. Hence the NORTA approach 

is theoretically equivalent to the dependent decision tree approach we discussed when the normal copula 

is used for modeling dependence.  

The NORTA approach provides efficient algorithms to determine the normal copula correlations 

Σ𝑍𝑍 = (𝑃𝑃𝑖𝑖𝑖𝑖∗ )𝑖𝑖,𝑖𝑖=1𝐶𝐶  through a correlation matching technique when we use the Pearson product moment 

correlations Σ𝑋𝑋 = (𝑃𝑃𝑖𝑖𝑖𝑖)𝑖𝑖,𝑖𝑖=1𝐶𝐶  as the input correlation structure. Cario and Nelson (1997) show each pair of 

�𝑃𝑃𝑖𝑖𝑖𝑖∗ , 𝑃𝑃𝑖𝑖𝑖𝑖� satisfies the following equations:  

𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑜𝑜𝑃𝑃𝑃𝑃(𝑋𝑋𝑖𝑖,𝑋𝑋𝑖𝑖) =  𝑐𝑐𝑜𝑜𝑃𝑃𝑃𝑃 �𝐹𝐹𝑖𝑖−1�Φ(𝑍𝑍𝑖𝑖)�,𝐹𝐹𝑖𝑖−1 �Φ�𝑍𝑍𝑖𝑖��� 

= ∬�𝐹𝐹𝑖𝑖
−1�Φ(𝑍𝑍𝑖𝑖)�−𝜇𝜇𝑖𝑖

𝜎𝜎𝑖𝑖
� �

𝐹𝐹𝑖𝑖
−1�Φ�𝑍𝑍𝑖𝑖��−𝜇𝜇𝑖𝑖

𝜎𝜎𝑖𝑖
�𝜙𝜙�𝑧𝑧𝑖𝑖 , 𝑧𝑧𝑖𝑖; 𝑃𝑃𝑖𝑖𝑖𝑖∗ �𝑑𝑑𝑧𝑧𝑖𝑖𝑑𝑑𝑧𝑧𝑖𝑖    

 
where 𝜇𝜇𝑖𝑖  and 𝜎𝜎𝑖𝑖2  are the mean and variance of the marginal distribution 𝐹𝐹i  respectively, and 𝜙𝜙  is the 

bivariate standard normal density function with correlation 𝑃𝑃𝑖𝑖𝑖𝑖∗ . Because of the symmetry of the 

correlation matrix and the perfect correlation of any variable with itself, there are 𝑙𝑙(𝑙𝑙 − 1) 2⁄  

independent correlation matching equations for 𝑃𝑃𝑖𝑖𝑖𝑖∗  , 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑙𝑙.  

Although analytic solutions are only available for specific cases (Li and Hammond, 1975), efficient 

numerical procedures have been developed to solve these equations. For example, Cario and Nelson 

(1997) use numerical root-finding methods combined with two dimensional numerical integration 

methods to evaluate the double integral function values. Chen (2001) proposes a Monte Carlo simulation-

based retrospective approximation, using a stochastic root-finding algorithm to estimate the 𝑃𝑃𝑖𝑖𝑖𝑖∗ . Avramidis 

et al. (2009) provide a discussion of the case of discrete marginals.  
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Appendix 2.  The formulas for the multivariate copulas corresponding to Tables 2 and 3 are shown 

below: 
Table A1. Key Formulae for Multivariate Copulas  
Family  Copula Description 𝑢𝑢𝐶𝐶 
normal 
copula 

𝐶𝐶𝑁𝑁(𝑢𝑢1, … ,𝑢𝑢𝐶𝐶) = Φ𝛴𝛴(Φ−1(𝑢𝑢1), … ,Φ−1(𝑢𝑢𝐶𝐶)) 

with a Pearson product moment correlation matrix 𝛴𝛴.  
 

𝑢𝑢𝐶𝐶=Φ(𝐴𝐴𝐶𝐶1Φ−1(𝛼𝛼1) + ⋯+ 𝐴𝐴𝐶𝐶(𝐶𝐶−1)Φ−1(𝛼𝛼𝐶𝐶−1)
+ 𝐴𝐴𝐶𝐶(𝐶𝐶)Φ−1(𝛼𝛼𝐶𝐶)) 

 
where 𝐴𝐴𝑖𝑖𝑖𝑖  is the element of the Cholesky factorization that 
decomposes the covariance matrix 𝛴𝛴 as 𝛴𝛴 = 𝐴𝐴𝐴𝐴𝑇𝑇 to give the 
lower triangular matrix 𝐴𝐴 = (𝐴𝐴𝑖𝑖𝑖𝑖)𝑖𝑖,𝑖𝑖=1𝐶𝐶  and 𝛼𝛼𝑖𝑖  is the 
percentile of the conditional distribution 𝑋𝑋𝑖𝑖|𝑋𝑋1,…, 𝑋𝑋𝑖𝑖−1.

 t-copula 𝐶𝐶𝑇𝑇(𝑢𝑢1, … ,𝑢𝑢𝐶𝐶) = 𝑡𝑡𝛴𝛴,ν(𝑡𝑡ν−1(𝑢𝑢1), … , 𝑡𝑡ν−1(𝑢𝑢𝐶𝐶)) 
where 𝑡𝑡ν 

is the univariate student’s t distribution function, with 
ν  degrees of freedom, and 𝑡𝑡𝛴𝛴,ν  the multivariate distribution 
corresponding to 𝑡𝑡ν. 

𝑢𝑢𝐶𝐶=𝑡𝑡ν(𝐴𝐴𝐶𝐶1𝑡𝑡ν−1(𝛼𝛼1) +⋯+  𝐴𝐴𝐶𝐶(𝐶𝐶−1)𝑡𝑡ν−1(𝛼𝛼𝐶𝐶−1)

+ 𝐴𝐴𝐶𝐶(𝐶𝐶)�
ν + [𝑡𝑡ν−1(𝛼𝛼1)]2

ν + 1
𝑡𝑡ν+1−1 (𝛼𝛼𝐶𝐶)) 

where 𝐴𝐴𝑖𝑖𝑖𝑖  is the element of the Cholesky factorization that 
decomposes the covariance matrix 𝛴𝛴 as 𝛴𝛴 = 𝐴𝐴𝐴𝐴𝑇𝑇 to give the 
lower triangular matrix 𝐴𝐴 = (𝐴𝐴𝑖𝑖𝑖𝑖)𝑖𝑖,𝑖𝑖=1𝐶𝐶  and 𝛼𝛼𝑖𝑖 is the  
percentile of the conditional distribution 𝑋𝑋𝑖𝑖|𝑋𝑋1,…, 𝑋𝑋𝑖𝑖−1.

 

Archimedean 
copula 

𝐶𝐶𝐴𝐴(𝑢𝑢1, … ,𝑢𝑢𝐶𝐶) = 𝜑𝜑[−1](𝜑𝜑(𝑢𝑢1) + ⋯+ 𝜑𝜑(𝑢𝑢𝐶𝐶)) 
Where 𝜑𝜑 is the generator and φ[−1]is the inverse generator. 
 
The multivariate Archimedean Copula can also be defined as 
the nth serial iterate of a two dimensional Archimedean copula 
(Jouini and Clemen 1996) as following: 
𝐶𝐶𝐴𝐴(𝑢𝑢1, … ,𝑢𝑢𝐶𝐶) = 𝐶𝐶𝐴𝐴(𝐶𝐶𝐴𝐴(𝑢𝑢1, … ,𝑢𝑢𝐶𝐶−1),𝑢𝑢𝐶𝐶) 

We can construct multivariate Archimedean copulas based 
on the interaction of bivariate Archimedean copulas since 
𝐶𝐶𝐴𝐴(𝑢𝑢1, … ,𝑢𝑢𝐶𝐶) = 𝐶𝐶𝐴𝐴(𝐶𝐶𝐴𝐴(𝑢𝑢1, … ,𝑢𝑢𝐶𝐶−1),𝑢𝑢𝐶𝐶). 
First, calculate 𝐶𝐶𝐴𝐴(𝑢𝑢1,𝑢𝑢2); 
Second, draw 𝑢𝑢3 from the conditional copula  
 
𝐶𝐶𝐴𝐴(𝑢𝑢3|𝐶𝐶𝐴𝐴(𝑢𝑢1,𝑢𝑢2)); 
 
More generally, draw 𝑢𝑢𝐶𝐶 from 𝐶𝐶𝐴𝐴(𝑢𝑢𝐶𝐶|𝐶𝐶𝐴𝐴(𝑢𝑢1, … ,𝑢𝑢𝐶𝐶−1)). 
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